www.nature.com/ijo

PEDIATRIC ORIGINAL ARTICLE

Different age-specific incidence and remission rates in pre-school and primary school suggest need for targeted obesity prevention in childhood

R von Kries¹, A Beyerlein¹, MJ Müller², J Heinrich³, B Landsberg², G Bolte⁴, A Chmitorz¹ and S Plachta-Danielzik²

BACKGROUND: School entry marks a tremendous change in the children's life style, which might well be relevant for the emergence of overweight. Previous studies suggested a dramatic increase in the prevalence of overweight during this age. **OBJECTIVE:** To compare the age-specific balance between the incidence and remission of overweight between pre-school and primary school age children.

DESIGN: We combined the data of three studies that had been conducted within the setting of the compulsory school entry health examination in different parts of Germany: one covering retrospective cohort data from age 2 to school entry (n = 5045), one prospective data from school entry to fourth grade (n = 1235) and one comprising both (n = 1194). We assessed the rates of incidence and remission of overweight and obesity from age 2 to school entry and from school entry to fourth grade.

RESULTS: In pre-school age, the pooled incidence for overweight was 8.2% (95% confidence interval: 7.5, 8.9) compared with a remission rate of 62.6% (58.4, 66.7), yielding a prevalence at school entry of 10.7% (9.9, 11.5). In primary school age, the pooled incidence for overweight increased to 14.6% (13.1, 16.1), whereas the remission rate was reduced to 17.7% (13.8, 22.3), yielding a prevalence of 23.7% (22.0, 25.4) in fourth grade. A similar pattern was observed for obesity.

CONCLUSIONS: While high remission rates balance incident overweight in pre-school years, the dramatic increase in the prevalence of overweight and obesity in primary school years reflects a higher incidence and even more a lower remission rate. Obesity prevention programs in primary school age are mandatory and need to address primary and secondary prevention elements.

International Journal of Obesity (2012) 36, 505-510; doi:10.1038/ijo.2011.251; published online 20 December 2011

Keywords: body mass index; incidence; overweight; persistence; remission; school age

INTRODUCTION

A recent German obesity intervention study from the city of Kiel, called the Kiel Obesity Prevention Study (KOPS), suggested a dramatic increase in the prevalence of overweight during primary school age in its control arm, which was even stronger in an East German cohort. These findings correspond to data from the KiGGS survey, a representative nationwide cross-sectional study on children and adolescents in Germany. The prevalence of overweight (including obesity) was below 10% in children at pre-school age (3–6 years) but increased to above 15% in primary school age children (7–10 years).

The prevalence of any medical condition is a reflection of incident cases and remission, when cases revert to normal health or die from the disease. Analogously, prevalence of overweight or obesity at any time point reflects the balance between newly emerging cases (incident cases) and remission from overweight by becoming normal weight during the preceding time period. In individuals without remission from overweight or obesity, the condition will persist and persistence can be defined by subtracting the rate of remissions from 100%. If there are more

new, incident cases than remissions the prevalence increases in a defined population.

The distinction between incidence and remission of overweight or obesity is important with respect to preventive strategies against childhood obesity. Already overweight or obese individuals might require a more intensive, targeted intervention than those not overweight yet. Obesity prevention programmes for all children attempting to promote healthy eating and physical activity in primary school age children had indeed limited overall success. 4-6 Could this be explained by the need for a targeted (therapeutic) interventional approach at overweight school age children in whom remission from overweight is poor?

To test the hypothesis that there is a difference in the balance between incidence and remission from overweight between preschool and primary school age children, we analyzed a set of German cohort data. Differences in the balance of incidence and remission of overweight in pre-school and primary school age children might explain the dramatic increase of overweight after school entry and hint to the need of an age-specific approach against childhood overweight.

¹Institute of Social Paediatrics and Adolescent Medicine, Ludwig-Maximilians University, Munich, Germany; ²Institute of Human Nutrition and Food Science, Christian-Albrechts University, Kiel, Germany; ³Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany and ⁴Department of Environmental and Occupational Epidemiology, Bavarian Health and Food Safety Authority, Munich, Germany. Correspondence: Professor Dr R von Kries, Ludwig-Maximilians University of Munich, Institute of Social Paediatrics and Adolescent Medicine, Division of Epidemiology, Heiglhofstr. 63, 81377 Munich, Germany. E-mail: ruediger.kries@med.uni-muenchen.de

MATERIALS AND METHODS

School entry health (SEH) examinations allow for a population-based access to large samples of children in pre-school age. In Germany, the SEH is usually performed up to 1 year before children begin to attend primary school.

We had data available from records of n = 7026 children participating in the SEH in Bavaria, Southern Germany, in 2001/02. Children's age ranged from 54 to 88 months, with 99% of the subjects in the age of 60-83 months. Together with the invitation to the compulsory SEH, parental questionnaires had been distributed containing questions on sociodemographic variables and early childhood, as well as on maternal weight and height. Specifically, parents were asked to copy their offspring's weight measurements at 2 years from their well baby checkup booklets where the findings of regular free of charge health examinations including anthropometrics are recorded. The response rate was 80.4%. No follow-up was performed in this study, which has been described in more detail elsewhere.7

The setting of the SEH was used in the city of Kiel, Northern Germany, to recruit children for the KOPS study between 1996 and 2001. Contrary to SEH study from Bayaria, the invitation to participate in KOPS was not linked to the investigation in the compulsory SEH. Children and parents were directly contacted at the SEH. Due to limited personnel power of the KOPS team, only a part of SEHs could be accompanied and thus used for study recruitment (54.6% of the 12 254 children who participated in the SEH in Kiel between 1996 and 2001 were contacted). Accompanied SEHs were chosen randomly in different districts in Kiel without preferential selection of schools. Of those who were contacted, 74.7% agreed to participate in the study resulting in the collection of data on n = 4997 children. Age range was between 52 and 93 months, with 99% of the subjects in the age of 63-88 months. This population was shown to be representative for all children in Kiel entering the SEH in these years.8 Information on weight and height at 2 years was abstracted from the well baby checkup booklets during the SEH. In addition, mothers self-reported their own height and weight and filled out a questionnaire about sociodemographic variables. A school-based intervention program against the development of obesity was performed in first graders of two to four 'intervention schools' per year (1996-2001), within the schools being randomly assigned to the intervention and non-intervention groups. Four years after the respective SEHs (that is, between 2000 and 2005), 4487 children were examined during a second compulsory school health examination, which took place in the fourth grade (usually at the age of 10 years). Due to privacy policy KOPS was not allowed to directly follow-up (that is, by name) the children who had been measured at the foregoing SEH. Therefore, the recruitment procedure in the fourth grade was similar to that at the SEH, and 36.6% (n = 4487) of all fourth graders could be involved in the study. Unfortunately, we were not able to distinguish non-participation due to refusal because we did not meet the students (we did not accompany all school health examinations; see above). With the help of the pseudonymized study code, we could identify a total of n = 1764 children (35% of the children measured at SEH) who were enrolled in KOPS at school entry as well as in their fourth grade. For the analyses, we used only the data of children attending the non-intervention schools (n = 1419). More details on KOPS have been described elsewhere. 9,10

Recruitment for the GME (Gesundheits-Monitoring-Einheiten, health monitoring units) survey 2005/06 was also realized within the SEH in a total of six regions (including cities and rural districts) in Bavaria. In one city (Ingolstadt) and one rural district (Günzburg), a second survey was performed in 2009/10 when the children were in their fourth grade. Parents were asked for their consent to retrospectively link these data with the data of the first survey at school entry. In these two study regions, the first survey 2005/06 yielded data of n = 2409 children at school entry, including sociodemographic characteristics, and maternal weight and height (response rate: 85%). Age range was between 57 and 90 months, with 99% of the subjects in the age of 60-83 months. Details on the study at this stage have been published elsewhere. 11 Follow-up from SEH to fourth grade was realized in n = 1252 cases (52.0%). Again, height and weight were measured at this time point. No measurements for the age of 2 years were available in the GME data.

Statistical analyses

For the ages of 2 years, school entry and fourth grade, children's body mass index (BMI) was calculated based on their weight and height measurements. Overweight (including obesity) and obesity were defined based on sex- and age-specific reference values of the International Obesity Task Force. 12 Likewise, we calculated maternal BMI and defined a BMI above 25 kg m⁻² as maternal overweight. Low parental education was defined as less than 10 years of school education of both parents in all three studies.

We restricted the datasets to those observations providing full information on BMI measurements at 2 years, school entry and fourth grade (KOPS, cases with full information: n = 1194), BMI at 2 years and school entry (SEH 2001/02, n = 5045), or BMI at school entry and fourth grade (GME, n = 1235).

We calculated rates of prevalence of overweight and obesity at 2 years, school entry and fourth grade, both sample-specific and in total. On the basis of these values, we assessed rates of incidence, remission and persistence of overweight and obesity between 2 years and school entry (based on data from KOPS and SEH 2001/02) and between school entry and fourth grade (based on data from KOPS and GME). Persistence of overweight and obesity was defined as 100% minus the respective remission rate. We further calculated 95% binomial confidence intervals (Cls) for all overall estimates of prevalence, incidence, remission and persistence. Additionally, we assessed differences in incidence and remission of overweight and obesity between subgroups defined by sex, parental education and maternal overweight, using Fisher's exact test. In order to assess the interrelation between incidence and baseline BMI percentile, we also compared rates of incidence of overweight and obesity between 2 years and school entry as well as between school entry and fourth grade in children lying in the lower vs upper half of the samplespecific BMI distribution at the age of 2 years and school entry, respectively. All calculations were carried out with the statistical software R 2.9.0 (http://cran.r-project.org).

RESULTS

The proportion of parents with a low educational status was between 23.7 and 30.5% in the individual studies (Table 1). The studies were also comparable with respect to proportions of male children as well as with respect to age at school entry and in fourth grade.

In the studies with information about weight status at 2 years (KOPS and SEH 2001/02), the prevalence of overweight (including obesity) increased only slightly until school entry by 2.1% (1.0, 3.1) (combined cohorts), although the incidence for overweight in this age period was 8.2% (7.5, 8.9). This small increase in prevalence could be explained by the high remission rates of 62.6% (58.4, 66.7) in this age period: while 466 of the 5701 not overweight children at the age of 2 became overweight until school entry age, 337 of the 538 overweight children at the age of 2 were no longer overweight at school entry. Remission therefore counterbalanced a substantial part of the incidence of overweight between the age of 2 and school entry (Table 2). With respect to obesity, similar results were observed, with an even higher remission rate (73.5% (62.7, 82.6)).

In contrast, the prevalence of overweight increased considerably between school entry and the age of 10 by 10.2% (8.0, 13.1) (combined cohorts). This considerable increase in prevalence was based on a 14.6% (13.1, 16.1) incidence for overweight in this age period, which was not balanced by the remission rate of only 17.7% (13.8, 22.3): while 306 of the 2102 not overweight children at school entry became overweight by the age of 10, only 58 of the 327 overweight children overweight at school entry were no longer overweight at the age of 10 (Table 3).

Consequently, the contribution of persistence of overweight to the overall prevalence of overweight was significantly higher in primary school age (269/575 = 46.8% (42.6, 51.0)) than in

Table 1. Study characteristics of the studies analyzed

	KOPS	SEH 2001/2002	GME
Sample size, n	1194	5045	1235
Male children, n (%)	594 (49.7%)	2614 (51.8%)	625 (50.6%)
Low parental education, n	291 (24.4%)	1485 (30.5%)	274 (23.7%)
(%: If information available)	(Missing: $n = 0$)	(Missing: $n = 171$)	(Missing: $n = 80$)
Maternal overweight, n	274 (27.0%)	1255 (26.3%)	318 (28.0%)
(%: If information available)	(Missing: $n = 178$)	(Missing: $n = 275$)	(Missing: $n = 100$)
Mean (s.d.) age at 6 years	6.2 (0.4)	6.0 (0.4)	6.0 (0.4)
Mean (s.d.) age at 10 years	10.0 (0.5)	NA	10.0 (0.4)

Abbreviations: GME, Gesundheits-Monitoring-Einheiten; KOPS, Kiel Obesity Prevention Study; NA, data not available; SEH, school entry health. Percentages are related to non-missing values.

Table 2. Rates of prevalence, incidence, remission and persistence of overweight (including obesity) and obesity between the age of 2 years (initial) and school entry (final), with 95% confidence intervals of total proportions in square brackets

	KOPS	SEH 2001/2002	Total
Overweight			
Initial prevalence	143/1194 (12.0%)	395/5045 (7.8%)	538/6239 (8.6 [7.9, 9.3]%)
Final prevalence	149/1194 (12.5%)	518/5045 (10.3%)	667/6239 (10.7 [9.9, 11.5]%)
Incidence	94/1051 (8.9%)	372/4650 (8.0%)	466/5701 (8.2 [7.5, 8.9]%)
Remission	88/143 (61.5%)	249/395 (63.0%)	337/538 (62.6 [58.4, 66.7]%)
Persistence	55/143 (38.5%)	146/395 (37.0%)	201/538 (37.4 [33.3, 41.6]%)
Obesity			
Initial prevalence	23/1194 (1.9%)	60/5045 (1.2%)	83/6239 (1.3 [1.1, 1.6]%)
Final prevalence	36/1194 (3.0%)	145/5045 (2.9%)	181/6239 (2.9 [2.5, 3.3]%)
Incidence	27/1171 (2.3%)	132/4985 (2.6%)	159/6156 (2.6 [2.2, 3.0]%)
Remission	14/23 (60.9%)	47/60 (78.3%)	61/83 (73.5 [62.7, 82.6]%)
Persistence	9/23 (39.1%)	13/60 (21.7%)	22/83 (26.5 [17.4, 37.3]%)

Table 3. Rates of prevalence incidence, remission and persistence of overweight (including obesity) and obesity between school entry (initial) and age of 10 years (final), with 95% confidence intervals of total proportions in square brackets

	KOPS	GME	Total
Overweight			
Initial prevalence	149/1194 (12.5%)	178/1235 (14.4%)	327/2429 (13.5 [12.1, 14.9]%)
Final prevalence	259/1194 (21.7%)	316/1235 (25.6%)	575/2429 (23.7 [22.0, 25.4]%)
Incidence	137/1045 (13.1%)	169/1057 (16.0%)	306/2102 (14.6 [13.1, 16.1]%)
Remission	27/149 (18.1%)	31/178 (17.4%)	58/327 (17.7 [13.8, 22.3]%)
Persistence	122/149 (81.9%)	147/178 (82.6%)	269/327 (82.3 [77.7, 86.2]%)
Obesity			
Initial prevalence	36/1194 (3.0%)	41/1235 (3.3%)	77/2429 (3.2 [2.5, 3.9]%)
Final prevalence	42/1194 (3.5%)	70/1235 (5.7%)	112/2429 (4.6 [3.8, 5.5]%)
Incidence	23/1158 (2.0%)	41/1194 (3.4%)	64/2352 (2.7 [2.1, 3.5]%)
Remission	17/36 (47.2%)	12/41 (29.3%)	29/77 (37.7 [26.9, 49.4]%)
Persistence	19/36 (52.8%)	29/41 (70.7%)	48/77 (62.3 [50.6, 73.1]%)

pre-school age (201/667 = 30.1% (26.7, 33.8)). This was even more pronounced for persistence of obesity (48/112 = 42.9% (33.5, 52.6)) compared with 22/181 = 12.2% (7.8, 17.8).

Rates of incidence of overweight (including obesity) were similar in male and female children, but significantly (P<0.05) increased in children of parents with low education and in children of overweight mothers (Table 4). Rates of remission were lower in the latter two groups (only borderline significant). Analyses for incidence and remission of obesity yielded equivalent results (data not shown).

The incidence rates of overweight and obesity were significantly higher in children starting in the upper half of the BMI distribution

compared with those in the lower half of the BMI distribution in both periods examined (Table 5). In the latter, the rates of incidence of overweight and obesity were below 5% and 1%, respectively. The incidence for overweight in children in the upper half of the BMI distribution at school entry (28.7% (25.8, 31.9)) was considerably higher than in children in the upper half of the BMI distribution at the age of 2 (13.0% (11.7, 14.3)).

DISCUSSION

The presented cohort data confirm a considerably higher prevalence of overweight and obesity in 10-year-old compared

Table 4. Total overall rates (pooled data from KOPS and GME) of incidence and remission of overweight (including obesity) during primary school age in subgroups defined by sex, parental socio economic status and maternal overweight (if information available) with 95% confidence intervals in square brackets

Yes	No	P-value
159/1067 (14.9 [12.8, 17.2] %)	147/1035 (14.2 [12.1, 16.5] %)	0.67
88/449 (19.6 [16.0, 23.6] %)	200/1585 (12.6 [11.0, 14.4] %)	< 0.01
90/489 (18.4 [15.1, 22.1] %)	178/1372 (13.0 [11.2, 14.9] %)	< 0.01
29/152 (19.1 [13.2, 26.2] %)	29/175 (16.6 [11.4, 22.9] %)	0.57
15/116 (12.9 [7.4, 20.4] %)	43/199 (21.6 [16.1, 28.0] %)	0.07
13/103 (12.6 [6.9, 20.6] %)	40/187 (21.4 [15.7, 28.0] %)	0.08
	159/1067 (14.9 [12.8, 17.2] %) 88/449 (19.6 [16.0, 23.6] %) 90/489 (18.4 [15.1, 22.1] %) 29/152 (19.1 [13.2, 26.2] %) 15/116 (12.9 [7.4, 20.4] %)	159/1067 (14.9 [12.8, 17.2] %) 147/1035 (14.2 [12.1, 16.5] %) 88/449 (19.6 [16.0, 23.6] %) 200/1585 (12.6 [11.0, 14.4] %) 90/489 (18.4 [15.1, 22.1] %) 178/1372 (13.0 [11.2, 14.9] %) 29/152 (19.1 [13.2, 26.2] %) 29/175 (16.6 [11.4, 22.9] %) 15/116 (12.9 [7.4, 20.4] %) 43/199 (21.6 [16.1, 28.0] %)

Abbreviations: GME, Gesundheits-Monitoring-Einheiten; KOPS, Kiel Obesity Prevention Study; SES, socio economic status. *P*-values were derived from Fisher's exact test.

Table 5. Rates of incidence of overweight (including obesity) and obesity between 2 years (initial) and school entry (final) as well as between school entry (initial) and age of 10 years (final) in children lying in the lower vs upper half of the sample-specific BMI distribution at the age of 2 years and school entry, respectively, with 95% confidence intervals of total proportions in square brackets

	Lower half	Upper half	P-value
2 years–school entry			
Overweight	131/3120 (4.2 [3.5, 5.0] %)	335/2581 (13.0 [11.7, 14.3] %)	< 0.01
Obesity	23/3120 (0.7 [0.5, 1.1] %)	136/3036 (4.5 [3.8, 5.3] %)	< 0.01
School entry-10 years			
Overweight	51/1215 (4.2 [3.1, 5.5] %)	255/887 (28.7 [25.8, 31.9] %)	< 0.01
Obesity	1/1215 (0.1 [0.0, 0.5] %)	63/1137 (5.5 [4.3, 7.0] %)	< 0.01

with pre-school children in Germany. The low prevalence of overweight and obesity in pre-school children reflected an almost balanced emergence (incidence) and remission of overweight and obesity in the age range from 2 years to school entry. The considerable increase in the prevalence of overweight/obesity during primary school age in our data could only partially be explained by higher rates of incidence. Considerably, lower remission rates during primary school age, which were consistently observed in two cohorts recruited in different regions in Germany, were at least equally important. Low remission rates and high incidence rates were most pronounced in children of parents with low education and of overweight mothers, whereas no sexspecific effects were observed.

There are only very few studies addressing age-specific incidence and remission of overweight/obesity in childhood. Nader *et al.*¹³ analysed the probabilities of overweight at the age of 12 as function of BMIs at an earlier age. While less than half of the children with a BMI above the 85th percentile at the age of 2 years were overweight at the age of 12 years, this probability increased to almost 80% by the age of 7. These observations match our findings of a considerably higher persistence of overweight in school age children compared with toddlers. Kim *et al.*¹⁴ analysed age-specific incidence and remission rates for a 1 year observation period school age children. As in our data the remission rates were low.

Our analyses go beyond these studies by addressing the agespecific balance of incidence and remission of overweight in preschool and school age children, demonstrating that increased persistence of overweight in school age children may explain the substantial increase in the prevalence of overweight/obesity in primary school children. Similar patterns with a higher prevalence of overweight/obesity in children at primary school age were observed in cross-sectional studies in Norway¹⁵ and Finland¹⁶ and less so in Ireland.¹⁷ Cross-sectional data from Japan¹⁸ and Hungary¹⁹ on primary school children showed increasing rates of overweight in pre-pubertal years.

These findings have important implications for the concepts on emergence of childhood obesity and intervention strategies against childhood obesity. The main argument for interventions against obesity in pre-school children is based on lifetime courses of BMI or other markers of childhood obesity in overweight or obese children and adolescents. These analyses were based on comparisons of the time course of age-specific mean BMI in overweight or non-overweight adolescents. 20,21 In children who were overweight later in life higher average BMI values started to emerge in pre-school years, reflecting fairly good BMI tracking over the life cycle.²² However, not all overweight toddlers will be overweight by the age of 10, and many of those overweight by the age of 10 have not been overweight at an early age. Our approach, applying age-specific incidence and remission (persistence) rates, allows analyzing the mechanisms for increasing prevalence of overweight in primary school age children. While incidence and remission of overweight appeared to be almost balanced in pre-school years, this balance appeared to become shifted in primary school years due to increasing incidence and lower remission rates.

A further interesting finding pertains to the interrelation of the BMI distribution–upper versus lower half–at the age of 2 or at school entry and the incidence of overweight and obesity in subsequent years. While only few children with a BMI in the lower half of the distribution became overweight in the subsequent 4-year time period, the respective incidence was considerable for those in the upper half: about one out of seven of the 2-year-olds and almost one out of four of the respective children at school entry became overweight in the subsequent 4-year time period. Therefore, also children with a BMI between the 50th and 90th percentile at school entry might need to be targeted in intervention programmes.

It is unlikely that our results were prone to selection bias, as both the KOPS⁸ and the GME data were based on representative samples, and more than 80% of the target populations had been captured for the Bavarian SEHs of 2001/02.

Low follow-up from school entry to fourth grade, however, might introduce selection bias. The reason for this lower follow-up was partly related to the data collection strategy. Children were not individually tracked. There were losses to follow-up due to families moving out of the region, non-attendance on the particular day of the measurement or due to some schools withdrawing their permission for measurement in the fourth term (in the KOPS study). While these causes of loss to follow up are not likely to account for bias, non-compliance of individual children might be related to the main outcome incidence and remission of overweight and therefore account for bias.

In order to assess potential bias by loss to follow-up, we compared sociodemographic characteristics of children with and without successful follow-up. In the KOPS study, the children who were not followed up had more often parents with a low educational status compared with those who were followed up (40.4% compared with 24.4%, Fisher's exact test; P < 0.01). In the GME study, low educational status was also more often recorded in parents of children not followed up (28.7% compared with 23.7%, P<0.01). However, rates of incidence were higher and rates of remission were lower in children of parents with low educational status. Therefore, bias due to lower compliance in children of parents with low educational status is toward unity, suggesting that our data would rather underestimate than overestimate the incidence and persistence of overweight in primary school age children.

It would be ideal to run these analyses on a 'complete' cohort followed up from infancy to the end of primary school age. The KOPS cohort has the advantage of having identical children assessed both in the first (pre-school) and in the second (primary school) 4-year periods. The drawback of this cohort is that followup during primary school age was low. The SEH data provide confirmation of the pre-school KOPS findings in a different sample capturing 80.4% of the pre-school target population. The GME data confirm the KOPS findings from Northern Germany in clearly distinct urban and rural regions in Southern Germany. Therefore and because of the consistency of the remission rates in different cohorts, the observed patterns of differences in remission of overweight in pre-school and primary school children are likely to be internally valid.

External validity might be an issue, as these data have been generated in one country only. Although there are limited data on the increase in the prevalence of overweight during primary school years, most available data from other countries suggest a similar increase in the prevalence during primary school years. 15-19 This is plausible, since a switch to sedentary life style marks school entry everywhere. Therefore, our data are likely to be externally valid.

CONCLUSIONS

Primary school age is critical for the development of overweight and obesity in childhood. The increase in prevalence during this age period does not appear to reflect solely a higher age-specific incidence but at least equally a higher persistence of overweight/ obesity. Preventions targeting the occurrence of overweight/ obesity in normal weight children may need to be supplemented by interventions targeted at children already overweight in primary school age.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

AUTHOR CONTRIBUTIONS

The authors' responsibilities were as follows: RvK contributed the study concept and the analysis plan. AB performed the data management and the statistical analyses together with AC and wrote the first and final draft of the paper together with RvK, MJM, SPD and BL, and provided the data from the KOPS study and contributed to subsequent drafts of the paper. JH contributed to subsequent drafts of the paper. GB provided the data from the GME study and contributed to the final draft of the paper. RvK, AB and AC had full access to all of the data in the study and can take responsibility for the integrity of the data and the accuracy of the analysis.

STUDY GROUP OF THE GME COHORT

Bavarian Health and Food Safety Authority, Munich (Gabriele Bolte, Hermann Fromme, Lana Hendrowarsito, Nicole Meyer); Health Authority of the District Office of Guenzburg (Tatjana Frieß-Hesse, Franziska Lang, Roland Schmid, Gudrun Winter); Health Authority of the City Ingolstadt (Christine Gampenrieder, Margot Motzet, Elisabeth Schneider, Traudl Tontsch, Gerlinde Woelk); Institute of Social Paediatrics and Adolescent Medicine, Ludwig-Maximilians-University Munich (Ladan Baghi, Otmar Bayer, Rüdiger von Kries).

REFERENCES

- 1 Plachta-Danielzik S, Pust S, Asbeck I, Czerwinski-Mast M, Langnase K, Fischer C et al. Four-year follow-up of school-based intervention on overweight children: the KOPS study. Obesity (Silver Spring) 2007; 15: 3159-3169.
- 2 Fry C, Heinrich J. Trends and predictors of overweight and obesity in East German children. Int J Obes Relat Metab Disord 2003; 27: 963-969.
- 3 Kurth BM, Schaffrath Rosario A. The prevalence of overweight and obese children and adolescents living in Germany. Results of the German Health Interview and Examination Survey for Children and Adolescents (KiGGS). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2007; 50: 736-743.
- 4 Katz DL, O'Connell M, Njike VY, Yeh MC, Nawaz H. Strategies for the prevention and control of obesity in the school setting: systematic review and meta-analysis. Int J Obes (Lond) 2008; 32: 1780 - 1789.
- 5 Campbell K, Waters E, O'Meara S, Summerbell C. Interventions for preventing obesity in childhood. A systematic review. Obes Rev 2001; 2: 149-157.
- 6 Doak CM, Visscher TL, Renders CM, Seidell JC. The prevention of overweight and obesity in children and adolescents: a review of interventions and programmes. Obes Rev 2006; 7: 111-136.
- 7 Toschke AM, Beyerlein A, von Kries R. Children at high risk for overweight: a classification and regression trees analysis approach. Obes Res 2005; 13: 1270 - 1274.
- 8 Plachta-Danielzik S, Bartel C, Raspe H, Thyen U, Landsberg B, Muller MJ. Assessment of representativity of a study population - experience of the Kiel Obesity Prevention Study (KOPS). Obes Facts 2008; 1: 325 - 330.
- 9 Danielzik S, Pust S, Landsberg B, Muller MJ. First lessons from the Kiel Obesity Prevention Study (KOPS). Int J Obes (Lond) 2005; 29 (Suppl 2): S78-S83.
- 10 Müller MJ, Asbeck I, Mast M, Langnase K, Grund A. Prevention of obesity--more than an intention. Concept and first results of the Kiel Obesity Prevention Study (KOPS). Int J Obes Relat Metab Disord 2001; 25 (Suppl 1): S66-S74.
- 11 Bolte G, Heissenhuber A, von Kries R, Liebl B, Zapf A, Wildner M et al. Health monitoring units in Bavaria. Concept, aims and thematic focus of the first survey on children's environment and health. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2007; 50: 476-483.
- 12 Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 2000; 320: 1240 - 1243.
- 13 Nader PR, O'Brien M, Houts R, Bradley R, Belsky J, Crosnoe R et al. Identifying risk for obesity in early childhood. Pediatrics 2006; 118: e594-e601.
- 14 Kim J. Must A. Fitzmaurice GM, Gillman MW, Chomitz V, Kramer E et al. Incidence and remission rates of overweight among children aged 5 to 13 years in a districtwide school surveillance system. Am J Public Health 2005; 95: 1588-1594.

510

- 15 Juliusson PB, Eide GE, Roelants M, Waaler PE, Hauspie R, Bjerknes R. Overweight and obesity in Norwegian children: prevalence and socio-demographic risk factors. Acta Paediatr 2010; 99: 900-905.
- 16 Vuorela N, Saha MT, Salo M. Prevalence of overweight and obesity in 5- and 12-yearold Finnish children in 1986 and 2006. *Acta Paediatr* 2009; **98**: 507 - 512.
- 17 Whelton H, Harrington J, Crowley E, Kelleher V, Cronin M, Perry IJ. Prevalence of overweight and obesity on the island of Ireland: results from the North South Survey of Children's Height, Weight and Body Mass Index, 2002. *BMC Public Health* 2007; **7**: 187.
- 18 Yoshinaga M, Ichiki T, Tanaka Y, Hazeki D, Horigome H, Takahashi H *et al.*Prevalence of childhood obesity from 1978 to 2007 in Japan. *Pediatr Int* 2010; **52**: 213 217.
- 19 Prokai A, Meszaros J, Meszaros Z, Photiou A, Vajda I, Sziva A. Overweight and obesity in 7 to 10-year-old Hungarian boys. Short communication. *Acta Physiol Hung* 2007; **94**: 267 270.
- 20 Whitaker RC, Wright JA, Pepe MS, Seidel KD, Dietz WH. Predicting obesity in young adulthood from childhood and parental obesity. N Engl J Med 1997; 337: 869-873.
- 21 Lagstrom H, Hakanen M, Niinikoski H, Viikari J, Ronnemaa T, Saarinen M *et al.*Growth patterns and obesity development in overweight or normal-weight 13-year-old adolescents: the STRIP study. *Pediatrics* 2008; **122**: e876 e883.
- 22 Bayer O, Krüger H, von Kries R, Toschke AM. Factors associated with tracking of BMI: a meta-regression analysis on BMI tracking. *Obesity (Silver Spring)* 2011; **19**: 1069 1076.