
REVIEW Open Access

Linking bronchopulmonary dysplasia to
adult chronic lung diseases: role of WNT
signaling
Chiharu Ota1*, Hoeke A. Baarsma1, Darcy E. Wagner1, Anne Hilgendorff1,2 and Melanie Königshoff1

Abstract

Bronchopulmonary dysplasia (BPD) is one of the most common chronic lung diseases in infants caused by pre-
and/or postnatal lung injury. BPD is characterized by arrested alveolarization and vascularization due to extracellular
matrix remodeling, inflammation, and impaired growth factor signaling. WNT signaling is a critical pathway for
normal lung development, and its altered signaling has been shown to be involved in the onset and progression of
incurable chronic lung diseases in adulthood, such as chronic obstructive pulmonary disease (COPD) or idiopathic
pulmonary fibrosis (IPF). In this review, we summarize the impact of WNT signaling on different stages of lung
development and its potential contribution to developmental lung diseases, especially BPD, and chronic lung
diseases in adulthood.

Keywords: Bronchopulmonary dysplasia (BPD), WNT signaling, Lung development, Adult chronic lung diseases

Introduction
Bronchopulmonary dysplasia (BPD) is one of the most
common chronic lung diseases in infants. “Old” or “clas-
sical” BPD was first defined by Northway et al. in 1967
as structural lung damage and subsequent appearance of
parenchymal fibrosis caused by prolonged hyperoxia and
ventilator-associated lung injury during the saccular to
alveolar stage of lung development [1]. Improvement of
clinical neonatal intensive care practices, including
prenatal steroid therapy, exogenous surfactant adminis-
tration, protective lung ventilation strategies, and the
careful monitoring of oxygen supplementation, has led
to a significant reduction in perinatal respiratory-
associated death. With the current clinical practices,
newborns as early as 23 to 26 weeks of gestation are able
to survive; however, these newborns present with a
distinct form of “new” BPD. The prominent new BPD
comprises arrested alveolarization and vascularization,
due to the impact of different risk factors on the func-
tionally and structurally immature lung during the early

canalicular and saccular periods of lung development
[2]. Risk factors include hyperoxia-induced oxygen tox-
icity, mechanical ventilation-induced lung injury, and in-
fection/inflammation of the lungs, which results in
aberrant lung development due to extensive remodeling
of the extracellular matrix (ECM), perturbations of in-
flammatory response, and impaired growth factor signal-
ing [3]. Newborns which have survived and developed
new BPD are approaching adolescence and adulthood.
Several longitudinal studies following patients with new
BPD have demonstrated a decline of forced expiratory
volume in 1 second (FEV1) compared with term-born
controls, reflecting the development of airflow obstruc-
tion in new BPD survivors over time [2, 4–6]. These
data indicate that impairment of alveolarization/
vascularization during childhood, which is a feature of
the new BPD, might contribute to deranged lung alveo-
lar injury/repair processes in adulthood.
Environmental insults, such as smoking, infection, or

hyperoxia, are known to cause aberrant alveolar repair
processes in deranged lung development and also the
adult lung [7, 8]. These environmental insults contribute
not only BPD but also other childhood respiratory dis-
eases including bronchial asthma. A better understanding
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of the processes and signaling pathways altered by these
insults are clearly needed.
Impaired signaling of essential lung development path-

ways, such as fibroblast growth factor (FGF) [9, 10],
Wingless/integrase-1 (WNT) signaling [11], or bone mor-
phogenetic proteins (BMPs) [12], have been reported to
contribute to the pathogenesis of adult chronic lung dis-
eases, such as chronic obstructive pulmonary disease
(COPD) or idiopathic pulmonary fibrosis (IPF) [13]. Of par-
ticular interest, WNT signaling has been linked to aberrant
alveolar epithelial injury and repair processes [11, 14–17].
Because these pathways are mostly attributed to lung devel-
opment and are normally thought to be quiescent in the
adult lung, this raises the question of why these pathways
become aberrant in the adult and whether pre- or postnatal
insults impact developmental signal activity early on, thus
contributing to an increased susceptibility for chronic lung
diseases later in life [7, 18]. In this review, we focus on the

potential role of WNT signaling in lung development and
perinatal lung disease, with a focus on BPD, as a disease of
impaired alveolarization/vascularization, and discuss the
potential link between perinatal and adult chronic lung dis-
eases, such as COPD and IPF.

Review
Overview of WNT signaling
WNT signaling is a critical pathway for embryonic de-
velopment and adult cellular injury and repair processes.
There are at least three well-known WNT pathways: ca-
nonical (β-catenin dependent) signaling and two non-
canonical pathways, (i) planar cell polarity (PCP) and (ii)
Ca2+-calmodulin-dependent protein kinase II (Camk II)/
protein kinase C (PKC) signaling. As shown in Fig. 1, ca-
nonical WNT/β-catenin signaling mainly consists of; (i)
WNT ligands, (ii) the transmembrane receptors, Frizzled
(FZD1–10), (iii) the co-receptors low-density lipoprotein

Fig. 1 Overview of WNT/β-catenin signaling. Without WNT signaling (“WNT OFF”), “destruction complex phosphorylates cytosolic β-catenin and
phosphorylated β-catenin is recognized and degraded by the proteasomes. With WNT signaling (“WNT ON”), the function of “destruction complex”
is inhibited to phosphorylate cytosolic β-catenin. Then unphosphorylated β-catenin accumulates in the cytosol, translocates into the nucleus, and
activates the WNT target gene expression, such as the T-cell factor and lymphoid enhancer factor-1 (TCF/LEF1) family of transcription factors
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receptor-related proteins (LRP) 5 and 6, (iv) signaling
intermediates, Dishevelleds (DVL1–3), (v) the β-catenin
“destruction complex”, (vi) the transcriptional co-
activator, β-catenin, and (vii) the transcription factors, T
cell factor and lymphoid enhancer factor (TCF/LEF).
Extracellular modulators, such as Dickkopfs (DKK1–4),
WNT-inhibitory factor-1 (WIF1), or secreted Frizzled-
related proteins (SFRPs), are also important for regulation
of the pathway. In the absence of WNT ligands, β-catenin
is phosphorylated by the destruction complex, which is
comprised of Axin, adenomatous polyposis coli (APC),
glycogen synthase kinase-3 beta (GSK-3β), and casein
kinase-1 (CK1). Phosphorylated β-catenin is recognized
and ubiquitinated by ubiquitin ligase E3 and subsequently
degraded by the proteasome. Upon WNT ligand binding
to its receptors, the capacity of the destruction complex to
phosphorylate cytosolic β-catenin is inhibited. Unpho-
sphorylated β-catenin accumulates in the cytosol, translo-
cates into the nucleus, and activates WNT target gene
expression, via its integration with the TCF/LEF family of
transcription factors, which is important for cellular pro-
liferation, differentiation, and survival [11, 19, 20].
Non-canonical WNT signaling (i.e., β-catenin inde-

pendent) mainly consists of (i) the WNT/PCP pathway,
which activates c-Jun-N-terminal kinase (JNK) and pro-
teins associated with cytoskeleton rearrangement, and
(ii) the WNT/Ca2+ pathway, activating Camk II, PKC,
the transcription factor nuclear factor of activated T cells
(NFAT), and several other (less well defined) transcrip-
tion factors [19]. In this review, we primarily focus on
the canonical WNT/β-catenin signaling, which has been
investigated most extensively so far.

Lung development and WNT signaling
Historically, a large portion of our knowledge about lung
development has been obtained by using wild-type or
transgenic mice [21]. In the mouse lung, embryonic lung
development starts as early as E9.5 (equivalent to 4 weeks
in human gestation), with tightly coordinated epithelial
and mesenchymal differentiation processes, and is com-
pleted postnatally. At this time point, Nkx2.1, a critical
homeodomain-containing transcription factor for initial
respiratory specification, is expressed within endoderm
progenitors in the anterior foregut [21]. Dorsal-ventral
specification occurs according to signals, such as BMPs,
FGFs, or WNTs, from the surrounding mesenchyme,
endoderm, or mesoderm. Primary lung buds generate
tree-like structures for branching morphogenesis from
E9.5 to E16.5 (in human, 4 to 16 weeks, historically
called the “pseudoglandular stage”), followed by the
“canalicular stage” (E16.5–17.5 in mouse, 16 to 24 weeks
in humans) when terminal sacs are formed, the “saccular
stage” (E17.5 to postnatal day 5 in mouse, 24 to 36 weeks
in human) when distal airways are developed for the

alveoli, and the “alveolar stage” (postnatal day 5 to 30 in
mouse, 36 weeks and after delivery in human) when sec-
ondary alveolar septa are formed to further divide the
airspaces into definitive alveoli (Fig. 2).
WNT signaling is active and highly controlled in a

spatio-temporal fashion throughout murine lung endo-
derm specification in the foregut as well as cellular pro-
liferation and differentiation during lung development
[21–24]. In the mouse lung, several loss- or gain-of-
function studies revealed the importance of WNT signal-
ing in lung morphogenesis [25, 26]. Here, we review the
role of active WNT signaling during murine lung devel-
opment (summarized in Table 1).

WNT ligands and their receptors in the developing mouse
lung
A number of WNT ligands and receptors have been
identified as being critical for various stages of develop-
ment. Deletion of the canonical Wnt2 ligand causes
mouse lung hypoplasia whereas Wnt2/2b double knock-
out leads to complete lung agenesis in mice with a loss
of Nkx2.1 in early embryonic development in the region
where the lung buds are derived from the foregut. Thus
Wnt2 and 2b are required to specify the Nkx2.1-
expressed lung progenitors in the foregut through ca-
nonical WNT/β-catenin signaling [27, 28]. Similarly,
deletion of murine Wnt7b results in hypoplastic lungs
with a proportionate decrease in the replication of both
epithelial and mesenchymal progenitors [29]. The non-
canonical Wnt4 was reported to be expressed in the an-
terior trunk mesoderm and was found to be essential for
proper lung morphogenesis and trachea formation. In
Wnt4 knockout mice, reduced mesodermal proliferation
in the lung bud leads to severe lung hypoplasia and tra-
cheal abnormalities [30]. Moreover, Wnt5a, another lig-
and of non-canonical WNT signaling, has been detected
as early as E12 at both epithelial and mesenchymal com-
partment of the developing lung. The absence of Wnt5a
activity is associated with the overbranching of distal air-
ways in murine E15–16 lung together with an architec-
tural immaturity of the capillaries and alveolar airspaces
[31]. Vice versa, Wnt5a overexpression in the distal epi-
thelium results in reduced epithelial branching and di-
lated distal airways [32]. These data highlight that both
canonical as well as non-canonical signal aberrations
affect normal lung development.
In addition to WNT ligands, the receptors have also

been shown to be important for proper lung develop-
ment. Tissue-specific analysis of the WNT receptors
from E12.5 to E16.5 revealed FZD1, 4, and 7 to be pri-
marily expressed in the developing mouse lung mesen-
chyme and FZD10 in distal airway epithelium and the
expression of those receptors decreases after E14.5 [33].
FZD2 is also highly expressed in distal airways [34], and
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epithelium-specific deletion of Fzd2 causes formation of
cysts in distal airways and defective branching morpho-
genesis [35]. Furthermore, FZD8 is expressed through-
out the pulmonary epithelium [36]. Both LRP5 and
LRP6 are expressed in the upper airway epithelium, and
LRP5, but not LRP6, is also expressed in the smooth
muscle compartment of large vessels [33]. Loss of Lrp5
inhibits angiogenesis and alveolar formation in neonatal
mice in the alveolar stage of lung development [37].
While these data further underline the importance of
WNT signaling during development, much less is known
how these receptors are distinctly involved in canonical
versus non-canonical WNT signaling. Furthermore, fu-
ture studies elucidating cell-specific expression under
(patho-) physiologic conditions are needed.

β-Catenin in normal lung development
Studies modulating the major effector protein of canon-
ical WNT signaling, β-catenin, revealed that both epithe-
lial and mesenchymal β-catenin is required for the onset
of lung specification and the proximal-distal patterning
of branching morphogenesis: deletion of β-catenin in the
foregut leads to the loss of Nkx2.1 expression and the
absence of both the trachea and lung due to a lack of re-
spiratory lineage initiation [27, 38]. Lung epithelium-
specific deletion of β-catenin caused disruption of distal
but not proximal airways in the later stages of lung devel-
opment [28]. On the other hand, conditional knockout of
β-catenin in mesenchymal cells resulted in a shortened
trachea and reduced branching morphogenesis in E12.5 to
E14.5 lungs [23]. In addition to the localization, the timing

Fig. 2 Developmental stages and the WNT/β-catenin signaling. In the embryonic stage (<E9.5 in mouse, <4 weeks in human), Wnt2/2b is
expressed within surrounding mesenchyme for the anterior foregut specification and the onset of lung specification. In the pseudoglandular
stage (E9.5 to 16.5 in mouse, 4 to 16 weeks in human), several Wnt ligands, receptors, and extracellular modulators are expressed within proximal
or distal airways and surrounding mesenchyme and coordinate proximal-distal patterning of branching morphogenesis. In the canalicular stage
(E16.5 to 17.5 in mouse, 16 to 24 weeks in human), WNT/β-catenin signaling regulates the balance of proliferation and differentiation of the distal
epithelium. In the saccular to alveolar stage (E17.5 to postnatal day 5, postnatal day 5 to day 30 in mouse, 24 weeks to 36 weeks, 36 weeks and
after in human), WNT/β-catenin signaling may organize the alveolarization and vascularization and the formation of secondary septa
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Table 1 Summary of developmental WNT/β-catenin signaling, expression pattern, study models, and phenotypes

Expression Study model Phenotype Reference

WNT ligands

WNT2 MS Wnt2 knockout 1. Hypoplastic lungs with relatively normal airway development
2. Reduced proliferation of EP and MS lineage
3. Several signaling pathways and transcription factors for lung
development were reduced

[27]

WNT2b MS Wnt2b knockout Viable and no discernable phenotype [27]

WNT2/2b MS Wnt2/2b double knockout Complete lung agencies [27]

WNT4 MS Wnt4 knockout 1. Lung hypoplasia and tracheal abnormalities
2. Reduced mesodermal proliferation in the lung bud

[30]

WNT5a MS, EP(E12)
Distal and proximal EP (E16)

Cells surrounding distal
and proximal EP (E18)

Wnt5a knockout
Wnt5a-SPC transgenic

1. Larger lungs, foreshortened trachea, overexpansion of distal airways,
thickened intersaccular interstituim (knockout)

2. Smaller lungs, reduced number of alveolar sacs with dilated alveoli,
lobation abnormalities (transgenic)

[31]
[32]

WNT7b EP (E12.5 to E16.5) both in
the distal and larger mainstem
bronchial airways

Conditional knockout of Wnt7b in
Sox2-expressed embryo

1. Hypoplastic lungs with normal patterning and cell differentiation
2. Proportionate decrease in the replication of epithelial and
mesenchymal progenitors

[29]

WNT receptors

FZDI MS In situ hybridization NA [33]

FZD2 EP (distal) Conditional knockout of Frz2 in
Shh-expressing cells

Formation of cysts in distal airways and defective branching
morphogenesis

[35, 36]

FZD4 MS In situ hybridization NA [33]

FZD7 MS In situ hybridization NA [33]

FZD8 EP In situ hybridization [34]

FZD10 EP (distal) Immunohistochemistry NA [33]

LRP5 EP (upper airway), muscular
component of large vessels

Lrp5 knockout Impairment of alveolar and vascular formation in neonatal lungs
due to the decrease of angiopoietin/Tie2 pathway

[33, 37]

LRP6 EP (upper airway) In situ hybridization NA [33]

Extracellular modulators

DKK-1 EP (distal) In situ hybridization Treatment of E11.5 lung explants by Dkk1 disrupts branching
morphogenesis

[34]

SFRP-1 MS, EP (distal) Sfrp-1 knockout Marked dilation of the alveolar duct with the loss of surrounding
messenchymal component

[43]

β-catenin destruction complex

APC MS Conditional knockout of Apc in
Tbx4-expressing mesenchymal cells

APC knockout fetus shows severe lung hemorrhage in E14.5 and
dies in E15.5, with condensed mesenchymal cells around
epithelial tubes in the lung.

[44, 45]
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Table 1 Summary of developmental WNT/β-catenin signaling, expression pattern, study models, and phenotypes (Continued)

β-catenin

β-catenin EP, MS 1. Conditional knockout of β-catenin in
SPC-expressing cells

2. Conditional knockout of β-catenin in
Shh-expressing cells

3. Conditional knockout of β-catenin in
Sox2-expressing cells

4. Conditional knockout of β-catenin in
Demol-expressing mesenchymal cells

1. Multiple, enlarged, and elongated bronchiolar tubes with a lack
of alveolar sacs (β-catenin-SPC knockout)

2. Absence of both trachea and lung due to the defect of Nkx2.1
expression (B-catenin-Shh knockout)

3. Defective bronchiolar epithelial cell differentiation and marked
ectasis of the developing and adult airway (β-catenin-Sox2 knockout)

4. Shortened trachea and reduced branching morphogenesis.
Defect of sub-mesothelial mesenchymal domain containing
Fgf10-expressing progenitors.

[26, 28, 38–40]

MS mesenchymal cells, EP epithelial cells
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and duration of β-catenin expression are important for
proper lung development. Prolonged activation of a β-
catenin-Lef1 fusion protein in distal lung endoderm led to
the development of an undifferentiated distal airway epi-
thelium and resulted in ectopic expression of gene charac-
teristic of intestinal epithelial lineages [26]. Another study
revealed that sustained β-catenin activity within the distal
lung endoderm in early lung development results in the
loss of Sox2, a regulator of developing proximal airway
progenitors, and defective bronchiolar epithelial cell differ-
entiation and marked ectasia of the developing and adult
airway [39]. β-Catenin appears to be an essential mediator
with critical links to its target transcription factors as well
as various signaling pathways associated with lung devel-
opment, such as, FGF [40], BMP4, or N-myc [41]
signaling.

WNT signal antagonists in the developing mouse lung
Activation of WNT signaling is highly controlled by sev-
eral intra- and extracellular proteins. Dickkopf (DKK1-4)
proteins antagonize WNT/β-catenin signaling by bind-
ing to LRP5/6. Dkk-1, 2, and 3 are expressed in distal
lung epithelium from E11.5 (Dkk-2), E12.5 (Dkk-3), and
E13.5 (Dkk-1) onward [36]. WNT/β-catenin signaling
was decreased in distal airways of TOPGAL WNT-
reporter mouse at E14.5 after the onset of Dkk-1 expres-
sion in the distal lung [36]. Furthermore, the DKK-1-
treated lung explants from E11.5 mice showed impaired
branching, failed cleft formation, and enlarged terminal
buds with fibronectin deposition [36]. Retinoic acid (RA)
is a known canonical WNT activator. Using mice with an
RA-deficient lung foregut, it was shown that WNT/β-ca-
tenin signal activation, at the onset of lung specification, is
dependent on the repression of Dkk-1 by endogenous RA
[42], indicating that repression and expression of DKKs
takes part in WNT/β-catenin signaling coordination dur-
ing lung development.
SFRP-1, which antagonizes WNT/β-catenin signaling

by binding extracellular WNT ligands, can also be de-
tected in the distal epithelium and the surrounding mes-
enchyme from E13.5 to 15.5; however, it has not been
observed in the later stages of lung development [43]. In
Sfrp-1 knockout mice, it was shown that nuclear β-
catenin levels were enhanced after E16.5 to E18.5 and
that the alveolar ducts were dilated postnatally com-
pared with the wild-type mice [43], indicating that
SFRP-1 is involved in the coordination of nuclear β-
catenin translocation for proper alveolarization.
APC, a component of the intracellular β-catenin de-

struction complex, is highly expressed in mesenchymal
cells surrounding the large airways at E14.5 lung and
can be detected in both mesenchymal as well as epithe-
lial cells at E18.5 [44]. Lung mesenchyme-specific
conditional Apc knockdown results in hyperactivation of β-

catenin in embryonic lung mesenchyme at E10.5 and fetal
death at E15.5 due to massive pulmonary hemorrhage.
Histological analysis of Apc knockout mice revealed abnor-
mal proliferation and disrupted differentiation of pulmon-
ary mesenchymal cells and inhibition of branching
morphogenesis and vasculogenesis [45].
Taken together, WNT signal components, including

several antagonists, are involved in a variety of critical
processes during murine lung development, including
the onset of lung specification, branching morphogen-
esis, alveolar formation, and angiogenesis with tightly
coordinated epithelial and mesenchymal expression pat-
terns for each time point and developmental stage. As
such, it is reasonable to speculate that perturbation of
WNT signaling on several levels during lung develop-
ment may lead to the arrest of alveolarization and
vascularization as observed clinically in BPD.
In contrast to mouse lung development, our know-

ledge about WNT signaling in human lung development
remains sparse. To date, only two studies exist that re-
ports on WNT signaling expression in developing hu-
man lung. Zhang et al. performed quantitative PCR and
in situ hybridization using a developing human lung and
showed that messenger RNA (mRNA) expression of
WNT2, WNT7B, FZD4, FZD7, LRP5, and LRP6 was re-
stricted to the alveolar and bronchial epithelium in the
human lungs at 7, 12, 17, and 21 weeks of gestation [46].
Most WNT components were up-regulated gradually
until 17 weeks and subsequently decreased in 21 weeks
of gestation [46]. Sharma et al. performed differential
gene expression analysis using human lung tissue sam-
ples across pseudoglandular and canalicular stages of de-
velopment and DNA samples obtained from two cohorts
of childhood bronchial asthma [47]. They showed that
both WIF1 and Wnt1-inducible signaling pathway
protein-1 (WISP1) are associated with intrauterine air-
way development and lung function impairment in
childhood asthmatic patients [47].
Notably, there are several differences between mouse

and human lung development in terms of cellular com-
position, timing of branching morphogenesis, or alveolar
maturation [21, 48]. In the mouse lung, a pseudostrati-
fied epithelial layer including basal cells are only found
in the trachea and main stem bronchus, whereas it is ex-
tended into terminal bronchioles in the human lung. In
addition, club cells are found throughout mouse airways,
while they are only found in the bronchiolar epithelium
in the human lung. The number of the branches in the
bronchial tree is higher in humans compared to mouse
lungs. The lobation or branch pattern also differs be-
tween human and mouse [49]. Alveolar formation
started from saccular stage, E17.5, in mouse, and around
24 weeks, late canalicular stage in human [48]. Consider-
ing these differences, further approaches to decipher the
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role of developmental signaling pathways in human lung
development are required, using, e.g., human histological
samples [50] or human induced pluripotent stem (iPS)
cells [48].

Involvement of WNT signaling in early lung injury and
adult chronic lung diseases
A number of environmental insults during pre- and
postnatal development are known to induce deranged
lung morphogenesis and have also been shown to affect
WNT signaling. Several studies have been conducted to
investigate whether insults to the developing lung by
incidental environmental factors, such as postnatal infec-
tion or maternal cigarette smoke as well as medical
interventions, such as ventilation and oxygen supple-
mentation, affect lung morphogenesis and repair process
via WNT signaling. Neonatal hyperoxia is one of the
widely used animal (mainly rodent) models to mimic
BPD, i.e., causing impaired alveolarization/vascularization
in neonatal lungs [51]. Neonatal hyperoxia following ma-
ternal bacterial infection is another rodent model for BPD
[51, 52]. Since BPD is caused by a variety of factor, includ-
ing hyperoxia exposure, intrauterine infection, high-
pressure ventilation, or prematurity of the lungs, rodent
models of BPD, including hyperoxia exposure, do not
completely recapitulate the BPD observed in clinical set-
tings. However, because the lung samples from human ne-
onates are rare, those rodent models of BPD, including
hyperoxia exposure models focusing especially on alveo-
larization/vascularization, are important tools to reveal
the pathophysiology of new BPD.
These pre- and postnatal insults can result in a variety

of early lung diseases next to BPD. In particular, bron-
chial asthma exhibits a high incidence in childhood and
adolescence. Bronchial asthma is considered to be highly
influenced by maternal smoking [53], diet [54], intra-
uterine growth restriction [55, 56], or exposure to patho-
gens [57, 58]. In this next section, we discuss the
environmental insult-associated with altered WNT/β-ca-
tenin signaling in lung injury occurring during early lung
development and its potential contribution to adult
chronic lung diseases.

Infection and inflammation
Prenatal infections are known to impact lung develop-
ment. Premature rupture of the amniotic membrane re-
sults in increased susceptibility to intrauterine infections.
Antenatal inflammation of chorioamniotic membranes
causes premature birth and adversely affects lung develop-
ment [59]. Intra-amniotic lipopolysaccharide (LPS) expos-
ure, which mimics amniotic bacterial infection, decreases
the expression of Lef-1, Wnt1, Wnt4, and β-catenin in the
canalicular stage of lung development [60]. Similarly, in
adult mice, acute lung injury caused by intra-tracheal

application of LPS and followed by high tidal volume
mechanical ventilation results in the activation of DKK1
and the subsequent down-regulation of active β-catenin in
the lung alveolar epithelium. It was shown that DKK-1 is
released from activated platelets, and the binding affinity
of DKK-1 to alveolar epithelial cells was increased during
acute lung inflammation [61]. Although only a few reports
have shown the relationship between early lung infection/
inflammation and WNT signaling so far, the data to
date are intriguing and further studies investigating
human lungs undergoing prenatal infections, such as
chorioamnionitis-induced neonatal lung injury, will be
important.

Smoking-related injury
Maternal smoking is one of the important risk factors
for chronic lung diseases in children including recurrent
respiratory infection, infantile wheezing, bronchial
asthma, and lower respiratory function in early adult-
hood [53, 62, 63]. It has also been shown that maternal
smoking affects alveolarization/vascularization in devel-
oping lung in vivo [64, 65]. Bronchial asthma shares
some similarities with BPD (e.g., pathologic airways and
the presence of clinical symptoms like wheezing) and
has been associated with aberrant WNT signaling as well
[47, 66]. Impaired lung growth by these and other envir-
onmental factors may cause the formation of smaller
airways and decreased lung capacity contributing to
childhood asthma and lower respiratory function in early
adulthood [67]. In the adult lung, dysfunction of WNT
signaling contributes to the impaired epithelial repair
processes in disease [17, 68]. WNT signaling is reduced
in the lungs from COPD patients, a smoking-related dis-
ease, and the pharmacological activation of the signaling
pathway through GSK3β inhibition activates epithelial
repair properties and attenuates known pathological
features of emphysema ex vivo [68] and in vivo [17, 69].
Recently, Jiang et al. reported that FAM13A, a gene as-
sociated with COPD susceptibility [69], might lead to
emphysema development by facilitating β-catenin deg-
radation [70]. Furthermore, WNT/β-catenin signaling
components, including canonical WNT ligands, FZDs,
signal transducers, and target genes are down-regulated,
while antagonists such as SFRP-1 and DKK-1 are up-
regulated, in human lung tissue [43] and in particular
in the small airway epithelium [71, 72] from COPD
patients.
Much less is known about the effects of maternal

smoking on WNT signaling during lung development.
Maternal smoking during pregnancy has been shown to
decrease Fzd7 and Ctnnb1 (β-catenin) mRNA in neo-
natal Balb/c mice [73]. Furthermore, it was recently re-
ported that protein and mRNA expression of SFRP-1
were significantly up-regulated in the placental tissues in
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smoking women compared with those from non-
smokers [74]. Furthermore, a carbon monoxide analog,
one of the components in cigarettes, increased SFRP-1
expression accompanied by decreased WNT/β-catenin
signaling in a human trophoblast cell line. In addition,
maternal Sfrp-1 overexpression causes fetal growth re-
striction in mice [74]. Altogether, these studies strongly
suggest that (maternal) smoking and components of
cigarette smoke significantly impact WNT signaling ac-
tivity. However, cigarette smoking is also known to gen-
erally inhibit fetal growth and thus it remains an open
question whether maternal smoking/nicotine exposure
directly increases extracellular modulators of WNT and
decreases WNT/β-catenin signaling in the lung to affect
fetal lung development or whether maternal smoking/
nicotine exposure induces fetal growth restriction to
cause premature birth and subsequent BPD.
Given these studies, it is plausible that chronic lung

diseases, such as COPD, develop as a result of early lung
insults leading to aberrant WNT/β-catenin signaling and
thus lung repair capacity. A gradual decline in lung
function in early adulthood might be due to aberrant
WNT/β-catenin signaling, which is retained over time,
eventually resulting in adult chronic lung diseases. Gen-
eration of experimental models to follow this hypothesis
and long-term follow-up studies of new BPD patients
are needed. In particular, emerging evidences suggest
that epigenetic alterations, i.e., modified gene expression
via DNA methylation, histone modification, or micro-
RNA, of WNT signaling represents an important area of
investigation. Recently, it has been shown that cigarette
smoke exposure epigenetically altered WNT/β-catenin
signaling in lung cancer cells by histone modification or
microRNA expression [75–77]. In the developing lung,
differential methylation of WNT/β-catenin signal genes
have been reported in neonatal and adult mouse lungs
[78]. Although there is no study addressing epigenetic
alterations of WNT signaling by cigarette smoke expos-
ure in the developing lung, it is reported that psycho-
logical stress during pregnancy caused altered DNA
methylation of non-canonical, WNT5a/Ca2+ pathway
and postnatal wheeze of the affected children [66]. As
such, further investigations on how environmental fac-
tors, including maternal smoking, alter WNT signaling
by epigenetic modifications and thus affect lung develop-
ment of the neonate will be important.

WNT/β-catenin and TGF-β signaling in new BPD
In addition to WNT/β-catenin, transforming growth fac-
tor (TGF)-β signaling is a critical pathway for lung de-
velopment [21]. It has been shown that TGF-β is an
important mediator for the development of BPD [79–81]
and is activated in neonatal rat lungs after hyperoxia ex-
posure [82] as well as in neonatal mouse lungs after

mechanical ventilation with mild hyperoxia [83]. There
are also reports regarding the dual activation of WNT/
β-catenin and TGF-β signaling in hyperoxia exposure
models, but the crosstalk between the two pathways is
incompletely understood [82, 84]. Active WNT/β-ca-
tenin signaling has been reported in fibrotic adult lung
diseases, such as IPF [14–16], in which TGF-β signaling
is highly involved in epithelial cell reprogramming and
myofibroblast activation [85]. Furthermore, TGF-β re-
sults in enhanced expression of WNT ligands and
activation of β-catenin in vitro [86]. TGF-β-induced acti-
vation of WNT/β-catenin signaling [87, 88] may also
play a key role during developing BPD as well as adult fi-
brotic lung diseases, including IPF.

WNT signaling in BPD
To date, only a few studies addressed WNT signaling in
new BPD patients. In the lungs of patients who died
from BPD, nuclear β-catenin, which is used as a surro-
gate marker for WNT/β-catenin activity, along with
phosphorylated (inactivated) GSK-3β was found in the
thickened alveolar septa [89, 90]. Notably, whole exome
sequencing using blood spots from twin neonate pairs
with and without BPD revealed that genes associated
with WNT/β-catenin signaling were up-regulated in
BPD [91].
Nuclear translocation of β-catenin and increased Lef1

expression was observed in the lung from neonatal rats
exposed to hyperoxia (95 % oxygen) in the alveolar stage
(postnatal days 0 to 7) [82]. Moreover, it has been shown
that neonatal hyperoxia increased nuclear β-catenin and
decreased alveolar epithelial type II (ATII) cell to ATI
cell transdifferentiation [84, 92], which is generally
considered as a repair process of alveolar epithelial cells
following injury. Furthermore, hyperoxia-induced inhib-
ition of ATII to ATI transdifferentiation was recovered
by small interfering RNA (siRNA)-mediated knockdown
of Wnt3a in vitro [92]. However, it has been reported
that in the adult mouse lung, β-catenin was induced
during ATII cell to ATI cell transdifferentiation in nor-
moxia condition [93, 94]. This discrepancy might be due
to hyperoxia condition or using neonatal lung in the
former studies. Further studies are needed to clarify this
issue. Another study showed the enhancement of WNT/
β-catenin signaling in impaired vascularization [95].
Taken together, canonical WNT/β-catenin signaling is
activated in lung samples from BPD patients and neo-
natal rodent model of hyperoxia exposure in the lung.
This activation of WNT signaling might be a result of
“attempted (and failed)” regeneration after injury of al-
veolar epithelial cells, which is a hypothesized processes
model in IPF lungs [11].
It is unclear whether BPD contributes to the onset of

adult chronic lung diseases, such as COPD or IPF. In
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adult chronic lung diseases, canonical WNT/β-catenin
signaling is down-regulated in emphysematous lungs
[17] while up-regulated in fibrotic lungs [15]. In BPD
lungs, as mentioned above, enhanced expression of
TGF-β [79] and/or WNT/β-catenin signaling was ob-
served [89, 90]. In contrast, intrauterine infection or
cigarette smoke decreased WNT/β-catenin signaling.
Longitudinal studies showed that along with decreased
FEV1, a hallmark of obstructive lung diseases, forced
vital capacity (FVC), a hallmark of restrictive lung
diseases, was also lower in BPD survivors [96, 97]. Al-
though characterizing a disease entity as either emphy-
sema or fibrosis is oversimplification, it seems like BPD
features a co-existence of emphysema and fibrosis as
reported [98, 99]. It is possible that different environmental
insults at different time points during lung development
might cause different expression patterns of WNT signal-
ing. Also, if new BPD survivors with impaired alveolariza-
tion/vascularization are exposed to a “second hit,” such as
cigarette smoke, pathogens, or hyperoxia, at a later time
point, they might develop adult chronic lung diseases with
aberrant (increased/decreased) WNT signaling. Longitu-
dinal studies are needed to study whether BPD survivors
are more susceptible to developing adult chronic lung dis-
eases. Establishing animal models to mimic BPD and follow
the outcome of the developing lung is needed.

Clinical implications and limitations of WNT/β-catenin
signaling in lung development
Several studies indicated that targeting WNT/β-catenin
signaling may be a therapeutic strategy in BPD. Vitamin
A, whose metabolite is RA, has been used to prevent
BPD progression [100–102] although the effect is still
controversial. As mentioned previously, RA activated
WNT/β-catenin signaling via inhibition of DKK-1 [42].
In this context, active WNT/β-catenin signaling might
be beneficial for arrested alveolarization, as it has been
reported to maintain alveolar stem/progenitor cell popu-
lations [11, 103], such as ATII cells [94].
On the other hand, it is reported that intraperitoneal

administration of Mesd, a specialized chaperone for
LRP5/6 to inhibit WNT/β-catenin signaling, attenuated
hyperoxia-induced pulmonary hypertension and right
ventricular hypertrophy in neonatal rats [95]. Another
study showed that ICG-001, a small molecule which in-
hibits WNT/β-catenin signaling via interaction between
β-catenin and CREB-binding protein (CBP), an intrinsic
histone acetyltransferase to activate gene transcription,
increased alveolarization and decreased vascular remod-
eling to develop pulmonary hypertension [104]. Resvera-
trol, a polyphenol found in several fruits and nuts, was
also shown to attenuate hyperoxia-induced model of
BPD in neonatal rats [64, 84]. It is important to address
the question when or where WNT/β-catenin signaling

should be inactivated/activated for physiologic lung de-
velopment and perinatal lung injury/repair processes.
Thus, it is worth exploring whether the attenuation of
alveolar repair process or epigenetic modification alter-
ing WNT signaling will be candidates for clinical
implications.
However, as most of the data shown here originate

from rodent experiments, limitations for translation of
the findings have to be considered. Given the difficulty
of obtaining human neonatal lung tissue for analysis, re-
cent approaches using 3D lung tissue cultures [68] or
iPS cells [105, 106] from BPD patients represent promis-
ing tools to further explore signaling pathways involved
in the pathogenesis of disease, such as WNT/β-catenin
signaling. Collecting more evidence from preterm in-
fants will be needed to identify new therapeutic targets
in WNT/β-catenin signaling pathway.

Conclusions
Here, we discussed the potential role of the developmen-
tal WNT signaling pathway as a potential missing link
between early impairment of lung development and the
outcome in the adult lung. First, WNT/β-catenin signal-
ing is essential for lung development in utero, which has
been elegantly investigated using the advantage of sev-
eral wild-type and transgenic animals. Second, growing
data suggest that WNT/β-catenin signaling is involved
in pre- and postnatal lung injury and repair process; and
third, several lines of evidence exists that highlight the
impact of impaired WNT/β-catenin signaling on the de-
velopment of adult chronic lung diseases, which seems
similar to lung injury-repair processes in the developing
lung. Additional studies are needed to advance our
current knowledge of the pathogenesis of perinatal lung
diseases, such as BPD, to shed further light into signal-
ing pathways involved that ultimately might lead to
novel therapeutic options for lung injury-repair process
or epigenetic modifications in WNT signaling.
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