Tetherin antagonism by the Ebola virus glycoprotein requires an intact 1 receptor-binding domain and can be blocked by GP1-specific antibodies 2 3 Constantin Brinkmann,^a Inga Nehlmeier,^a Kerstin Walendy-Gnirß,^a Julia Nehls,^{b,c} 4 Mariana González Hernández,^a Markus Hoffmann,^a Xiangguo Qiu,^d Ayato Takada,^e 5 Michael Schindler,^{b,c} and Stefan Pöhlmann^{a,*} 6 7 Infection Biology Unit, German Primate Center, Göttingen, Germany^a; Molecular Virology of 8 Human Infectious Diseases, University Hospital Tübingen, Institute of Medical Virology and 9 Epidemiology, Tübingen, Germany^b; Institute of Virology, Helmholtz Zentrum München, 10 German Research Center for Environmental Health, Neuherberg, Germany^c; Special Pathogens 11 Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, 12 Canada^d; Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis 13 14 Control, Sapporo, Japan^e. 15 16 Current address KWG: Viral Zoonosis and Adaptation Research Group, Heinrich-Pette-Institute, Hamburg, Germany 17 18 *Corresponding author. Please direct correspondence to: Infection Biology Unit, Deutsches 19 20 Primatenzentrum, Kellnerweg 4, 37077 Göttingen, Germany. Phone: +49 551 3851 150, Fax: 21 +49 551 3851 184, E-mail: spoehlmann@dpz.eu 22 Running title: Tetherin antagonism by Ebola virus 23 24

1

Downloaded from http://jvi.asm.org/ on October 14, 2016 by GSF/ZENTRALBIBLIOTHEK

26	The glycoprotein of Ebola virus (EBOV-GP), a member of the <i>Filoviridae</i> family, facilitates
27	viral entry into target cells. In addition, EBOV-GP antagonizes the antiviral activity of the
28	host cell protein tetherin, which may otherwise restrict EBOV-release from infected cells.
29	However, it is unclear how EBOV-GP antagonizes tetherin and it is unknown whether the
30	GP of Lloviu virus (LLOV), a filovirus found in dead bats in Northern Spain, also
31	counteracts tetherin. Here, we show that LLOV-GP antagonizes tetherin, indicating that
32	tetherin may not impede LLOV spread in human cells. Moreover, we demonstrate that
33	appropriate processing of N-glycans in tetherin/GP-coexpressing cells is required for
34	tetherin counteraction by EBOV-GP. Furthermore, we show that an intact receptor-
35	binding domain (RBD) in the GP1 subunit of EBOV-GP is a prerequisite to tetherin
36	counteraction. In contrast, blockade of Niemann-Pick disease, type C1 (NPC1), a cellular
37	binding partner of the RBD, did not interfere with tetherin antagonism. Finally, we provide
38	evidence that an antibody directed against GP1, which protects mice from a lethal EBOV
39	challenge, may block GP-dependent tetherin antagonism. Our data in conjunction with
40	previous reports indicate that tetherin antagonism is conserved between the GPs of all
41	known filoviruses and demonstrate that the GP1 subunits of EBOV-GP plays a central role
42	in tetherin antagonism.
43	
44	

- 45
- 47

46

48

 $\overline{\leq}$

Journal of Virology

50	Filoviruses are re-emerging pathogens that constitute a public health threat. Understanding
51	how Ebola virus (EBOV), a highly pathogenic filovirus responsible for the 2013-2016 Ebola
52	virus disease epidemic in Western Africa, counteracts antiviral effectors of the innate
53	immune system might help to define novel targets for antiviral intervention. Similarly,
54	determining whether Lloviu virus (LLOV), a filovirus detected in bats in Northern Spain, is
55	inhibited by innate antiviral effectors in human cells might help to define whether the virus
56	constitutes a threat to humans. The present study shows that LLOV like EBOV counteracts
57	the antiviral effector protein tetherin via its glycoprotein (GP), suggesting that tetherin does
58	not pose a defense against LLOV spread in humans. Moreover, our work identifies the GP1
59	subunit of EBOV-GP, in particular an intact receptor-binding domain, as critical for
60	tetherin counteraction and provides evidence that antibodies directed against GP1 can
61	interfere with tetherin counteraction.
62	
63	
64	
65	
66	
67	
68	
69	
70	
71	
72	
	3

74 The infection with Ebola virus (EBOV, formerly Zaire ebolavirus), a member of the genus 75 Ebolavirus within the family Filoviridae, causes severe and frequently fatal disease. The Ebola virus disease (EVD) epidemic in Western Africa in 2013-2016 was associated with 11,316 deaths 76 and entailed secondary cases in the US and Spain (1, 2), indicating that EVD constitutes a global 77 78 public health threat. The interferon (IFN) system, an important component of innate immunity, 79 constitutes a first line defense against infection by EBOV and other viruses (3, 4). Sensors of the 80 IFN system detect viral invaders and trigger the production and release of IFN. Binding of IFN to 81 receptors on neighboring cells in turn induces the expression of roughly 300-400 proteins, many of which exert antiviral activity (5). As a consequence, IFN exposed cells transit into an antiviral 82 state. Understanding how IFN-induced antiviral factors reduce EBOV infection and how the virus 83 84 evades this process might yield insights into viral pathogenesis and might help to establish targets for intervention. 85

The IFN-induced antiviral factor tetherin (CD317, BST-2, HM1.24) restricts release of 86 progeny virions form infected cells (6, 7). Tetherin's particular membrane topology is pivotal to 87 this activity: The protein has an N-terminal transmembrane domain and a C-terminal 88 glycosylphosphatidylinositol (GPI) anchor, which permit tetherin to simultaneously insert into 89 the viral and the plasma membrane. As a consequence, tetherin forms a physical tether between 90 newly formed virus particles and the host cell (8). Several viruses encode tetherin antagonist 91 which allow for robust viral spread in tetherin-positive target cells (9). The Vpu protein of HIV-1 92 93 is the prototype tetherin antagonist and it is well established that specific interactions between the 94 transmembrane domains of these proteins are required for tetherin antagonism (10-13). Antagonism encompasses Vpu-dependent removal of tetherin from the site of viral budding, the 95

96 plasma membrane, and re-routing of the protein for endosomal degradation (14-16).

97	The glycoprotein (GP) of filoviruses is inserted into the viral envelope and facilitates viral
98	entry into target cells, a process that depends on the interactions of the receptor binding domain
99	(RBD) in GP with the cellular protein Niemann-Pick disease, type C1 (NPC1) (17, 18).
100	Moreover, EBOV-GP counteracts tetherin (19) by a novel mechanism (19-22), which might
101	involve GP-dependent inhibition of tetherin association with the viral matrix protein, VP40 (23).
102	Tetherin antagonism by GP might be required for efficient EBOV spread in the host, since
103	macrophages, central viral target cells (24), express tetherin (25, 26). In contrast, it is unknown
104	whether the GP of a related filovirus, Lloviu virus (LLOV, genus Cuevavirus) (27), counteracts
105	tetherin. In addition, it is poorly understood which domains in EBOV- GP contribute to tetherin
106	counteraction. EBOV-GP was found to interact with tetherin via its transmembrane unit, GP2
107	(20), and evidence was provided that the transmembrane domain (TM) within GP2 is necessary
108	but not sufficient for tetherin counteraction (28, 29). However, the EBOV-GP TM mutant unable
109	to counteract tetherin was also defective in mediating viral entry (28) and might thus have been
110	partially misfolded. In addition, a separate study revealed that EBOV-GP counteracts an artificial
111	tetherin molecule (21), suggesting that GP binding to tetherin may not be required for
112	antagonism. More recent work indicated that deletion of the glycan cap of EBOV-GP, a N-
113	glycosylated region displayed at the top of GP, might be incompatible with tetherin antagonism
114	(29) but the underlying mechanism was not investigated. In sum, it is at present unknown how
115	EBOV-GP antagonizes tetherin and it is incompletely understood which determinants in the viral
116	GP control tetherin antagonism.
117	Here, we analyzed whether LLOV-GP antagonizes tetherin and we examined the role of
118	the surface unit, GP1, of EBOV-GP in tetherin antagonism. We show that LLOV-GP counteracts
119	the antiviral activity of tetherin, indicating that tetherin might not pose an effective barrier against
120	LLOV spread in human cells. Moreover, we demonstrate that appropriate processing of N-

Σ

121	alternation and the stand DDD and an angle of fair tothering counterpation by EDOV CD 14, and
121	giveans as well as an infact KBD are required for tetherin counteraction by EBOV-GP although
122	inhibition of the RBD interaction partner NPC1 has no effect. Finally, we identified an antibody
123	directed against the GP1 subunit of EBOV-GP that may block tetherin antagonism. These results
124	indicate a central role of the GP1 subunit of EBOV-GP in tetherin counteraction and suggest that
125	antibodies directed against this subunit can interfere with viral release by blocking GP-dependent
126	tetherin antagonism.
127	
128	
129	
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	
140	
141	
142	
143	
144	
	e

Downloaded from http://jvi.asm.org/ on October 14, 2016 by GSF/ZENTRALBIBLIOTHEK

Journal of Virology

145 MATERIAL AND METHODS

146

147 Cell culture, plasmids and antibodies. Human embryonal kidney 293T cells, N-acetyl glucosamine transferase I (GnTI) deficient HEK293S GnTI cells (30) and HeLa cells were 148 maintained in Dulbecco's Modified Eagle Medium (DMEM, Invitrogen) supplemented with 10% 149 150 fetal bovine serum (FBS), 1% penicillin/streptomycin and, in case of GnTI cells, 10 µM sodium 151 pyruvate. Mouse hybridoma cells secreting anti-VSV-G antibody (I1-hybridoma, CRL-2700, 152 ATCC) were cultivated in cultivated in DMEM, supplemented with 20% FBS and 1% 153 penicillin/streptomycin. Cells were cultured at 37°C in humidified atmosphere containing 5% CO₂. Plasmids encoding the following proteins were described previously: Tetherin (31), EBOV-154 155 GP wt and EBOV-GP with mutations in the RBD (32), deleted mucin-like domain (MLD) (33) or 156 inactivated furin cleavage site (34), LLOV-GP (35), HIV Vpu (20), vesicular stomatitis virus 157 glycoprotein (VSV-G, (36)), murine leukemia virus (MLV) vector encoding luciferase (36), MLV Gag-Pol (36), HIV-1 p55-Gag (28) and EBOV-VP40 harboring a myc tag (37). Tetherin 158 159 with an N-terminal AU1 antigenic tag was generated by PCR-based mutagenesis and inserted 160 into plasmid pcDNA3.1 using EcoRV and NheI restriction sites. The integrity of the PCR 161 amplified sequence was confirmed by automated sequence analysis. The following antibodies have also been previously described: EBOV-GP1 specific monoclonal antibodies (38, 39), anti-162 163 Gag monoclonal antibody (40) and a polyclonal rabbit antiserum raised against EBOV-GP1 (41). 164 The following antibodies were purchased from commercial providers: monoclonal anti-V5-165 antibody (Invitrogen);); mouse anti-AU1-antibody (Covance); monoclonal rabbit anti-tetherin 166 antibody(Abcam); anti-tetherin monoclonal antibody (B02P, Abnova); polyclonal anti-β-actin antibody (Abnova, Sigma) and horseradish-peroxidase (HRP)-coupled secondary antibodies 167

directed against mouse and rabbit immunoglobulin (Dianova) and FITC-coupled secondaryantibodies against mouse immunoglobulin (Dianova).

170

171	Analysis of viral glycoprotein-mediated transduction. Transduction has been analyzed as
172	described (36). In brief, for the production of MLV-vectors bearing filovirus GPs, 293T control
173	or GnTI cells were seeded in T25 cell culture flasks and cotransfected with plasmids encoding
174	MLV Gag-Pol, an MLV vector encoding firefly luciferase and a viral glycoprotein or empty
175	plasmid, employing calcium phosphate as transfection reagent. At 16 h post transfection the cells
176	were washed and supplemented with fresh medium. At 48 h post transfection the culture
177	supernatants were collected, sterile filtered through a 0,45 μ m filter, aliquoted and stored at -
178	80°C. For transduction of target cells, 293T cells seeded in a 96 well plate were incubated with
179	50 μ l/well of vector preparation for 6 h at 37°C. Thereafter, 50 μ l/well of fresh DMEM culture
180	medium was added. At 72 h post transduction, the culture supernatants were removed and cells
181	were lysed and luciferase activity measured in cell lysates employing a commercially available
182	kit (PJK) and the Hidex CHAMELEON V luminometer with Microwin 2000 software.
183	For analysis of the antiviral activity of U18666A and cationic amphiphiles, VSV-based
184	pseudotypes were used for consistency with previous work (42). Pseudotypes were generated and
185	used for transduction as described (43). In brief, 293T cells seeded in 6 well-plates were calcium
186	phosphate transfected with plasmids encoding VSV-G or EBOV-GP or empty plasmid
187	(pCAGGS) as negative control. At 18 h post transfection, the cells were inoculated with
188	VSV* Δ G-Luc (44, 45) at an MOI of 3 for 1 h at 37°C. Thereafter, the cells were washed with
189	PBS and incubated for 1 h at 37°C with a 1:1,000 dilution of hybridoma supernatant containing
190	anti-VSV-G antibody in order to neutralize residual virus. Finally, fresh culture medium was
191	added to the cells and supernatants were collected at 18-20 h post transduction, clarified from cell

 \sum

199

debris by centrifugation, aliquoted and stored at -80°C. To assess blockade of viral entry by 192 193 cationic amphiphiles, 293T target cells seeded in 96-well plates were pre-incubated with each 194 compound or diluent for 3 h at 37°C. Subsequently, the cells were inoculated with equal volumes 195 of pseudotypes and incubated for 18 h at 37°C in the presence of inhibitor. Finally, luciferase activities in cell lysates were measured as described for cells transduced with MLV-pseudotypes. 196 197

Inhibition of virus-like particle release by tetherin and tetherin antagonism by filoviral 198

glycoproteins. Release of virus-like particles (VLPs) and its inhibition by tetherin has been 200 examined as described (20, 28). In brief, 293T control cells or GnTI⁻ cells were seeded in 48 well plates and cotransfected with plasmids encoding HIV-1 p55-Gag, tetherin and a potential tetherin 201 antagonist or empty plasmid, using the calcium phosphate method. For experiments with EBOV-202 203 VP40, a plasmid encoding VP40 instead of HIV-Gag was used. At 16 h post transfection, the 204 transfection medium was replaced by fresh culture medium. For blockade of EBOV-GPdependent tetherin antagonism, GP1-specific monoclonal antibodies were added to the culture 205

Downloaded from http://jvi.asm.org/ on October 14, 2016 by GSF/ZENTRALBIBLIOTHEK

206 medium at a final concentration of 20 µg/ml or cationic amphiphiles (U18666A, Clomifene,

207 Terconazole; all purchased from Sigma) were added at the indicated concentrations. At 48 h post

208 transfection the supernatants were collected and the cells were lysed in 50 µl of 2x SDS-

containing lysis buffer (30 mM Tris [pH 6.8], 10% glycerol, 2% SDS, 5% β-mercaptoethanol, 209

210 0.1% bromphenol blue, 1mM EDTA). The lysates were incubated at 95°C for 30 min. The

211 supernatants were cleared of remaining cell debris by centrifugation and VLPs were pelleted

212 from cleared supernatants by centrifugation through a 20% sucrose cushion. The concentrated

213 VLPs were lysed in 30 µl 2 x SDS loading buffer and incubated at 95°C for 30 min.

Subsequently, cell lysates and lysed supernatants were investigated for the presence of Gag or 214

215 VP40, respectively, employing Western blot analysis.

239

217	Immunoblotting. For immunoblotting, the proteins were separated via SDS-polyacrylamid gel
218	electrophoresis using a 12.5% polyacrylamide gel and transferred onto a nitrocellulose membrane
219	(GE Lifesciences, 0.2 μm). The membranes were blocked in 5% milk powder in PBS with 0,1%
220	Tween 20 and Gag-protein was detected using 1:100 diluted supernatants of hybridoma cells
221	secreting a mouse anti-Gag antibody. If murine antibodies against EBOV-GP were added to
222	inhibit tetherin antagonism, Gag expression was detected using a human monoclonal anti-Gag
223	antibody at a dilution of 1:5,000. VP40 was detected using 1:3 diluted supernatants of a
224	hybridoma cell line which secrets anti-myc antibody. Expression of EBOV-GP wt and mutants
225	was detected employing a GP1-specific rabbit serum at a dilution of 1:1,000. For the detection of
226	LLOV-GP, a V5-tagged version of this protein was employed and its expression detected
227	employing an anti-V5 antibody at a dilution of 1:5,000. Expression of ß-actin was detected after
228	stripping the membranes (Tris-HCl, SDS, ß-mercaptoethanol, 50°C, 30 min) employing anti-ß-
229	actin antibodies at a dilution of 1:10,000. HRP-coupled anti-mouse, anti-rabbit and anti-human
230	secondary antibodies were used at a final concentration of 0.1 μ g/ml. Bound secondary
231	antibodies were detected using a commercially available ECL kit (GE Healthcare) and signals
232	were visualized using the ChemoCam imaging system and the ChemoStarProfessional software
233	(Intas). For quantification of the signal intensity, the program ImageJ was used (46). For
234	normalization, Gag/VP40 signals measured in culture supernatants were divided by the respective
235	signals detected in cell lysates.
236	
237	Analysis of Ebola virus glycoprotein expression at the cell surface. For analysis of the surface
238	expression of EBOV-GP and mutants, 293T cells were transfected with the respective plasmids

Downloaded from http://jvi.asm.org/ on October 14, 2016 by GSF/ZENTRALBIBLIOTHEK

and washed and harvested in PBS at 48 h post transfection. Expression of EBOV-GP at the cell

in

240

241	conjugated anti-mouse secondary antibody. Staining of cells fixed with 2% paraformaldehyde
242	was analyzed employing a LSR II Flow Cytometer (BD Biosciences) and the FACS Diva
243	software (BD Biosiences). The data was further analyzed using the FCS Express 4 Flow research
244	software (De Novo software).
245	
246	Co-immunoprecipitation. For the analysis of EBOV-GP interactions with tetherin by co-
247	immunoprecipitation (CoIP), 293T cells were cotransfected with plasmids encoding EBOV-GP
248	wt or EBOV-GP with mutations in the RBD and a plasmid encoding tetherin with an AU1
249	antigenic tag added to the N-terminus. In parallel, antibody-agarose conjugates for
250	immunoprecipitation were generated. For this, agarose beads (A/G Plus Agarose, Santa Cruz)
251	were washed two times with CoIP buffer (50 mM Tris/HCl pH8; 150 mM NaCl; 5 mM EDTA;
252	0,5% IGEPAL), blocked with cold water fish gelatine at 4°C for 2 h on a rotating shaker, washed
253	again with CoIP buffer and incubated with anti-AU1 antibody for 2 h at 4°C on a rotating shaker.
254	At 48 h post transfection, the 293T cells were harvested, washed with PBS and resuspended in
255	CoIP buffer. After lysis for 20 min at 4°C the solutions were cleared from cellular debris by
256	centrifugation at 600 g and aliquoted. Aliquots were stored for subsequent analysis by
257	immunoblotting or were incubated with agarose-bound anti-AU1 antibody for 20 min at room
258	temperature. After washing eight times with Co-IP buffer, the agarose-beads were resuspended in
259	20 µl of 2x SDS loading dye and analyzed by immunoblotting.
260	
261	Proximity ligation assay. For analysis of EBOV-GP interactions with tetherin via proximity
262	ligation assay (PLA), 100,000 HeLa cells per well were seeded in 12-well plates containing
263	coverslips and then transfected with the indicated EBOV-GP expression plasmids using

surface was detected by employing GP-specific mouse monoclonal antibody 5E6 and an FITC-

 \sum

264	Lipofectamine 2000 according to the manufacturer's protocol (Thermo Fisher). At 24 h post
265	transfection, the cells were fixed for 20 min with 2% PFA at 4°C, permeabilized for 10min with
266	1% Saponin and blocked for 1 h with 10% FCS at room temperature. The primary antibodies, an
267	anti-tetherin monoclonal antibody (B02P, Abnova) and a rabbit anti-EBOV-GP serum raised
268	against the GP1 subunit (41), were diluted 1:100 and 1:500 in 1% FCS, respectively, and cells
269	were subsequently incubated in the primary antibody solution for 1 h at room temperature.
270	Incubation with PLA probes, ligation reaction, amplification reaction and mounting of the
271	coverslips was performed according to the manufacturer's protocol (Duolink, Sigma Aldrich).
272	Finally, staining was analyzed employing spinning disc microscopy and image analysis as
273	described before (47).

274

Sequence alignment. The alignment of a portion of the filovirus RBDs was performed using Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/). Sequences were obtained from the NCBI (National Center for Biotechnology Information) database, including consensus sequences for Zaire ebolavirus (EBOV, n = 172), Sudan ebolavirus (SUDV, n = 20), Bundibugyo ebolavirus (BDBV, n = 8), Taï Forest ebolavirus (TAFV, n = 4), Reston ebolavirus (RESTV, n = 13) and Marburg marburgvirus (MARV, n = 84). In contrast, only one single sequence was available for Lloviu cuevavirus (LLOV).

282

283 Statistical analysis. Statistical significance was calculated using unpaired two-tailed t-test 284 employing GraphPad software. Statistical significance is indicated by * = p < 0.05, ** = p <285 0.001, *** = p < 0.0001.

286

287

288 RESULTS

289

290 The Lloviu virus glycoprotein is a tetherin antagonist. We employed a previously described 291 HIV Gag-based virus-like particle (VLP) assay (20, 28) to assess inhibition of viral budding by 292 tetherin and its counteraction by EBOV-GP, EBOV-GP mutants and LLOV-GP. HIV Gag was chosen for this endeavor, because expression of filovirus GPs does not modulate release of Gag-293 294 VLPs from tetherin-negative cells. In contrast, release of EBOV-VP40-based VLPs from 295 tetherin-negative cells is augmented by EBOV-GP (20), which complicates the analysis of 296 tetherin antagonism. Therefore, a VP40-based assay was only used for confirmatory purposes. We commenced our analysis by asking whether LLOV-GP counteracts tetherin. As a 297 prerequisite to these studies, we determined LLOV-GP expression and facilitation of viral entry. 298 299 Analysis of epitope-tagged proteins revealed that LLOV-GP and EBOV-GP were appreciably 300 expressed in transfected 293T cells (Fig. 1A), with EBOV-GP expression being more efficient. 301 Moreover, both proteins mediated host cell entry when incorporated into retroviral vectors (Fig. 302 1B), although EBOV-GP-driven entry was more robust than LLOV-GP-mediated entry, in 303 keeping with published data (35). Thus, under the conditions chosen, LLOV-GP was expressed and functional and could be examined for tetherin counteraction. For this, HIV-1 Vpu and 304 305 EBOV-GP were employed as positive controls while transfection of cells with empty plasmid 306 served as negative control. Tetherin expression reduced Gag-VLP-release and this effect was 307 counteracted by EBOV-GP and Vpu, as expected, and by LLOV-GP (Fig. 1C-D). This 308 observation adds LLOV-GP to the list of viral tetherin antagonists and, jointly with previous 309 work (19, 20), suggests that filoviruses of all three genera, *Ebola*-, *Marburg*- and *Cuevavirus*, can 310 antagonize tetherin via their GPs. In addition, this finding raises the question which features 311 conserved between filovirus GPs control tetherin antagonism

2	1	2
J	+	2

313	Adequate glycosylation of the Ebola virus glycoprotein is required for tetherin antagonism.
314	A hallmark of all filovirus glycoproteins is their extensive N-linked glycosylation, raising the
315	question whether N-glycans contribute to tetherin counteraction. We employed 293S GnTI ⁻ cells,
316	in which processing of N-glycans is stalled at the high-mannose stage (30), to examine whether
317	appropriate N-glycosylation is a prerequisite to tetherin counteraction by EBOV-GP. Expression
318	of EBOV-GP in transfected control and GnTI cells was comparable (Fig. 2A) and pseudotypes
319	produced in both cell lines were readily able to transduce target cells (Fig. 2B). Moreover,
320	tetherin expression restricted Gag-VLP release from both control and GnTI cells, with restriction
321	in GnTI ⁻ cells being less effective (Fig. 2C,D), potentially due to a modest accumulation of
322	tetherin in cytoplasmic compartments of these cells (not shown). Thus, tetherin and GP are
323	expressed in biological active forms in control and GnTI ⁻ cells. However, EBOV-GP failed to
324	rescue Gag-VLP release from blockade by tetherin in GnTI cells, while tetherin counteraction by
325	GP was efficient in control cells and tetherin antagonism by Vpu was comparable in both cell
326	lines (Fig. 2C-D). Similar results were obtained when release of VP40-VLPs was examined (Fig.
327	2E), indicating that adequate processing of N-glycans is a prerequisite to tetherin counteraction
328	by EBOV-GP.

Downloaded from http://jvi.asm.org/ on October 14, 2016 by GSF/ZENTRALBIBLIOTHEK

329

An intact receptor-binding domain is required for tetherin counteraction by the Ebola virus glycoprotein. We next investigated whether two conserved elements in the GP1 subunit, the mucin-like domain (MLD) and the RBD, are required for tetherin antagonism. Deletion of the MLD was compatible with robust GP expression (Fig. 3A) and slightly increased and decreased GP-driven entry (Fig. 3B), respectively, in agreement with published data (34, 48, 49). Moreover, the MLD was dispensable for tetherin antagonism (Fig. 3C,D), in keeping with a previous study

336	(19). In order to determine the role of the RBD in tetherin counteraction, we characterized four
337	point mutations in the RBD, three of which were previously reported to abrogate GP-driven host
338	cell entry (F88A, L111A and L122A) (32) while the fourth one was shown not to impede the
339	entry process (W104A) (50). The three amino acid residues essential for entry are fully conserved
340	between members of the genera Ebolavirus and Cuevavirus and two out of three are also present
341	in the RBD of marburgviruses (the third one was replaced by as conservative substitution, L1111)
342	(Fig. 4A). All mutants were comparably expressed in transfected 293T cells (Fig. 4B and table 1)
343	and mutants F88A, L111A and L122A indeed failed to mediate efficient entry into target cells
344	while entry driven by mutant W104A was robust (Fig. 4C). Notably, the ability of these mutants
345	to drive host cell entry correlated with their capacity to antagonize tetherin: F88A, L111A and
346	L122A exhibited strongly reduced tetherin antagonism in the Gag-VLP assay while W104A was
347	active (Fig. 4D,E). Similar results were obtained in the VP40-VLP assay: F88A, L11A and
348	L122A were unable to appreciably counteract tetherin while tetherin counteraction by mutant
349	W104A was robust (Fig. 4F). Finally, expression of all mutants augmented release of VP40-
350	VLPs from tetherin-negative control cells (Fig. 4F), suggesting that augmentation of VLP release
351	and tetherin antagonism can be genetically separated. In sum, these results show that an intact
352	RBD is required for tetherin antagonism by EBOV-GP.
353	

Downloaded from http://jvi.asm.org/ on October 14, 2016 by GSF/ZENTRALBIBLIOTHEK

354 Inhibition of NPC1 does not interfere with tetherin antagonism by the Ebola virus

glycoprotein. During viral entry, proteolytic processing of GP in endosomes exposes the RBD
for subsequent binding to NPC1 (17, 18). A recent study reported evidence for the presence of
proteolytically processed GP on the surface of 293T cells transfected to express GP (51).

- 358 Moreover, low levels of endogenous NPC1 were detected at the plasma membrane of 293 cells
- 359 (51). These observations suggest that NPC1 might not only be required for EBOV-GP-driven

360	host cell entry but also for tetherin antagonism. To address this possibility, we employed the
361	compound U18666A, a cationic amphiphile (52). U18666A binds to the sterol sensing domain of
362	U18666A (53), induces cholesterol accumulation in endosomes and blocks EBOV entry (42).
363	The compound robustly inhibited EBOV-GP- but not VSV-G-driven entry (Fig. 5A), as expected
364	A modest inhibition of VSV-G-dependent entry was observed in the presence of 20 μM
365	U18666A (Fig. 5A) and coincided with modestly reduced cell viability (33% reduction as
366	determined by CellTiter-Glo Luminescent Cell Viability assay (Promega), data not shown),
367	suggesting that this effect was unspecific. Despite efficient blockade of GP-driven entry,
368	U18666A treatment did not interfere with tetherin antagonism by EBOV-GP (Fig. 5B,C),
369	indicating that NPC1 functions required for viral entry are dispensable for GP-mediated tetherin
370	antagonism. Several cationic amphiphiles other than U18666A were also found to raise
371	endosomal cholesterol levels and to block EBOV entry in an NPC1-dependent fashion (42).
372	Therefore, we asked whether two of these compounds, clomifene and terconazole, interfere with
373	tetherin antagonism. Both compounds efficiently reduced viral entry, as expected, but did not
374	inhibit tetherin antagonism by GP (Table 2), confirming that biological properties of NPC1
375	required for GP-driven cell entry are dispensable for tetherin antagonism.
376	
377	Mutations in the receptor binding domain of the Ebola virus glycoprotein that inhibit
378	tetherin antagonism do not interfere with tetherin binding. It has been reported that EBOV-
379	GP interacts with tetherin (19). Therefore, we investigated whether mutations in the RBD which
380	inhibit tetherin antagonism also block tetherin binding. For this, we first employed co-
381	immunoprecipitation. Expression of EBOV-GP wt, EBOV-GP mutants and tetherin was readily
382	detectable in cotransfected cells and pull-down of tetherin resulted in co-precipitation of wt
383	EBOV-GP (Fig. 6A), as excepted. Notably, wt EBOV-GP and GP mutants with exchanges in the

Z

384

385

386

387

388

389

390

391

392

393

tetherin binding.

RBD that inhibit tetherin antagonism were co-precipitated with comparable efficiency (Fig. 6A), suggesting that lack of tetherin antagonism by the RBD mutants tested was not due to lack of tetherin binding. We next investigated whether differences in tetherin binding of EBOV-GP wt and RBD mutants become apparent when endogenous tetherin expression are examined. For this, we transfected HeLa cells, which constitutively express high levels of endogenous tetherin, with plasmids encoding EBOV-GP wt and mutants and determined interactions with tetherin via a proximity ligation assay. We observed comparable tetherin binding of wt and mutant GPs (Fig. 6B,C), confirming that lack of tetherin antagonism by the RBD mutants is not due to lack of

394	Evidence that an antibody directed against the GP1 subunit can block tetherin
395	counteraction by the Ebola virus glycoprotein. The results obtained so far pointed towards an
396	important role of the GP1 subunit in tetherin counteraction by EBOV-GP. GP1 is a central target
397	for the humoral immune response and we thus examined whether antibodies directed against GP1
398	might block tetherin antagonism. For this, we made use of previously described monoclonal
399	antibodies which bind to the MLD in naïve GP and protect mice and guinea pigs from a lethal
400	challenge with EBOV (38, 39). We first assessed whether these antibodies interfere with VLP
401	release from control cells. Antibodies 4G7 and 5D2 did not impact VLP release while antibody
402	5E6 modestly and antibodies 7G4 and 7C9 strongly inhibited particle release (Fig. 7A,B).
403	Blockade of release might be due to cross-linking of GP on the cell surface and GP on the virion
404	surface, resulting a in a tetherin-like restriction of particle release. When the antibodies were
405	tested on cells coexpressing tetherin and GP, similar results were obtained, with the exception of
406	antibody 5E6 (Fig. 7C,D). This antibody had a modest impact on VLP release from tetherin-

 \leq

tetherin-positive or tetherin-negative cells expressing GP without MLD (not shown), indicating
that the above described effects were specific. In sum, our findings suggest that antibody 5E6 can
interfere with tetherin antagonism by GP, although part of its release-restricting activity is
tetherin-independent.

background level (Fig. 7D, dotted line), indicating that it interferes with GP-mediated tetherin

antagonism. Finally, it is noteworthy that none of the antibodies inhibited VLP release from

M

Accepted Manuscript Posted Online

432 DISCUSSION

433 Tetherin is expressed in macrophages (25, 26) and matured dendritic cells (54), which are 434 important filovirus targets (24, 55, 56), and tetherin counteraction by GP might be essential for robust viral spread in the host. However, it is largely unclear how GP antagonizes tetherin and 435 436 which domains in GP are required. The present study shows that an intact RBD as well as 437 appropriate N-glycosylation of GP are essential for tetherin antagonism and confirms that MLD 438 is dispensable. Moreover, we demonstrate that an antibody against GP1, which protects against 439 fatal EBOV challenge in a mouse model (38), can block tetherin antagonism by GP. These results 440 demonstrate that the GP1 subunit plays a central role in tetherin antagonism and suggest that blockade of GP-dependent tetherin antagonism might contribute to the protective activity of 441 442 certain anti-GP1 antibodies.

Previous work demonstrated that EBOV-GP (19) and the GPs of other members of the 443 Ebolavirus and Marburgvirus genera counteract tetherin (20, 28), although these analyses were 444 445 semi-quantitative and subtle differences in the efficiency of tetherin counteraction might have 446 been missed. In contrast, it was unknown whether the GP of LLOV, which was detected in dead Schreiber's bats (Minioperus schreibersii) in Northern Spain (27), also counteracts tetherin. 447 Absence of tetherin counteraction by LLOV-GP would suggest that LLOV might not be able to 448 spread efficiently in the human host and that LLOV-GP could potentially be used as a tool for 449 450 mutagenic analysis designed to identify domains required for tetherin antagonism. However, the 451 findings of the present study indicate that LLOV-GP robustly counteracts tetherin, suggesting 452 that tetherin antagonism is conserved between all filoviruses known to date. This finding raises 453 the question which determinants in filovirus GPs are required for tetherin antagonism. A conserved feature of all filovirus GPs is their extensive N- and O-linked glycosylation. 454

455 Several N-glycans are located in a surface exposed area, the glycan cap (57), while the mucin-

Journal of Virology

456

457	to the RBD and are required for binding to cellular lectins and for protection against antibodies
458	(58, 59), since glycans can shield underlying epitopes from binding of neutralizing antibodies. N-
459	glycosylation of proteins starts in the endoplasmic reticulum (ER), where precursor glycans
460	consisting mainly of mannose residues are transferred en bloc onto certain asparagine residues.
461	Upon glycoprotein import into the Golgi apparatus, these high-mannose-type N-glycans are
462	processed into hybrid and complex forms. Processing of N-glycans in the Golgi apparatus can be
463	blocked by inactivating GnTI and results in the trapping of N-glycans in their high-mannose
464	from. The present study shows that exclusive modification of GP with high-mannose N-glycans
465	is compatible with efficient GP expression and GP-driven host cell entry, as expected from a
466	previous analysis (60), but may be incompatible with efficient tetherin antagonism. Such a
467	scenario would be in keeping with a recent study reporting that the glycan cap is essential for
468	tetherin antagonism (29), a finding that was confirmed by the present analysis (not shown).
469	However, it cannot be excluded that the absence of tetherin antagonism by GP in GnTI cells is
470	due to altered N-glycosylation of tetherin or a cellular factor involved in tetherin antagonism (see
471	discussion below) rather than inappropriate glycosylation of GP itself.
472	Another hallmark of filovirus GPs, apart from their extensive glycosylation, is the
473	presence of a RBD, which binds to host cell factors involved in viral entry (50, 61, 62). Our study
474	shows that mutations in the RBD which abrogate viral entry also inhibit tetherin antagonism. In
475	contrast, an RBD mutation, which did not interfere with viral entry, was compatible with tetherin
476	antagonism. A straightforward interpretation of these findings is that GP might need to engage
477	the same cellular factor for entry and tetherin counteraction. The cholesterol transporter NPC1
478	has been identified as a receptor for filoviruses, which is bound by the RBD and which is
479	essential for entry into cultured cells and for viral spread in the host (17, 18, 42, 63). GP binds to
	20

like domain is extensively modified with O-linked and N-linked glycans. N-glycans limit access

N

480	NPC1 upon viral uptake into host cell endosomes and processing of GP by the endosomal
481	cysteine proteases cathepsin B and L (17, 18). It is thus not obvious how NPC1 could contribute
482	to tetherin antagonism by GP, which probably occurs at the cell surface or during transport of
483	tetherin to the cell surface. However, a recent study provided evidence that newly expressed GP
484	can be proteolytically processed and transported to the cell surface (51). Moreover, small
485	amounts of NPC1 were detected at the plasma membrane (51). As a consequence, one can
486	speculate that both GP-driven viral entry and tetherin antagonism might depend on NPC1.
487	However, inhibition studies with U18666A and related cationic amphiphiles that induce
488	cholesterol accumulation in endosomes (all compounds) (42), bind NPC1 (U18666A) (53) and
489	block EBOV-GP-driven entry in an NPC1-dependent fashion (all compounds) (42), revealed that
490	blockade of NPC1 functions required for viral entry does not interfere with tetherin antagonism.
491	Notably, the RBD has initially been identified as an element in GP1 which is required for
492	efficient binding of soluble GP1 to the surface of susceptible cells (62), a process believed to be
493	independent of NPC1, due to its predominantly endosomal localization. Subsequent studies
494	provided evidence that cell adherence and susceptibility to GP-driven entry correlate and that
495	adherent (and thus susceptible) cells express an RBD binding partner at the cell surface which is
496	only present in intracellular pools within non-adherent (and thus non-susceptible) cells (64, 65).
497	Although the nature of this cellular factor is at present unknown, it is tempting to speculate that it
498	might not only be required for viral entry but also for tetherin antagonism.
499	Wild type tetherin and artificial tetherin, which was designed in silico, exhibit the same
500	domain organization and exert antiviral activity but share no sequence homology (8). Previous
501	studies reported that EBOV-GP antagonizes the antiviral activity of both proteins (21) and
502	interacts with wt tetherin (19). One can speculate that EBOV-GP may not bind to artificial

504

505

506

507

508 proximity ligation assay. The GP1 subunit is an important target for the antibody response and it is conceivable that 509 510 antibody binding blocks GP-dependent tetherin antagonism. Indeed, we obtained evidence that 511 one out of five GP1-directed antibodies, which were previously shown to protect mice from lethal 512 EBOV infection (38, 39), may inhibit tetherin antagonism by EBOV-GP, suggesting that this process occurs at the cell surface. However, the analysis and interpretation of this activity is 513 514 complicated by the observation that this antibody (and two others) also interfere with VLP 515 release from tetherin-negative, GP-expressing cells. The release of Gag-based VLPs is not 516 modulated by GP; the finding that antibodies directed against GP can block this process was 517 therefore unexpected. One explanation could be that these antibodies simultaneously bind to GP 518 on the particle and on the cell surface, resulting in a tetherin-like restriction of particle release. Moreover, the antibody potentially interfering with tetherin antagonism recognizes an epitope in 519 520 the MLD, a domain that is dispensable for tetherin antagonism. Thus, one must postulate that its 521 interference with tetherin antagonism is not due to the inhibition of MLD interactions with potential cellular binding partners. Instead, the antibody might inhibit conformational changes in 522 523 GP, which could be required for tetherin counteraction, or might limit the accessibility of 524 epitopes located close to the MLD, due to steric effects. Alternatively, the antibody might reduce 525 GP stability, as has recently been reported for an inhibitor targeting a cavity between GP1 and GP2 (66). In sum, our data suggest that antibodies generated against EBOV-GP1 may interfere 526

tetherin antagonism. Alternatively, GP might bind wt and artificial tetherin and these interactions

might be necessary but not sufficient for tetherin counteraction. Both scenarios are in agreement

transfected and endogenously expressed tetherin, as determined by co-immunoprecipitation and

with our finding that RBD mutants largely defective in tetherin counteraction still bind to

527

528	dependent manner.
529	Collectively, our study demonstrates a central role of the GP1 subunit, in particular the
530	RBD, in tetherin counteraction and identifies a GP1-specific antibody that may block this
531	process. It will be interesting to investigate whether GP1-specific antibodies generated in EVD
532	patients block tetherin antagonism and whether a previously reported (62, 64, 65), but so far
533	unidentified cellular interaction partner of the RBD contributes to tetherin antagonism.
534	
535	
536	
537	
538	
539	
540	
541	
542	
543	
544	
545	
546	
547	
548	

550

549

with tetherin antagonism and/or inhibit particle release from tetherin-negative cells in a GP-

 $\overline{\leq}$

ACKNOWLEDGEMENTS 551

552	We thank C. Basler, Department of Microbiology, Mount Sinai School of Medicine for the kind			
553	gift of plasmids encoding EBOV-GP RBD-mutants. The following reagents were obtained			
554	through the NIH AIDS Reagent Program, Division of AIDS, NIAID, NIH: Anti-HIV-1 p24			
555	Monoclonal (71-31) from Dr. Susan Zolla-Pazner and p96ZM651gag-opt from Drs. Yingying Li,			
556	Feng Gao, and Beatrice H. Hahn.			
557				
558				
559				
560				
561				
562				
563				
564				
565				
566				
567				
568				
569				
570				
571				
572				
573				
574				
	24			

Z

<u>Journ</u>al of Virology

575 **REFERENCES**

1. WHO Ebola Response Team. 2016. Ebola Virus Disease among Male and Female 576 577 Persons in West Africa. N. Engl. J. Med. 374:96-98. 2. WHO. Ebola Situation Report - 30 December 2015. http://apps.who.int/ebola/current-578 579 situation/ebola-situation-report-17-february-2016 580 3. Basler, C. F. 2015. Innate immune evasion by filoviruses. Virology 479-480:122-130. 581 582 4. Misasi, J. and N. J. Sullivan. 2014. Camouflage and misdirection: the full-on assault of ebola virus disease. Cell 159:477-486. 583 5. Schoggins, J. W., S. J. Wilson, M. Panis, M. Y. Murphy, C. T. Jones, P. Bieniasz, and 584 C. M. Rice. 2011. A diverse range of gene products are effectors of the type I interferon 585 antiviral response. Nature 472:481-485. 586 6. Neil, S. J., T. Zang, and P. D. Bieniasz. 2008. Tetherin inhibits retrovirus release and is 587 antagonized by HIV-1 Vpu. Nature 451:425-430. 588 589 7. Van Damme N., D. Goff, C. Katsura, R. L. Jorgenson, R. Mitchell, M. C. Johnson, E. B. Stephens, and J. Guatelli. 2008. The interferon-induced protein BST-2 restricts HIV-590 1 release and is downregulated from the cell surface by the viral Vpu protein. Cell Host. 591 Microbe 3:245-252. 592 593 8. Perez-Caballero, D., T. Zang, A. Ebrahimi, M. W. McNatt, D. A. Gregory, M. C. 594 Johnson, and P. D. Bieniasz. 2009. Tetherin inhibits HIV-1 release by directly tethering virions to cells. Cell 139:499-511. 595 596 9. Neil, S. J. 2013. The antiviral activities of tetherin. Curr. Top. Microbiol. Immunol. 597 **371**:67-104. 598 10. McNatt, M. W., T. Zang, and P. D. Bieniasz. 2013. Vpu binds directly to tetherin and displaces it from nascent virions. PLoS. Pathog. 9:e1003299. 599 11. Iwabu, Y., H. Fujita, M. Kinomoto, K. Kaneko, Y. Ishizaka, Y. Tanaka, T. Sata, and 600 601 K. Tokunaga. 2009. HIV-1 accessory protein Vpu internalizes cell-surface BST-2/tetherin through transmembrane interactions leading to lysosomes. J. Biol. Chem. 602 284:35060-35072. 603 12. Vigan, R. and S. J. Neil. 2010. Determinants of tetherin antagonism in the 604 transmembrane domain of the human immunodeficiency virus type 1 Vpu protein. J. 605 606 Virol. 84:12958-12970. 607 13. Banning, C., J. Votteler, D. Hoffmann, H. Koppensteiner, M. Warmer, R. Reimer, F. 608 Kirchhoff, U. Schubert, J. Hauber, and M. Schindler. 2010. A flow cytometry-based FRET assay to identify and analyse protein-protein interactions in living cells. PLoS. One. 609 610 5:e9344.

611 14. 612 613 614	 Douglas, J. L., K. Viswanathan, M. N. McCarroll, J. K. Gustin, K. Fruh, and A. V. Moses. 2009. Vpu directs the degradation of the human immunodeficiency virus restriction factor BST-2/Tetherin via a {beta} TrCP-dependent mechanism. J. Virol. 83:7931-7947.
615 15. 616 617	Mangeat, B., G. Gers-Huber, M. Lehmann, M. Zufferey, J. Luban, and V. Piguet. 2009. HIV-1 Vpu neutralizes the antiviral factor Tetherin/BST-2 by binding it and directing its beta-TrCP2-dependent degradation. PLoS. Pathog. 5 :e1000574.
618 16. 619 620 621	Mitchell, R. S., C. Katsura, M. A. Skasko, K. Fitzpatrick, D. Lau, A. Ruiz, E. B. Stephens, F. Margottin-Goguet, R. Benarous, and J. C. Guatelli. 2009. Vpu antagonizes BST-2-mediated restriction of HIV-1 release via beta-TrCP and endolysosomal trafficking. PLoS. Pathog. 5:e1000450.
 622 17. 623 624 625 	Carette, J. E., M. Raaben, A. C. Wong, A. S. Herbert, G. Obernosterer, N. Mulherkar, A. I. Kuehne, P. J. Kranzusch, A. M. Griffin, G. Ruthel, C. P. Dal, J. M. Dye, S. P. Whelan, K. Chandran, and T. R. Brummelkamp. 2011. Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature 477:340-343.
626 18. 627 628	Cote, M., J. Misasi, T. Ren, A. Bruchez, K. Lee, C. M. Filone, L. Hensley, Q. Li, D. Ory, K. Chandran, and J. Cunningham. 2011. Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection. Nature 477:344-348.
629 19. 630 631	Kaletsky, R. L., J. R. Francica, C. Agrawal-Gamse, and P. Bates. 2009. Tetherin- mediated restriction of filovirus budding is antagonized by the Ebola glycoprotein. Proc. Natl. Acad. Sci. U. S. A 106 :2886-2891.
632 20. 633 634 635 636	Kühl, A., C. Banning, A. Marzi, J. Votteler, I. Steffen, S. Bertram, I. Glowacka, A. Konrad, M. Sturzl, J. T. Guo, U. Schubert, H. Feldmann, G. Behrens, M. Schindler, and S. Pohlmann. 2011. The Ebola virus glycoprotein and HIV-1 Vpu employ different strategies to counteract the antiviral factor tetherin. J. Infect. Dis. 204 Suppl 3:S850-S860.
637 21. 638 639 640	Lopez, L. A., S. J. Yang, H. Hauser, C. M. Exline, K. G. Haworth, J. Oldenburg, and P. M. Cannon. 2010. Ebola virus glycoprotein counteracts BST-2/Tetherin restriction in a sequence-independent manner that does not require tetherin surface removal. J. Virol. 84:7243-7255.
641 22. 642 643	Lopez, L. A., S. J. Yang, C. M. Exline, S. Rengarajan, K. G. Haworth, and P. M. Cannon. 2012. Anti-tetherin activities of HIV-1 Vpu and Ebola virus glycoprotein do not involve removal of tetherin from lipid rafts. J. Virol. 86 :5467-5480.
644 23. 645 646	Gustin, J. K., Y. Bai, A. V. Moses, and J. L. Douglas . 2015. Ebola Virus Glycoprotein Promotes Enhanced Viral Egress by Preventing Ebola VP40 From Associating With the Host Restriction Factor BST2/Tetherin. J. Infect. Dis. 212 Suppl 2 :S181-S190.
647 24. 648	Martinez, O., L. W. Leung, and C. F. Basler. 2012. The role of antigen-presenting cells in filoviral hemorrhagic fever: gaps in current knowledge. Antiviral Res. 93:416-428.

Σ

649 650 651 652	25.	Schindler, M., D. Rajan, C. Banning, P. Wimmer, H. Koppensteiner, A. Iwanski, A. Specht, D. Sauter, T. Dobner, and F. Kirchhoff. 2010. Vpu serine 52 dependent counteraction of tetherin is required for HIV-1 replication in macrophages, but not in ex vivo human lymphoid tissue. Retrovirology. 7:1.	
653 654 655 656	26.	Wrensch, F., C. B. Karsten, K. Gnirss, M. Hoffmann, K. Lu, A. Takada, M. Winkler, G. Simmons, and S. Pohlmann. 2015. Interferon-Induced Transmembrane Protein-Mediated Inhibition of Host Cell Entry of Ebolaviruses. J. Infect. Dis. 212 Suppl 2:S210-S218.	
657 658 659 660	27.	Negredo, A., G. Palacios, S. Vazquez-Moron, F. Gonzalez, H. Dopazo, F. Molero, J. Juste, J. Quetglas, N. Savji, M. M. de la Cruz, J. E. Herrera, M. Pizarro, S. K. Hutchison, J. E. Echevarria, W. I. Lipkin, and A. Tenorio. 2011. Discovery of an ebolavirus-like filovirus in europe. PLoS. Pathog. 7:e1002304.	
661 662 663	28.	Gnirss, K., M. Fiedler, A. Kramer-Kuhl, S. Bolduan, E. Mittler, S. Becker, M. Schindler, and S. Pohlmann. 2014. Analysis of determinants in filovirus glycoproteins required for tetherin antagonism. Viruses. 6:1654-1671.	
664 665	29.	Vande Burgt, N. H., R. L. Kaletsky, and P. Bates. 2015. Requirements within the Ebola Viral Glycoprotein for Tetherin Antagonism. Viruses. 7:5587-5602.	
666 667 668 669 670	30.	Reeves, P. J., N. Callewaert, R. Contreras, and H. G. Khorana . 2002. Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc. Natl. Acad. Sci. U. S. A 99 :13419-13424.	
671 672 673 674 675 676	31.	Sauter, D., M. Schindler, A. Specht, W. N. Landford, J. Munch, K. A. Kim, J. Votteler, U. Schubert, F. Bibollet-Ruche, B. F. Keele, J. Takehisa, Y. Ogando, C. Ochsenbauer, J. C. Kappes, A. Ayouba, M. Peeters, G. H. Learn, G. Shaw, P. M. Sharp, P. Bieniasz, B. H. Hahn, T. Hatziioannou, and F. Kirchhoff. 2009. Tetherindriven adaptation of Vpu and Nef function and the evolution of pandemic and nonpandemic HIV-1 strains. Cell Host. Microbe 6:409-421.	
677 678 679	32.	Martinez, O., E. Ndungo, L. Tantral, E. H. Miller, L. W. Leung, K. Chandran, and C. F. Basler. 2013. A mutation in the Ebola virus envelope glycoprotein restricts viral entry in a host species- and cell-type-specific manner. J. Virol. 87:3324-3334.	
680 681 682 683	33.	Marzi, A., A. Akhavan, G. Simmons, T. Gramberg, H. Hofmann, P. Bates, V. R. Lingappa, and S. Pohlmann. 2006. The signal peptide of the ebolavirus glycoprotein influences interaction with the cellular lectins DC-SIGN and DC-SIGNR. J. Virol. 80 :6305-6317.	
684 685 686	34.	Neumann, G., H. Feldmann, S. Watanabe, I. Lukashevich, and Y. Kawaoka. 2002. Reverse genetics demonstrates that proteolytic processing of the Ebola virus glycoprotein is not essential for replication in cell culture. J. Virol. 76 :406-410.	

Σ

687

688 Yoshida, and A. Takada. 2014. Characterization of the envelope glycoprotein of a novel 689 filovirus, lloviu virus. J. Virol. 88:99-109. 690 36. Wrensch, F., M. Winkler, and S. Pohlmann. 2014. IFITM proteins inhibit entry driven by the MERS-coronavirus spike protein: evidence for cholesterol-independent 691 692 mechanisms. Viruses. 6:3683-3698. 37. Martin-Serrano, J., T. Zang, and P. D. Bieniasz. 2001. HIV-1 and Ebola virus encode 693 small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. 694 Nat. Med. 7:1313-1319. 695 38. Qiu, X., J. B. Alimonti, P. L. Melito, L. Fernando, U. Stroher, and S. M. Jones. 2011. 696 Characterization of Zaire ebolavirus glycoprotein-specific monoclonal antibodies. Clin. 697 Immunol. 141:218-227. 698 699 39. Qiu, X., L. Fernando, P. L. Melito, J. Audet, H. Feldmann, G. Kobinger, J. B. Alimonti, and S. M. Jones. 2012. Ebola GP-specific monoclonal antibodies protect mice 700 and guinea pigs from lethal Ebola virus infection. PLoS. Negl. Trop. Dis. 6:e1575. 701 40. Gorny, M. K., V. Gianakakos, S. Sharpe, and S. Zolla-Pazner. 1989. Generation of 702 703 human monoclonal antibodies to human immunodeficiency virus. Proc. Natl. Acad. Sci. U. S. A 86:1624-1628. 704 41. Marzi, A., A. Wegele, and S. Pohlmann. 2006. Modulation of virion incorporation of 705 Ebolavirus glycoprotein: effects on attachment, cellular entry and neutralization. Virology 706 **352**:345-356. 707 42. Shoemaker, C. J., K. L. Schornberg, S. E. Delos, C. Scully, H. Pajouhesh, G. G. 708 709 Olinger, L. M. Johansen, and J. M. White. 2013. Multiple cationic amphiphiles induce a Niemann-Pick C phenotype and inhibit Ebola virus entry and infection. PLoS. One. 710 8:e56265. 711 712 43. Hoffmann, M., H. M. Gonzalez, E. Berger, A. Marzi, and S. Pohlmann. 2016. The Glycoproteins of All Filovirus Species Use the Same Host Factors for Entry into Bat and 713 Human Cells but Entry Efficiency Is Species Dependent. PLoS. One. 11:e0149651. 714 715 44. Berger, R. M. and G. Zimmer. 2011. A vesicular stomatitis virus replicon-based 716 bioassay for the rapid and sensitive determination of multi-species type I interferon. PLoS. One. 6:e25858. 717 718 45. Hoffmann, M., M. A. Muller, J. F. Drexler, J. Glende, M. Erdt, T. Gutzkow, C. 719 Losemann, T. Binger, H. Deng, C. Schwegmann-Wessels, K. H. Esser, C. Drosten, and G. Herrler. 2013. Differential sensitivity of bat cells to infection by enveloped RNA 720 721 viruses: coronaviruses, paramyxoviruses, filoviruses, and influenza viruses. PLoS. One. 722 8:e72942. 723 46. Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9:671-675. 724

35. Maruyama, J., H. Miyamoto, M. Kajihara, H. Ogawa, K. Maeda, Y. Sakoda, R.

Journal of Virology

<u>Journ</u>al of Virology

47. Hagen, N., K. Bayer, K. Rosch, and M. Schindler. 2014. The intraviral protein 725 726 interaction network of hepatitis C virus. Mol. Cell Proteomics. 13:1676-1689. 727 48. Medina, M. F., G. P. Kobinger, J. Rux, M. Gasmi, D. J. Looney, P. Bates, and J. M. 728 Wilson. 2003. Lentiviral vectors pseudotyped with minimal filovirus envelopes increased gene transfer in murine lung. Mol. Ther. 8:777-789. 729 49. Neumann, G., T. W. Geisbert, H. Ebihara, J. B. Geisbert, K. M. Daddario-DiCaprio, 730 H. Feldmann, and Y. Kawaoka. 2007. Proteolytic processing of the Ebola virus 731 glycoprotein is not critical for Ebola virus replication in nonhuman primates. J. Virol. 732 **81**:2995-2998. 733 50. Manicassamy, B., J. Wang, H. Jiang, and L. Rong. 2005. Comprehensive analysis of 734 ebola virus GP1 in viral entry. J. Virol. 79:4793-4805. 735 51. Markosyan, R. M., C. Miao, Y. M. Zheng, G. B. Melikyan, S. L. Liu, and F. S. 736 737 Cohen. 2016. Induction of Cell-Cell Fusion by Ebola Virus Glycoprotein: Low pH Is Not a Trigger. PLoS. Pathog. 12:e1005373. 738 52. Cenedella, R. J. 2009. Cholesterol synthesis inhibitor U18666A and the role of sterol 739 metabolism and trafficking in numerous pathophysiological processes. Lipids 44:477-487. 740 741 53. Lu, F., Q. Liang, L. Abi-Mosleh, A. Das, J. K. De Brabander, J. L. Goldstein, and M. S. Brown. 2015. Identification of NPC1 as the target of U18666A, an inhibitor of 742 lysosomal cholesterol export and Ebola infection. Elife. 4. 743 744 54. Coleman, C. M., P. Spearman, and L. Wu. 2011. Tetherin does not significantly restrict 745 dendritic cell-mediated HIV-1 transmission and its expression is upregulated by newly synthesized HIV-1 Nef. Retrovirology. 8:26. 746 747 55. Geisbert, T. W., L. E. Hensley, T. Larsen, H. A. Young, D. S. Reed, J. B. Geisbert, D. 748 P. Scott, E. Kagan, P. B. Jahrling, and K. J. Davis. 2003. Pathogenesis of Ebola hemorrhagic fever in cynomolgus macaques: evidence that dendritic cells are early and 749 750 sustained targets of infection. Am. J. Pathol. 163:2347-2370. 56. Rvabchikova, E. I., L. V. Kolesnikova, and S. V. Luchko. 1999. An analysis of 751 752 features of pathogenesis in two animal models of Ebola virus infection. J. Infect. Dis. 179 753 Suppl 1:S199-S202. 754 57. Lee, J. E., M. L. Fusco, A. J. Hessell, W. B. Oswald, D. R. Burton, and E. O. Saphire. 2008. Structure of the Ebola virus glycoprotein bound to an antibody from a human 755 756 survivor. Nature 454:177-182. 58. Jeffers, S. A., D. A. Sanders, and A. Sanchez. 2002. Covalent modifications of the 757 ebola virus glycoprotein. J. Virol. 76:12463-12472. 758 59. Lennemann, N. J., B. A. Rhein, E. Ndungo, K. Chandran, X. Qiu, and W. Maury. 759 2014. Comprehensive functional analysis of N-linked glycans on Ebola virus GP1. MBio. 760 5:e00862-13. 761 29

762 (763 764 765	50.	Lin, G., G. Simmons, S. Pohlmann, F. Baribaud, H. Ni, G. J. Leslie, B. S. Haggarty, P. Bates, D. Weissman, J. A. Hoxie, and R. W. Doms. 2003. Differential N-linked glycosylation of human immunodeficiency virus and Ebola virus envelope glycoproteins modulates interactions with DC-SIGN and DC-SIGNR. J. Virol. 77:1337-1346.
766 (767 768	51.	Brindley, M. A., L. Hughes, A. Ruiz, P. B. McCray, Jr., A. Sanchez, D. A. Sanders, and W. Maury. 2007. Ebola virus glycoprotein 1: identification of residues important for binding and postbinding events. J. Virol. 81:7702-7709.
769 (770 771 772	52.	Kuhn, J. H., S. R. Radoshitzky, A. C. Guth, K. L. Warfield, W. Li, M. J. Vincent, J. S. Towner, S. T. Nichol, S. Bavari, H. Choe, M. J. Aman, and M. Farzan. 2006. Conserved receptor-binding domains of Lake Victoria marburgvirus and Zaire ebolavirus bind a common receptor. J. Biol. Chem. 281 :15951-15958.
773 (774	53.	Wang, H., Y. Shi, J. Song, J. Qi, G. Lu, J. Yan, and G. F. Gao. 2016. Ebola Viral Glycoprotein Bound to Its Endosomal Receptor Niemann-Pick C1. Cell 164:258-268.
775 (776 777	54.	Dube, D., K. L. Schornberg, T. S. Stantchev, M. I. Bonaparte, S. E. Delos, A. H. Bouton, C. C. Broder, and J. M. White. 2008. Cell adhesion promotes Ebola virus envelope glycoprotein-mediated binding and infection. J. Virol. 82 :7238-7242.
778 (779 780 781	65.	Dube, D., K. L. Schornberg, C. J. Shoemaker, S. E. Delos, T. S. Stantchev, K. A. Clouse, C. C. Broder, and J. M. White . 2010. Cell adhesion-dependent membrane trafficking of a binding partner for the ebolavirus glycoprotein is a determinant of viral entry. Proc. Natl. Acad. Sci. U. S. A 107 :16637-16642.
782 (783 784 785 786	56.	Zhao, Y., J. Ren, K. Harlos, D. M. Jones, A. Zeltina, T. A. Bowden, S. Padilla-Parra, E. E. Fry, and D. I. Stuart. 2016. Toremifene interacts with and destabilizes the Ebola virus glycoprotein. Nature 535:169-172.
787		
788		
789		
790		
791		
792		
793		
/94		30

Σ

795 FIGURE LEGENDS

796

797 FIG 1 The LLOV-GP is a tetherin antagonist. (A) Plasmids encoding V5-tagged versions of the 798 indicated glycoproteins were transiently transfected into 293T cells. Transfection of empty plasmid (Mock) served as negative control. Glycoprotein expression in cell lysates was detected 799 800 by Western blot analysis, using anti-V5 antibody. Detection of β -actin served as loading control. 801 The results were confirmed in two separate experiments. (B) MLV vectors bearing the indicated 802 glycoproteins were used to transduce 293T cells and luciferase activities in cell lysates was measured at 72 h post transduction. Transduction mediated by EBOV-GP wt was set as 100%. 803 The average \pm standard error of the mean (SEM) of five independent experiments is shown. (C) 804 805 293T cells were transiently transfected with plasmids encoding HIV-Gag, tetherin and the 806 indicated viral glycoproteins or empty plasmid as negative control (Mock). HIV-1 Vpu served as 807 positive control for tetherin antagonism. The presence of Gag in supernatants and cell lysates was 808 determined by Western blot analysis using an anti-Gag antibody. Detection of β-actin in cell 809 lysates served as loading control. (D) The average of four independent experiments conducted as 810 described for panel C and quantified via the ImageJ program is presented. Release of Gag from 811 cells coexpressing EBOV-GP and tetherin was set to 100%. 812

813 FIG 2 Processing of N-glycans is required for tetherin antagonism by EBOV-GP but not Vpu.

814 (A) Plasmids encoding the indicated viral glycoproteins were transiently transfected into control

815 293T or GnTF cells. Transfection of empty plasmid (Mock) served as negative control.

816 Glycoprotein expression in cell lysates was detected by Western blot analysis, using serum raised

- against the GP1 subunit of EBOV-GP. Detection of β -actin served as loading control. Three
- 818 separate experiments yielded similar results. (B) Equal volumes of MLV vectors produced in

Journal of Virology

819	control or GnTI ⁻ cells and bearing the indicated viral glycoproteins were used to transduce 293T
820	cells. At 72 h post transduction luciferase activities were measured in cell lysates. The results a
821	single representative experiment carried out with triplicate samples are shown. Error bars indicate
822	standard deviation (SD). Similar results were obtained in three separate experiments. C.p.s.,
823	counts per second. (C) GnTI cells were transfected with plasmids encoding HIV-Gag, the
824	indicated viral glycoproteins and tetherin or empty plasmid (Mock). HIV-1 Vpu served as
825	positive control for tetherin antagonism. The presence of Gag protein in culture supernatants and
826	cell lysates was determined by Western blot analysis. Detection of ß-actin in cell lysates served
827	as loading control. (D) The average of five independent experiments with control and GnTI ⁻ cells
828	conducted as described for panel C and quantified via the ImageJ program is presented. The
829	release of Gag from cells expressing only Gag without any antagonist and without tetherin was
830	set to 100%, error bars indicate SEM. (E) Control and GnTI ⁻ cells were transfected with plasmids
831	encoding VP40 harboring a myc tag, the indicated viral glycoproteins and tetherin or empty
832	plasmid (Mock). HIV-1 Vpu served as positive control for tetherin antagonism. The presence of
833	VP40 in culture supernatants and cell lysates was determined by Western blot analysis using an
834	anti-myc antibody. The results of single blots are shown from which irrelevant lanes were cut out
835	Detection of ß-actin in cell lysates served as loading control. Similar results were obtained in
836	three separate experiments.
837	

FIG 3 The furin cleavage site in EBOV-GP is required for full tetherin antagonism. (A) Plasmids
encoding the indicated viral glycoproteins were transiently transfected into 293T cells.
Transfection of empty plasmid (Mock) served as negative control. Glycoprotein expression in
cell lysates was detected by Western blot using serum raised against the GP1 subunit of EBOVGP. Detection of β-actin served as loading control. Three separate experiments yielded similar

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

Detection of β-actin in cell lysates served as loading control. (D) The average of at least five independent experiments conducted as described for panel C and quantified via the ImageJ program is presented. The release of Gag from cells expressing GP and tetherin was set to 100%, error bars indicate SEM. FIG 4 The EBOV-GP requires an intact receptor-binding domain for tetherin antagonism. (A) Amino acid sequence alignment of the portions (residues 85 to 125 in EBOV-GP) of filovirus receptor-binding domains (RBD) that harbor the amino acid residues investigated for tetherin antagonism (green, numbering according to EBOV-GP). (B) Plasmids encoding the indicated viral glycoproteins were transiently transfected into 293T cells. Transfection of empty plasmid

(Mock) served as negative control. Glycoprotein expression in cell lysates was detected by

861 Western blot analysis, using serum raised against GP1 of EBOV-GP. Detection of β -actin served

results. (B) Equal volumes of MLV vectors bearing the indicated glycoproteins were used for

transduction of 293T target cells. Luciferase activities in cell lysates were measured at 72 h post

transduction. Transduction mediated by EBOV-GP wt was set as 100%. The average \pm SEM of

five independent experiments is shown. (C) 293T cells were transiently transfected with plasmids

encoding HIV-Gag, the indicated viral glycoproteins and tetherin or empty plasmid (Mock).

HIV-1 Vpu served as positive control for tetherin antagonism. The presence of Gag protein in

supernatants and cell lysates was determined by Western blot using an anti-Gag antibody.

as loading control. Four independent experiments yielded highly comparable results. (B) Equal 862

863 volumes of MLV vectors bearing the indicated viral glycoproteins were used to transduce 293T

- 864 cells. Luciferase activity in cell lysates was measured at 72 h post transduction. Transduction
- 865 mediated by EBOV-GP wt was set to 100%. The average \pm SEM of five independent
- 866 experiments is shown. (C) 293T cells were transfected with plasmids encoding HIV-Gag, tetherin

and the indicated viral glycoproteins or empty plasmid (Mock). HIV-1 Vpu served as positive 867 868 control for tetherin antagonism. The presence of HIV-Gag in culture supernatants and cell lysates 869 was determined by Western blot. Detection of β-actin served as loading control. (D) The average 870 of at least five independent experiments conducted as described for panel C and quantified via the ImageJ program is presented. The release of Gag from cells coexpressing GP and tetherin was 871 set to 100%, error bars indicate SEM. (E) 293T cells were transiently transfected with plasmids 872 873 encoding VP40 harboring a myc tag, tetherin and the indicated viral glycoproteins or empty 874 plasmid (Mock). HIV-1 Vpu served as positive control for tetherin antagonism. The presence of 875 VP40 in culture supernatants and cell lysates was determined by Western blot. Detection of β -876 actin in cell lysates served as loading control.

877

878 FIG 5 U18666A does not block tetherin antagonism by the Ebola virus glycoprotein. 293T cells 879 were treated with the indicated concentrations of compound, incubated with equal volumes of VSV pseudotypes bearing VSV-G or EBOV-GP and luciferase activities in cell lysates were 880 881 determined at 16 h post transduction. The average of two independent experiments performed with triplicate samples is shown; error bars indicate SEM. Transduction in the absence of 882 inhibitor was set as 100%. (B) 293T cells were cotransfected with plasmids encoding HIV-Gag, 883 tetherin and EBOV-GP or empty plasmid (Mock). HIV-1 Vpu served as positive control for 884 885 tetherin antagonism. At 12 h post transfection, the indicated concentrations of U18666A were 886 added to cultures expressing EBOV-GP. The presence of HIV-Gag in culture supernatants and 887 cell lysates was determined by Western blot. Detection of β -actin served as loading control. (C) 888 The average of three independent experiments conducted as described for panel B and quantified 889 via the ImageJ program is presented. The release of Gag from untreated, tetherin-negative 890 control cells was set to 100%, error bars indicate SEM.

89	1

892	FIG 6 Mutations in the receptor binding domain of the Ebola virus glycoprotein that interfere
893	with tetherin antagonism are compatible with tetherin binding. (A) 293T cells were cotransfected
894	with plasmids encoding tetherin with N-terminal AU1 tag and EBOV-GP wt or the indicated
895	EBOV-GP mutants. Co-immunoprecipitation was performed with anti-AU1 antibody coupled to
896	agarose beads and proteins in cell lysates and in precipitates were detected by Western blot
897	analysis, employing rabbit serum raised against the GP1 subunit of EBOV-GP and a rabbit
898	monoclonal antibody directed against tetherin. The results of a single representative experiment
899	are shown and were confirmed in a separate experiment. (B,C) HeLa cells were transfected with
900	plasmids encoding EBOV-GP or the indicated EBOV-GP mutants or empty plasmid as a control.
901	For the Proximity Ligation Assay (PLA), the cells were stained with anti-tetherin and anti-
902	EBOV-GP primary antibodies. The images were analyzed by automatically counting the red
903	spots of 20 transfected cells per sample using Volocity software (version 6.3). Representative
904	microscopic images are shown in panel B. The mean values and standard deviations of the
905	relative amount of PLA spots per cell (n=20) are shown in panel C. The PLA spot count
906	measured for cells transfected with EBOV-GP wt was set to 100%.
907	
908	FIG 7 Evidence that an antibody directed against the GP1 subunit of EBOV-GP can block
909	tetherin counteraction. (A) 293T cells were transiently transfected with plasmids encoding HIV-
910	Gag and EBOV-GP or empty plasmid (Mock). HIV-1 Vpu served as positive control for tetherin
911	antagonism. At 16 h post transfection, the medium was replaced by fresh culture medium
912	supplemented with the indicated antibodies at a final concentration of $20\mu g/ml$ or PBS. The
913	presence of Gag in culture supernatants and cell lysates was determined by Western blot analysis.
914	Detection of β -actin served as loading control. (B) The average of two to five independent

915	experiments conducted as described for panel A and quantified via the ImageJ program is
916	presented. The release of Gag from cells expressing GP and tetherin was set to 100%, error bars
917	indicate SEM. (C) The experiment was conducted as described for panel A but cells coexpressing
918	tetherin were examined. (D) The average of three independent experiments conducted as
919	described for panel A and quantified via the ImageJ program is presented. The release of Gag
920	from cells expressing GP and tetherin was set to 100%, error bars indicate SEM. The dotted line
921	indicates the assay background, which is defined by VLP release from tetherin-positive cells
922	which do not express a tetherin antagonist.

Downloaded from http://jvi.asm.org/ on October 14, 2016 by GSF/ZENTRALBIBLIOTHEK

923

Accepted Manuscript Posted Online

Figure 1

Brinkmann et al.

 \sum

Figure 3

Brinkmann et al.

AMIR

AMD

4×

Å,

Z

Brinkmann et al.

M

Brinkmann et al.

 \sum

Brinkmann et al.

Brinkmann et al.

Tetherin

	Expression (%)		
Glycoprotein	Cell lysates ^a (Western blot)	Cell surface ^b (FACS)	
Wt	100	100	
F88A	120.0 ± 10.1	67.7 ± 14.6	
L111A	108.6 ± 14.5	45.1 ± 8.4	
L122A	120.5 ± 20.5	87.3 ± 12.0	
W104A	123.4 ± 15.7	86.7 ± 12.4	

TABLE 1. Expression of the Ebola virus glycoprotein mutants analyzed

^aAverage of three experiments, expression analyzed with rabbit serum raised against GP1 ^bAverage of four experiments, expression analyzed with antibody 5E6 Downloaded from http://jvi.asm.org/ on October 14, 2016 by GSF/ZENTRALBIBLIOTHEK

Inhibitor	Concentration (µM)	Cell Viability ^a	Entry Inhibition ^a	Release Inhibition ^a
Chlomifene	5	++	+++	-
Terconazole	9.4	+++	+++	-
U18666A	20	++	+++	-

TABLE 2. Inhibition of Ebola virus glycoprotein-driven entry and tetherin antagonism by cationic amphiphiles

^a +++, \geq 75% ; ++, \geq 50%; +, \geq 25%; -, < 25%