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Abstract The non-cancer mortality data for cerebrovas-

cular disease (CVD) and cardiovascular diseases from

Report 13 on the atomic bomb survivors published by the

Radiation Effects Research Foundation were analysed to

investigate the dose–response for the influence of radiation

on these detrimental health effects. Various parametric and

categorical models (such as linear-no-threshold (LNT) and

a number of threshold and step models) were analysed with

a statistical selection protocol that rated the model

description of the data. Instead of applying the usual

approach of identifying one preferred model for each data

set, a set of plausible models was applied, and a sub-set of

non-nested models was identified that all fitted the data

about equally well. Subsequently, this sub-set of non-nes-

ted models was used to perform multi-model inference

(MMI), an innovative method of mathematically combin-

ing different models to allow risk estimates to be based on

several plausible dose–response models rather than just

relying on a single model of choice. This procedure thereby

produces more reliable risk estimates based on a more

comprehensive appraisal of model uncertainties. For CVD,

MMI yielded a weak dose–response (with a risk estimate of

about one-third of the LNT model) below a step at 0.6 Gy

and a stronger dose–response at higher doses. The calcu-

lated risk estimates are consistent with zero risk below this

threshold-dose. For mortalities related to cardiovascular

diseases, an LNT-type dose–response was found with risk

estimates consistent with zero risk below 2.2 Gy based on

90% confidence intervals. The MMI approach described

here resolves a dilemma in practical radiation protection

when one is forced to select between models with pro-

foundly different dose–responses for risk estimates.

Keywords Risk assessment � Radiation � Cerebrovascular

disease � Cardiovascular diseases � Threshold-dose � LNT

Introduction

One of the most important questions in radiation research

relates to the shape of the dose–response for detrimental

health effects at low doses, that is, whether any small dose

of ionizing radiation adds to health risks, or whether there

may be a threshold below which radiation may have no

effect, or whether even protective effects may occur

(Brenner et al. 2003; Averbeck 2009). This question bears

essential relevance for our societies given, for example, the

widespread use of medical imaging techniques such as CT

scans, X-ray images, and mammography. It is also relevant

for air crews and large worker populations who are

exposed occupationally, for example, in nuclear installa-

tions. The possible risks of ionizing radiation are not lim-

ited to cancer but also relate to non-cancer diseases (Little

et al. 2010). In that context, the question of a possible

threshold or protective effects at low and/or medium doses

is equally important as it is for cancer (Preston et al. 2003;

Shimizu et al. 2010).
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The mortality data from the Life Span Study (LSS),

relating to the A-bomb survivors in Hiroshima and Naga-

saki, are generally considered to be important for esti-

mating the risk associated with ionizing radiation. Analyses

of these data suggest a role of ionizing radiation in the

formation of non-cancer diseases such as cerebrovascular

disease (CVD)1 and cardiovascular diseases excluding

CVD2 (Preston et al. 2003). Preston et al. (2003) concluded

that the evidence for radiation effects on non-cancer mor-

tality remains strong, with risks elevated by about 14% per

Sv during the last 13 years of follow-up and that the best

estimate for a threshold-dose is 0.2 Sv with an upper bound

of about 0.7 Sv with no evidence against the linear-no-

threshold hypothesis.

For protracted exposures, an important data set is the

Mayak worker cohort (Azizova et al. 2008). The Mayak

workers were exposed to low and medium doses at low

dose rates. This together with the fact that these individuals

did not have the threatening and traumatic experience of

being exposed to the detonation of a nuclear bomb makes

this data set especially valuable for risk estimations of

general populations. Recently, statistically significant

increasing trends in the incidence of cardiovascular and

cerebrovascular diseases with external c-ray dose have

been reported for this cohort (Azizova et al. 2010a, b,

2011). Azizova et al. (2010a) found statistically significant

increasing trends with both total external gamma-ray dose

and internal liver dose in the incidence of ischaemic heart

disease, a form of cardiovascular disease. They also

reported statistically significant increasing trends in cere-

brovascular disease incidence but not mortality with both

total external c-ray dose and internal liver dose from

a-particle radiation (Azizova et al. 2010b, 2011).

In an extensive review, Little et al. (2010) present evi-

dence for the epidemiological associations between lower-

dose exposures and circulatory disease risks. They

reviewed epidemiological data related to the atomic bomb

survivors, low- and moderate-dose therapeutically exposed

groups, and diagnostically, occupationally, and environ-

mentally exposed groups. The authors conclude that the

epidemiological evidence for an elevation of these diseases

by moderate and low doses remains suggestive rather than

persuasive (Little et al. 2010).

In the current study, various plausible dose–response

curves (such as linear-no-threshold (LNT), linear quadratic,

linear with threshold, step functions, hormesis-like dose–

responses) were applied to the LSS data for CVD and

cardiovascular diseases excluding CVD from Report 13

(Preston et al. 2003), and suitable quality-of-fit criteria

were used to select the preferred models. A series of

likelihood-ratio tests was used to obtain a set of preferable

non-nested models. Multi-model inference (MMI), an

innovative method to combine the estimates of several

plausible non-nested models (Burnham and Anderson

2002; Claeskens and Hjort 2008), was then applied. The

method resulted in a joint dose–response for each of the

two biological endpoints. In the field of radiation epide-

miology, MMI poses a fascinating new approach that

avoids the danger of producing biased results from relying

on just one single model of choice. Before the MMI

method was introduced to radiation epidemiology by

Walsh and Kaiser (2011), there was an earlier proposal to

combine different probability distributions by assigning

different probabilities to them regarding the possible

existence of low-dose thresholds (Land 2002). This con-

cept of Land (2002) can be regarded as a stimulating

suggestion to apply MMI. For a further discussion of model

selection criteria in radiation epidemiology, see the study

by Walsh (2007).

An analysis of a more recent LSS data set with follow-

up from 1950 to 2003 has also been performed (Shimizu

et al. 2010). However, the question whether the dose–

response is linear at low doses without threshold or whe-

ther nonlinear dose–response features are present is still

unresolved. In the present study, it is shown that the shape

of the dose–response curve cannot be found by exclusively

using either the LNT or the linear threshold model, the

approach used by Shimizu et al. (2010). The fact that

several risk models yield plausible fits to the data is duly

considered and accounted for here.

Materials and methods

Data on non-cancer disease mortality

The present analyses are based on two data sets for cere-

brovascular disease (CVD; ICD-9 430–438) and cardio-

vascular diseases excluding CVD (ICD-9 390–429,

440–459) of LSS Report 13 (Preston et al. 2003; data

fileR13MORT.DAT from http://www.rerf.or.jp). In the

remainder of this publication, the ICD-9 codes 390–429,

440–459 are simply referred to as cardiovascular diseases.

In the file R13MORT.DAT, the data are provided in a

person-year table and are categorized by city, sex, age at

exposure, age attained, calendar time period during which

1 It is noted that Preston et al. (2003) and Shimizu et al. (2010) refer

to the ICD-9 codes 430–438 as ‘‘stroke’’, while stroke is in fact a

subgroup of ICD-9 430–438. The latter represents cerebrovascular

disease.
2 It is noted that Preston et al. (2003) and Shimizu et al. (2010) refer

to the ICD-9 codes 390–429, 440–459 as ‘‘heart disease’’, while these

ICD-9 codes are better described as cardiovascular diseases excluding

CVD (Dr. Frauke Neff, Helmholtz Zentrum München, personal

communication).
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the mortality checks were made, and weighted survivor

colon dose. For each data group, the data file contains

person-year weighted means of age attained, age at expo-

sure, colon dose with a weight of ten for the neutron

contribution, the number of person-years, and the number

of deaths cases.

The data were analysed with exactly the same restric-

tions applied by Preston et al. (2003): we used data with

follow-up starting on 1 January 1968 and ending on 31

December 1997. Only proximal survivors were taken

where proximal is taken to mean survivors who were

within a radius of 3 km from the hypocenter at the time of

bombing. That gives 50,364 individuals (19,467 men and

30,897 women), of whom 3,954 died from CVD (1,434

men and 2,520 women) and 4,477 died from cardiovascular

diseases (1,614 men and 2,863 women). The number of

person-years is 1200,991.8 (452,161.6 and 748,830.2 per-

son-years for men and women, respectively). Data per-

taining to men and women were fitted jointly.

Descriptive risk models

The mortality data for CVD and cardiovascular diseases

from Report 13 of the LSS were analysed with the following

parametric and categorical models for the risk that stems

from radiation: the LNT model, the quadratic model and the

linear-quadratic model, the linear-exponential model, the

linear threshold model (often referred to as threshold model

within this study), various step models, hormesis-like

models and one categorical model. Altogether, eleven dif-

ferent dose–responses were tested (Fig. 1). All of them were

implemented either as excess relative risk (ERR) models or

as excess absolute risk (EAR) models. The general form of

an ERR model is as follows: h = h0 9 (1 ? ERR(D, s, a,

e)) where h is the total hazard function, h0 is the baseline

model and the function ERR(D, s, a, e) describes the change

of the hazard function with weighted colon dose D allowing

for effects of sex (s), age at exposure (e) and attained age

(a). It is ERR(D, s, a, e) = err(D) 9 e(s, a, e). Here,

err(D) describes the shape of the dose–response function

and e(s, a, e) contains the dose-effect modifiers sex, age

attained, and age at exposure. The general form of an EAR

model is h = h0 ? EAR(D, s, a, e) where EAR(D, s, a,

e) = ear(D) 9 e(s, a, e). Mathematical details related to the

effect modifiers are given in Sect. 3 of the Online Resource.

For h0, we first applied the Preston baseline model given

in Eq. (A1) of the Online Resource (see file R13models.log

at http://www.rerf.or.jp/library/dl_e/lss13.html, Preston et al.

(2003)).

For err(D) and ear(D) the following dose–response

models were used:

err Dð Þ ¼ err � D LNT model; #1 in Fig:1

err Dð Þ ¼ 1:12� err�D2 Quadratic model; #2 in Fig:1

err Dð Þ ¼ err1 � Dþ 1:12� err2 � D2

Linear - quadr: model; #3 in Fig:1

err Dð Þ ¼ err1 þ err2Dð Þ � exp �err3D2
� �

Linear - expon: model; #4 in Fig:1

errðDÞ ¼ 0 D\Dth

errðD� DthÞ D�Dth

� �

Linear thresh: model; #5 in Fig:1

err Dð Þ ¼ 0:5� scale� tanh s D� Dthð Þð Þ þ 1½ �
Step model; #6 in Fig:1

errðDÞ ¼ 0 D\Dth

err � D D�Dth

� �

Step model with slope; #7 in Fig:1

errðDÞ ¼ 0 D\Dth

err1 þ err2ðD� DthÞ D�Dth

� �

Step model with slope; #8 in Fig:1

errðDÞ ¼
0 D\0:005 Gy

err1 0:005 Gy�D\Dth

err2 D�Dth

8
<

:

9
=

;

Hormesis - like model; #9 in Fig:1

errðDÞ ¼
0 D\0:005 Gy

err1 0:005 Gy�D\Dth

err1 þ err2ðD� DthÞ D�Dth

8
<

:

9
=

;

Hormesis - like with slope; #10 in Fig:1

errðDÞ ¼

err1 0�D\D1

err2 D1�D\D2

err3 D2�D\D3

err4 D�D3

8
>><

>>:

9
>>=

>>;

3 - step categorical model; #11

The necessary adjustments for random errors in

dosimetry applied to the dose term are already applied in

the publicly available data, but a separate adjustment

involving a multiplication factor to the dose-squared

covariable should be done explicitly, either according to

Pierce et al. (1990) (factor 1.12) or Pierce et al. (2008)

(revised factor 1.15). Since most of the published analyses

apply the factor 1.12, this has been adopted here for the

quadratic and linear-quadratic models.

The Preston baseline model (given in Eq. (A1) of the

Online Resource) was optimized here with series of like-

lihood-ratio tests. For nested models, the difference

between their deviances (dev) is v2-distributed (Claeskens

and Hjort 2008). A model is considered an improvement

over another model with a 95% probability if the deviance

is lowered by at least 3.84 points after adding of one

parameter. A description of this streamlining process,
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which has also been applied in a recent study on breast

cancer risk in atomic bomb survivors (Kaiser et al. 2011),

is given below.

Streamlining the Preston baseline model

Preston’s fit to the LSS data for CVD (presented in

Table 13 in Preston et al. (2003)) was reproduced in the

first step. Preston et al. (2003) concluded that an LNT

model implemented as ERR model fitted the data best. In

order to reproduce this, the Preston baseline model given in

Eq. (A1) of the Online Resource was combined with an

LNT model, implemented as an ERR model and fitted to

the joint data for CVD in men and women. This model is

referred to as Preston’s ERR-LNT model and contains 30

model parameters (dev = 3599.58, Table 1). Then, each of

the 29 baseline parameters was tested for its significance at

the 95% significance level by setting it to 0 and refitting

all the other parameters. Rigorous testing led to a new set

of statistically significant baseline parameters, with eight

parameters less than Preston et al. (2003) used within their

baseline model [h0 from Eq. (A1)]: the new model no

longer contained four age at exposure dependences, the

related three age knots, and one age attained dependence.

In addition, it was found that the model fit significantly

improved when two other age knots and one age at expo-

sure knot were allowed to be free (for details consult

Sect. 2 of the Online Resource). The streamlined baseline

model for CVD, which was used in combination with the

11 models depicted in Fig. 1, therefore has 21 (29 - 8)

model parameters (see Table S1 in the Online Resource).

For cardiovascular diseases, an analogous procedure

was applied. Preston’s best fit of the data for cardiovascular

diseases was reproduced: the Preston baseline model given

in Eq. (A1) of the Online Resource was combined with an

LNT model, implemented as ERR model and fitted to the

joint data for cardiovascular diseases. The results of fitting

Preston’s ERR-LNT model are given in Table 1:

dev = 3709.71 with 30 model parameters. Then, each of

the 29 baseline parameters was tested for its significance

Fig. 1 Parametric (#1 to #8,

#10) and categorical (#9, #11)

models used to investigate the

shape of the dose–responses

related to the risk that stems

from ionizing radiation. 1st row:

LNT model, quadratic model,

linear-quadratic model; 2nd

row: linear-exponential model,

linear threshold model

(sometimes only referred to as

threshold model, the threshold-

dose is denoted by Dth), step

model; 3rd row: step model with

slope, another step model with

slope, hormetic-like model; 4th

row: hormetic-like model with

slope; 3-step categorical model.

Note that in both hormetic-like

models the excess risk is set to

zero for D \ 0.005 Gy
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resulting in a streamlined baseline model with 14 model

parameters less than the Preston baseline model, which also

lost its city dependence (see Table S2 in the Online

Resource). The streamlined baseline model no longer

contained four age at exposure dependences, three age

attained dependences, and the related five age knots. Fur-

thermore, it was found that the model fit significantly

improved when two other age knots were allowed to be

free (for details consult Sect. 2 of the Online Resource).

The streamlined baseline model for cardiovascular diseases

therefore has 15 (29 - 14) model parameters (see Table S2

in the Online Resource).

Fitting the descriptive risk models

After having acquired two streamlined baseline models for

CVD and cardiovascular diseases with the procedure

described in the previous two paragraphs, all other models

(i.e. models other than the LNT model that was already

used for the streamlining process) depicted in Fig. 1 were

also combined with the streamlined baseline models as

either ERR model or EAR model and fitted to the data for

CVD and cardiovascular diseases. For those parametric and

categorical models that contain a threshold-dose Dth, the

following set of different values for Dth was used to care-

fully investigate which value leads to the smallest devi-

ance: 0.0001 Gy, 0.0002,…, 0.0005, 0.001, 0.005, 0.01,

0.02, …, 0.09, 0.1, 0.2, …, 0.9, 1, and 2 Gy. In the linear

threshold model, however, Dth was adjusted in the model

fit. The step model was replaced by a modified hyperbolic

tangent function as described below. Throughout this

extensive approach, likelihood-ratio tests were applied to

compare nested models with each other, to eliminate those

nested models with inferior deviance values and to obtain

two final sub-sets of non-nested models, one for each

detrimental health outcome.

The step model (Fig. 1) was not implemented as a cat-

egorical model. Instead, the following modified hyperbolic

tangent was used: 0.5 9 scale 9 [tanh(s(D - Dth)) ? 1].

With appropriate values for scale, slope s, and Dth, this

flexible function can accommodate various entirely differ-

ent shapes, among them the step function as depicted in

Fig. 1 (model #3). With the hyperbolic tangent, steps are

not imposed a priori but are a result of a fit to the data. The

advantage of this function is the fact that it generally allows

an estimate of Dth to be obtained with greater accuracy by

fitting the model to data, while in a categorical implemen-

tation a value of Dth has to be assumed for each fit.

It was also successively investigated whether or not any

of the three dose-effect modifiers, that is, sex, age attained,

and age at exposure improved the model fits significantly.

Data-fitting techniques and MMI

The MECAN software (Kaiser 2010) was applied to fit the

EAR and ERR models to the data. This software uses

Poisson regression (Schöllnberger et al. 2006) to estimate

the values of the adjustable model parameters by fitting the

model to the data. For the minimization of the Poisson

deviance, MECAN applies Minuit2 (2008). Symmetric,

Table 1 For both biological endpoints, the preferable final non-

nested models are shown with related final deviances (dev), difference

in final deviances (Ddev) with respect to the model with the smallest

deviance, number of model parameters (Npar), AIC-values, difference

in AIC-values (DAIC) with respect to the model with the smallest

AIC-value, and Akaike weights

dev Ddev Npar AIC DAIC Weight

CVD (ICD-9 430–429)

ERR-LNT model [#1] 3569.51 3.46 22 3613.51 1.46 0.2628

ERR-quadratic model [#2] 3570.14 4.09 22 3614.14 2.09 0.1918

ERR-step model [#6], Dth = 0.62 Gy 3566.05 0 23 3612.05 0 0.5454

Preston’s ERR-LNT model 3599.58 33.53 30 3659.58 47.53 –

Cardiovascular diseases (390–429, 440–459)

EAR-LNT modela [#1] 3693.73 0 17 3727.73 0 0.3619

ERR-quadratic modela [#2] 3694.05 0.32 17 3728.05 0.32 0.1918

EAR-threshold model [#5], Dth = 2.0 Gy 3695.0 1.27 17 3729.0 1.27 0.1379

EAR-step model [#6], Dth = 2.19 Gy 3695.66 1.93 17 3729.66 1.93 0.3084

Preston’s ERR-LNT model 3709.71 15.98 30 3769.71 41.98 –

As a comparison, the values are also shown for Preston’s ERR-LNT models. Note that for cerebrovascular disease the three preferable models are

ERR models; for cardiovascular diseases, the four preferable non-nested models are EAR models. The numbers in brackets refer to the eleven

dose–responses depicted in Fig. 1
a Contains an age-dependent dose-effect modifier
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Wald-type standard errors are calculated for the parameter

estimates.

The ERR and EAR risk estimates are calculated directly

from the hazard function:

ERR ¼ ðh=h0Þ � 1

EAR ¼ h� h0:
ð1Þ

Confidence intervals (CI) for the risk estimates given in

Eq. (A1) are calculated with Latin hypercube sampling

(LHS) which accounts for uncertainties and correlations of

all adjustable parameters. For a risk variable such as ERR, a

probability density distribution of 104 realizations is

generated, which is used to derive statistical descriptors

such as mean, median, and percentiles. The MECAN

software (Kaiser 2010) allows to perform Poisson

regression, comparison of observed and expected cases,

and simulation of uncertainty intervals within one run. The

software package and all model-related input and result

files are available from the authors upon request.

For both investigated detrimental health outcomes, the

final non-nested models, which are presented in the

‘‘Results’’ section, were weighted according to the AIC

(see below) and used to perform MMI, which is a method

of mathematically superposing different non-nested models

that all describe a certain data set almost equally well

(Burnham and Anderson 2002). The method applies

Akaike’s Information Criterion (Akaike 1973, 1974):

AIC = dev ? 2 Npar, where Npar is the number of model

parameters. For each model fit, an AIC-value is calculated.

For a set of n non-nested models, the Akaike weight, pm, is

calculated for model m according to the following equation

(Claeskens and Hjort 2008):

pm ¼
exp �DAICm=2ð Þ

Pn
j¼1 exp �DAICj=2

� � : ð2Þ

Here, DAICm = AICm - AIC0, where AICm is the AIC-

value for model m and AIC0 is the smallest AIC-value of all

n models. The resulting weights, multiplied by a factor of

104, give the number of samples for risk estimates to be

generated by LHS simulations. Then, for each set of

preselected values of age attained, age at exposure, and

dose, the created model-specific probability density

functions (PDFs) are merged. The resulting probability

density functions, each of size 104, represent all uncertainties

arising within a model and from the superposition of the

selected models. Statistical quantities such as mean, median,

and percentiles are derived from the final PDFs.

Below, larger deviances compared to our best models

(i.e. those with smallest AIC-values) are denoted by posi-

tive values of Ddev. The notation Dpar gives the difference

in number of parameters compared to the models with

smallest AIC.

Results

Using the approach outlined in the ‘‘Materials and methods’’

section, it was found that for CVD the following final three

non-nested ERR models out-competed all other models and

were included in the sub-set for MMI: an ERR-LNT model

consisting of the streamlined baseline model with 21 sig-

nificant baseline parameters combined with an LNT model

via parameter err (Ddev = 3.46; Table 1), an ERR-qua-

dratic model (Ddev = 4.09; Table 1), and an ERR-step

model with Dth = 0.62 Gy (Ddev = 0; Table 1 and

Fig. 1). Table 1 gives for these final three non-nested

models all essential information obtained by fitting them to

the CVD data. Table S1 in the Online Resource provides

all related model parameters and related best estimates

together with Wald-type standard errors: all three models

contain 21 baseline parameters; the ERR-LNT model and

the ERR-quadratic model each contain one radiation-rela-

ted parameter (err); the ERR-step model has two radiation-

related parameters (scale, Dth). As a comparison, Table 1

also includes the results for Preston’s ERR-LNT model:

Ddev = 33.53 and Dpar = 7, that is, even though Preston’s

ERR-LNT model has 7 parameters more than our ERR-

step model, the latter still leads to a better fit than the

Preston model by 33.53 deviance points. This improvement

in fit is related to the free age knots and age at exposure

knots described in the ‘‘Materials and methods’’ section.

For cardiovascular diseases, the MMI sub-set consisted

of four non-nested EAR models: an EAR-LNT model

(Ddev = 0), an EAR-quadratic model (Ddev = 0.32), an

EAR-threshold model with Dth = 2.0 Gy (Ddev = 1.27),

and an EAR-step model with Dth = 2.19 Gy (Ddev =

1.93). The first two models both include a dose-effect

modifier that depends on age attained. The step model was

implemented as a hyperbolic tangent function. Table 1

gives, for each of the final four models, all essential

information obtained by fitting them to the data for car-

diovascular diseases. Refer to Table S2 (Online Resource)

for all related model parameters (baseline and radiation

related), their best estimates and Wald-type standard errors.

It is noted that for younger ages the significant dose-effect

modifier in the EAR-LNT model leads to smaller slopes

than the one depicted in Fig. 3 (see Sect. 3 of the Online

Resource for details). As a comparison, Table 1 also

includes the results for Preston’s ERR-LNT model:

Ddev = 15.98 and Dpar = 13, that is, although Preston’s

ERR-LNT model has 13 parameters more than our EAR-

LNT model, the latter fits the data for cardiovascular

diseases by 15.98 deviance points better than Preston’s

ERR-LNT model (Table 1).

The related AIC-values are shown in Table 1 together

with the Akaike weights pm (2). The latter were used to

perform MMI as described in the ‘‘Materials and methods’’
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section. The results are shown in Figs. 2 and 3. For CVD,

the deviance of 3566.57 (Ddev = 0.49) related to MMI is

easily obtained, since the dose–response contains no dose–

effect modifiers. The MMI predicts a very low ERR for

doses below the threshold, because of the contribution from

the ERR-step model with a threshold-dose of 0.62 Gy, and

the 95% CIs include zero risk (Table 2). Therefore, the

MMI risk estimates for CVD presented here are consistent

with zero risk below the threshold of 0.62 Gy. The results

for cardiovascular diseases follow a similar pattern: based

on the 90% CI, the MMI implies zero risk up to 2.24 Gy.

The striking improvements of the deviances presented

here compared with those from Preston’s ERR-LNT fits

(Table 1) were mainly achieved by streamlining the base-

line models. Therefore, better matches of observed and

predicted cases were expected mainly in the group of

‘‘unexposed’’ survivors (i.e. individuals with doses below

5 mGy). To test this assumption, it was investigated which

categories of dose and age attained contribute most to the

decrease in deviance, found here with the preferred models,

when compared to Preston’s ERR-LNT fits. For CVD, the

preferred model according to AIC is the ERR-step model,

for cardiovascular diseases it is the EAR-LNT model

(Table 1). Using the related best estimates from Tables S1

and S2, forward calculations were performed with the data

sets stratified into several groups of weighted colon dose

and age attained. For CVD in men, the strongest contri-

bution of 8.3 points to the improvement in deviance stems

from individuals in dose category 0.1 \ D B 0.5 Gy with

ages attained of 40 years and higher. For women, the

strongest contribution of 19.8 points is related to dose

categories 0.005 \ D B 0.1 Gy and 0.5 \ D B 1 Gy with

ages attained of 40 years and higher. For cardiovascular

diseases, the strongest contribution of 12 points stems from

women in dose categories 0.1 \ D B 0.5 Gy and

0.5 \ D B 1 Gy at ages of 60 and higher, while men

hardly improve the final deviance compared to the fit with

Preston’s ERR-LNT model (1915.21 versus 1915.88).

Detailed results can be seen in Tables S3, S4, and S5 in the

Online Resource.

For both detrimental health outcomes, the risk estimates

ERR and EAR were calculated for the multi-model infer-

ences and for the non-nested models listed in Table 1. The

results are given in Tables 2 and 3 for a dose of 1 Gy and

for different values of age attained (50 and 70 years) and

age at exposure. For CVD and cardiovascular diseases, the

mean age of the cases (i.e. of individuals who died from

these diseases) was about 77 and 78 years, respectively.

Because of the threshold at 0.62 Gy for CVD, for this

disease ERR and EAR were also calculated for 0.2 Gy. The

risk estimates from Preston et al. (2003) and Shimizu et al.

(2010) are also provided. For CVD, the EAR depends on

city and sex because it is calculated from ERR models and

because the streamlined baseline model presented here

depends on city and sex. Therefore, the EAR-values for

MMI and for the single models #1, #2, and #6 in Table 2

are only valid for men from Hiroshima. For cardiovascular

diseases, the ERR depends on sex because it is calculated

Fig. 2 ERR for cerebrovascular disease versus weighted colon dose

for the final three non-nested ERR models and the multi-model

inference (MMI) (Table 1). Also shown are point estimates and

related 90% CI for a 3-step categorical ERR model that divides the

dose range into four categories: D \ 0.62 Gy, 0.62 Gy B D \ 1 Gy,

1 Gy B D \ 1.5 Gy, and D C 1.5 Gy. The 90% CI for the MMI are

provided in Table 2 for absorbed doses of 0.2 and 1 Gy. The figure is

valid for men and women of both cities. The preselected values for

age at exposure and age attained are 30 and 70 years, respectively

Fig. 3 EAR for cardiovascular diseases versus weighted colon dose

for the final four non-nested EAR models and the multi-model

inference (refer to Table 1). Also shown are point estimates and

related 90% CI for a 3-step categorical ERR model that divides the

dose range into four categories: D \ 0.75 Gy, 0.75 Gy B D \ 1.5 Gy,

1.5 Gy B D \ 2.19 Gy, and D C 2.19 Gy. The 90% CI for the MMI

are provided in Table 3 for an absorbed dose of 1 Gy. The figure is

valid for men and women of both cities. The preselected values for

age at exposure and age attained are 30 and 70 years, respectively
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from EAR models and because the applied streamlined

baseline model depends on sex (details are given in Sect. 5

of the Online Resource).

Discussion

In the present study, the dose–responses of the LSS non-

cancer mortality data for CVD and cardiovascular diseases

were investigated using different parametric and categori-

cal models (Fig. 1). Two sub-sets of final, preferable, non-

nested models were identified, one for each detrimental

health outcome. These models are summarized in Table 1.

They all describe the data about equally well: only rela-

tively small differences in deviances and AIC-values were

found.

For CVD, the ERR-step model (model #6 in Fig. 1; with

the step smoothed by the hyperbolic tangent function) with

a threshold-dose of Dth = 0.62 Gy has the lowest AIC. The

LNT model and the quadratic model are also included in

the MMI (Fig. 2), resulting in a weak dose–response below

the threshold (with a risk estimate of about one-third of that

from the LNT model) and a stronger dose–response for

higher doses. MMI results in a small excess relative risk

below the threshold. The 90% confidence intervals are

compatible with no risk up to 0.62 Gy (Table 2). This is

confirmed by a fit using a categorical model: the risk

estimate in the lowest dose group is not significantly dif-

ferent from zero (Fig. 2).

An analogous argument holds for the analysis of the

LSS data for cardiovascular diseases (Fig. 3). Again, the

MMI does not contain any threshold-dose but the lower

bound of the related 90% CI at 1 Gy is zero (Table 3). The

MMI is in fact consistent with zero risk up to 2.24 Gy. In

that context, it is notable that a fit with a categorical model

infers a U-shaped dose–response, that is, negative excess

Table 2 Values for ERR and EAR for cerebrovascular disease calculated with the multi-model inference, the ERR-LNT model, the ERR-

quadratic model, and the ERR-step model for 0.2 and 1 Gy and different values of age at exposure (e) and age attained (a)

ERR EAR [per 104 PY]

CVD

Multi-model inference

0.2 Gy

e = 20, a = 50 0.007 (0, 0.035) 0.05 (0, 0.23)

e = 20, a = 70 0.007 (0, 0.035) 0.17 (0, 0.84)

e = 30, a = 70 0.007 (0, 0.035) 0.3 (0, 1.4)

e = 50, a = 70 0.007 (0, 0.035) 0.8 (0, 3.8)

1 Gy

e = 20, a = 50 0.165 (0.033, 0.32) 1.10 (0.22, 2.1)

e = 20, a = 70 0.165 (0.033, 0.32) 3.97 (0.78, 7.7)

e = 30, a = 70 0.165 (0.033, 0.32) 6.6 (1.3, 13)

e = 50, a = 70 0.165 (0.033, 0.32) 18.0 (3.6, 35)

Single models

0.2 Gy, e = 30, a = 70

ERR-LNT model [#1] 0.0248 (0.0055, 0.044) 0.98 (0.22, 1.7)

ERR-quadratic model [#2] 2.84 9 10-3 (4.0 9 10-4, 5.3 9 10-3) 0.114 (0.016, 0.21)

ERR-step model [#6], Dth = 0.62 Gy 0 0

1 Gy, e = 30, a = 70

ERR-LNT model [#1] 0.124 (0.028, 0.22) 4.9 (1.1, 8.7)

ERR-quadratic model [#2] 0.071 (0.010, 0.13) 2.85 (0.40, 5.3)

ERR-step model [#6], Dth = 0.62 Gy 0.22 (0.093, 0.34) 8.7 (3.7, 14)

Preston ERR-LNT model (Preston et al. 2003) 0.12 (0.02, 0.22) 5.0a (1.0, 8.9)

ERR-LNT model (Shimizu et al. 2010) 0.09 (0.01, 0.17)b 2.3 (0.4, 4.4)b

The 90% confidence intervals are provided. The risk values from Preston et al. (2003) and Shimizu et al. (2010) are also shown. The numbers in

brackets refer to the eleven dose–responses depicted in Fig. 1. The EAR-values for MMI and for the single models #1, #2, and #6 are only valid

for men in Hiroshima. The city-averaged EAR-values for men can be calculated by multiplication with a factor of 1.1 (see Sect. 6 of the Online

Resource for mathematical details). The EAR-values for women can be calculated by multiplying with a factor of 0.6
a Not given by Preston et al. (2003); calculated from Preston’s ERR-LNT model
b This is the 95% CI
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absolute risk in the lower-dose regimes with a statistically

significant negative risk in the lowest dose group (Fig. 3).

The increasing risk with attained age (via the age-depen-

dent dose-effect modifier) produces a markedly higher risk

in the EAR-LNT model with 94 excess cases in contrast to

9 cases in the EAR-threshold model and the EAR-step

model, where the effect modifier was not statistically sig-

nificant. Consequently, the dose–response curve from MMI

also predicts a strongly reduced risk for death from car-

diovascular diseases due to radiation. In the context of the

results presented here, it is interesting to point out a recent

low-dose study in which ApoE null mice were used. This

mouse model system spontaneously develops atheroscle-

rosis when fed a normal low-fat diet. In these mice, the

effects of single doses of 25–500 mGy, given at either

early or late stage disease, were distinctly nonlinear with

dose and were generally protective for various measures of

the disease. In that animal model, most effects occurred

below about 100 mGy, and many of the endpoints mea-

sured showed maximum protective effects at 25-50 mGy

(Mitchel et al. 2011).

Related to Fig. 3, the EAR risk estimates for the EAR-

LNT model, the EAR-quadratic model and for the MMI

seem to be inconsistent with those calculated for the cat-

egorical fit, especially at the lower three doses. It is

emphasized that this seeming inconsistency stems from the

significant dose-effect modifier in the EAR-LNT model

and the EAR-quadratic model (see Table S2 in the Online

Resource). Figure 3 relates to an age attained of 70 years.

For lower ages, the EAR-values for the EAR-LNT model

are markedly decreased (numerical details are provided

in Sect. 3 of the Online Resource). Consequently, this

reduction also decreases the EAR-values for the MMI.

It is noted that for both diseases the categorical model

(#11 in Fig. 1), a non-nested model, was not used for MMI

because of its negligible contributions to the AIC-weights

(Walsh 2007, Hoeting et al. 1999). Because of its similarity

to the shape implied by the categorical model fit (Fig. 3),

we also used the Gompertz curve to fit the excess absolute

risk associated with the data for cardiovascular diseases.

Again, it was found that the DAIC-based weight was too

small to be used for MMI. For details, see Sect. 7 of the

Online Resource.

Because of the well-known gender differences in car-

diovascular disease mortality (Roger et al. 2011), it was

investigated whether the data for men and women needed

to be fitted separately. Model fits of the data for men

and women were performed using an ERR-LNT model.

For CVD, some differences were noted for the slope

parameters (err = 0.109044 Gy-1 for men versus err =

0.13524 Gy-1 for women). However, comparing the rela-

ted final deviances with the one from the joint fit (Table 1:

dev = 3569.51 using 22 parameters) clearly showed that

fitting the data for men and women separately does not lead

to a significantly improved fit (men: dev = 1779.58 using

11 parameters; women: dev = 1788.24 using 13 parameters;

sum = 3567.82). A similar result was found for cardio-

vascular diseases.

Preston et al. (2003) based their study on the use of the

following five models: an LNT model, a linear-quadratic

and a purely quadratic model, a linear threshold model, and

categorical models implemented as either ERR model or

EAR model. While Preston et al. (2003) report that there is

no direct evidence of radiation effects for doses less than

about 0.5 Sv, they conclude that radiation effects on LSS

non-cancer mortality can be adequately described by a

linear dose–response model. A data set on circulatory

disease mortality with 6 years of additional follow-up has

been publicly available since the end of 2010. Those data

were analysed recently by Shimizu et al. (2010) with the

Table 3 Values for ERR and EAR for cardiovascular diseases cal-

culated with the multi-model inference, the EAR-LNT model, the

EAR-quadratic model, the EAR-threshold model, and the EAR-step

model for 1 Gy and different values of age at exposure (e) and age

attained (a)

ERR EAR
[per 104 PY]

Cardiovascular diseases

Multi-model inference

e = 20, a = 50 0.10 (0, 0.35) 0.8 (0, 2.7)

e = 20, a = 70 0.12 (0, 0.35) 5 (0, 13)

e = 30, a = 70 0.09 (0, 0.25) 5 (0, 13)

e = 50, a = 70 0.07 (0, 0.18) 5 (0, 13)

Single models

e = 30, a = 70

EAR-LNT model [#1] 0.171

(0.078, 0.27)

8.8 (4.2, 14)

EAR-quadratic model [#2] 0.084 (0.026, 0.14) 4.4 (1.4, 7.4)

EAR-threshold model [#5],

Dth = 2.0 Gy

0 0

EAR-step model [#6],

Dth = 2.19 Gy

0 0

Preston’s ERR-LNT model,

Preston et al. (2003)

0.17

(0.08, 0.26)

9.1a (4.2, 13.9)

ERR-LNT model,

Shimizu et al. (2010)

0.14

(0.06, 0.23)b
3.2 (1.3, 5.2)b

The 90% confidence intervals are provided. The risk values from

Preston et al. (2003) and Shimizu et al. (2010) are also shown. The

numbers in brackets refer to the eleven dose–responses depicted in

Fig. 1. The ERR-values for MMI and for the single models #1, 2, 5,

and #6 are only valid for men. The ERR-values for women can be

calculated by multiplication with a factor of 1.8
a Not given by Preston et al. (2003); calculated from Preston’s ERR-

LNT model
b This is the 95% CI
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LNT model and the linear threshold model (model #5 in

Fig. 1) for a wide range of possible values of threshold-

dose Dth. They used differences in maximum likelihood to

compare nested models and the AIC for non-nested mod-

els. For CVD, they report that the best estimate of a

threshold-dose was 0.5 Gy but that this value was not

statistically significant so that no threshold-dose may exist.

For cardiovascular diseases, their best estimate of a

threshold-dose was 0 Gy (Shimizu et al. 2010). In the

present study, the earlier studies have been extended by

using several additional possible dose–responses and by

combining the results to obtain dose–responses and

uncertainty ranges that are not based on assumptions made

in a single model.

In their previous study, Preston et al. (2003) carefully

explain why they did not use the full available data with

follow-up starting in 1950. They state that characterization

of the dose–response is complicated by a healthy survivor

selection effect on non-cancer disease death rates. For a

few years after the bombings, baseline (zero dose) non-

cancer disease death rates for proximal survivors were

markedly lower than those for distal survivors. The dif-

ference diminished steadily over the first two decades of

follow-up, by which time it had largely vanished. This

statistically significant pattern suggests that proximal sur-

vivors included in the LSS were initially healthier than the

general population for reasons related to their selection by

having survived the bombings. Analyses of the LSS non-

cancer mortality data indicate that in 1950 baseline death

rates for proximal survivors were 15% lower than those for

distal survivors. The difference decreased to about 2% in

the late 1960s (Preston et al. 2003). It has been illustrated

by Preston et al. (2003) that a substantial healthy survivor

selection leads to spurious curvature in the dose–response.

According to Preston et al. (2003), the healthy survivor

effect can be dealt with by restricting the analyses to

proximal survivors and to the later period of follow-up, that

is, 1968–1997. Unfortunately, the latest analysis of the LSS

non-cancer data was done for the full cohort and for the full

period of follow-up, that is, 1950–2003 (Shimizu et al.

2010). Concern related to the fact that Shimizu et al. (2010)

place completely different emphasis and importance on the

reported magnitude of the healthy survivor bias has been

raised by Walsh (2011). Note that the downloadable

grouped data by Shimizu et al. (2010) do not contain the

same grouping boundaries as the data used in the present

study: there is no proximal/distal group and no boundary

corresponding to follow-up starting on 1 January 1968. A

preliminary analysis of exactly the same mortality data for

CVD that Shimizu et al. (2010) used (i.e. follow-up

1950–2003) using a streamlined Preston baseline model

showed that an ERR-LNT model is preferable. It is inter-

esting to note that when analysing the Shimizu CVD data

for the follow-up 1971-2003 (and thereby including most

of the original Preston et al. 2003 data plus the additional

6 years of follow-up plus the distal survivors), the present

authors found confirmation for the threshold-dose of

0.6 Gy obtained in the current study. The Shimizu CVD

data for the follow-up 1971–2003 were analysed in the

same way as the Preston et al. (2003) data. The Preston

baseline model [Eq. (A1) of the Online Resource] was

combined with an ERR-LNT model and fit to the data for

CVD. The Preston baseline model was then streamlined

using the likelihood-ratio test and then combined with the

step model from Fig. 1 as an ERR model. The related best

estimates and Wald-type standard errors (in parenthesis)

are as follows: Dth = 0.64 Gy (\ 1%), scale = 0.204

(0.081) with a fixed value for the slope s: 105/Gy (compare

with Table 1 in the Online Resource). However, because of

the above-mentioned incompatibility of the Shimizu et al.

(2010) data with the data used by Preston et al. (2003), the

analysis of the publicly available data set was not contin-

ued. Instead, the present authors are planning to pursue the

analysis of a more suitable data set with a time cut-point at

1 January 1968 and an added indicator to distinguish

proximal from distal survivors to be created by the Radi-

ation Effects Research Foundation (RERF) in Japan.

Application of the AIC criterion for model selection

exacts a rigorous application of parameter parsimony, since

model weights are very sensitive to differences in AIC. The

authors do not claim to have identified the optimal models.

There is a potential to detect better parameterizations by

fitting nonparametric models to the baseline death rates.

However, the introduction of nonparametric baseline

models into MMI requires further theoretical investigations

by a larger number of experts. The present study leads to

streamlined fully parametric baseline models (with signif-

icantly lower deviances despite the smaller number of

model parameters) compared to the Preston baseline model

(Preston et al. 2003). However, the risk estimates presented

here with LNT models almost exactly correspond to those

of Preston et al. (2003) (Tables 2 and 3).

In addition to these observed threshold-doses, another

important difference from the earlier work of Preston et al.

(2003) and Shimizu et al. (2010) is that the analyses pre-

sented here for the radiation influence on cardiovascular

diseases actually favour EAR-risk models. The other

authors prefer ERR models but renounced the rigorous

application of quality-of-fit criteria.

In a review of published low-/moderate-dose epidemi-

ological data sets on circulatory diseases, Little et al.

(2010) list in their Table 1 14 studies related to the

following exposed populations: atomic bomb survivors,

low- and moderate-dose therapeutically exposed groups,

diagnostically exposed groups, occupationally and envi-

ronmentally exposed groups. Here, the dose–response
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models applied in these 14 studies are briefly reviewed.

The two papers analysing LSS non-cancer data are by

Preston et al. (2003) and Yamada et al. (2004). The study

of Preston et al. (2003) made use of four different dose–

response models and has already been summarized above.

Yamada et al. (2004) assumed an additive linear dose–

response model: RRij = 1 ? bdij exp(ak(Zk)), where RRij is

the relative risk due to radiation dose associated with the

jth exposure level, dij is the jth dose level in stratum i, b is

the excess risk per Sievert averaged over all strata, and Zk

represents the effect modifiers (Yamada et al. 2004). They

also tested linear-quadratic and purely quadratic models.

For circulatory disease-related endpoints, such as hyper-

tension, ischaemic heart disease, myocardial infarction and

stroke, Yamada et al. (2004) did not find a statistically

significant dependence on radiation exposure. Little et al.

(2010) additionally included the following three studies

related to low-dose radiotherapy and medical diagnostics.

Carr et al. (2005) fitted a generalized linear model to a

cohort of 3,719 peptic ulcer disease patients treated with

radiotherapy or by other means. In the studies by Darby

et al. (1987) and Davis et al. (1989), the standardized

mortality ratio (SMR; number of observed cases divided by

number of expected) as a precursor to modelling dose–

response curves was calculated. The following eight

occupational studies were also reviewed by Little et al.

(2010). Ashmore and colleagues analysed the mortality

from cancer and non-cancer diseases within a large cohort

of Canadian radiation workers comprising 206,620 indi-

viduals. They used a relative risk model with risk

increasing linearly with dose (Ashmore et al. 1998).

Azizova and Muirhead (2009) modelled the ERR in the

Mayak worker cohort by a linear trend with external or

internal dose. In their analysis of 61,017 Chernobyl

emergency workers, Ivanov et al. (2006) used a linear

dependence of risk on dose as did Kreuzer et al. (2010) in

their analysis of cancer and cardiovascular diseases in the

German uranium miners cohort study. Non-cancer mor-

tality was analysed in a large cohort of employees in the

UK nuclear industry by McGeoghegan et al. (2008) using

the following model for ERR: R(b, a, r, i, s) = k(b, a, r, i, s)

[1 ? ERR(d)]. Here, R is the cause-specific mortality rate

and k is the background mortality rate in the absence of any

effects from radiation exposure. The subscripts b, a, r, i,

and s refer respectively to birth cohort, attained age, radi-

ation exposure status, employment status, and site of

employment. ERR(d) is a function of lagged cumulative

external dose (d) describing the excess relative risk

(McGeoghegan et al. 2008). Muirhead et al. (2009) per-

formed the latest analysis of the UK National Registry for

Radiation Workers comprising a total number of 174,541

persons. They analysed among other biological endpoints

the mortality from all circulatory diseases by modelling the

ERR as a linear function of dose. In their analysis of the

associations between low-level exposure and mortality

(including mortality from ischaemic heart disease) among

workers at Oak Ridge National Laboratory Richardson and

Wing (1999) applied a relative risk model of the form

k(Z, z, y) = exp(Za ? bx ? dy), where the mortality rate

(k) was considered in terms of a vector of covariates (Z),

the radiation dose accumulated before age 45 (x), and the

radiation dose accumulated after age 45 (y). This is a

generalized linear model. In the IARC 15-country study of

radiation workers, Vrijheid et al. (2007) found increasing

trends with dose for some biological endpoints and

decreasing trends for others, although none were statisti-

cally significant. In that context, we point out that Vrijheid

et al. (2007) based their analyses on a linear relative risk

Poisson model, in which the relative risk is of the form

1 ? bZ, where Z is the lagged cumulative dose in Sv and b
is the excess relative risk per Sievert. Vrijheid et al. (2007)

state that this model has been used commonly in analyses

of nuclear workers studies and radiation risk estimation,

and reference ICRP (1991) and US NRC (2006). Detailed

results for the ERR found within these eight occupational

studies have been summarized by Little et al. (2010).

Talbott et al. (2003) reported a decreasing trend in heart

disease mortality with dose for men and women exposed as

a result of the accident at the Three Mile Island nuclear

power station. For women, the decreasing trend was

significant. The authors performed logistic regression

fitting multiplicative relative risk models of the form

k(t) = k0(t)exp(x(t)b) (i.e. a generalized linear model) to

the cohort rates (Talbott et al. 2003). This comprises the 14

studies reviewed by Little et al. (2010) including the study

on environmental exposure by Talbott et al. (2003). The

authors of the current study are convinced that dose–

response analyses and related risk estimations should not

be based on the application of only one model (for which

usually a linear increase of risk with increasing dose is

assumed) unless this one model is clearly preferred by

model selection techniques. In the present study, it has

been demonstrated that the use of a large variety of dose–

response curves leads to a better and more realistic

description of dose–response curves for non-cancer vas-

cular diseases than the use of LNT models.

MMI is a form of Bayesian model averaging (BMA;

Hoeting et al. 1999). It can be shown that the formula used

to perform BMA (Eq. 1 in Hoeting et al. 1999) reduces to

(2) for the Akaike weights pm when one assumes that

a priori all models are equally likely. This is the approach

chosen here with respect to the models shown in Fig. 1.

The present study did not aim to find the true model but the

one which fits the data best. In this case, Burnham and

Anderson (2002) (p. 77) argue for equal model priors (i.e.

equal prior probabilities for the models to be tested) under
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a so-called information-theoretic approach. A recent criti-

cism by Richardson and Cole (2012) of applying the MMI

technique in radiation epidemiology has been answered by

Walsh et al. (2011).

The present study showed that the application of the

MMI technique to non-cancer data of Report 13 on the

atomic bomb survivors leads to distinctly nonlinear dose–

response curves and related threshold-doses. This provides

strong evidence that low and medium doses of ionizing

radiation may have different effects than high doses. Such

findings may stimulate the development of mechanistic

models, which explain dose–responses based on radiobio-

logical cellular processes. Biologically based mechanistic

models are important for estimating at which stages of the

disease process radiation may act (see, for example, the

work of Little et al. (2009)). Motivated by the results of

the present analysis, it is promising to include into math-

ematical models biological mechanisms (such as, for

example, possible anti-inflammatory effects of low and

medium doses of ionizing radiations) that may lead to

distinct nonlinearities in the related dose–response curves.

How this works for the biological endpoint of cancer

induction after exposure to low doses of ionizing radiation

at low dose rates has been shown by Schöllnberger et al.

(2004, 2005) using deterministic and stochastic multi-stage

models with clonal expansion.

Conclusions

Summarizing, it can be said that the present analyses of the

non-cancer mortality data from Report 13 on the atomic

bomb survivors predict a strongly reduced risk for death

from CVD and cardiovascular diseases excluding CVD due

to ionizing radiation. For CVD, MMI yielded a weak dose–

response (with a risk estimate of about one-third of the LNT

model) below a step at 0.6 Gy and a stronger dose–response

at higher doses. Based on 90% confidence intervals, the

calculated risk estimates are consistent with zero risk below

this threshold-dose. For mortalities related to cardiovascular

diseases excluding CVD, an LNT-type dose–response was

found with risk estimates consistent with zero risk below

2.2 Gy based on 90% confidence intervals. Great care must

be taken when analysing the shape of dose–responses for

non-cancer mortalities. In addition to LNT and linear

threshold models, other dose–responses must also be con-

sidered and tested. Non-standard dose–response curves

derived from the rigorous application of a statistical pro-

tocol may stimulate the development of mechanistic models

that explain dose–responses based on radiobiological cel-

lular processes. Analysing the shape of dose–responses by

testing a series of different empirical models, as it has been

done in the present study using MMI, provides valuable

information for the mechanistic modelling. In practical

radiation protection, MMI is an important tool for risk

assessment, especially at low doses. It allows different

models to be combined, leading to a more comprehensive

characterization of the uncertainty of risk estimates. This

conclusion also holds for other detrimental health effects

such as cancer.
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