
The OncoArray Consortium:  a Network for Understanding the Genetic Architecture of Common Cancers.

Authors:
Christopher Amos 
Joe Dennis 
Zhaoming Wang 
Jinyoung Byun 
Fredrick Schumacher  
Simon A. Gayther 
David J. Hunter 
Brian Henderson* 
Thomas A. Sellers 
Stephen Gruber 
Alison Dunning 
Kyriaki Michailidou 
Laura Fachal 
Kimberly Doheny 
Amanda B. Spurdle 
Yafang Li 
Xiangjun Xiao 
Jane Romm 
Elizabeth Pugh 
Gerhald A. Coetzee 
Dennis J. Hazelett 
Stig Bojesen 
Charlisse Caga-Anan 
Christopher Haiman  
Ahsan Kamal 
Craig Luccarini  
Daniel Tessier  
Daniel Vincent 
François Bacot 
David Van Den Berg  
Stephen Demetriades  
Fergus Couch  
Judith L. Forman  
Graham Giles 
David Conti 
Heike Bickeböller 
Angela Risch 
Melanie Waldenberger  
Irene Brüske-Hohlfeld 
Belynda Hicks 
Hoai-Thu Vo 
Hua Ling
Lesley McGuffog 
Andrew Lee 
Karoline Kuchenbaecker 
Penny Soucy 
Judith Manz
Julie Cunningham  



Katja Butterbach  
Zsofia Kote-Jarai  
Peter Kraft  
Liesel M. Fitzgerald  
Sara Lindström  
Marcia Adams  
James McKay 
Catherine Phelan 
Sara Benlloch
Paul Brennan 
Hongbin Shen 
Yongyong Shi  
Sune F. Nielsen 
Sylvie Laboissiere  
Tameka Shelford  
Jack Taylor 
John K. Field 
Sue Park
Mads Thomassen
Ken Offit
Rita Schmutzler 
Laura Ottini 
Rayjean Hung
Jonathan Marchini 
Ulrike Peters 
Rosalind Eeles 
Michael Seldin 
Elizabeth Gillanders 
Stefanie Nelson 
Daniela Seminara 
Antonis C. Antoniou 
Paul Pharoah 
Georgia Chenevix-Trench 
Stephen Chanock 
Jacques Simard 
Douglas F Easton

Representing the GAME-ON,  ECAC, GLC, CIMBA, PERSPECTIVE and PRACTICAL consortia.

The authors of this manuscript do not have any conflicts of interest to disclose and have not received 
commercial reimbursement for any aspect of the research reported in this manuscript.  Funding sources for the 
research are disclosed in the supplementary funding sources document and include government and nonprofit 
organizations only. 

*Post-humous 



Background: Common cancers develop through a multistep process often including inherited susceptibility. 
Collaboration among multiple institutions, and funding from multiple sources, has allowed the development of 
an inexpensive genotyping microarray, the OncoArray. The array includes a genome-wide backbone, 
comprising 230,000 SNPs tagging most common genetic variants, together with dense mapping of known 
susceptibility regions, rare variants from sequencing experiments, pharmacogenetic markers and cancer related 
traits. 

Methods:  The OncoArray can be genotyped using a novel technology developed by Illumina to facilitate 
efficient genotyping. The consortium developed standard approaches for selecting SNPs for study, for quality 
control of markers and for ancestry analysis.  The array was at selected sites and with prespecified replicate 
samples to permit evaluation of genotyping accuracy among centers and by ethnic background.  

Results:  The Oncoarray consortium genotyped 423,029 samples. A total of 494,763 SNPs passed quality 
control steps with a sample success rate of 97% of the samples. Participating sites performed ancestry analysis 
using a common set of markers and a scoring algorithm based on principal components analysis.   

Conclusions: Results from these analyses will enable researchers to identify new susceptibility loci, perform 
fine mapping of new or known loci associated with either single or multiple cancers,  assess the degree of 
overlap in cancer causation and pleiotropic effects of loci that have been identified for disease-specific risk, and  
jointly model genetic, environmental and lifestyle related exposures. .  

Impact: Ongoing analyses will shed light on etiology and risk assessment for many types of cancer.



Introduction 

Cancer is one of the leading causes of death world-wide. In 2012 the estimated number of cancer cases around 
the world was 14.1 million; and this number is estimated to swell to 21 million by 2030 
(http://www.wcrf.org/cancer_statistics/world_cancer_statistics.php). Cancer has a sizable heritable component. 
A large twin study estimated that heritable factors may explain between 20% and 40% of the variance in cancer 
risk.1  High-penetrance mutations, including those in BRCA1 and BRCA2, APC and DNA mismatch-repair 
genes, are estimated to account for less than 5% of all cases.2,3  As for other common complex diseases, it is 
expected that much of the inherited susceptibility to cancer is likely to be explained by common alleles having 
low-penetrance4-7, with additional risk due to uncommon alleles that may have higher penetrance remaining to 
be discovered.  By developing large consortia, the effects of these rare alleles can be estimated 8,9. As pointed 
out by Ponder 10,11 and Peto,12 common genetic variants account for a large proportion of cancer incidence, even 
though they do not individually lead to strong clustering within families. Moreover, the combinations of effects 
from genetic and environmental factors may account for substantial differences in cancer susceptibility within 
and between populations10-15.

Over the past decade, genome-wide association studies (GWAS) of cancer have discovered multiple low-
penetrance loci. Given that the effect sizes are generally weak (relative risks per allele of 1.3 or less), increasing 
the sample size has become crucial in identifying and characterizing true genetic associations. Genetic 
signatures of cancer etiology indicated novel influences in cancer development,  thereby and provided new 
insights into etiologic mechanisms that suggest interventions 16  By identifying many new loci influencing 
cancer development, genomic research has identified pathways that influence cancer development17. In 
addition, Mendelian randomization has emerged as an effective approach for confirming non-genetic etiologic 
factors identified through epidemiologic studies, removing potential concerns about reverse causality18.

Once the loci are identified, fine-mapping studies are a critical next step in narrowing in on the underlying 
functional variant(s) and in the discovery of nearby, independent, secondary signals, which may increase 
significantly the heritable fraction explained by each region. Furthermore, fine-mapping studies can aid in 
functional follow-up, by defining the most likely candidate variant(s). More than 90% of risk-alleles lie in non-
protein coding DNA and there is now unequivocal evidence that risk regions are enriched for regulatory 
elements, including enhancers, promoters, insulators and silencers19.  In general genome-wide estimates in 
humans indicate about 500,000 enhancers may alter regulation of expression thus alter risk by controlling 
expression of target susceptibility genes19-22.  Analyses to date indicate that several regions harbor multiple 
distinct susceptibility variants for different cancer types, suggesting common mechanisms but tissue-specific 
regulation23.  Thus fine-mapping of multiple cancer types using a common array is likely to be an effective 
strategy for finding new alleles influencing common cancers and for unravelling mechanisms in their etiology. 

The overall goal of the OncoArray Consortium is to gain new insights into the genetic architecture and 
mechanisms underlying common cancers, in particular through the development a new genotyping array, the 
OncoArray, and using it to genotype a large number of cases with cancers of the breast, colon, lung, ovary,  
prostate or endometrial cancer as well as genetically susceptible individuals such as BRCA1 and BRCA2
mutation carriers along with a large number of cancer-free controls.  The collaboration arose, in part, through 
the efforts of the Genetic Associations and Mechanisms in Oncology (GAME-ON,
http://epi.grants.cancer.gov/gameon/) consortium, which was a multi-year project to characterize SNP 
associations for common cancers and to understand their mechanistic and functional consequences in disease 
development.  The OncoArray project provides an unprecedented opportunity both to discover new cancer 
susceptibility variants, common and rare, and to identify the likely causal variants at known loci through fine 
mapping and the integration of disease associated variants with tissue-specific regulatory information.  By 
designing a common array for multiple cancers, we were able to achieve economies of scale and hence 
genotype a large number of study subjects from many countries and ethnic backgrounds.   Additionally, joint 
genotyping across cancer sites permits sharing of controls and a more comprehensive assessment of genetic risk 
among many cohort studies that participated in this study. Moreover, given the evidence that some of the loci 



influencing cancer risk are shared among cancer sites, the genotyping of a common array across multiple cancer 
sites provides an excellent opportunity to study the pleiotropic effect of susceptibility loci.  However, while 
there is tremendous value in organizing a genotyping consortium on this scale, there are also substantial 
challenges in how best to integrate data across this diverse spectrum of cancer sites and genotyping locations. 
To facilitate the analysis, the consortium developed shared procedures for genotype calling and quality control. 
This report describes the development of the consortium, the array that was designed, and quality control 
approaches that have been implemented across the consortium. 

Methods

Principles in sample and SNP selection 

The Oncoarray Consortium is focused on the discovery of variants influencing common cancers, in particular 
cancers of the breast, colon, lung, ovary, and prostate. These cancers were chosen for analysis based upon prior 
observation of some common causal pathways17 as well as the opportunity provided by common funding through 
the GAME-ON, a consortium of U19 grants studying genetic etiology of breast, ovarian, prostate, colon and lung
cancers.  The existence of an effective, multi-consortium collaboration provided an opportunity primarily 
because of economies of scale.  The potential to utilize common control sets across the consortia gave added 
value. A description of the sample sets is provided in Supplementary Table 1. Endometrial cancer cases were 
also included as a part of the genotyping study for several reasons. First, endometrial cancer shares several risk 
factors with breast cancer and ovarian cancer. Second, there is at least one genetic locus (HNF1B) shared by 
endometrial cancer24,25, prostate cancer and ovarian cancer26, providing a rationale for exploring additional 
common susceptibility across other cancer sites. Finally, there are similarities in tumor phenotype and/or shared 
tissue of origin between endometrial cancer, the benign gynaecological condition endometriosis, the 
endometrioid and clear cell histologies of ovarian cancer, and basal-like breast cancer 27 29. Thus, pooling 
ovarian and endometrial25,30,31 cases could uncover novel loci.
 
The array was designed from a final list of approximately 600,000 markers, of which approximately 533,000 
were successfully manufactured. Approximately 50% of the markers were selected as a GWAS backbone 
(Illumina HumanCore). These markers were selected to tag the large majority of known common variants, via 
imputation; this set of markers has been incorporated into several other arrays and hence were expected to 
genotype successfully. The remaining markers were selected from seven lists: five from the disease consortia 
representing the main cancer sites, one from the CIMBA consortium including potential modifiers of cancer risk 
in BRCA1 or BRCA2 carriers, and a seventh “common” list that included variants of common interest (see 
below).  SNPs were allocated to these disease sites, and to CIMBA, according to the number of samples that 
each consortium would be contributing. In addition, the array that was configured by Illumina allows flexibility 
for cancers not originally participating in the design of the array by allowing additional custom content to be 
added to the array.  The general principles for SNP allocation were set by consensus by members of the 
OncoArray Consortium. More detailed descriptions of the SNP selection process for disease sites participating 
in the Oncoarray are also provided in the Supplementary Methods. Below, we present the general approaches 
that were taken for nominating SNPs for the Array.  

Selection of SNPs for inclusion within disease site 

SNPs to be included in the array were nominated by participating consortia organized into each of the major 
disease site groups that participated in the primary array development.  Each cancer site used its own 
prioritization scheme.  Generally selection of SNPs were based on 1) Candidate SNPs from loci enriched 
showing some evidence of association (e.g. p<10-5) from previous GWAS of common cancers (breast, ovarian, 
prostate, colon and lung); 2) Fine mapping of risk loci based on 1000 Genomes Project data and resequencing 
studies; 3) Candidate rare variants from whole genome and whole exome studies, and exome arrays; 4) findings 
from previously published studies of other cancers 5) other “wild-card” variants, for example variants of 
potential functional significance.  The majority of SNP selection was based on regions previously identified 



from GWAS in European populations, but disease sites also allocated tagging SNPs to capture variability for 
Asian and African descent populations.  In addition to site-specific variants, some of which were nominated by 
more than one group, candidates were nominated from in silico functional analyses that suggested putative 
mechanistic targets for risk variants based either on their predicted effects on the coding sequence of candidate 
genes, or their intersection with non-coding, putative regulatory targets (see below).  Finally, variants associated 
with  phenotypes that correlate with cancers (such as smoking or BMI) were also selected.  

Selection of SNPs for fine-mapping 

Similar procedures were followed for each site.  We first defined a 1Mb interval surrounding the known lead 
signal for each genome-wide signal.  Where such regions overlapped, the intervals were amalgamated into a 
single interval so as to include 500kb either side of each hit.  Common regions were defined as regions 
including hits within 1Mb for more than one cancer type, amalgamated as described.  We then identified and 
obtained design scores for all variants in the interval from the 1000 Genomes Project (phase I version 3, March 
2012 release).  From among designable SNPs, we then selected three sets of variants (a) all variants correlated 
with the known hits at r2>0.6 (b) all variants from lists of potentially functional variants, defined through 
RegulomeDB and (c) a set of SNPs designed to tag all remaining variants at r2>0.9.

Selection of “Common” SNPs 

Previous analyses32-35 have demonstrated that association signals for different cancers tend to cluster together, 
perhaps reflecting common mechanisms. For this reason, we selected a dense set of SNPs within 1Mb (see 
above) across all regions in which this occurred for more than one cancer type.  Variants were nominated for 
inclusion if they i) occurred within genes that have been found to associate with pharmacogenetic traits relevant 
to cancer ii) had previously been associated at genome-wide levels of significance for any other cancer type (not 
among the five primary cancers sites participating in the OncoArray Consortium) as defined by the GWAS 
Catalog (http://www.ebi.ac.uk/gwas/) iii) had been found to be relevant to cancer associated traits36  including 
BMI, height,  and waste to hip ratio (in collaboration with the GIANT consortium37), smoking, age at 
menopause or menarche (in collaboration with the REPROGEN consortium38), and telomere length in 
lymphocytes39.  We also included additional SNPs that showed evidence of association with other cancer types 
including endometrial, testis, bladder and pancreatic cancer, Wilms’ tumor, and glioma, and SNPs tagging 
known common eQTLs (i.e. associated with expression across a range of tissues). 

Pharmacogenetic variants were nominated by several collaborators based on i) functional variants in 19 genes 
nominated by the pharmacogenetics network, ii) functional variants or tagging SNPs in CYP2A6 and CYP2B6, 
iii) SNPs nominated by PharmGKB and variants nominated from study of cell lines to affect expression of 
pharmacogenetically relevant genes40. SNPs from the region of chromosome 15q25.1 that associates with lung 
cancer and smoking behavior were placed in the common region given the ubiquitous effects of smoking on 
cancer risks.  Of note, BRCA1 and BRCA2 were finally released from patent controls two days before the final 
selection of SNPs so that common functional variants of these loci could be included in the array.  We included 
additional (non-polymorphic) probes for each exon of BRCA1, BRCA2, MLH1 and MSH2 in order to capture 
large deletions in these genes.  Finally, we included a panel of Y chromosome and mitochondrial markers to 
provide data on population ancestry. 

The Division of Cancer Epidemiology and Genetics of the National Cancer Institute accumulated GWAS scan 
data for other cancer sites including bladder, NHL (Non-Hodgkin’s Lymphoma), esophageal, gastric, glioma, 
kidney, osteosarcoma, pancreas, testis or scan data for non-Caucasian studies including Asian non-smoking 
female lung cancer and African American lung cancer. The top 200-400 most significant loci from each scan 
were selected after ranking by association test p value and LD pruning (r2>0.6).

Functional characterization and selection – Risk variants at known susceptibility loci for breast, colorectal, 
lung, ovarian and prostate cancer were integrated with epigenomic datasets from ENCODE and other published 



sources, to identify intersections between risk SNPs and tissue specific regulatory features that define the most 
likely causal variants and their functional targets. We interrogated associations between SNPs and DNAse 
Hypersensitivity (DHS) sites generated in the pan-cancer cell line panel from ENCODE, as well the LNCaP cell 
line (for prostate cancer specific marks), the HMEC line (for breast), the SAEC line (for lung cancer), the 
HCT116 line (for colorectal cancer) and the CaOV3 line (for ovarian cancer). The most likely causal SNPs from 
these analyses were prioritized in the selection of fine mapping variants described above. In addition, we 
identified candidate causal SNPs at loci associated with risk of two or more cancers, to identify the putative 
functional targets that are common across cancer types as well as those that are tissue/cancer specific at these 
loci. A summary of these analyses are illustrated in Figure 1.

Pruning and merging procedures 

As a starting point, we “forced-in” all SNPs in the GWAS backbone (260,660) and the common fine-mapping 
list (32,548). All other lists include SNPs that passed design at Illumina and were rank ordered with the most 
important SNPs first, and were pruned to exclude redundant SNPs in LD (r2>0.9) with other SNPs in the same 
list or the “force-in” set described above. 

The proportions allocated to each disease site are listed in the Supplementary Table 2. 

The final merging took the lists of SNPs generated by the disease sites and for common mapping and generated 
a single list in the following order: 

a. Include the GWAS backbone 
b. Include the Common fine-mapping list 
c. Choose the remaining SNPs iteratively from the five ranked lists. At each stage chose the next 

SNP from the list with the smallest value of n/p, where n is the number of SNPs already chosen 
from that list and p is the proportional allocation of that list, as given in the above table. This 
ensures that the correct proportions will be kept. 

d. Include the SNP unless the exact SNP has already been chosen. In either case, augment the count 
n for that list by 1. 

e. Increase the number of beadtypes for chosen SNPs, where necessary because variation could not 
be captured by a single beadtype. 

Based on the merged list of 715,637 unique SNPs (76,290 from lung; 224,074 from from familial and sporadic 
breast and ovarian; 81,009 from prostate; 50,110 from colorectal; 17,547 from common list), we further 
performed the LD pruning (r2>0.95). It resulted in a total of 651,216 SNPs. A set of obligatory SNPs provided 
by each contributing lists was not allowed to be “pruned”.  

After this process, we submitted 568,712 SNPs (reaching the total number of ~600,000 beadtypes) from the 
priority lists to Illumina for manufacturing. Of these, a total of 533,631 (93.8%) passed quality control 
procedures and were included as valid markers on the array.  

Genotyping

To minimize variability that might result from genotyping among sites and to improve efficiency, the large 
majority of genotyping was performed at just 8 sites CIDR (n=211,638), Cambridge (n=98,770), Genome 
Quebec/McGill Innovation Center (n=55,121), the National Cancer Institute (26,803), the Mayo clinic 
(n=22,023), Denmark (n=5,961), and Shanghai (n=3,840). To ensure comparability among centers, selected 
Hapmap samples were analyzed by all groups.  Genotyping results were stored in ‘top’ format because that 
provided a unique algorithm for SNP genotype labeling, and a strand alignment file was developed to permit 
realignment to the strand forward direction for imputation and final reporting of results.



Quality control steps

A detailed quality control plan was developed and is included as supplementary material but salient features are 
presented here. Additionally, an imputation guideline is also presented. Participating sites genotyped a common 
set of Hapmap samples so that strand alignment and integrity of imputation could be compared among 
analytical sites.  All sites extracted genotypes in top alignment and used a common genotype clustering file that 
can be downloaded from http://consortia.ccge.medschl.cam.ac.uk/oncoarray/onco_v2c.zip. A list 
(onco_duplicate_variants_excluded.csv) of 765 was compiled of duplicate probes that should be excluded. The 
probe with lower call rate was excluded.

Reclustering process 
A selection of 56,284 samples with high call rates from across the genotyping centres were combined into a 
single Illumina Genome Studio project and automatic clustering performed using the GenTrain 2 clustering 
algorithm. This included 3,687 African-American, 5,590 Asian  and 2,608 Hispanic samples. A large number of 
samples was used to increase the chances of including heterozygotes for the many rare variants on the array. 
(Initial analyses found 23,249 variants with a MAF below 0.0005.) 

Variants likely to have problematic clusters were selected for manual inspection using these criteria: call rate 
below 99%, very rare variants (MAF below 0.001), poor Illumina intensity and clustering metrics, deviation 
from the expected frequency as observed in the 1000 Genomes.  We inspected 68,000 cluster plots and 3,964 
variants were identified where the cluster positions could be manually improved from the initial cluster file. The 
final cluster file with the manual adjustments was distributed and applied throughout the consortium. Plots 
initially scored as failed were inspected by a second analyst and 16,526 variants were excluded from the 
analysis. 

Filtering of samples and genotypes were performed separately by consortium. We excluded samples with call 
rates <80% then removed SNPs with call rates less than 80%, then excluded samples with call rates <95%.  We 
also excluded unexpected genotypic males/females/males (using X and Y markers). Individuals with identified 
as XO, XXY, or with low X heterozygosity (<5%) were flagged for exclusion. A list of 300 Y markers 
confirmed to genotype well in males and to have non-autosomal cluster patterns were used for gender checking 
(chr_Y_SNPs_for_sex_checking.csv). We exclude from the test chromosome SNPs that show a high level of 
heterozygous calls in males and/or autosomal cluster patterns (chr_X_SNPs_with_autosomal_clusters.csv). 

Ancestry Analysis 

Ancestry analysis was performed using a standardized approach in which 2,318 ancestry informative markers 
(AIMs) with minor allele frequencies of 0.05 or higher were analyzed on data from 66,610 samples including 
505 Hapmap 2 samples. We noted that among those individuals not clearly aligning into one of the major 
continental ancestry groups there are clines connecting ancestral groups along axes connecting the centroids of 
the ancestral populations. We mapped ancestry to regions of a triangle connecting the three regions, in order to 
estimate the contribution of European, Asian and African ancestry to each individual. The method is further 
described in the software package FastPop (http://sourceforge.net/projects/fastpop/) that we developed and 
distributed to consortium members. Individuals were thus classified into 4 groups for downstream analyses: 
European (defined as >80% European ancestry), East Asian (>40% Asian ancestry), African (>20% African 
ancestry) and other (not fulfilling any of the above criteria). Any markers showing deviation from Hardy-
Weinberg equilibrium with P<10-7 in controls or P<10-12 in cases were flagged for exclusion from imputation 
analyses and for further review of cluster plots. Within ethnic groups, samples with overall heterozygosity <5% 
or > 40% were excluded.  

Additional Quality Control Steps 
Duplicate checking was assessed using PLINK41 or genabel (http://www.genabel.org/ ). Unexpected duplicates 
that could not be resolved were removed, while for resolved duplicates, the sample with the higher call rate was 



retained for analysis. One individual from any group (usually a pair) with estimated identity by descent values 
of 0.45 or higher was retained for primary case-control comparisons.  Genotypes showing 2% or higher 
discordance in duplicate samples were removed from consortium-specific analyses and flagged for exclusion 
from imputations. 

Prior to imputation, a reduced set of SNPs was selected to insure the same high quality SNPs were analyzed 
across all consortia.  Variants that had call rates below 98% or MAF <0.01 in Europeans in any consortium 
were excluded.  Strand information was obtained by blasting the Illumina TOP sequences against the 1000 
genomes sequences to convert to a consistent forward alignment.  Some manifest positions identified by “rs” 
numbers were updated from dbSNP and the new positions confirmed by sequence matching.  The variants on 
the chip were then matched to the variants from the 1000 Genomes Phase 3 release variant set provided for the 
Impute  software: 
https://mathgen.stats.ox.ac.uk/impute/1000GP%20Phase%203%20haplotypes%206%20October%202014.html.  

Results

Genotyping quality. 

Samples passed genotyping quality control steps if more than 95% of SNPs had valid calls.  After manual 
review of cluster plots for SNPs failing to achieve 95% call rates a total of 494,763 SNPs were retained for 
analysis.  The call rate varied according to tissue source and DNA processing steps (Figure 2).  Overall, 97% of 
samples had call rates of 95% or higher.  However, the efficiency in genotyping varied markedly among sources 
of DNA.  In particular, genotyping of samples derived from peripheral blood provided excellent performance, 
while amplified DNA derived from non-blood samples showed poorer performance.  The success rate for 
genotyping Hapmap derived samples was 100% and the overall genotyping failure rate for lymphoblastoid lines 
was 0.5%.  To evaluate the reliability of genotyping across samples including post-imputation processing we 
evaluated concordance of imputed genotypes (?for Hapmap samples – needs to be specified) among the centers.  
Results show > 95% concordance in imputed genotype calls for all Hapmap samples with lower levels of 
concordance found among non-European descent samples.  

Analysis of concordance of sample genotypes 

Figure 3 depicts average squared correlations among 19,367,932 variants imputed from v3 of the 1000 
Genomes Project for Hapmap samples genotyped and imputed in Cambridge versus the same samples 
genotyped by CIDR and imputed at Dartmouth using the same imputation protocol (supplementary methods). 
The integral values along the X axis depict results for the same individual, with multiple replicate samples 
having been genotyped for individuals 1, 4, 5, 6 and 8. Samples 1-8 derive from European descent individuals, 
samples 9-10 are Chinese, sample 11 is Japanese and samples 12-14 are Yoruban. Correlations in genotypes 
performed at different centers were high but were slightly higher for European descent samples (average 
R2=0.985) versus Chinese (average R2=0.958), Japanese (average R2=0.961) or Yorubans (average R2=0.975).

To illustrate the performance of the imputation, we performed genome-wide imputation for 69,900 cases and 
51,056 controls of European ancestry from the breast cancer data set. These were imputed using v3 of the 1000 
Genomes Project as a reference panel, resulting in the imputation of ~22M SNPs with a minor allele frequency 
of >0.1% in European  samples. Imputation was performed using Impute v2.0 after prephasing of genotypes 
using SHAPEIT2. Imputation was carried out in ~600 5Mb sections, with the number of contributing 
haplotypes (k_hap) set to 800. Imputation quality was extremely high for common variants: more than 65% of 
variants with MAF>5% had an imputation quality score >0.975 and 93% had a quality score >0.8 (Figure 4, 
panel a). As expected, this proportion was lower for rarer SNPs (9% for variants with a MAF<5% and 4% for 
variants with a MAF<1% had a quality score >0.975) (Figure 4, panel b). However, even for rarer variants a 
substantial fraction could be imputed, albeit less reliably. Thus the proportions of SNPs with a quality score 



>0.3 were 81% and 76% for SNPs with MAF<5% and <1%, respectively. Supplementary Figure 1 compares the 
imputation accuracy of the Oncoarray to several other arrays.

Genotyping results 

The populations that have been genotyped as a part of the Oncoarray are presented in Supplementary Table 1. 
This table provides a description of the design of the studies that are participating in the Oncoarray along with 
the reported ethnic background of the participating studies. Samples that were genotyped at the Center for 
Inherited Disease Research will be available for analysis through the dbGAP portal in March, 2016. Data from 
other samples along with more detailed phenotyping data are available through collaborative requests to the 
participating consortia. Websites that provide details about the process for obtaining genotyping information are 
available for lung cancer at the Transdisciplinary Research in Cancer of the Lung website (www.u19tricl.org),
for prostate cancer through PRACTICAL (http://practical.ccge.medschl.cam.ac.uk/), for Breast Cancer at 
BCAC (http://apps.ccge.medschl.cam.ac.uk/consortia/bcac/), for Ovarian Cancer at OCAC 
(http://apps.ccge.medschl.cam.ac.uk/consortia/ocac//), for colon cancer at CORECT 
(http://epi.grants.cancer.gov/gameon/), for endometrial cancer at 
(http://apps.ccge.medschl.cam.ac.uk/consortia/ocac/ http://epi.grants.cancer.gov/eecc/), and for BRCA1 and
BRCA2 mutation carriers at CIMBA (http://apps.ccge.medschl.cam.ac.uk/consortia/cimba/). In total after all 
quality control exclusions there are 494,763 SNPs that were retained for analysis. 

To characterize the continental ancestries of individuals studied by the Oncoarray we applied Fastpop to 66,105 
samples genotyped at CIDR, Cambridge and Genome Quebec/McGill Innovation Center (the primary 
contributing centers) and Hapmap samples with 2,318 intercontinental ancestry informative markers. The 
66,105 samples were divided into 70% (46,274) as discovery set and 30% (19,831) as validation set. To 
compute SNP weights for prediction of scores in Principal Component Analysis, 46,274 discovery samples 
(70% out of 66,105 TRICL and UK samples) and 505 Hapmap2 samples were combined. The R-scripts for 
prediction of scores using 2318 SNP weights, PCAScore is available at 
https://morgan1.dartmouth.edu/~jbyun/Software/PCAScore_R/.

To build a model for intercontinental ancestry analysis, we began with a sample of 51,987 with 95% call rate or 
higher. Hapmap2 samples include three continental ancestry definitions from CEU, CHB, and YRI as European, 
Asian, and African-American, respectively. Using the pre-calculated SNP weights with the same 2,318 AIMs as 
in the discovery samples, we predicted the scores of 51,987 samples. To calculate each inference of individual 
ancestry membership among three continental ethnicities, first we computed each continental centroid from 
Hapmap2 samples and then performed  a distance-based approach in the triangular region, 
“InterContinentalDistanceMetrics.R” using the R-package FastPop (http://sourceforge.net/projects/fastpop/).  
As shown in Supplementary Figure 2, using these definitions led to no samples being assigned to multiple 
continental origins.  

Discussion  

Impact of Findings on Prevention and Treatment.

We expect the discovery of novel genetic risk factors for cancer to provide insight into the genetic architecture 
of cancer and help elucidate its underlying biology.  This is only one of the first steps towards the overarching 
goal of improving prevention and therapy, but it is a critical step.  While most GWAS studies have only been 
completed within the last 5-10 years, the potential of these findings can already be demonstrated by several 
examples.  In the case of Crohn’s disease, GWAS loci pointed to previously unappreciated physiologic 
processes, such as autophagy, innate immunity, and IL-23R signaling.42-44  These discoveries have already led 
to chemical screens for candidate therapeutic agents.44-46  For age-related macular degeneration, GWAS 
identified several genes involved in inflammation, a link that had not been established before and has now opened 
up new treatment approaches and even prevention strategies.47,48 Identifying the genetic basis of several 



Mendelian disorders has led to the development of FDA-approved drugs49.  Also, GWAS findings are being 
increasingly used for drug repositioning, whereby existing FDA-approved drugs are shown to influence key 
pathways influencing disease susceptibility50-52.  For cancer studies, the availability of results from the Cancer 
Genome Atlas (TCGA) provides a unique opportunity to begin to explore the relationships between the changes 
that exist in tumor samples versus the variants that influence cancer susceptibility53.  The integration of these 
two sources of data provides an opportunity to identify drivers of cancer development such as APC and RB that 
play major roles in both the initial development of cancer and also play a role in cancer growth.  These and 
other examples that have led to new therapies  and impacted medical practice 54,55 demonstrate the enormous 
potential of genetic findings.56,57  However, as drug development takes years (initial findings must be followed 
by clinical studies testing efficacy and effectiveness) 58,59 60, it is likely that we have barely begun to see the full 
extent of the impact of the discovery of the 665 novel cancer susceptibility loci that have already been identified 
(query from the GWAS catalogue of all cancers excluding recurrence or relapse http://www.ebi.ac.uk/gwas
accessed 1/6/2016).  In summary, providing a more comprehensive list of genes strongly associated with cancer 
susceptibility will greatly increase opportunities to identify new targets for drug development.  Further, the 
integration of carefully harmonized epidemiologic data with tumor and germline genetic data will allow the 
investigation of the biological basis of prevention.

The clinical value of genetic testing for SNPs was initially questioned by some commentators because 
individual variants would have limited power to discriminate cancer outcomes 61,62.  However, theoretical 
models suggested that polygenic risk scores based on multiple variants would provide sufficient discrimination 
for risk stratification to improve the efficiency of screening 63 and more recent studies have begun to 
demonstrate the potential clinical applications of polygenic risk profiling based on known susceptibility 
variants.  For example, Pashayan and colleagues64 showed that if prostate cancer screening were offered to men 
with a ten-year absolute risk of greater than 2% then risk stratification based on age and a 31-SNP polygenic 
risk score would result in 16% fewer men being eligible for screening than risk stratification based on age 
alone, but only 3% fewer cases would be detected64.  So and colleagues65 showed how a similar age and 
polygenic risk could be applied to breast cancer screening 65.  Assuming that eligibility for mammographic 
screening is based on a ten-year risk of breast cancer of 2.4% - equivalent to the risk of the average 50 year old 
woman - women at the 90th percentile of a 13-SNP polygenic risk score would be eligible for screening from 
age 40 whereas those at the 20th percentile would be eligible from age 62.  The incorporation of additional 
genetic variants and other risk factors including family history would improve the discrimination of the 
polygenic risk models and enhance their clinical applicability.  Given the expense and potential harms 
associated with prevention and early diagnosis (e.g. overdiagnosis and false positive findings) identifying those 
at highest risk might have important public health implications.  These examples demonstrate the enormous 
potential of genetic findings66,67 to impact public health and clinical care through the next several decades of 
scientific research68.  Cancer screening tools are available for many cancers, such as mammography, endoscopy 
or biomarker tests including PSA or CA125 levels, although many currently available biomarkers have limited 
value in identifying clinically meaningful cancers. Given the expense, limited availability, potential 
complications, and risks and cost associated with false positive findings identifying those at highest risk will 
have important public health and cost implications relevant to personalizing cancer prevention. These examples 
demonstrate the enormous potential of genetic findings56,57 to impact public health and clinical care through the 
next several decades of scientific research.69

Gene-environment Interactions (GxE) 

Several environmental and lifestyle risk factors, many of which are modifiable, such as obesity, physical 
activity, non-steroidal anti-inflammatory drug (NSAID) use, hormone use, diet, smoking, and alcohol have been 
associated with various cancers. To fully understand the impact on the etiology of cancer, it is important to 
examine whether the genetic factors modify the effect of environmental factors. Recently there has been 
extensive methodologic and applied work, primarily from GAME-ON investigators, that provides a strong 
rationale for examining GxE interactions10,12-15,70-74. The development of statistical methods for genome-wide 
GxE with increased power 75,76 has led to detection of genetic variants whose effects are modified by 



environmental factors; and identification of variants that would have been missed through searches of marginal 
effects alone. As genetic profiles are fixed, modifying environmental exposures to alter deleterious effects of alleles 
remains the most viable preventive strategy.  Importantly, even in the absence of gene-environment interaction on 
the multiplicative scale, the absolute reduction in risk due to a change to a lower risk lifestyle is greater in those at 
higher genetic risk, making the development of tools to predict genetic risk a critical component of advice on 
lifestyle risks. Additionally, the application of large scale genetic testing of the same platform on a very large 
number of individuals permits an unprecedented opportunity for studying the impact that epistasis, interaction 
among loci, has upon risk for cancer development.  

Functional characterization of risk loci 

Perhaps the greatest challenge facing large collaborative genotyping projects such as the OncoArray is to 
understand of the functional mechanisms underlying disease development at each susceptibility locus. The pace 
of discovery of genetic risk associations for cancer and other traits and diseases continues to accelerate, creating 
an increasing bottleneck between discovery and functional validation. The basic tenets of functional 
characterization77 – proving causality for risk variants and the genes they regulate - have been described for a 
tiny fraction of risk associations identified by GWAS22,78. This is partly due to our rudimentary knowledge of 
the non-coding genome and the effects of genetic variation on gene regulation.  Integration of GWAS SNP data 
with methylome data has identified methylation-quantitative trait loci (meQTLs) showing that inherited genetic 
variation may affect carcinogenesis by regulating the human methylome79,80. The ENCODE (ENCyclopedia Of
DNA Elements) consortium has catalogued genome-wide regulatory elements for many, but by no means all 
human tissues81. Enhancers are often cell type-specific and drive the spatial and temporal diversity of gene 
expression in and across different cell types. For example, in a study of H3K4 methylation in K562 and HeLa 
cell lines, each cell line had an estimated 24,000-36,000 enhancers, but only 5,000 of these sites were present in 
both cell lines82. One of the main challenges will therefore be to define the regulatory landscape for the relevant 
cell type for each trait-associated locus, followed by integration with genetic fine mapping data to identify the 
most likely regulatory targets.

The ability to test the function of specific risk alleles has been enhanced by recent developments in genome 
editing, a powerful and highly efficient methodology for introducing DNA sequence alterations in human cells. 
Engineered nucleases (e.g. the CRISPR-Cas9 system) with customizable cleavage specificities can be used to 
introduce sequence-specific double-stranded breaks (DSBs) into loci of interest followed by homology-directed 
repair (HDR) to efficiently induce precise DNA base substitutions at the site of risk SNPs. The molecular and 
phenotypic effects of the different alleles of each risk SNP can then be evaluated in vitro or in vivo. The success 
of genome editing has been recently demonstrated for GWAS risk variants associated with fetal hemoglobin 
and prostate cancer78,83.

Complementary to genome editing for proving causality of risk SNPs is expression quantitative trait locus 
(eQTL) analysis to identify the likely target susceptibility gene as susceptibility loci84,85. eQTL analyses can 
interrogate both near or distant regulatory associations between risk genotypes and gene expression on the same 
chromosome (cis-) or across chromosomes (trans-) . The role of these genes in neoplastic development can then 
be evaluated in experimental models of disease60. Many groups have applied this concept to identify transcript 
expression correlated with trait-associated SNPs86-88. For example, GAME-ON investigators have successfully 
used eQTL analysis to identify susceptibility genes at several breast, prostate and ovarian cancer loci, and 
confirmed the significance of these genes through their functional analysis in disease models89-91.
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Figure 1. Twenty risk regions analyzed as part of the OncoArray, including 17 pleiotropic regions conferring 
risks to two or more common cancers (breast, colorectal, lung, ovarian or prostate cancers). Panel (a) – Circos 
plot illustrating the 24 different regions ordered by chromosome and cytoband. The index SNP(s) at each locus 
are color coded by cancer type, (b) integration of correlated risk SNPs at each locus with regional catalouges of 
regulatory marks for related tissue types for common cancers to identify SNPs intersecting tissue specific 
regulatory targets. Publically available genome wide regulatory profiling data were available for the HMEC 
mammary epithelial cells (specific to breast cancer), LNCap cancer cells (for prostate cancer), CaOV3 cancers 
(for ovarian cancer), SAEC cells (for lung cancer). The first column indicates a risk associated SNP that 
intersects a regulatory mark, color coded by cancer type. For other columns, colored squares represent an 
intersection between a risk associated SNP and a regulatory mark, and in which tissue type, indicating which 
marks are common across tissues and which are tissue specific. White squares most strongly associated SNPs 
(index SNP) in a region and a dot within the square indicates an intersection between a regulatory mark and an 
index. The position of each regulatory mark is indicated relative to hg19 coordinates. In panel b, only SNPs 
with regulatory marks are shown, thus excluding 24 of the regional associations shown in panel a.  



Figure 2. Failure rates (<95% of SNPs called) for 211,638 samples genotyped by CIDR across multiple tissue 
types. The overall failure rate was 3.17%. 
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Figure 3: Correlation between replicate Hapmap samples genotyped at Cambridge versus the Center for 
Inherited Disease Research. Samples 1-8 are of European origin while samples 9-14 are Asian or African. There 
are multiple replicates of samples 1, 4, 5, 6 and 8. Samples 1-8 are European, 9-10 are Chinese, sample 11 is 
Japanese and samples 12-14 are Yoruban.  
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Figure 4. Imputation accuracy of SNPs from v3 of the 1000 Genomes project in individuals of 
European Descent 
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Supplementary Table 1a. OncoArray – Participating cites and numbers of participants from Prostate Cancer Studies

Other
Genotyping 
Center Acronym PIs Country Design Males Females Males Females

Case 
No.

Control 
No.

Case 
No.

Control 
No.

Case 
No.

Control 
No.

Case 
No.

Control 
No.

Cambridge Aarhus

Karina Dalsgaard 
Sorensen, Torben 
Falck Orntoft Denmark

Hospital-based, Retrospective, 
Observational 1140 0 570 0 1130 558 1 0 4 7 5 5

NCI AHS

Laura E. Beane-
Freeman, Michael 
Alavanja, Stella 
Koutros USA

Nested case-control study within 
prospective cohort 514 0 1314 0 514 1314 0 0 0 0 0 0

NCI ATBC Demetrius Albanes USA Prospective, nested case-control 1474 0 2205 0 1449 2189 0 0 5 4 20 12

USC BioVu
Melinda Aldrich, 
Dana C. Crawford USA

Cases identified in a biobank linked to 
electronic health records 213 0 0 0 0 0 213 0 0 0 0 0

CIDR CCI

Matthew 
Parliament, 
Nawaid Usmani Canada Case series, Hospital-based 285 0 0 0 275 0 4 0 4 0 2 0

NCI ProGene (CeRePP)

Olivier Cussenot, 
Géraldine Cancel-
Tassin France

Case-Control, Prospective, Observational, 
Hospital-based 1064 0 881 0 952 771 109 107 1 2 2 1

BGI CHIPGECS

Yong-Jie Lu, 
Guangwen Cao, 
Hong-Wei Zhang , 
Ninghan Feng, Xin 
Guo, Guomin 
Wang, Zan Sun China Case-control 533 0 666 0 0 0 0 0 532 666 1 0

CIDR COH
Susan L. 
Neuhausen USA

hospital-based cases  and controls from 
outside 263 0 269 0 259 269 0 0 3 0 1 0

CIDR COSM Alicja Wolk Sweden Population-based cohort 2406 0 1204 0 2389 1193 0 0 11 6 6 5

Copenhagen CPCS1
Børge G. 
Nordestgaard Denmark Case-control - Denmark 552 0 269 0 551 269 0 0 1 0 0 0

Copenhagen CPCS2 Denmark 461 0 238 0 461 238 0 0 0 0 0 0

USC CPDR

Shiv Srivastava, 
Jennifer C. Cullen, 
George Petrovics USA Retrospective cohort 145 0 44 0 0 0 145 44 0 0 0 0

NCI CPS-II
Susan M. Gapstur, 
Victoria L. Stevens USA

Nested case-control derived from a 
prospective cohort study 4743 0 4508 0 4688 4453 11 14 33 28 11 13

CIDR EPIC

Tim J. Key, Ruth 
C. Travis, Elio 
Riboli

Multi 
Center in 
EU

Case-control - Germany, Greece, Italy, 
Netherlands, Spain, Sweden, UK 697 0 739 0 681 723 4 0 3 8 9 8

Centre 
National de 
Genotypage 
(CNG) EPICAP

Florence 
Menegaux France

Case-control, Population-based, ages less 
than 75 years at diagonosis, Hérault, 
France 64 0 63 0 0 0 64 63 0 0 0 0

Cambridge ERSPC

Christopher 
Bangma, Monique 
J. Roobol Population-based randomised trial 75 0 75 0 73 73 2 0 0 1 0 1

Cambridge ESTHER Hermann Brenner Germany
Case-control, Prospective, Observational, 
Population-based 341 0 333 0 339 333 0 0 1 0 1 0

CIDR FHCRC Janet L. Stanford USA

Population-based, case-control, ages 35-
74 years at diagnosis, King County, WA, 
USA 434 0 421 0 418 403 2 1 6 12 8 5

CIDR Gene-PARE
Barry Rosenstein, 
Harry Ostrer Hospital-based 1330 0 0 0 274 0 48 0 996 0 12 0

CIDR Hamburg-Zagreb
Marija Gamulin, 
Davor Lessel Croatia Hospital-based, Prospective 154 0 154 0 154 154 0 0 0 0 0 0

CIDR HPFS

Sara Lindstrom, 
Edward 
Giovannucci, 
Kathryn L. Penney, 
Lorelei Mucci USA Nested case-control 1233 0 1095 0 1212 1081 14 4 4 8 3 2

Cambridge IMPACT Rosalind A. Eeles UK Observational 60 0 993 0 58 975 0 3 2 10 0 5
Cambridge IPO-Porto Manuel R. Teixeira Portugal Hospital-based 386 0 190 0 384 190 0 0 0 0 2 0

USC Karuprostate

Laurent Brureau, 
Luc Multigner, 
Pascal Blanchet W. Indies

Case-control, Retrospective, Population-
based 384 0 411 0 0 0 384 411 0 0 0 0

Genome 
Quebec KULEUVEN

Frank Claessens, 
Thomas Van den 
Broeck, Steven 
Joniau Belgium Hospital-based, Prospective, Observational 175 0 103 0 174 103 0 0 1 0 0 0

USC LAAPC Sue Ann Ingles USA Population-based, Case-control 789 0 621 0 456 283 2 0 7 6 324 332

USC Malaysia

Azad Razack, 
Jasmine Lim, Soo-
Hwang Teo, Meng 
H. Tan, Aik T. Ong Malaysia Case-control 210 0 210 0 1 0 0 0 208 209 1 1

CIDR MCC-Spain

Manolis 
Kogevinas, 
Gemma Castaño-
Vinyals, Javier 
Llorca Diaz Spain Case-control 542 0 443 0 534 425 1 1 4 11 3 6

CIDR MCCS

Graham G. Giles, 
Melissa C. 
Southey Australia Nested case-control, Melbourne, Victoria 780 0 334 0 776 334 0 0 3 0 1 0

USC MD Anderson Sara S. Strom USA 1139 0 316 0 532 0 47 0 39 0 521 316

CIDR MDACC_AS

Christopher J. 
Logothetis, Jeri 
Kim USA A prospective cohort study 633 0 0 0 532 0 47 0 39 0 15 0

USC MEC

Christopher A. 
Haiman, Brian E. 
Henderson, 
Fredrick 
Schumacher USA Population-based 1310 0 1396 0 625 664 490 530 32 30 163 172

USC WFPCS Jennifer J. Hu USA 59 0 66 0 0 0 59 66 0 0 0 0
USC MOFFITT Jong Y. Park USA Hospital-based 602 0 346 0 429 226 129 101 7 3 37 16
USC NMHS Jay Fowke USA Case-control, clinic based, Nashville TN 188 0 201 0 0 0 188 201 0 0 0 0

Cases Controls White African American Asian
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Supplementary Table 1a. OncoArray – Participating cites and numbers of participants from Prostate Cancer Studies

Other
Genotyping 
Center Acronym PIs Country Design Males Females Males Females

Case 
No.

Control 
No.

Case 
No.

Control 
No.

Case 
No.

Control 
No.

Case 
No.

Control 
No.

Cambridge CONOR (Oslo)

Lovise Maehle, Eli 
Marie Grindedal, 
Johanna 
Schleutker, Fredrik 
Wiklund Norway

Population-based, Retrospective, 
Observational 1513 0 0 0 1487 0 2 0 11 0 13 0

CIDR Canary PASS Daniel W. Lin USA
Prospective, Multi-site, Observational Acive 
Surveillance Study 380 0 0 0 369 0 0 0 9 0 2 0

USC PCaP

Jeannette T. 
Bensen, James 
Mohler, Elizabeth 
T.H. Fontham, 
Gary J. Smith USA Population-based , case only 1022 0 0 0 0 0 1022 0 0 0 0 0

Cambridge PCMUS

Radka Kaneva, 
Vanio Mitev, 
Chavdar Slavov Bulgaria Case-control - Sofia, Bulgaria 195 0 90 0 195 90 0 0 0 0 0 0

CIDR PHS

Meir Stampfer, 
Sara Lindstrom, 
Peter Kraft, 
Kathryn L. Penney USA Nested case-control 664 0 286 0 642 271 4 2 11 11 7 2

NCI PLCO

Sonja I. Berndt, 
Stephen Chanock, 
Gerald Andriole USA Nested case-control 1010 0 1275 0 999 1187 0 58 1 1 10 29

CIDR Poland Cezary Cybulski Poland Case-control 510 0 345 0 509 344 0 0 1 1 0 0

USC? PRAGGA

Manuela Gago 
Dominguez, Jose 
Esteban Castelao Spain Case-control 133 0 104 0 132 102 0 0 1 2 0 0

CIDR PROCAP
Henrik Gronberg, 
Fredrik Wiklund Sweden

Population-based, Retrospective, 
Observational 677 0 339 0 675 332 0 1 1 6 1 0

Cambridge PROFILE Rosalind A. Eeles UK Hospital-based, Prospective, Observational 32 0 88 0 30 85 1 2 1 1 0 0

CIDR PROGReSS Ana Vega Spain Hospital-based, Prospective, Observational 696 0 349 0 692 348 0 0 2 1 2 0

Cambridge ProMPT David E. Neal UK

A study to collect samples and data from 
subjects with and without prostate cancer. 
Retrospective, Experimental 1002 0 12 0 975 12 11 0 7 0 9 0

Cambridge ProtecT

Jenny L. Donovan, 
Freddie C. Hamdy, 
David E. Neal, 
Richard Martin UK

Trial of treatment. Samples taken from  
subjects invited for PSA testing from the 
community at nine centres across United 
Kingdom 4 0 1448 0 4 1429 0 2 0 11 0 6

USC PROtEuS Marie-Elise Parent Canada Case-control, population-based 72 0 58 0 0 0 72 58 0 0 0 0

CIDR QLD

Jyotsna Batra, 
Suzanne 
Chambers, 
Amanda Spurdle Australia Case-control 3489 0 1356 0 3425 1336 3 0 52 15 9 5

Cambridge RAPPER

Alison Dunning, 
Catharine West, 
Neil Burnet

Multi-centre, hosptial based blood sample 
collection study in patients enrolled in 
clinical trials with prospective collection of 
radiotherapy toxicity data 2350 0 0 0 2255 0 52 0 29 0 14 0

USC SABOR
Ian M. Thompson 
Jr. USA Prostate Cancer Screening Cohort 366 0 366 0 0 0 106 106 0 0 260 260

USC SCCS
William J. Blot, 
Wei Zheng USA

Case-control in cohort, Southeastern USA. 
Prospective, Observational, Population-
based 257 0 1601 0 0 0 257 1601 0 0 0 0

USC SCPCS
Maureen 
Sanderson USA

Population-based , Retrospective, 
Observational 64 0 39 0 0 0 64 39 0 0 0 0

Cambridge/CI
DR SEARCH

Paul Pharoah, 
Nora Pashayan, 
Alison Dunning UK Case-control - East Anglia, UK 2932 0 1520 0 2852 1504 30 3 30 9 20 4

USC SFPCS Esther M. John USA
Population-based case-control study, 
Retrospective, Observational 378 0 249 0 290 212 86 37 1 0 1 0

Cambridge SNP_Prostate_Ghent
Kim De Ruyck, 
Piet Ost Belgium

Hospital-based, Retrospective, 
Observational 334 0 141 0 325 141 1 0 3 0 5 0

Cambridge SPAG

Claire Aukim-
Hastie, Samantha 
Larkin, Paul A. 
Townsend UK

Hospital-based, Retrospective, 
Observational 47 0 192 0 47 189 0 0 0 1 0 2

CIDR STHM2
Henrik Gronberg, 
Fredrik Wiklund Sweden

Population-based, Retrospective, 
Observational 3148 0 1576 0 3104 1557 12 0 18 11 14 8

CIDR SWOG-PCPT

Catherine M. 
Tangen, Ian M. 
Thompson

Case-control from a randomized clinical 
trial 1211 0 1424 0 1097 1080 88 239 22 71 4 34

CIDR SWOG-SELECT

Catherine M. 
Tangen, Ian M. 
Thompson

Case-cohort from a randomized clinical 
trial 1847 0 3122 0 1507 2215 263 697 41 85 36 125

Cambridge TAMPERE
Johanna 
Schleutker Finland

Case-control - Finland, Retrospective, 
Observational, Population-based 2544 0 1226 0 2534 1215 0 0 4 8 6 3

Ontario 
Cancer 
Institute 
Genomics 
Center Toronto

Robert J. 
Hamilton, Neil E. 
Fleshner, Antonio 
Finelli Prospective hospital-based biopsy cohort 821 0 599 0 677 464 60 28 65 89 19 18

USC UGANDA Stephen Watya Uganda 567 0 489 0 0 0 567 489 0 0 0 0

Cambridge, 
USC, CIDR UKGPCS

Kenneth Muir, 
Rosalind A. Eeles, 
ZSofia Kote-Jarai UK ICR, UK 14107 0 7601 0 13168 7494 708 6 145 49 86 52

Cambridge ULM Christiane Maier Germany Case-control - Germany 475 0 190 0 471 188 1 0 1 1 2 1

CIDR / USC WUGS

Bettina Drake, 
Adam S. Kibel, 
Aleksandra Klim, 
Graeme Colditz USA Cases Series, USA 930 0 153 0 704 0 211 153 7 0 8 0

Cases Controls White African American Asian



Supplementary Table 1b. OncoArray – Participating cites and numbers of participants from Breast Cancer Studies

Cases Control White African Asian Other

Genotyping 
Center Acronym

Principal 
Investigator Country Design Female Male Female Male

Cases + 
Control

Cases + 
Control

Cases + 
Control

Cases + 
Control

CIDR 2SISTER Jack Taylor USA Family-based study 1130 0 1082 48 0 0
Genome 
Quebec ABCFS John Hopper Australia Population-based case-control study 1120 189 1309 0 0 0

Cambridge ABCS Marjanka Schmidt Netherlands
Hospital-based consecutive cases; 
population-based controls 270 187 459 0 0 0

Genome 
Quebec ABCTB Jane Carpenter Australia

Hospital based multi site newly 
diagnosed breast cancer case 687 189 1062 0 0 0

Cambridge ACP Kenneth Muir Thailand Hospital based case-control study 753 375 0 0 1395 0
Genome 
Quebec BBCC Peter Fasching Germany

Hospital based cases; population based 
controls 442 642 695 0 0 0

Cambridge BBCS Julian Peto UK

Cancer registry and National Cancer 
Research network (NCRN) based cases; 
population based controls 122 253 564 0 0 0

Cambridge BCEES Jennifer Stone Australia Population-based case-control study 785 442 1620 0 0 0
Genome 
Quebec BCFR-NY Mary-Beth Terry USA Clinic-based family study 465 835 493 0 0 0
Genome 
Quebec BCFR-PA Mary Daly USA Clinic-based family study 141 28 141 0 0 0
Genome 
Quebec

BCFR-
Utah David Goldgar USA Clinic-based family study 103 0 103 0 0 0

Genome 
Quebec BCINIS Gadi Rennert Israel Population-based case-control 1439 0 2163 0 0 0

Cambridge BREOGAN Manuela Gago Spain Population-based case-control 1379 724 2108 0 0 0
Genome 
Quebec BSUCH Barbara Burwinkel Germany

Hospital based cases;healthy blood 
donator controls 269 729 437 0 0 0

Genome 
Quebec CAMA Elad Ziv Mexico Population-based case-control study 709 168 0 0 0 1366
Genome 
Quebec CBCS Kristan Aranson Canada Population-based case-control study 1025 657 1514 0 506 0

Cambridge CCGP
Manolis 
Saloustros Greece Hospital-based case-control study 683 995 1015 0 0 0

Genome 
Quebec CECILE Pascal Guenel France Population-based case-control study 306 332 465 0 0 0
Copenhagen CGPS Stig Bojesen Denmark Population-based case-control study 1411 159 2127 0 0 0
Genome 
Quebec COLBCCC Diana Torres Colombia Hospital-based case-control study 633 716 0 0 0 1194
CIDR CPSII Mia Gaudet USA Nested case-control study 3055 561 6087 0 0 0
Genome 
Quebec CTS

Hoda Anton-
Culver USA Nested case-control study 1075 3032 1616 0 0 0

Cambridge
DIETCOM
PLYF Miriam Dwek UK Multi-centre prospective case-only study 711 541 711 0 0 0

CIDR EPIC Elio Riboli MULTIPLE Nested case-control study 3850 0 7497 0 0 0
Genome 
Quebec ESTHER Hermann Brenner Germany Population-based case-control study 296 3647 483 0 0 0
Cambridge GC-HBOC Alfons Meindl Germany Clinic-based family study 3647 187 5240 0 0 0
Genome 
Quebec GENICA Hiltrud Brauch Germany Population-based case-control study 460 1593 744 0 0 0
Genome 
Quebec GeparSixto Peter Fasching Germany Clincal Trial 390 284 390 0 0 0

Cambridge GESBC
Jenny Chang-
Claude Germany Population-based case-control study 360 0 541 0 0 0

Cambridge HaBCS Thilo Doerk Germany Hospital-based case-control study 934 181 1800 0 0 0
Genome 
Quebec HCSC Atocha Romero Spain Hospital-based case-control study 427 866 427 0 0 0
Genome 
Quebec HEBCS Heli Nevanlinna Finland

Hospital-based case-control study + 
additional familial cases 281 0 458 0 0 0

Genome 
Quebec HERPACC Keitaro Matsuo Japan Hospital-based case-control study 282 177 0 0 565 0
Genome 
Quebec HKBCS Ava Kwong Hong Kong Hospital-based case-control study 564 283 0 0 1018 0

Cambridge HMBCS Thilo Doerk Belarus
Hospital based cases; population based 
controls 212 454 463 0 0 0

Cambridge HUBCS Thilo Doerk Russia
Hospital based cases; population based 
controls 312 251 538 0 0 0

Genome 
Quebec KARBAC Annika Lindblom Sweden

Population and hospital-based cases; 
geographically matched controls 506 226 506 0 0 0

Cambridge KBCP Arto Mannermaa Finland Population-based case-control study 557 0 802 0 0 0
Genome 
Quebec KOHBRA Sue Park Korea Hospital-based case-control study 1464 245 0 0 2129 0
Genome 
Quebec LMBC

Diether 
Lambrechts Belgium Hospital-based case-control study 806 665 2075 0 0 0

Cambridge MaBCS Thilo Doerk Macedonia Hospital-based case-control study 90 1269 183 0 0 0
Genome 
Quebec MARIE

Jenny Chang-
Claude Germany Population-based case-control study 512 93 801 0 0 0

Genome 
Quebec MBCSG Paolo Radice Italy

Clinic-based recruitment of familial 
cases; 
population-based controls 788 289 1154 0 0 0

Genome 
Quebec MCBCS Fergus Couch USA Hospital-based case-control study 370 366 551 0 0 0
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Supplementary Table 1b. OncoArray – Participating cites and numbers of participants from Breast Cancer Studies

Cases Control White African Asian Other

Genotyping 
Center Acronym

Principal 
Investigator Country Design Female Male Female Male

Cases + 
Control

Cases + 
Control

Cases + 
Control

Cases + 
Control

Mayo
MCBCS 
(Mayo) Fergus Couch USA Hospital-based case-control study 558 181 598 0 0 0

Cambridge MCCS Graham Giles Australia Nested case-control study 862 40 1677 0 0 0

CIDR
MCCS 
(CIDR) Graham Giles Australia Nested case-control study 190 815 355 0 0 0

CIDR MEC Chris Haiman USA Nested case-control study 674 725 1399 0 0 0
Cambridge MISS Hakan Olsson Sweden Nested case-control study 703 731 2248 0 0 0
Genome 
Quebec MMHS Celine Vachon USA Nested case-control study 306 1545 541 0 0 0

Mayo
MMHS 
(Mayo) Celine Vachon USA Nested case-control study 78 235 1481 0 0 0

Genome 
Quebec

MTLGEBC
S Mark Goldberg Canada Hospital-based case-control study 343 1403 513 0 0 0

Genome 
Quebec MYBRCA Soo Hwang-Teo Malaysia Hospital-based case-control study 845 170 0 0 2103 0
Genome 
Quebec NBCS

Vessela 
Kristensen Norway Hospital-based case-control study 1285 1258 1286 0 0 0

CIDR NBHS Wei Zheng USA Population-based case-control study 887 1 1329 354 0 0
Genome 
Quebec NC-BCFR Esther John USA

Population-based familial case-control 
study 1264 796 960 254 503 0

Genome 
Quebec NGOBCS Motoki Iwasaki Japan Hospital-based case-control study 369 199 0 0 735 0
CIDR NHS Peter Kraft USA Nested case-control study 1594 366 3402 0 0 0
CIDR NHS2 Peter Kraft USA Nested case-control study 1609 1808 3517 0 0 0
Genome 
Quebec OFBCR Irene Andrulis Canada

Population-based familial case-control 
study 1669 1908 2045 0 0 0

Cambridge ORIGO Peter Devilee Netherlands Hospital-based case-control study 1059 376 1721 0 0 0

NCI PBCS
Montse Garcia-
Closas Poland Population-based case-control study 1931 662 3976 0 0 0

Cambridge pKARMA Kamila Czene Sweden Population-based case-control study 2993 2045 9080 0 0 0
NCI PLCO Robert Hoover USA Nested case-control study 869 6087 1727 0 0 0
Cambridge POSH Diana Eccles UK Clinic-based case-only study 1091 858 1091 0 0 0
Genome 
Quebec PreFace Peter Fasching Germany Clinical Trial 991 0 991 0 0 0
Cambridge RBCS Maartje Hooning Netherlands Hospital-based case-control study 475 0 717 0 0 0
Genome 
Quebec SBCGS Wei Zheng China Population-based case-control study 840 242 0 0 1775 0
Cambridge SEARCH Paul Pharoah UK Population-based case-control study 4062 1828 6746 0 0 0
Genome 
Quebec SEBCS Daehee Kang Korea Hospital-based case-control study 1103 1791 0 0 2210 0
Genome 
Quebec SGBCC Mikael Hartman Singapore

Hospital-based cases, population based 
controls 927 1107 0 0 1665 0

CIDR SISTER Jack Taylor USA Population-based family study 2187 738 3609 325 0 0
Genome 
Quebec

SKKDKFZ
S Uta Hamann Germany Hospital-based case-only study 1097 1747 1097 0 0 0

Cambridge SMC Alicja Wolk Sweden Nested case-control study 1504 0 2213 0 0 0
Genome 
Quebec SuccessB Peter Fasching Germany Clinical Trial 440 709 440 0 0 0
Genome 
Quebec SuccessC Peter Fasching Germany Clinical Trial 1343 0 1343 0 0 0
Genome 
Quebec SZBCS Jan Lubinski Poland Hospital-based case-control study 387 0 561 0 0 0
Mayo TNBCC Fergus Couch MULTIPLE Case series from multiple countries 1439 69 1508 0 0 0
Genome 
Quebec TWBCS Chen-Yang Shen Taiwan Hospital-based case-control study 551 0 0 0 807 0
Genome 
Quebec UCIBCS

Hoda Anton-
Culver USA Population-based case-control study 507 256 767 0 0 0

Cambridge UKBGS Anthony Swerdlow UK Nested case-control study 1632 260 2337 0 0 0
UKOPS UKOPS Usha Menon UK Population-based cohort 705 976 0 0 0
CIDR WAABCS Fumni Olopade MULTIPLE Hospital-based case-control study 315 976 0 626 0 0
CIDR WHI Ross Prentice USA Nested case-control study 4937 311 9555 0 0 0



Supplementary Table 1c. OncoArray – Participating cites and numbers of participants from CIMBA Studies

Females Males

Female 
and 
Male 
Case + 
Control

Genotyping 
Center Acronym PI Country

Case + 
Control BRCA1 * BRCA2

Case + 
Control BRCA1 BRCA2 White ^ Black Asian Other

MAYO BCFR-AU Melissa Southey AUSTRALIA 81 40 41 1 0 1 82 0 0 0
CIDR BCFR-NC Esther John USA 18 7 11 8 3 5 24 0 0 2
CIDR BCFR-NY Mary Beth Terry USA 124 67 57 0 0 0 124 0 0 0
GQ BCFR-ON Irene Andrulis CANADA 219 126 93 18 7 11 237 0 0 0
CIDR BCFR-PA Mary Daly USA 52 45 7 0 0 0 52 0 0 0
CIDR BCFR-UT David Goldgar USA 253 130 123 47 17 30 298 0 0 2

CIDR BFBOCC
Ramunas Janavicius/Liene 
Nikitinia-Zake LITHUANIA/LATVIA 267 249 18 4 4 0 271 0 0 0

CIDR BIDMC Nadine Tung USA 140 86 54 0 0 0 140 0 0 0
MAYO BMBSA Lizette Jansen van Rensburg SOUTH AFRICA 203 59 144 0 0 0 203 0 0 0
GQ BRICOH Susan Neuhausen USA 320 181 139 82 19 63 400 0 0 2
MAYO CBCS Hansen DENMARK 343 203 140 1 1 0 344 0 0 0
CIDR CNIO Javier Benitez/Ana Osorio SPAIN 128 66 62 5 1 4 133 0 0 0
CIDR COH Jeffrey Weitzel USA 652 431 221 5 3 2 388 0 0 269
CAM TEAM Paolo Radice ITALY 870 550 320 183 83 100 1053 0 0 0
CIDR S Koulis Yannoukakos GREECE 271 235 36 7 4 3 278 0 0 0
CIDR DFCI Judy Garber USA 283 150 133 0 0 0 283 0 0 0
CAM DKFZ Ute Hamann GERMANY 85 60 25 7 5 2 92 0 0 0
CAM EMBRACE Douglas Easton UK/IRELAND 3441 1749 1692 305 78 227 3744 0 0 2
CIDR FCCC Andrew Godwin USA 123 78 45 18 3 15 141 0 0 0
CAM FPGMX Ana Vega SPAIN 190 112 78 0 0 0 189 1 0 0
CAM GC-HBOC Rita Schmutzler GERMANY 3039 1928 1111 162 44 118 3201 0 0 0

GQ GEMO

Sylvie Mazoyer/Dominique 
Stoppa-Lyonnet/Fabienne 
Lesueur FRANCE/USA 2459 1501 958 69 10 59 2528 0 0 0

CIDR WN Claudine Isaacs USA 15 15 0 0 0 0 15 0 0 0
CAM G-FAST Kathleen Claes BELGIUM 360 195 165 31 0 31 391 0 0 0
CIDR HCSC Trinidad Caldes SPAIN 305 146 159 37 0 37 342 0 0 0
CAM HEBCS Heli Nevannlina FINLAND 259 126 133 33 8 25 292 0 0 0
CAM HEBON Matti Rookus NETHERLANDS 1528 901 627 15 8 7 1543 0 0 0
CIDR HRBCP Ava Kwong HONG KONG 120 51 69 0 0 0 0 0 120 0
MAYO HUNBOCS Edith Olah HUNGARY 398 282 116 26 8 18 424 0 0 0
MAYO HVH Orland Diez SPAIN 256 120 136 20 2 18 276 0 0 0
CIDR ICO Conxi Lazaro SPAIN 648 288 360 73 8 65 721 0 0 0
GQ IHCC Jakabowska POLAND 205 205 0 0 0 0 205 0 0 0
CAM ILUH Rosa Barkardottir ICELAND 147 0 147 43 0 43 190 0 0 0
GQ INHERIT Jacques Simard (QUEBEC) 183 96 87 0 0 0 183 0 0 0
CAM IOVHBOCS Marco Montagna ITALY 374 206 168 21 1 20 395 0 0 0
CAM IPOBCS Manuel Teixeira PORTUGAL 281 117 164 12 0 12 293 0 0 0
CIDR/MAYO KCONFAB Georgia Chenevix-Trench AUSTRALIA 1594 892 702 272 68 204 1866 0 0 0
GQ KOHBRA Sue Park KOREA 502 194 308 65 20 45 1 0 566 0
CIDR KUMC Priyanka Sharma USA 44 29 15 0 0 0 44 0 0 0
CIDR MAYO Fergus Couch USA 387 258 129 4 2 2 391 0 0 0

GQ MCGILL Mark Tischkowitz
CANADA 
(QUEBEC) 88 54 34 0 0 0 88 0 0 0

CIDR MSKCC Ken Offit USA 772 396 376 52 14 38 824 0 0 0
CIDR/MAYO MUV Christian Singer AUSTRIA 806 541 265 22 4 18 828 0 0 0
CIDR NAROD Steven Narod CANADA 380 286 94 0 0 0 301 0 32 47
CIDR NCI Mark Greene USA 236 153 83 18 10 8 254 0 0 0
CIDR NNPIO Evgeny Imyanitov RUSSIA 75 73 2 0 0 0 75 0 0 0

CIDR
NORTHSHO
RE Peter Hulick USA 139 82 57 0 0 0 139 0 0 0

CIDR
NRG_ONCO
LOGY Mark Greene USA/AUSTRALIA 628 332 296 0 0 0 628 0 0 0

GQ OCGN Irene Andrulis CANADA 382 208 174 19 7 12 401 0 0 0
CIDR OSU CCG Amanda Toland USA 197 93 104 14 4 10 211 0 0 0
MAYO OUH Mads Thomassen DENMARK 1000 568 432 105 27 78 1105 0 0 0
CIDR PBCS Maria Caligo ITALY 98 91 7 4 0 4 102 0 0 0
CAM/GQ SEABASS Soo Hwang-Teo MALAYSIA 111 61 50 12 9 3 0 0 123 0
CIDR SMC Eitan Friedman ISRAEL 254 171 83 0 0 0 254 0 0 0
CIDR SWE-BRCA Ake Borg/Johanna Rantala SWEDEN 498 434 64 11 8 3 509 0 0 0
CIDR UCHICAGO Funmi Olopade USA 156 98 58 23 8 15 179 0 0 0
CIDR UCSF Robert Nussbaum USA 170 100 70 0 0 0 170 0 0 0
CAM UKGRFOCR Susan Ramus UK 74 57 17 0 0 0 74 0 0 0
CIDR UPENN Kate Nathanson USA 850 489 361 90 44 46 927 7 0 6
CIDR UPITT Darcy Thull USA 265 158 107 13 1 12 278 0 0 0
CIDR UTMDACC Banu Arun USA 122 48 74 0 0 0 122 0 0 0
CIDR/MAYO VFCTG Gillian Mitchell AUSTRALIA 469 244 225 32 13 19 500 0 1 0
CIDR WCP Beth Karlan USA 213 157 56 0 0 0 213 0 0 0

* 16 individuals carried both a BRCA1 and a BRCA2 mutation
^ includes Ashkenazi Jewish carriers



Supplementary Table 1d. OncoArray – Participating cites and numbers of participants from CORECT Studies

Other
Genotyping 
Center Acronym PI Country Design Males Females Males Females Case No. Control No. Case No. Control No. Case No. Control No. Case No. Control No.
CIDR MECC Gad Rennert, Steve Gruber Israel Case-Control 1735 1532 1192 1055 3267 2247
USC MECC Gad Rennert, Steve Gruber Israel Case-Control 480 431 326 329 911 655
CIDR MSKCC Kenneth Offit USA Case-Control 53 73 0 0 126 0

CIDR SEARCH Paul Pharoah
United 
Kingdom Case-Control 2516 1907 137 144 4423 281

USC SEARCH Paul Pharoah
United 
Kingdom Case-Control 166 117 0 0 283 0

CIDR SPAIN Victor Moreno Spain Case-Control 628 353 499 442 981 941
USC SPAIN Victor Moreno Spain Case-Control 0 0 45 88 117 12 4 race na
USC FIRE3 Heinz-Josef Lenz Germany Clinical Trial Phase 3 184 72 0 0 262 0 6 sex na
USC TRIBE Heinz-Josef Lenz Italy Clinical Trial Phase 3 270 177 0 0 447 0
CIDR MEC Loic Le Marchand USA Cohort 210 192 218 206 402 424
CIDR CFR-Hawaii Loic LeMarchand USA Case-Control 30 19 0 0 49 0
CIDR CFR-Australia John Hopper / Mark Jenkins Australia Case-Control 139 120 10 15 259 25
CIDR CFR-Seattle Polly Newcomb USA Case-Control 529 484 300 298 1013 598
CIDR CRF-Mayo Noralane Lindor USA Case-Control 149 146 0 0 295 0
CIDR CFR-Ontario Steve Gallinger Canada Case-Control 201 174 129 86 375 215
CIDR CFR-USC Graham Casey USA Case-Control 85 107 0 0 192 0
CIDR Esther/Verdi Hermann Brenner Germany Case-Control 300 166 313 166 466 479

CIDR Kiel
Jochen Hampe / Clemens 
Schafmeyer Germany Case-Control 635 499 0 0 1134 0

CIDR
ColoCare - Germany + 
Seattle

Cornelia (Neli) Ulrich / Bill 
Grady

Germany 
and USA Case-Series 292 179 18 32 471 50

USC
Moffitt - Total Cancer Care 
and ColoCare Erin Siegel USA Case-Series 230 197 0 0 356 8 3 5 55 race NA

CIDR NHS2 Andrew Chan USA Cohort 0 127 0 123 127 123
CIDR MCCS Graham Giles Australia Cohort 119 109 116 103 228 219
CIDR Korea Wei Zheng Korea Case-Control 2241 1292 1516 2076 3533 3592
CIDR Shanghai-Mens Wei Zheng China Case-Control 125 125 125 125
CIDR Shanghai-Womens Wei Zheng China Case-Control 125 125 125 125
CIDR Sweden-Lindblom Annika Lindblom Sweden Cohort 1768 1477 1485 1371 3245 2856
CIDR Sweden-Wolk Alicja Wolk Sweden Cohort 346 250 506 370 596 876
CIDR USC-HRT-CRC Anna Wu USA Case-Control 0 524 0 518 524 518

CIDR ATBC
Jarmo Virtamo - Finland & 
Dimetrius Albanes - NIH Finland Cohort 154 0 32 0 186 0

CIDR Hispanic Jane Figueiredo USA Case-Control 55 33 0 0 88

USC Puerto Rico Marcia Cruz Correa
Puerto 
Rico Case-Control 170 176 105 228 346 333 3 sex na

USC MAVERICC Heinz-Josef Lenz USA Clinical Trial Phase 2 212 125 0 0 279 29 15 6 8 race NA
USC Taiwan Yun Yen Taiwan Case-Control 264 236 0 0 500

USC PPS3-Folate Aspirin John Baron & Elizabeth Barry
USA and 
Canada Clinical Trial 8 2 580 328

CIDR PPS4-Calcium Vit D John Baron & Elizabeth Barry Clinical Trial 6 3 1185 682 9 1867
USC Cancer Genetics Registry Stephen Gruber USA Case-Series 112 109 2 9

Total 14412 11533 8839 8794 20504 12067 37 0 4301 3842 847 769

Total cases 25945
Total controls 17633
Grant Total 43578

Cases Controls White African American Asian



Supplementary Table 1e. OncoArray – Participating cites and numbers of participants from Lung Cancer Studies.
Other

Genotyping Acronym PI Country Design Males Females Males Females Case No. Control No. Case No.Control Case No Control NCase No. Control 
CIDR Norway Aage Haugen Norway Hosp CC 239 100 293 134 339 427
CIDR MDACC Xifeng Wu US Hosp CC 518 507 515 502 1005 990 4 3 1 1 15 23
CIDR HSPH David Christiani US Hosp CC 1461 1632 331 464 3020 745 42 5 10 7 22 38
CIDR Liverpool_2008 John Field UK nested CC 62 46 70 48 108 118
CIDR Liverpool_2013 John Field UK nested CC 193 157 225 177 342 390 1 3 2 5 5
CIDR CARET Chu Chen, Jen Dohtery US nested CC 421 191 421 192 578 579 22 22 5 5 7 7
CIDR NELCS Angeline Andrew US Pop CC 86 104 80 104 176 179 1 13 5
CIDR Tampa Philip Lazarus US Hosp CC 234 174 233 171 390 365 8 34 10 5
CIDR Resolucent Penella J Woll , Dawn Teare UK family, Pop CC 343 344 173 270 591 390 2 3 93 53
CIDR ISRAEL Gad Rennert Israel Pop CC 467 264 349 209 731 557 1
CIDR Nijmegen Lambertus A. Kiemeney The Netherlands Pop CC 266 173 278 179 387 457 2 3
CIDR EAGLE Maria Theresa Landi Italy Hosp CC 1465 380 1423 441 1845 1864
CIDR CAPUA Adonina Tardon Spain Hosp CC 713 89 678 104 800 780 2
CIDR EPIC Mattias Johansson Europe nested CC 761 453 765 470 1214 1235
CIDR MEC Loic Le Marchand US nested CC 551 380 567 402 231 240 147 144 304 316 249 269
CIDR MSH-PMH Rayjean Hung, Geoffrey Liu Canada Clinic CC 729 723 501 507 1446 1006 5
CIDR PLCO Neil Caporaso US nested CC 1040 660 917 654 1550 1114 86 395 31 33 33 29
CIDR MLD Paul Brennan Russia Hosp CC 833 308 712 426 1025 1084 116 55
CIDR Seoul Yun-Chul Hong Korea Hosp CC 206 96 199 291 302 490
CIDR ATBC Demetrius Albanes US nested CC 1040 721 1040 721
CIDR LCRI-DOD Susanne Arnold US Pop CC 50 50 65 72 98 133 1 1 1 3
CIDR MDCS Jonas Manjer Sweden nested CC 70 95 79 96 165 175
CIDR TLC Matthew B. Schabath US case only 212 247 432 11 16
CIDR Vanderbilt2 Melinda Aldirch US Hosp CC 428 370 429 370 740 735 58 56 1 7
CIDR SCHC Jian-Min Yuan Singapore nested CC 292 126 291 127 418 418
CIDR SCS Jian-Min Yuan China nested CC 178 325 178 325
CIDR Canadian screening Stephen Lam, Ming-Sound Tsao, Geoff LCanada nested CC 117 152 202 267 263 455 2 4 4 9
CIDR NSHDC Mattias Johansson Sweden nested CC 123 121 136 133 244 269
Heidelberg GLC Angela Risch Germany Family CC 686 343 514 171

13098 7942 11492 6981
Caret samples removed where there were overlaps with TRICL meta-analysis   

Cases Controls White African American Asian



Supplementary Table 1f. OncoArray – Participating cites and numbers of participants from OCAC Studies

Other
Genotyping 
Center Acronym PI Country Design Males Females Males Females Case No. Control No. Case No. Control No. Case No. Control No. Case No. Control No.

CIDR AAS Joellen Schildkraut, Patricia Moorman USA Case-control 0 296 0 475 1 0 295 475 0 0 0 0

MAYO AOCS/ACS
Georgia Chenevix-Trench,  
Penelope Webb Australia Case-control 0 1,504 0 1,206 1420 1167 4 1 56 18 24 20

MAYO AUS
Georgia Chenevix-Trench, 
Penelope Webb Australia Case-control 0 112 0 0 106 0 1 0 5 0 0 0

MAYO BAV Peter Fasching Germany Case-control 0 293 0 287 292 284 0 1 1 1 0 1
MAYO/CIDR BEL Diether Lambrechts Belgium Case-control 0 799 0 1,306 789 1297 4 5 2 2 4 2
CAM BGS Anthony Swerdlow UK Cohort 0 226 0 0 226 0 0 0 0 0 0 0
MAYO BVU Digna Velez Edwards USA Case-control 0 149 0 496 135 391 9 102 1 1 4 2
CAM CAM James Brenton UK Case-only 0 231 0 0 228 0 1 0 1 0 1 0
SHANGHAI CHA Kexin Chen, Fengju Song China Case-control 0 1,244 0 2,072 1 0 0 0 1243 2072 0 0
SHANGHAI CHN Li Yan, Kang Shan China Case-only 0 390 0 0 0 0 0 0 390 0 0 0

MAYO CNI
Javier Benítez, María J. García, 
Cristina Rodriguez-Antona Spain Case-control 0 83 0 179 81 176 0 0 2 2 0 1

CIDR DKE Joellen Schildkraut, Andrew Berchuck USA Case-only 0 93 0 0 80 0 10 0 2 0 1 0
CIDR DOV Mary Anne Rossing USA Case-control 0 1,346 0 1,568 1246 1460 12 36 62 45 26 27
CIDR EPC Charlotte Onland-Moret, Elio Riboli Europe Nested case-control 0 437 0 876 431 872 0 2 3 1 3 1
CIDR GER Jenny Chang-Claude Germany Case-control 0 205 0 376 203 376 0 0 2 0 0 0
MAYO GRC Drakoulis Yannoukakos Greece Case-only 0 327 0 0 325 0 0 0 2 0 0 0
CAM GRR Kirsten Moysich USA Case-only 0 22 0 0 22 0 0 0 0 0 0 0
CIDR HAW Marc Goodman USA Case-control 0 397 0 626 105 172 6 9 275 412 11 33
CAM HJO Thilo Doerk-Bousset, Matthias Duerst Germany Case-control 0 244 0 0 242 0 0 0 0 0 2 0

CAM HMO
Thilo Doerk-Bousset, 
Natalia Bogdanova Germany Case-control 0 66 0 287 65 283 0 0 1 1 0 3

CAM HOC Ralf Butzow Finland Case-control 0 265 0 280 264 280 0 0 1 0 0 0

CIDR HOP
Francesmary Modugno, Kirsten 
Moysich, Roberta Ness USA Case-control 0 549 0 1,217 524 1189 21 23 2 1 2 4

MAYO HSK Florian Heitz Germany Case-only 0 123 0 0 122 0 0 0 1 0 0 0
CAM HUO Thilo Doerk-Bousset Germany Case-control 0 73 0 235 49 126 0 0 2 16 22 93
MAYO ICN Florian Heitz UK Case-only 0 415 0 0 390 0 4 0 9 0 12 0
CIDR JPN Keitaro Matsuo Japan Case-control 0 150 0 232 0 1 0 0 150 231 0 0
MAYO KRA Sue Park Korea Case-control 0 310 0 688 0 0 0 0 310 688 0 0
CIDR LAX Beth Karlan USA Case-only 0 476 0 0 384 0 27 0 34 0 31 0
CAM LUN Håkan Olsson Sweden Case-control 0 41 0 1,577 41 1576 0 0 0 0 0 1
MAYO MAC Ellen Goode USA Case-only 0 213 0 0 205 0 2 0 2 0 4 0
CIDR MAL Susanne Kruger Kjaer Denmark Case-control 0 384 0 649 384 649 0 0 0 0 0 0
CIDR MAS Soo-Hwang Teo, Yin Ling Woo Malaysia Case-control 0 179 0 181 0 0 0 0 152 158 27 23
MAYO MAY Ellen Goode USA Case-control 0 1,170 0 1,146 1145 1135 6 5 7 4 12 2

MAYO MCC
Graham Giles, Laura Baglietto, 
Gianluca Severi Australia Nested case-control 0 136 0 141 135 141 0 0 1 0 0 0

MAYO MDA Karen Lu, Michelle Hildebrandt USA Case-control 0 313 0 298 307 297 1 0 1 0 4 1
MAYO MEC Wendy Setiawan USA Case-control 0 67 0 79 6 6 14 15 19 28 28 30

CIDR MOF

Thomas Sellers, Jennifer Permuth 
Wey, Catherine Phelan, Alvaro 
Monteiro USA Case-control 0 414 0 459 371 412 19 22 9 14 15 11

CIDR MSK Douglas Levine USA Case-control 0 238 0 245 201 205 13 26 15 6 9 8
CIDR NCO Joellen Schildkraut USA Case-control 0 994 0 925 837 734 142 179 12 3 3 9
CIDR NEC Daniel Cramer, Kathryn Terry USA Case-control 0 532 0 586 502 569 13 7 12 6 5 4

CIDR NHS
Shelley Tworoger, Meir Stampfer, 
Walter Willett USA Nested case-control 0 342 0 316 337 314 3 0 2 2 0 0

CIDR NOR Helga B Salvesen Norway Case-control 0 186 0 342 184 342 1 0 1 0 0 0

CIDR NTH
Lambartus Kiemeney, 
Leon Massuger Netherlands Case-control 0 263 0 588 255 588 1 0 2 0 5 0

MAYO OPL Penelope Webb Australia Case-only 0 510 0 0 484 0 0 0 13 0 13 0
MAYO ORE Tanja Pejovic USA Case-only 0 92 0 0 84 0 2 0 5 0 1 0
CIDR OVA Linda Cook, Nhu Le Canada Case-control 0 756 0 797 669 734 2 0 63 46 22 17
NCI PLC Nicolas Wentzensen USA Cohort 0 277 0 1,257 263 1119 7 94 5 43 2 1
CIDR POC Jacek Gronwald Poland Case-control 0 183 0 0 183 0 0 0 0 0 0 0
NCI POL Nicolas Wentzensen Poland Case-control 0 272 0 0 272 0 0 0 0 0 0 0
CIDR PVD Estrid Hogdall, Claus Hogdall Denmark Case-only 0 197 0 0 193 0 1 0 1 0 2 0
CAM RBH Georgia Chenevix-Trench Australia Case-only 0 141 0 0 139 0 0 0 1 0 1 0
CIDR RMH Paul Pharoah UK Case-only 0 182 0 0 174 0 2 0 1 0 5 0
CAM RPC Kirsten Moysich USA Case-only 0 106 0 0 99 0 5 0 1 0 1 0
MAYO/CIDR SEA Paul Pharoah UK Case-control 0 2,180 0 1,869 2154 1844 7 4 4 7 15 14
CIDR SIS Dale Sandler USA Cohort 0 131 0 1,507 118 1306 9 150 2 15 2 36
MAYO SMC Alicja Wolk Sweden Cohort 0 83 0 93 83 93 0 0 0 0 0 0
CIDR SOC Ian Campbell, Diana Eccles UK Case-only 0 301 0 0 297 0 1 0 0 0 3 0

MAYO SRO

Jim Paul, Nadeem Siddiqui, 
Ros Glasspool, Iain McNeish, 
Susana Banerjee UK Case-only 0 3 0 0 3 0 0 0 0 0 0 0

CIDR STA Alice Whittemore, Weiva Sieh USA Case-control 0 424 0 464 282 307 16 51 77 60 49 46
CAM SWH Wei Zheng China Case-control 0 135 0 135 0 0 0 0 135 135 0 0
CIDR SZB Jacek Gronwald Poland Controls 0 0 0 181 0 180 0 0 0 0 0 1
MAYO TBO Rebecca Sutphen, Catherine Phelan USA Case-control 0 176 0 138 176 138 0 0 0 0 0 0

CIDR TOR
Catherine Phelan, Steven Narod, 
Harvey Risch Canada Case-control 0 474 0 486 445 477 1 1 17 3 11 5

CIDR UCI Hoda Anton-Culver USA Case-control 0 311 0 348 258 295 2 3 22 21 29 29
MAYO UHN Marcus Bernardini Canada Case-only 0 211 0 0 177 0 7 0 13 0 14 0
CIDR UKO Usha Menon, Simon Gayther UK Case-control 0 755 0 998 737 979 6 11 4 2 8 6
CIDR UKR Paul Pharoah UK Case-only 0 49 0 0 48 0 0 0 0 0 1 0
CIDR USC Leigh Pearce, Anna Wu USA Case-control 0 926 0 1,026 607 787 40 34 113 93 166 112
CAM VAN David Huntsman Canada Case-only 0 221 0 0 171 0 1 0 34 0 15 0
MAYO WMH Anna deFazio Australia Case-only 0 176 0 0 145 0 1 0 16 0 14 0
MAYO WOC Jolanta Kupryjanczyk Poland Case-control 0 200 0 207 200 207 0 0 0 0 0 0

Cases Controls White African American Asian



Supplementary Table 2:  Transmitting institutions for organization of SNPs on the Oncoarray along with the 
proportion of the array allocated to specific cancers, areas of overlapping effects among cancers and for fine 
mapping among cancers. 
Site Submitting Center Proportional allocation 
Lung  Dartmouth 13.5% 
Ovary* Cambridge 13.8% 
Colorectal USC 13.1% 
Breast* Cambridge 25.0% 
Prostate USC/ICR 24.5% 
BRCA1/2* Cambridge 6.0% 
Common (non fine-mapping) Cambridge, Dartmouth, CGR, 

USC 
4.1%

Common fine-mapping Cambridge Included in cancer-specific 
loci

*Breast and BRCA1/2, and ovary have shared lists based on meta-analyses. To simplify the final merging 
process, Cambridge assembled a single list from all three groups with a total allocation of  44.8%  (split in the 
above proportions). The top 1800 SNPs identified by ECAC were included among those submitted as common 
non fine-mapping SNPs. 
USC- University of Southern California; ICR=Institute for Cancer Research 



Supplementary Figure 1. Comparison of the Oncoarray to several other Illumina arrays by imputing genotypes 
to the 1000 genomes release 3.3 or the Haplotype consortium for chromosome 22 using ShapeIt version 2 and 
Beagle, version 3.3.
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Supplementary Figure 2. Scores of discovery set in blue, the predicted scores from SNP weights in discovery 
set in pink. Three populations in Hapmap2 display CEU in hotpink, CHB in green, and YRI in blue. Three plots 
on the right side indicate 80% European, 40% Asian, and 20% African-American proportions of population 
memberships. 



Supplementary information about the OncoArray Consortium 

The Consortium was formed to develop and genotype a new custom genotyping array (the “OncoArray”). The 
Oncoarray consortium brings together  multiple disease-based consortia, including  partnerships between the 
NCI-funded Genetic Associations and Mechanisms in Oncology (GAME-ON) initiative consortia (TRICL, 
FOCI, DRIVE, ELLIPSE and CORECT),  the Breast Cancer Association Consortium (BCAC) and the 
Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). The project has been funded through 
substantial grants from the NCI to the GAME-ON initiative and the Division of Cancer Epidemiology and 
Genetics (DCEG), Genome Canada/Genome Quebec/CIHR through the Personalised Risk Stratification for 
Prevention and Early Detection of Breast Cancer (PERSPECTIVE) international project, Cancer Research UK 
(University of Cambridge) and a EU FP7 grant (“COGS”), together with many other grants.  

The OncoArray Consortium has assembled more than 400,000 samples from existing studies and several 
biobanks. The OncoArray, which includes approximately 530K SNP markers, is a custom array that was 
manufactured by Illumina. Genotyping began in October 2013. The array includes a backbone of approximately 
260,000 single nucleotide polymorphisms (SNPs) that provide genome-wide coverage of most common 
variants, together with markers of interest for each of the five diseases identified through genome-wide 
association studies (GWAS), fine-mapping of known susceptibility regions, sequencing studies, and other 
approaches. The array also includes loci of interest identified through studies of other cancer types, and other 
loci of interest to multiple cancer types (including loci associated with cancer related phenotypes, drug 
metabolism and radiation response). Additionally, SNPs relating to quantitative phenotypes such as BMI, 
height, and breast density that correlate with common cancer risks are also included.  

OncoArray Steering Committee: 
o Transdisciplinary Research in Cancer of the Lung (TRICL)
 Christopher Amos, Ph.D., Dartmouth College  
 Loic Le Marchand, M.D., M.P.H., Ph.D., Cancer Research Center of Hawaii, University of Hawaii 

o Follow-up of Ovarian Cancer Genetic Association and Interaction Studies (FOCI) 
 Thomas Sellers, Ph.D., M.P.H., H. Lee Moffitt Cancer Center & Research Institute  
 Georgia Chenevix-Trench, Ph.D., QIMR Berghofer 
 Paul Pharoah, Ph.D., University of Cambridge 

o  ColoRectal Transdisciplinary Study (CORECT) 
 Stephen Gruber, M.D., Ph.D., M.P.H., University of Southern California

o Elucidating Loci Involved in Prostate Cancer Susceptibility (ELLIPSE)
 Stephen Chanock, M.D., DCEG, NCI 
 Alison Dunning, Ph.D., University of Cambridge 
 Douglas Easton, Ph.D., University of Cambridge 
 Rosalind Eeles, Ph.D., F.C.R.P., F.R.C.R., The Institute of Cancer Research 

o Discovery, Biology, and Risk of Inherited Variants in Breast Cancer (DRIVE) 
 David Hunter, M.B.B.S., Sc.D., Harvard University 
 Douglas Easton, Ph.D., University of Cambridge 
 Stephen Chanock, M.D., DCEG, NCI 

 Breast Cancer Association Consortium 

o Genome Canada/Genome Quebec/CIHR funded Personalised Risk Stratification for Prevention and 
Early Detection of Breast Cancer (PERSPECTIVE) international project 



 Jacques Simard, Ph.D., Laval University  
 Douglas Easton, Ph.D., University of Cambridge  

o Cancer Research UK 
 Douglas Easton, Ph.D., University of Cambridge 
 Alison Dunning, Ph.D., University of Cambridge 
 Paul Pharoah, Ph.D. 
 Georgia Chenevix-Trench, Ph.D., QIMR Berghofer 

 CIMBA
 Antonis Antoniou, Ph.D., University of Cambridge 
 Georgia Chenevix-Trench, Ph.D., QIMR Berghofer 
 Jacques Simard, Ph.D., Laval University  

 NCI EGRP 
 Stefanie Nelson, Ph.D. (liason) 

 NCI DCEG 
 Stephen Chanock, M.D. 

 Daniela Seminara, Ph.D. 
 NCI DCCPS Office of the Director 



SNP Selection for the Oncoarray 

General Principles 
 
 SNP selection should be decided in collaboration between all the collaborating groups, i.e. all U19s plus 

any other groups providing resources (funding or datasets) for the initial project. 
 

 The SNP content should made publicly available. 
 

 The array will be made freely available for purchase by other groups. 
 

 The OncoChip will include 600,000 beadtypes (somewhat less than 600,000 SNPs, because ambiguous 
C/T or A/T SNPs require two beadtypes).  

 
 The content should be divided between the disease groups. As an initial proposal, these should be divided 

as follows: 
 

- Common content 60,000 (10% of the content) 
- The remaining cost to be divided in proportion to the total samples/budget (both CIDR and non-CIDR).  

Additionally, we decided to allocate 260,000 SNPs for a GWAS backbone so the remaining allocations 
were made proportional to the proportion of samples that were genotyped. 

 
 Each disease group decided how to select SNPs however a guideline was adopted to ensure a level of 

consistency. 
 

 The disease-specific components include: 
 
o Follow-up of combined GWAS/replication 
o Fine-mapping of known hits 
o Follow-up of rare variant/sequencing experiments 
o Ad-hoc candidates 

 
 

 The relative contributions of each list were up to each disease group to decide. 
 

 

Common Content 
 
 SNP selection from meta-analysis across diseases (either overall or using mixture model) 
 Lists for other cancers (say up to 1000 each, depending on availability) 
 Fine-mapping of regions that are hits for more than one cancer type 

(TERT, 8q24 (proximal and distal to MYC), HNF1B, TET2, RAD51B, 11q13) 
 
 QTLs: 

o Menarche 
o Menopause 
o Anthropometric (height, weight, BMI, WHR) Try to include longer list this time from GIANT  
o Telomere length 

 
 
 Confirmed GW significant hits for all cancers and cancer-related phenotypes (e.g. smoking) 

 
 Nominations from cross-site pathway analyses. 



 Y and MT  
 
 
GWAS replication 
 
 Generally, best to base on full available data, i.e. combined GWAS+replication, imputed to 1KG. 
 Remove highly correlated SNPs (r2>0.8), but include additional surrogates for the most strongly associated 

markers. 
 

o Overall disease 
o Subtypes 
o Ethnicity specific analysis (lengths of these lists for Asian/African ancestry will depend on how many 

samples are likely to be genotyped, but we should try to include some). 
o Survival (were there is available data) 

 
 Attempt to include all SNPs, at least for overall disease, that appear to be measurably predictive of risk in a 

predictive risk score analysis (for prostate, initial analyses suggest at least 10,000) 
 
Fine mapping 
 
Define regions to map, based on both LD and relevant genomic features (e.g. to cover regulatory regions 
pertinent to genes of interest, if known) 
 
Define complete catalogue of variants (from 1KG, augmented with other sequence data if available) 
 
Attempt to include all variants correlated with best hit, plus dense tagging set of remaining variants 
 
Parameters will depend on number of regions to map and size. For iCOGS, r2>0.1 was used. 
 
 
Technical/organizational issues 
 

- NCI DCEG was designated as responsible for the final list and its submission to Illumina. Each disease 
group was responsible for generating its own list. 

- DCEG provided a shared space to exchange lists 
- Admissible design score (0.8 was used, but a lower score was allowed for fine-mapping and 

candidates) 
 
Merging process 
 
Merging performed as a tree (scripts already available to implement this).  
 

 For each disease, make separate lists for each category, ranked by importance 
 Merge all the replication lists (choosing surrogates as necessary) 
 Merge the replication, fine-mapping, rare variant and candidate lists, to make a final ranked list for each 

disease (these lists can be 50-100% larger than the allocation, to allow for overlaps). 
 

 Final merging (across disease sites), in proportion to the SNP allocation (no surrogates chosen at this 
stage, only exact duplicates removed). 

 
 GWAS framework included as an additional list, discarding SNPs selected for replication (not from the 

other lists) if an adequate GWAS SNP existed.  
 

 
Carefully checked for errors (wrong alleles, position etc.) 
 



SNP Selection - prostate 

- Known index signals 
- SNPs from COGS 
- SNPs from meta of all cases in EAs 
- SNPs from meta of adv cases in EAs 
- SNPs from meta of all cases in AAs 
-  SNPs from meta of adv cases in AAs 
- SNPs from meta of all cases in all groups 
- SNPs from meta of adv cases in all groups 
- Fine-mapping of known regions in EAs/AAs 
- Top SNPs from Exome chip 
- Rare variants from ICPCG (~1000) 
- Candidates (~2000) 
- PSA GWAS 
 
 
SNP Selection – breast 

 
Fine-mapping of known regions 
 
 
Replication: combined analysis from GWAS+iCOGS (imputed to 1KG): 
 Overall disease (1df and 2df tests) 
 Disease <40 
 ER-negative 
 Grade 
 Breast density 
 Survival 
  
 Asian ancestry 
 African ancestry 
 
 
 Exome chip (~5,000SNPS) 

Rare variants from COMPLEXO, other consortial nominations (allocate ~1,000) 
Variants from whole genome sequencing 

 Candidates (allocate ~2,000) 
 
 
SNP Selection – Lung 43,206 variants were nominated 

GWAS and GWAS Meta-analyses replication  
• Meta-analysis of 16 individual GWAS 
• HapMap 2 based meta-analysis 
• 1000Genome based meta-analysis 
• GWAS in Asian and African-American 

Tagging and Fine-mapping  
• confirmed loci (5p15; 6p21-11; 9p21.3; 15q15.1; 15q25; 12p13.33, 22q12.2) 

Individual Group Variants  
• Candidate genes including IPF, asthma, COPD 
• Rare variants from sequencing projects – TCGA data on lung adenocarcinoma, squamous 

carcinoma and head and neck cancers  



• Lung eQTL variants 
• Inflammation variants 
• Histology pathway analysis  
• COPD variants  
• Tobacco metabolism and smoking phenotypes variants (placed in common area) 



Oncoarray QC Guidelines

(All lists referred to should be available on the Oncoarray wiki:

http://consortia.ccge.medschl.cam.ac.uk/oncoarray )

1. Genotype Calling 
Call all genotypes with the v2c cluster file. (Download from
http://consortia.ccge.medschl.cam.ac.uk/oncoarray/onco_v2c.zip).

Export Illumina TOP alleles from Genome Studio.

2. Sample QC 

2.1 Initial call rate filtering (by consortium) 
Exclude samples with call rate <80%

Exclude SNPs with call rate <80%

Exclude samples with call rate <95%

Exclude SNPs with call rate <95%

2.2 Ancestry 
Define set of uncorrelated markers (~3,000) including all AIMS.

Use to define individuals of European/East Asian/African American ancestry, or other, using Structure, MDS or LAMP.
The Dartmouth group has defined principal components for identifying Continental ancestry and will send a procedure
out using R. The Dartmouth group will is also deriving principal components using a panel of about 20,000 markers for
deriving intraEuropean ancestry.

Consortium specific: for some groups, most studies will be (almost) single ethnicity (European or Asian) and best to
exclude minority ancestry from these studies.

2.3 Heterozygosity 
Exclude samples with heterozygosity<5% or > 40% and heterozygosity if p<10 6, (|Z|>4.892) (GenABEL perid.summary).
Test Asian and Europeans separately.

2.4 Sex checks 
Exclude unexpected genotypic males/females/males (using X and Y markers). Also exclude XO, XXY, low X heterozygosity
(<5%). Use list of 300 Y markers confirmed to work in males and to have non autosomal cluster patterns
(chr_Y_SNPs_for_sex_checking.csv). Exclude from the test chromosome X SNPs that show a high level of heterozygous
calls in males and/or autosomal cluster patterns. (chr_X_SNPs_with_autosomal_clusters.csv.)



2.5 Duplicate concordance 
Identify duplicates within study.

Check expected duplicates – if consistent exclude the sample with lower call rate.

Identify unexpected duplicates within studies. Liaise with study data managers to attempt to resolve any discrepancies,
remove both if not resolved.

Check with previous iCOGS or pre iCOGS/GWAS genotyping

Exclude individuals discordant with previous consortium genotyping (if study co ordinator cannot resolve).

2.6 Relatives 
Relatives: Identify relatives. Individuals with estimated 0.55>ibd>0.45 were evaluated as likely first degree relatives.

These may be excluded by some of the consortia. For case control pairs of relatives, exclude the control. Otherwise
exclude the lower call rate sample.

2.7 Cross study/consortium duplicates 
Check for duplicates across studies within the consortium mark for exclusion from one study for main analyses except
for study specific files.

Between Oncoarray and iCOGS/previous GWAS

Consortium specific – for BCAC/PRACTICAL, mark Oncoarray samples for exclusion in main analysis, but need 2nd version
keeping all Oncoarray samples and excluding from iCOGS (for fine mapping/rare variants).

TRICL retained Oncoarray samples and removed prior genotyping from previous meta analyses then reperformed meta
analyses.

Across consortia

Generally only exclude for meta analysis.

3. SNP QC by Consortia 

3.1 Call rate 
Exclude SNPs zeroed by the cluster file with no genotypes.

Exclude samples with call rate <80%



Exclude SNPs with call rate <80%

Exclude samples with call rate <95%

Exclude SNPs with call rate <95%

3.2 Hardy Weinberg

Check Hardy Weinberg: exclude SNP if P<10 7 in controls or P<10 12 in cases.

(In CIMBA, all subjects treated as controls.) Need to adjust for study (or country), and perform stratified score test. Test
separately for Europeans/Asians/Africans. BCAC, OCAC and Practical excluded any SNP that failed in Europeans OR
Asians.

4. SNP QC Exclusions Combined Across Consortia 

4.1 Combine list of failures 
All consortia to exclude SNPS that fail for call rate or HWE in any other consortium. (As at 1st April breast, ovarian,
Cimba, prostate (Cambridge) exclusions have been combined, plus call rate exclusions for Lung.)

Chromosome Y exclusions were taken only from Practical. Practical used chromosome X HWE exclusions from BCAC.

4.2 Duplicate calling concordance 
If the genotypes for pairs of duplicates differ >2% for any SNP, then exclude that SNP as unreliable. (Do not include
differences between a no call and called genotype.)

Duplicates concordance figures were combined from up to 5,250 duplicates from BCAC, OCAC, Practical, Cimba.

4.3 Duplicate probes 
There are a number of variants on the chip with the same probe in the same position (or a few with the same alleles but
the sequence from the opposite strand.)

A list (onco_duplicate_variants_excluded.csv) of 765 was compiled of duplicate probes that should be excluded. The
probe with the worse QC scores and call rate was chosen for exclusion.

4.4 Cluster Plot Checking 
Exclude SNPs where the cluster plot has been confirmed as “Failed” by two independent checks.

5. Additional Steps Before Imputation

5.1 Rare SNPs with poor call rate 

Exclude SNPs with call rate below 98% and MAF <0.01 (Europeans) in any consortium from the imputation input files. 
(The genotyped calls for these SNPs can still be analysed.) 

 



5.2 Non-ideal cluster plots 

SNPs with cluster plots that were scored as Possible (P) or Subset interference (S) in the second round of checking 
should be excluded. These are either rare SNPs where there is no clear heterozygote cluster or SNPs with more than 
three clouds because of interference from other SNPs or possible copy number variation.

5.3 Variants unmatched to a 1000 Genomes variant 
Strand information was obtained by blasting the Illumina TOP sequences against the 1000 genomes sequences. Some
manifest positions identified by “rs” numbers were updated from dbSNP and the new positions confirmed by sequence
matching.

The variants on the chip were then matched to the variants from Phase 3 variant set provided for the Impute software.
(https://mathgen.stats.ox.ac.uk/impute/1000GP%20Phase%203%20haplotypes%206%20October%202014.html)

Variants were matched by position and alleles. Genotypes for variants not matched to a 1000G variant will be included
in the imputation input files but marked so as not to be used by Impute.

5.4 Frequency Comparison to 1000 Genomes variants 
Allele frequencies for controls from BCAC, OCAC and Practical were combined into a single frequency for Europeans
(from 108,000 samples) and Asians (11,000 samples). These were tested against the expected frequency from 1000G
using a test provided by Jon Tyrer.

A difference statistic is calculated by the formula:
(|p1 p2| 0.01)+^2/((p1+p2)(2 p1 p2))

where p1 and p2 are the frequencies our dataset and in the 1000 genomes respectively.

A cutoff of 0.008 in Europeans and 0.012 in Asians is needed to pass. Very rare SNPs are less likely to be rejected.

SNPs where the frequency would match if the alleles were flipped were excluded.

A list of strands and matched 1000G variants is provided.

A list of SNP where the Illumina TOP alleles need flipping in order to match the 1000 Genomes alleles is provided.

6. Principal Components 

Define Oncoarray consortium PCs and validate against some consortium specific PC definitions. Define a set of PCs for
the European and Asian subsets, which could serve as covariates for them plus a global set to use for those of mixed
ethnicity. It may also be important where possible to look at inflation in individual studies where specific PCs might be
required (e.g. Finland, HMBCS).

The figure below describes either i) using PCA to classify according to ancestry (shown by most likely descent ellipses) or
ii) assign continental origin to individuals according to the closest location on the continental ancestry triangle. We
prefer the latter approach as the ancestry can then be used as a covariate in analyses or for subsequent selection.





OncoArray Imputation

We used as reference Dataset the 1000 Genomes Project (GP) Phase 3 (Haplotype release date October 2014)
for chromosomes 1 to 22. The 1000 Genomes Project Phase 1 (Haplotype ChrX release date Aug 2012) was 
used for chromosome X, since the phased data for Chr X from 1000GP Phase 3 is not available. 

The OncoArray whole genome data were imputed in a two-stage procedure using SHAPEIT 
(shapeit.v2.r790.Ubuntu_12.04.4.static) to derive phased genotypes, and IMPUTEv2 
(impute_v2.3.2_x86_64_static) to perform imputation of the phased data. 

We used the default parameters used to derive phased genotypes with SHAPEIT, increasing: 

- the number of burn-in iterations used by the algorithm to reach a good starting point to 10 ("--burn 10"), 

- the number of pruning iterations used by the algorithm to find a parsimonious graph for each individual to 10 
("--prune 10"), 

- and the number of iterations used by the algorithm to compute transition probabilities in the haplotype graphs 
to 50 ("--main 50") 

We performed imputation with IMPUTEv2 using ~5Mb non-overlapping intervals for the whole genome. The 
flag  "-use_prephased_g" was provided to indicate that pre-phased haplotypes were being used. In addition we 
excluded from imputation the 1000 GP variants whose minor allele frequency in Europeans and East Asians 
was lower than 0.001. The missing genotypes at typed SNPs were replaced with imputed genotypes using the 
option "-pgs_miss". The number of reference haplotypes to use as templates when imputing missing genotypes 
was increased to 800 ("-k_hap 800"), and the buffer region was increased to 500kb ("-buffer 500"). 

For the fine mapping regions we also imputed the non-genotyped data with IMPUTEv2 but without prephasing 
in SHAPEIT in order to improve imputation accuracy. For this we also increased: 

- the default number of Markov chain Monte Carlo (MCMC) iterations (including burn-in) to 50 ("-iter 50"), 

- the number of MCMC iterations to discard as burn-in to 15 ("-burnin 15"), 

- and the number of haplotypes to use as templates when phasing observed genotypes to 100 ("-k 100"). 

Duplicated position issues 

SHAPEIT cannot handle duplicated variants (same position, and same alleles). The program stops when these 
variants are detected. 

IMPUTEv2 cannot handle duplicated positions (different genotyped variants at the same position). Thus, when 
the genotyped data includes that kind of variants (same position, different alleles), IMPUTEv2 gives the 
following warning: 

“Position XXXX occurs multiple times in Panel 2. The first instance of this SNP will be used for inference, 
while all subsequent instances will be ignored and omitted form output files”. 



Sometimes, when IMPUTEv2 identify more than one variant at the same position, and the alleles of one of 
these variants cannot be matched with the reference panel (noted in the summary file as “N of these replace 
existing SNPs with incompatible alleles”), a corrupted warning file (in binary format) is created indicating: 

“The –known_haps_g alleles XX do not match the –g alleles XX”. 

On the contrary, if only one genotyped variant is located at the same position that a variant in the reference 
panel, and its alleles do not match the reference panel, IMPUTEv2 will consider this genotyped variant as a type 
3 variant (present in the genotyped panel but not in the reference panel), and no warnings will be generated. 

Therefore, we included for imputation only one of the variants that match the same position. 


