
Future
Medicinal
Chemistry 

Editorial

part of

Does ‘Big Data’ exist in medicinal chemistry, 
and if so, how can it be harnessed?

Igor V Tetko*,1,2, Ola Engkvist3 
& Hongming Chen3

1Helmholtz Zentrum München-German 

Research Center for Environmental 

Health (GmbH), Institute of Structural 

Biology, Ingolstädter Landstraße 1, b. 

60w, D-85764 Neuherberg, Germany 
2BIGCHEM GmbH, Ingolstädter 

Landstraße 1, b. 60w, D-85764 

Neuherberg, Germany 
3Discovery Sciences, AstraZeneca R&D 

Gothenburg, Pepparedsleden 1, Mölndal, 

SE-43183, Sweden 

*Author for correspondence:  

Tel.: +49 89 3187 3575  

Fax: +49 89 3187 3585  

itetko@vcclab.org

1801Future Med. Chem. (2016) 8(15), 1801–1806 ISSN 1756-891910.4155/fmc-2016-0163 ©  Igor V Tetko,  Ola Engkvist 
		        & Hongming Chen

Future Med. Chem.

Editorial 2016/09/30
8

15

2016

First draft submitted: 1 August 2016; Accepted for publication: 12 August 2016;  
Published online: 15 September 2016

Keywords: applicability domain • Big Data • chemoinformatics • education in chemistry and 
informatics • local and global models • multitask learning • neural networks • virtual chemical 
spaces

The term ‘Big Data’ has gained increasing pop-
ularity within the chemistry field and across 
science broadly in recent years  [1]. Chemical 
databases have seen a dramatic growth over 
the past decade, with, for example, ChEMBL, 
REAXYS and PubChem providing hundreds 
of millions of experimental facts for tens of 
millions of compounds  [1]. Moreover, even 
larger datasets of experimental measurements 
are held within in-house data collections 
at pharma companies  [2]. Overall, the total 
number of entries across these databases is in 
the range of a billion, 109; however, although 
this number may seem impressive, it pales 
into comparison relative to other fields  [3], 
where the amount of data is frequently mea-
sured in exabytes, 1018. Thus, does Big Data 
really exist within the chemistry field? What 
are such data within medicinal chemistry 
specifically and where do the challenges lie in 
analysis of these data? Big Data refer to data 
out of the scale of traditional applications, 
which require efforts beyond the traditional 
analysis [1]. In this article, we will be discuss-
ing how it applies to medicinal chemistry, 
as well as providing an overview of some of 
the most important trends in the medicinal 
chemistry–Big Data field.

Does Big Data exist in medicinal 
chemistry?
A dataset could be classified as ‘big’ if techni-
cal resources (speed, memory) are not capable 

of analyzing the data, using existing meth-
ods. Big Data in a field like analysis of par-
ticle collision at CERN [3] is driven by physi-
cal challenges (hardware, computer speed 
and physical computer memory required to 
store and analyze such data), which may be 
addressed by the development of new and 
more advanced software.

Medicinal chemistry related data are cre-
ated and curated in pharmaceutical industry 
via high-throughput screening (HTS) and 
drug discovery campaigns and additionally 
also available in databases sourced from scien-
tific journals, patents etc. For example, Astra-
Zeneca in-house screening database contains 
over 150 million structure–activity relation-
ship (SAR) data point [2]. The HTS data from 
pharma companies are usually very sparse and 
for each screened target there is only a small 
number of active hits. Further developments 
are done with a relatively small series of com-
pounds, usually varying from hundreds to 
thousands of compounds for those series. Spe-
cialists who work on these target specific data 
do not have Big Data in their daily work; tra-
ditional modeling algorithm is well enough to 
handle their datasets.

When the focus is on chemogenomics 
data, the situation is different. The big-
gest medicinal chemistry data reservoir, 
PubChem, currently comprise 91 million 
chemical structures and 230 million bio-
activity data points corresponding to over 

“...further progress will critically depend on training programs and 
advances in chemoinformatics, a discipline bridging chemistry and 

informatics.”

SPECIAL FOCUS y Computational chemistry & computer-aided drug discovery – Part II

For reprint orders, please contact reprints@future-science.com



1802 Future Med. Chem. (2016) 8(15) future science group

Editorial    Tetko, Engkvist & Chen

10K protein targets. The total data size is around 
60GBs  [4], which is considered ‘big’ in medicinal 
chemistry terms, but is in fact still well below the 
terabyte or even petabyte data comprised by data-
bases such as eBay  [5] and Amazon  [6]. However, 
if chemical descriptors (such as structural finger-
prints) of compounds are generated for this level of 
dataset, the total data size will probably be in the 
realms of the conventional Big Data size. For each 
specific protein target, the available SAR data will 
be much less and it would be in the range of hun-
dreds of thousands of data points, or up to a few mil-
lion data points if inactive compounds from an HTS 
were taken into account. For building single-target 
quantitative SAR (QSAR) models, the traditional 
machine learning algorithms will still be capable of 
handling this magnitude of data [7]. But, if one wants 
to use all available chemogenomics data (in databases 
like PubChem, ChEMBL etc.) to pursue multitask 
learning (see below) and build one multilabel model 
to predict multiple target activity simultaneously, 
traditional algorithms used in chemoinformatics are 
unlikely to work and it would require huge computer 
power and a dedicated parallel programming model 
to solve the problem.

Another big challenge in medicinal chemistry, 
where Big Data can have an impact, is related to 
the question of which molecule to synthesize next 
in a drug discovery project. To identify the optimal 
candidate for synthesis, large virtual chemical spaces 
need to be explored, which clearly is a Big Data-
related problem. So return to our initial question, 
we can conclude that Big Data does exist in medici-
nal chemistry and there are a number of challenges 
associated with this, depending on which aspect of 
the field is under focus.

Is Big Data really useful for prediction?
Let us now consider an example of how data size can 
make a difference in property predictions. In 2014 
IVT published a melting point (MP) model based 
on approximately 50k compounds  [8], which was 
succeeded by approximately 275k compounds  [9] 
model in 2016. The ‘large’ set of 50 k compounds 
was processed by On-line Chemical Database and 
Modeling Environment (OCHEM)  [10,11] using the 
same approaches applied in multiple previous stud-
ies. The latter set was considered Big Data since we 
could not use the previous tools without changes. 
Among other things, we had to implement paral-

lel calculations using a support vector machines 
method, solve problems of storage of very large data 
matrices using sparse format (including calculations 
with matrices incorporating >0.2 trillion entries), as 
well as account for several other technical challenges. 
Were the results worth our efforts? Yes. The model 
developed with Big Data was more accurate and cal-
culated, for example, the lowest published error for 
Bergström set of drugs  [12]. Moreover, prediction of 
water solubility using Yalkowsky’s General Solubility 
Equation, which is based on MP and octanol/water 
partition coefficient (logP) [13], was also significantly 
improved compared with using the model devel-
oped with 50k [9]. Considering that the Big Data set 
mainly contained data automatically mined from 
patent literature [9], it also proved feasibility and suc-
cess of a developed fully automatic data extraction 
technology.

Multitask learning & deep learning for  
Big Data
Data collection is always a challenging task. The 
measurements of even some simple properties, such 
as solubility in water, can be difficult, time consum-
ing and error prone  [14]. However, many physico-
chemical and biological properties are strongly inter-
related, for example, the water solubility depends 
on logP and MP as shown by the General Solubil-
ity Equation  [13]. One strategy could be to explore 
these relationships by developing models for sev-
eral properties simultaneously  [15]. This multitask 
learning concept is especially attractive for building 
polypharmacology prediction models, since many 
protein targets are interrelated due to the intrin-
sic similarity in sequence or interaction pattern of 
binding pockets. One recent study shows that mas-
sive multitask networks obtain predictive accuracies 
significantly better than single-task methods when 
the different outcomes are related to each other [16]. 
Deep learning methods are also thought to help in 
addressing this issue (see  [17,18] for a review of these 
approaches in drug discovery). These new and prom-
ising approaches have already been used to achieve 
superhuman accuracy in recognizing Chinese 
characters  [19] and to develop a computer program 
(AlphaGo), which was capable of beating 18-time 
world champion Lee Sedol at the ancient and com-
plicated game, Go  [20]. An important milestone for 
deep learning and multitask learning was their per-
formance in the TOX21 challenge, where the combi-
nation of them provided overall best accuracy using 
the area under the curve performance measure  [21]. 
Interestingly, the best balanced accuracy was calcu-
lated using Associative Neural Networks [22], which 

“The measurements of even some simple 
properties, such as solubility in water, can be 
difficult, time consuming and error prone.”
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were developed using traditional ‘shallow’ neural 
networks [23]. This method also contributed the top-
ranked model for the ToxCast challenge  [24]. Prob-
ably, their combination, also known as ‘deep Asso-
ciative Neural Networks’, can contribute even better 
models. Deep learning has already demonstrated 
advantages in combining tasks and data by simulta-
neous analysis of 259 datasets totaling >40 M data 
points from public databases  [16]. Large-scale che-
mogenomics modeling is currently an active research 
field with several important publications recently 
from Jansen Pharmaceuticals [25–28]. The approaches 
may still need to be optimized to learn imbalanced 
datasets, data weighted by measurements accura-
cies, to identify methods for optimal combination 
of qualitative and quantitative data as well as use of 
unsupervised data [17]. Thus, instead of filtering data 
by removing low-quality records coming from less 
reliable experiments, one may develop better global 
models by using all data. A Horizon2020-funded 
research project is currently working on addressing 
the current limitations of large-scale chemogenomics 
modeling [29]. The data of different quality could be 
weighted by their experimental or estimated accura-
cies. In the future, the machine learning methods 
may also be merged with systems biology approaches 
to predict pharmacokinetic/pharmacodynamic 
(PK/PD) and/or to better use in vitro measurements 
to estimate in vivo toxicity, which remains a chal-
lenge for traditional methods  [24]. Another impor-
tant direction is the optimal use of global models to 
create highly accurate local models based on addi-
tional data, as was demonstrated in our study that 
looked at predicting the logP of Pt complexes using 
computational methods  [30]. The development of 
such approaches is important to improve global mod-
els for new compound series using few high accu-
racy measurements. These tasks are typical among 
the medicinal chemistry field and this is one of the 
application areas where the use of Big Data is highly 
required.

Challenges of exploring virtual chemical 
spaces
The global models developed with technologies 
described in the previous section can be particularly 
useful for searching virtual chemical spaces, which 
is basically a Big Data problem. In a drug discovery 
project, the constantly posted question by medicinal 
chemist is which molecule to synthesize next. Due 
to the vastness of the chemical space even to enu-
merate the chemical space around the existing pri-
oritized compounds and to score the compounds for 
synthetic feasibility, ADME and on-target as well 

as off-target potency is a true Big Data problem. If 
all available information is taking into account with 
the latest machine learning algorithms like multitask 
learning where all models are trained simultane-
ously much larger computing resources are needed 
in comparison to standard single QSAR models. 
Additionally it is desirable that all models can be 
automatically updated every time new experimental 
data are uploaded. A specific example would be to 
build models to predict off-targets for each molecule 
proposed for synthesis. To train multitask models for 
the whole genome would be several thousand models 
with up to more than one million data points per 
model if HTS data are used for training the mod-
els. Thus the enumeration of chemical space, as well 
as the building and updating of models, are all Big 
Data problems that are highly relevant for medicinal 
chemistry.

As an example, the chemical universe database 
GDB17 enumerated >166 billion compounds contain-
ing up to 17 atoms [31] while the total space of drug-like 
molecules is estimated to be about 1060. For medicinal 
chemists these virtual spaces can be used to identify 
new drug-like molecules with favorable properties, 
for example, promising ADME/T properties that are 
conducive toward drug development. This is a highly 
challenging task. Even an annotation of GDB17 
using a fast prediction model, which would calculate 
100,000 molecules per minute, would require more 
than 3 years of computing time on a single proces-
sor [1]. Moreover, the straightforward prediction of all 
these compounds can be of a limited value. The num-
bers of existing experimental measured data points 
vary from hundreds (complex biological properties 
such as oral bioavailability) to hundreds of thousands 
of measurements (simple physicochemical properties, 
such as MP). The use of multilearning of several prop-
erties can help to enlarge experimental space, but even 
in this case the developed models would still need to 
extrapolate from one experimental measurement to 
hundreds of thousands or even hundreds of millions 
of compounds for prediction of GDB17. The extrap-
olations, of course, cannot be reliable for all com-
pounds. The applicability domain (AD) methods [32] 
can help to identify subsets of molecules in the twi-
light drug-like zone, in other words, molecules with 
reliable predictions but also with properties favorable 
for drug development (high solubility, low toxicity 
and so on). Although many AD methods exist [32], a 
model based on compounds that are solid at a room 

“The development and use of methods to 
advance analysis of Big Data requires adequately 

trained specialists.”
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temperature failed to identify compounds, which have 
MP below 0°C, using a state-of-the art method for 
AD definition  [8]. This result indicates that the AD 
methods need further development to be reliably used 
for analysis of large virtual chemical spaces. To bet-
ter estimate the AD and accordingly the confidence 
in predictions, the method of conformal prediction 
has been pioneered in the drug discovery field by 
AstraZeneca and collaborators  [33]. Conformal pre-
dictors were originally developed at Royal Holloway, 
University of London, UK.

A prominent example of medicinal chemistry-related 
application of Big Data in pharmaceutical industry 
is the design and utilization of the so-called virtual 
library, which is constructed on compiled large num-
ber of organic chemical reactions and available chemi-
cal reagents. In AstraZeneca, such a virtual library was 
constructed using synthetic protocols extracted from in-
house corporate electronic laboratory notebook to enable 
virtual screening in this huge chemical space (can reach 
1015 products in theory) via 2D structural fingerprint [34]. 
Similar systems have been developed in other pharma-
ceutical companies. BI-Claim from Boehringer Ingel-
heim uses in-house combinatorial library generation 
protocols and commercial reagents to generate virtual 
libraries  [35]. The system could theoretically enumerate 
5 × 1011 virtual chemical structures and the similar-
ity searching can be carried out via Ftrees-Fragment 
Spaces. One application of this platform on drug dis-
covery project has been reported [36] that virtual screen-
ing on the combinatorial libraries via Ftrees-Fragment 
Spaces led to the identification of two new structural 
classes of GPR119 agonists with submicromolar in 
vitro potencies. Researchers from Pfizer reported on 
the Pfizer Global Virtual Library (PGVL) of syntheti-
cally feasible compounds, which makes use of over 
1200 combinatorial reactions and can theoretically 
enumerate 1014−1018 virtual compounds  [37]. A cus-
tom desktop software package, PGVL-Hub, has been 
developed to enable the similarity search on interested 
queries and design-focused libraries  [38]. The impact 
of PGVL-Hub has been applied  [39] in the discovery 
of novel Chk1 inhibitors, where two lead compounds 
were obtained through two rounds of focused library 
design using PGVL-Hub based on one initial HTS hit. 
Recently researchers of Lilly reported using their own 
virtual library platform, Proximal Lilly Collection, to 
carry out near neighbor search, focused library design 
and virtual screening. To develop selective hRIO2 
Kinase Inhibitors, an similarity search on Proximal 
Lilly Collection based on an old anti-inflammatory 
drug diphenpyramide was done and led to the iden-
tification of one follow-up compound with tenfold 
increment on its potency [40].

Training in Big Data analytics
The development and use of methods to advance 
analysis of Big Data requires adequately trained spe-
cialists  [1]. In this respect chemoinformatics special-
ists, who receive education both in chemistry and in 
informatics, will play a leading role in the further 
development of this field. Funding provided by the EU 
commission to educational programs, such as Marie 
Skłodowska-Curie Innovative Training Network 
European Doctorate ‘Big Data in Chemistry’  [41], is 
also important in developing specialized training pro-
grams that closely match the requirements of industry 
with proposed theoretical and practical training.

Conclusion
While one may question if Big Data accurately 
describes the datasets handled within the medicinal 
chemistry field, there is no denying that there is a 
demand for Big Data approaches that are capable of 
analyzing the increasing volumes of data in this field. 
Techniques and methods that enable the exploration of 
virtual chemical spaces and (deep) learning of several 
properties simultaneously are expected to allow medic-
inal chemists to efficiently exploit Big Data. Last but 
not least, further progress will also critically depend on 
training programs and advances in chemoinformatics, 
a discipline bridging chemistry and informatics.
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