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Abstract

Oncogenic Kras mutations are a critical genetic event in early pancreatic carcinogenesis. How-

ever, in the adult organ, the expression of mutated Kras alone is not sufficient to induce tissue

transformation. Instead, inflammation is required as an additional trigger. Here, we perform

experiments with two well-established models of acute pancreatitis and early pancreatic car-

cinogenesis, initialized with caerulein injections in wild-type and KrasG12D-mutated mice. Gene

expression profiling and histological analysis with a high temporal resolution are applied in order

to allow for a comparative analysis of both mouse strains.

Based on our findings, we define pancreatic regeneration as a process characterized by three

distinct stages each showing a specific histological and molecular profile: inflammation, regen-

eration and refinement. Comparative analysis shows that regeneration in KrasG12D mice is

impaired and characterized by a sustained inflammatory status.

In addition, we observed that sustained inflammation in KrasG12D mice is accompanied by

altered proliferation cascades with respect to acinar, progenitor-like and mesenchymal cells. In

particular, a massive mesenchymal expansion is observed. We conclude that these characteris-

tics, sustained inflammation and altered prolifertion cascades, are hallmarks of early pancreatic

carcinogenesis mediating precursor lesion formation.

We extracted a signature characterizing the inflammatory status and analyzed a dataset

of 45 human pancreatic ductal adenocarcinoma (PDAC) with respect to homologous genes of

this signature. We found that patients could be classified into two distinct clusters, with one

exhibiting an increased average survival time (high signature expression) compared to the other

one (low signature expression). According to this finding, we conclude that the inflammatory

status could be possibly regarded as an indicator of early pancreatic carcinogenesis.

Based on our results, we set up a “dual model” of pancreatic regeneration and early pancre-

atic carcinogenesis, comprising four states (healthy, inflammation, regeneration and refinement).

As divergence of wild-type and KrasG12D profiles starts during the inflammation-regeneration

transition in wild-type mice, we assemble correlation-based networks for the corresponding time

frame from 3h to 84h in both mouse strains.

We found that among the identified interactions of acinar homeostasis-related genes and

intercellular signaling-related genes there is a significant enrichment for interaction pairs involv-

ing members of the Fgf/Fgfr family, specifically in wild-type mice. Particularly, we found Fgfr3

to be highly connected in the wild-type network, suggesting a potential role in the mediation

of the inflammation-regeneration-transition. This finding is in line with recent studies which

showed that Fgfr3, which is generally regarded as oncogene, can limit cell growth and promote

differentiation if expressed in epithelial cells.
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Zusammenfassung

Onkogene Kras-Mutationen sind ein kritisches Ereignis im Frühstadium der Pankreaskarzino-

genese. Allerdings ist die Expression von mutiertem Kras allein nicht ausreichend, um die

Gewebetransformation im adulten Organ zu induzieren. Stattdessen wird Inflammation als

zusätzlicher Auslöser benötigt. Für unser Experiment verwenden wir etablierte Mausmod-

elle der akuten Pankreatitis und der frühen Pankreaskarzinogenese, basierend auf konsekutiven

Caerulein-Injektionen in Wildtyp- und KrasG12D-mutierten Mäusen. Wir führen Genexpression-

sanalysen und histologische Analysen mit hoher zeitlicher Auflösung durch, um die ablaufenden

Prozesse in beiden Mausmodellen zu vergleichen.

Basierend auf unseren ersten Ergebnissen beschreiben wir die pankreatische Regeneration

als Prozess der aus drei klar abgrenzbaren Phasen hinsichtlich der Genexpression und der Mor-

phologie besteht: Inflammation, Regeneration und Refinement. Unsere komparative Analyse

zeigt, dass die unterbrochene Regeneration in KrasG12D-mutierten Mäusen durch eine anhal-

tende Inflammation gekennzeichnet ist.

Zudem beobachten wir veränderte Proliferationskaskaden im Hinblick auf die Azinus-,

Progenitor-, und mesenchymalen Zellen. Insbesondere wird eine massive Expansion des Mes-

enchyms beobachtet. Wir folgern daraus, dass diese veränderten Proliferationskaskaden, zusam-

men mit der anhaltenden Inflammation, die unverwechselbaren Kennzeichen des Frühstadiums

der Pankreaskarzinogenese sind.

Wir extrahieren eine Signatur, welche die anhaltende Inflammation in KrasG12D-mutierten

Mäusen beschreibt und untersuchen einen Patienten-Datensatz, basierend auf 45 Proben von

duktalen pankreatischen Adenokarzinomen (PDAC), hinsichtlich der Expression der homolo-

gen Gene der Signatur. Hier zeigt sich, dass die Patienten in zwei klar abgrenzbare Cluster

unterteilbar sind, mit einer erhöhten durchschnittlichen Überlebenszeit im ersten Cluster (hohe

Expression der Signatur), verglichen mit dem zweiten Cluster (niedrige Expression der Signatur).

Im Einklang mit unseren vorherigen Ergebnissen, definieren wir ein “duales Modell” der

pankreatischen Regeneration und der frühen Pankreaskarzinogenese, welches aus vier Zuständen

besteht: gesund, Inflammation, Regeneration und Refinement. Da die Divergenz der Wildtyp-

und KrasG12D-Profile mit der Inflammation-Regeneration Transition in Wildtyp-Mäusen be-

ginnt, berechnen Korrelationsnetzwerke für das Zeitfenster 3h-84h auf beiden Datensätzen um

potentielle Vermittler dieser Transition zu entdecken.

Wir sehen, dass an den für Wildtyp-Mäuse identifizierten Interaktionen zwischen Genen die

zur Aufrechterhaltung des azinären Phänotyps benötigt werden und Genen die zu interzellulären

Signalwegen gehören, besonders häufig Mitglieder der Fgf/Fgfr Familie beteiligt sind. Insbeson-

dere ist Fgfr3 ein hochvernetzter Knoten im resultierenden Netzwerk, was nahelegt, dass dieses

Gen eine potentiell wichtige Rolle bei der Vermittlung der Inflammation-Regeneration Transi-

tion in Wildtyp-Mäusen einnimmt. Dieses Ergebnis steht im Einklang mit neuesten Studien die

gezeigt haben, dass Fgfr3, welches allgemein als Onkogen bekannt ist, Zellwachstum hemmen

und Differenzierung fördern kann, wenn es in Epithelzellen exprimiert wird.
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Chapter 1

Introduction

1.1 Biology of the pancreas

1.1.1 Anatomy and physiology

The pancreas is a glandular organ composed of an exocrine and an endocrine compartment. The

exocrine compartment is a key part of the digestive system regulating the secretion of digestive

enzymes. The endocrine compartment is essential for glucose homeostasis controlled by glucagon

and insulin release.

The human pancreas measures 16-20 cm in length, 3-4 cm in width and 1-2 cm in height,

weighing approximately 40-120 grams [1].

It is located in the retroperitoneal space between the stomach, the duodenum, the spleen

and the liver [2]. The pancreatic duct, which has a width of approximately 2 mm transports the

produced enzymes towards the small intestine and joins the common bile duct [3]. The union

of both ducts forms the ampulla of Vater which is a connection to the duodenum.

On the macroscopic level, the pancreas is separated into three parts, the head (Caput pancre-

atis), the body (Corpus pancreatis) and the tail (Cauda pancreatis). The head is encompassed

by the duodenum and forms the biggest part of the pancreas. The tail is located close to the

spleen. An overview of the pancreatic anatomy is given in Fig. 1.1.

1.1.2 Cell types of the mature pancreas

1.1.2.1 Exocrine cells

The exocrine compartment of the pancreas is mainly structured in components called acini

which are small clusters of acinar cells. Together with the ductal cells, also belonging to the

exocrine compartment, this functional unit accounts for more than 90% of the whole pancreas

[4]. Organization of the different cells within the pancreas is illustrated in Fig. 1.2.

• Acinar cells are responsible for synthesization, storage and secretion of inactive forms of

digestive enzymes. They are characterized by a pyramidal shape, a basal surface, filamen-

tous mitochondria, a prominent Golgi complex and regular arrays of rough endoplasmatic

1
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Figure 1.1: Anatomy of the pancreas, adapted from MediVisuals [6].

reticulum [5]. Additionally, they have zymogen granules, storing the different digestive en-

zymes. Secretion of pancreatic juice is regulated by gastrin, secretin and other hormones.

One acinus is composed of around 40-50 acinar cells [5].

Both, development and maintenance of the acinar phenotype, are controlled by distinct

molecular programs, in which Pdx1 and Mist1 are two key players. Alterations of these

programs have impact on the cell fate or can lead to dedifferentiation or transdifferentiation

of mature acinar cells to ductal cells (acinar-to-ductal metaplasia) [8, 9].

• Ductal cells are epithelial cells transporting the secreted enzymes to the gastrointesti-

nal tract. Together they form a network of branched tubes. They arise from the same

progenitor cells as pancreatic acinar cells but undergo a slightly different differentiation

program as will be described in section 1.1.3.2. Previous studies have suggested that adult

ductal cells are multipotent cells or even pancreatic stem cells being able to produce en-

docrine, insulin-producing β-cells [10]. This hypothesis was driven by the observation that

endocrine cells arise from the Sox9+ ductal domain. Nonetheless, recent in vivo studies

did not succeed to produce endocrine cells from adult ductal cells. On the contrary, they

suggest that it is impossible [11]. Ductal cells have been shown to share morphological

similarities with tumor cells from pancreatic ductal adenocarcinoma (PDAC).

They are characterized by a cuboidal to columnar shape, a perinuclear Golgi complex,
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Figure 1.2: Cellular organization of the pancreas, adapted from Yale University [7].

scattered or apically localized cytoplasmic vesicles, and a large number of apical plasma

membrane mircovilli [12].

The junction between the terminal ductal epithelium and the acini is formed by so-called

centroacinar cells; yet it has not been proven whether these cells form another distinct cell

type or are functionally equivalent to ductal cells.

1.1.2.2 Endocrine cells

Functions of the endocrine pancreas include glucose homeostasis by controlled hormone release

as well as the regulation of metabolism. The endocrine compartment is organized in so-called

islets of Langerhans which are cell clusters that are integrated in the exocrine pancreas tissue

[13]. Different cell types with distinct functions are involved in hormone level maintenance.

• β-cells are responsible for insulin and amylin release, amylin being an insulin-antagonist.

They account for more than 60% of all cells in the Langerhans islets.
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• α-cells accounting for around 20% of the islet cells are responsible for synthesization and

secretion of glucagon.

• δ-cells are responsible for somatostatin production and release. They account for 3-10%

of the islet cells.

• ε-cells are producing and secreting ghrelin. They account for less than 1% of the islet cells.

• PP-cells sometimes also referred as γ-cells, are responsible for pancreatic polypeptide

production and account for 3-5% of the islet cells. They are characterized by a polygonal

shape.

1.1.2.3 Mesenchymal cells

Apart from the above cells which are directly linked to a functional task of the pancreas, mes-

enchymal cells are part of the pancreas located in the extracellular matrix (ECM) of the organ.

In contrast to the epithelial cells or endocrine cells which are connected via junctions or or-

ganized in islets, respectively, the non-polar mesenchymal cells (stroma cells) are not directly

connected to each other but loosely organized in the ECM instead. Mesenchymal cells are

known to impact β-cell production during embryonic development [14]. Additionally, they play

an important role during pancreatic carcinogenesis as epithelial cells may undergo a transition

to mesenchymal cells during early tissue transformation, leading to a massive expansion of the

pancreatic mesenchyme. This process is called epithelial-mesenchymal transition (EMT) and

will be discussed detailed in section 1.4.4. It has been shown that EMT and corresponding mes-

enchymal expansion are contributing to pancreatic cancer metastasis and treatment resistance

[15]. In this context, identification of putative EMT-targeting agents is of great interest [15].

The major mesenchymal cell in the pancreas is the pancreatic stellate cell (PSC) accounting

for approximately 4% of all cells in the pancreas [16, 17]. Morphologically, PSCs have high

similarities with hepatic stellate cells (HSCs). Like HSCs, PSCs are able to switch between

a quiescent and an activated phenotype. After inflammatory injury, PSCs are activated and

become myofibroblast-like cells which are commonly identified by α-SMA expression. In this

activated state PSCs begin to proliferate, migrate and produce ECM components. In addition,

they start to secrete pro-inflammatory cytokines, chemokines as matrix metalloproteinases and

their inhibitors [16]. In case of a prolonged inflammation (i.e. chronic pancreatitis), prolonged

PSC activation causes pancreatic fibrosis. It was shown that the release of the above-mentioned

molecules promotes acinar cells to undergo EMT [18]. Accordingly, PSCs play a key role for

mesenchymal expansion and tissue transformation during pancreatic carcinogenesis.

1.1.3 Pancreatic development in mice

1.1.3.1 Morphogenesis and signaling

As pancreatic morphogenesis was best studied in mice, all descriptions in this section refer to

mice. The pancreas arises from the primitive gut tube, derived from the definitive endoderm. At
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E9.5, a thickening on the dorsal side of the foregut epithelium indicates morphological formation

of the pancreas. Nearly at the same time, two ventral buds arise in the epithelium [19]. During

this early period of development, as a result of gut rotation as well as elongation of the dorsal and

the ventral stalk, dorsal and ventral buds contact each other, forming a C-loop of the duodenal

anlage. This fusion occurs between E12 and E13. Additionally the epithelial compartment

branches into the surrounding mesenchyme where multipotent progenitor cells are able to form

all lineages discussed before [19]. The commitment which type of cell a given progenitor cell

will become between E11 and E14 depends on the location; cells at the tips of the branching

epithelium will become pre-acinar Ngn3− cells, other cells will become bipotent duct/endocrine

Ngn3+ cells and populate the branches. At E15.5, all cells are specified and undergo growth

and maturation until birth [19].

Derivation of the pancreas from the definitive endoderm is accompanied by inductive signals

of the surrounding mesenchyme; current cancer-related research studies are focusing on these

signals, as similar processes might be promoted during pancreatic carcinogenesis [20, 21].

Cell fate of pancreatic and liver progenitor cells are induced by Wnt and Fgf4 suppression

in the foregut. Positioning of liver and pancreas is mediated by retinoic acid (RA) signaling.

Fgf and Bmp signals from the mesenchyme induce liver formation and suppress pancreas forma-

tion [22]. Afterwards, during foregut closure, lateral ventral endoderm cells initiate pancreatic

development by inactivation of these signals [23].

1.1.3.2 Pancreatic progenitor cells

Several genes are involved in specification of multipotent pancreatic progenitor cells which then

give rise to differentiation to the above described cell types. Pancreatic endoderm formation

is characterized by expression of two transcription factors: pancreas and duodenal homeobox

gene-1 (Pdx1) and pancreatic transcription factor-1 (Ptf1a/p48) [24].

Previous studies have shown that Pdx1+ cells contribute to all pancreatic cell fates whereas

inactivation of Pdx1 completely suppresses pancreas organogenesis [25]. In the adult organ

however, Pdx1 expression is low in exocrine cells but high in islet cells, in particular β- and

δ-cells. Pdx1+ expression starts at E8.5 during embryonic development in mice and is an

initiating force of pancreas formation.

Ptf1a (p48) expression is required for evagination of the ventral bud as well as growth of the

dorsal bud and first expressed at E9.5. Pancreas formation entirely fails when Ptf1a expression

is suppressed [26]. In the adult state, Ptf1a expression is exocrine-specific and part of the acinar

homeostatic program [27].

Apart from the two key factors, other transcription factors contribute to the pancreatic cell

fate, as described in table 1.1.
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Table 1.1: Transcription factors contributing to the pancreatic cell fate during primary transi-
tion.

Factor Function

Pdx1 generally required for pancreatic cell fate; all pancreatic lin-

eages are Pdx1+ [25]

Ptf1a (p48) evagination of ventral bud; growth of dorsal bud [28]

Sox17 first up-regulated, promotes pancreatic and biliary primordia;

then required to be down-regulated for pancreas formation [29]

Hhex required for correct positioning of pancreatic progenitor cells;

required for Pdx1 and Ptf1a induction [20]

Hlxb9 dorsal bud formation; promotes Pdx1 expression [30]

Hnf6 (Onecut1) required for pancreas specification; endocrine progenitor for-

mation; duct cell development [31, 32]

Foxa1 (Hnf3a) specification of pre-pancreatic endoderm [33]

Foxa2 (Hnf3b) specification of pre-pancreatic endoderm; maturation of en-

docrine cells [33, 34]

Hnf1b (vHNF, TCF2) required for dorsal and ventral bud formation; expressed in a

subpopulation of pancreatic multipotent cells [35, 36]

Gata4 required for epithelial cell formation and ventral pancreas for-

mation [37]

Gata6 required for epithelial cell formation and ventral pancreas for-

mation [37]

Sox9 indicator for multipotent progenitor cells; required for pancre-

atic development; control of endocrine progenitor cell forma-

tion [38]

Hes1 maintenance of undifferentiated state in progenitor cells [39]

Myc expressed in multipotent progenitor cells; inactivation leads to

switch of cell production during development [40]

Rbpj required for progenitor expansion; suppression of acinar mat-

uration [41]

The above described formation of pancreatic progenitors is termed primary transition. This

process terminates around E14 and is followed by the secondary transition which includes de-

pletion of previously formed progenitors by specification to the distinct pancreatic lineages,

i.e. mature exocrine and endocrine cells. Accordingly, the secondary transition is accompa-
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Figure 1.3: Formation of pancreatic progenitors during embryonic development and specification
of pancreatic cell lineages.

nied by increase of digestive enzymes and endocrine hormones. During this process, pancreatic

progenitors first undergo differentiation to pre-acinar cells and bipotent trunk cells which can

differentiate into ductal or endocrine cells depending on Ngn3 expression.

Table 1.2 provides an overview of factors involved in lineage specification. Additionally,

Fig. 1.3 gives a schematic overview of both primary and secondary transition with relevant

intermediate steps.

Table 1.2: Transcription factors contributing to the pancreatic cell fate during secondary tran-
sition.

Factor Function

Ptf1a specification of the acinar phenotype together with Nr5a2; pro-

motes induction of acinar program by activation of Rbpjl and

Mist1 (Bhlha15) [42]

Nkx6.1, Nkx6.2 antagonists of Ptf1a activity mediating formation of bipotent

trunk cells [44]

Prox1 suppressor of acinar differentiation [45]

Hes1 Notch target leading to Ptf1a inhibiton and thus blocks acinar

differentiation [39]
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Ngn3 (Neurog3) commits cells to endocrine fate [46]

Hnf6 (Onecut1) subsequently active in exocrine cells, low expression in en-

docrine cells; seems to be required for duct cell formation [32]

Hnf1b (vHNF, TCF2) expressed in centroacinar and ducatal cells [47]

MafA, MafB required for α- and β-cell maturation [48]

Neurod, Isl1, Pax genes maintenance of balance of different islet cell types [49]

Nkx, Arx, Irx genes

1.2 Pancreatitis

Pancreatitis is a disease characterized by inflammation of the pancreas. An acute pancreatitis

occurs suddenly and lasts for several days when properly treated, a chronic pancreatitis, on the

contrary, is a long-lasting disease accompanied by years of severe complications. Nonetheless, a

clear distinction of both forms is not entirely possible as there are intermediate forms suggesting

that there is a continuous range of pancreatitis intensity and that the established clinical terms

are two extrema on the scale of this range. Also, it is known that the repeated occurrence of

acute pancreatitis can lead to chronic pancreatitis.

1.2.1 Acute and chronic pancreatitis: differences and common features

1.2.1.1 Causes and mechanisms of acute pancreatitis

Gallstones and alcohol abuse are the most common causes of acute pancreatitis [50]. Other

possible causes include infections (e.g. hepatitis), metabolic diseases, antibiotics, stomach or

duodenal cancer. Additionally, smoking is asummed to be a risk-increasing factor [50].

The inflammatory process involves peri-pancreatic tissues (sometimes also surrounding tis-

sues) and leads to acinar cell necrosis accompanied by edema and (pseudo-)cysts formation.

Mild forms of the acute pancreatitis affect the pancreas itself only, whereas more severe forms

can affect other organs and lead to death of the patient. The overall morality rate of all forms of

acute pancreatitis is approximately 5% [51]. However, an acute pancreatitis is a disease which

is usually reversible.

The early stage of acute pancreatitis is characterized by protease activation, secretion al-

terations and accumulation of inflammatory molecules in the acinar cell compartments. Under

physiologic conditions, enzyme secretion is limited to the duct lumen by passing the apical

membrane. During acute pancreatitis, however, noxious stimuli prevent exocytosis of zymogen

granules (containing enzyme precursors) at the apical membrane, leading to an exocytosis at

the basolateral membrane instead. Combined with an increased zymogen granule production,

this can induce auto-digestion of the pancreas, explaining the pathogenesis of the disease [52].

Several molecular mechanisms, including trypsinogen activation, are thought to mediate these
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inflammation-driven changes [53]. Up to a certain level, these abnormalities can be compen-

sated with antagonizing effects including trypsin autoproteolysis, SPINK1 production, trypsin-

degrading enzyme production and bicarbonate secretion. However, after the critical threshold

has been passed, auto-digestion cannot be avoided any more.

1.2.1.2 Causes and mechanisms of chronic pancreatitis

In contrast to acute pancreatitis, chronic pancreatitis implies a persistent damage to the exocrine

and the endocine part of the pancreas. In many cases, impaired digestion ability and diabetes

include two of the severe causalities. Further complications include (pseudo-) cyst formation,

pancreatic stones, exocrine insufficiency and bilary/duodenal stenosis [54]. Patients with chronic

pancreatitis have an increased risk of pancreatic cancer development. Unspecific abdominal pain

is the most common symptom of chronic pancreatitis. Incidence of chronic pancreatitis ranges

up to 10 per 100.000 population in industrialized countries [55].

Alcohol abuse is the most common cause (70%) of chronic pancreatitis. Ethanol oxidation

results in accumulation of acetaldehyde and production of ROS, the first one being toxic for

pancreatic cells and the latter one being generally harmful for most types of cells. Non-oxidative

metabolization of ethanol leads to fatty acid ethyl ester production which also leads to damage

of pancreatic cells. It is commonly assumed that the risk of developing an alcohol-induced

chronic pancreatitis increases logarithmically with the dose of daily consumed alcohol, with 40

grams/day (approx. 1 liter of beer, 5% vol.) being the critical dose for women and 80 grams/day

(approx. 2 liters of beer, 5% vol.) being the critical dose for men, given an exposure time of 5

to 15 years [56].

However, chronic pancreatitis is also a hereditary disease. 10% to 30% of all cases of chronic

pancreatitis are assumed to be hereditary. One common mutation associated with hereditary

chronic pancreatitis is PRSS1R122H which enhances the auto-activation of cationic trypsinogen

(PRSS1) [57]. This mutation has been studied in transgenic mouse models which show an

enhanced response after inflammatory injury. Another well-studied mutation is PRSS2G191R

affecting the anionic trypsinogen gene. In contrast to the PRSS1 mutation, this mutation shows

a protective function [57]. Furthermore, mutations of the chymotrypsin C gene have been

shown to impair pancretic function due to impaired activity or reduced levels of secretion [58].

Mutations of SPINK1 (serine protease inhibitor Kazal type 1) which is an inhibitor of trypsin

activity in the pancreas, were also documented in cases of hereditary pancreatitis. Mouse models

confirmed the role of SPINK1 in chronic pancreatitis: While overexpression led to a protection

against pancreatitis, deletion of the gene caused a complete degeneration of acinar structurs

within 14 days [59]. These outcomes suggest that also mutations of other trypsin- or trypsinogen-

regulating genes impact the occurrence and course of chronic pancreatitis. Apart from these

mutations, CFTR, a regulator of bicarbonate and chloride secretion has been reported to be

mutated in chronic pancreatitis patients.

Tropical pancreatitis is another form of chronic pancreatitis which is, in accordance with

its name, reported in regions with tropical climate (e.g. India). Viral and parasitic infections
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as well as autoimmune mechanisms, malnutrition, oxidative stress and other factors are known

causes of tropical pancreatitis [62]. The disease was also reported to coincide with mutations of

SPINK1, Cathepsin B and Chymotrypsin C [61].

Finally, autoimmune pancreatitis forms a rare subtype of the disease, often coinciding with

other autoimmune diseases. It is mainly characterized by increased serum γ-globulin levels as

well as IgG4 autoantibodies and lymphocytic infiltration [60].

Regardless of the subtype, the clinical picture of chronic pancreatitis is homogeneous: acinar

atrophy, fibrosis, necro-inflammation. Clinical observations suggest that the described transfor-

mation of the pancreas results from multiple, silently occuring cascades of pancreatic inflamma-

tion (“invisible forms of acute pancreatitis”) [57]. This hypothesis was termed “necrosis-fibrosis

model” and is currently accepted as the most accurate model of chronic pancreatitis. It has

been discovered that pancreatic stellate cells (PSCs) play an important role during the observed

fibrogenic process.

1.2.2 Cellular processes and signaling

1.2.2.1 Immune response

After inflammatory injury, damaged acinar cells themselves produce inflammatory mediators

such as cytokines and chemokines which then recruit inflammatory cells, including neutrophils

and macrophages. Activation of these cells in turn causes further acinar cell damage, leading

to an increase of further pro-inflammatory mediators including TNFα (tumor necrosis factor

alpha), interleukines 1, and 6, ICAM-1 (intercellular adhesion molecule 1), CD40L (cluster of

differentiation 40, ligand), MCP-1 (monocyte chemotactic protein 1) and others [63]. Endothe-

lial cell activation enables leucocyte migration leading to release of further harmful enzymes.

Decreased oxygen supply in the pancreas causes additional injury.

Inflammatory response is assumed to be mediated by NF-κB (nuclear factor kappa-light-

chain-enhancer of activated B cells), MAPK (mitogen-activated protein kinases), STAT3

(signal transducer and activator of transcription 3), AP-1 (activator protein 1) and PI3K

(phosphatidylinositol-4,5-bisphosphate 3-kinase) signaling as these pathways were found to show

an increased activity after inflammatory injury in the pancreas [51].

Apart from inflammatory cell recruitment, cytokine and chemokine production in the dam-

aged acinar cells also induces activation of stellate cells (PSCs). Being in a quiescent state under

normal conditions, PSCs transform into myofibroblast-like, α-SMA (alpha smooth muscle actin)

expressing cells under the influence of chemokines and cytokines. Activated PSCs then release

additional cytokines and chemokines, recruit further immune cells and produce extracellular ma-

trix (ECM) components as well as matrix metalloproteinases (MMPs) and their inhibitors [16].

Activated PSCs can finally revert to their quiescent state or undergo apoptosis. Prolonged acti-

vation of these cells causes pancreatic fibrosis by ECM transformation [57]. Accordingly, there is

special interest in understanding the role of PSCs during pancreatic carcinogenesis with respect

to mesenchyme expansion and tumor-stroma interactions. Yet, it has not been clarified whether
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these interactions may have a protective influence for the tissue in the tumor environment or

whether they worsen the survival prognosis of PDAC patients [64].

1.2.2.2 Acinar-to-ductal transdifferentiation

Previously described acinar cell fate is not only determined but also maintained by a distinct

molecular program. The homeostatic program incorporates Mist1 (Bhlha15) and Pdx1 expres-

sion. Studies with mouse models unveiled Pdx1 and Notch signaling being reactivated after

inflammatory injury [11], recapitulating elements of embryonic development. Additionally,

EGFR (epidermal growth factor receptor), Numb (protein numb homolog) and hedgehog sig-

naling was shown to be active.

Activation of these signals is considered the most likely explanation for the observation of

Sox9+-cell expansion after inflammatory injury. It is assumed that due to disturbance of the

homeostatic program, acinar cells dedifferentiate into a premature, progenitor-like state which

then gives rise to ductal cell formation, a process termed acinar-to-ducatal transdifferentiation.

Subsequently, transdifferentiation leads to formation of acinar-to-ductal metaplasia (ADMs)

which in turn are able to progress to pancreatic tumors.

1.2.3 Induction of pancreatitis in mouse models

In order to study diversity of molecular signals mediating the inflammatory process and pan-

creatic regeneration, animal models were established for both acute and chronic pancreatitis.

Non-surgical animal models induce pancreatitis by nutrition, e.g. ethanol or by injection of

toxic substances or caerulein. Surgical models, also termed invasive models, are based on direct

manipulation of the pancreatic duct [66].

Yet, none of the established animal models is sufficient for full representation of human

pancreatitis. Accordingly, results from animal model-based experiments should be treated with

caution.

One well-established animal model for acute pancreatitis is based on subcutaneous injections

of caerulein in mice or rats [69]. Advantages of this model include easy application, low costs

and high reproducibility.

Caerulein, an oligopeptide with a composition similar to cholecystokinin, increases digestive

activity and stimulates smooth muscle [69]. After subcutaneous injection, it causes intracellular

upregulation of NF-κB in the pancreas which in turn leads to ICAM-1 (acinar cell intercellular

adhesion molecule-1) upregulation. Acinar ICAM-1 expression then increases ability of other

cells to adhere; subsequent adhesion of neutrophils then promotes inflammation induction as de-

scribed in section 1.2.2.1 [67]. As caerulein causes also dysregulation of digestive activity, acinar

cells are destroyed and edema are formed which further enhances the inflammatory process. In

addition, Jak signaling and NADPH oxidase (member of ROS family) are activated [68].

Most common protocols are based on consecutive caerulein injections with distinct time

intervals.
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1.3 Pancreatic ductal adenocarcinoma (PDAC)

Accounting for more than 85% of all cases, pancreatic ductal adenocarcinoma (PDAC) is the

most frequently occurring type of tumor in the pancreas [70]. Ranking fifth (Europe) and fourth

(USA) in the statistics of cancer-related death cases, PDAC is a major disease problem, though

it accounts for less then 3% of all reported cancer-related cases. Accordingly, PDAC is one of

the tumors with the worst survival prognosis with a median survival of less than six months and

a five-year survival rate of less than 5%.

Though comprehensive, cost-intensive research studies have helped gaining detailed insights

into the mechanisms of pancreatic carcinogenesis, essential processes and particularly targetable

molecules remain still unknown. Mostly regardless of previous scientific and medical efforts,

survival rates did not improve over the past five decades [71]. One reason for the poor prognosis

is that PDAC is typically diagnosed at a late stage, also due to its unspecific symptoms.

1.3.1 Epidemiology and pathology of PDAC

1.3.1.1 Pathology

Typical symptoms of PDAC incorporate deep upper abdominal pain, dull, anorexia, asthenia,

skin yellowing, depression and weight loss [43, 77]. Most of the tumors arise from head or neck of

the pancreas (∼78%) [43]. PDAC causes obstructive cholestasis of the main duct which in turn

can cause chronic pancreatitis and dysglycemia [72, 73]. In many cases, PDAC is also manifested

by occurrence of diabetes as a causality of the tumor. Distant metastases as well as local

invasion are common features of PDAC, rendering it one of the most aggressive tumor types in

general. Most common locations of PDAC metastases include liver, lung, peritoneum and lymph

nodes [74, 75]. Resected tumor tissue samples often show perineural, vascular and lymphatic

invasion. Apart from PDAC as the most common pancreatic tumor type, other tumor types are

documented, including colloid, adenosquamous and sarcomatoid tumors. Microscopically, PDAC

is characterized by its infiltrating gland-forming neoplastic epithelium [76]. Additionally, it is

constituted of dense stroma formed by a mixture of fibroblastic, endothelial and inflammatory

cells. The expansion of the stroma is an important characteristic of PDAC compared to other

tumor entities [77]; yet it has neither been proven nor confuted whether it contributes to the

tumor’s aggressiveness or not [78, 79]. Studies indicate that the so-called desmoplasia around

the tumor, formed by PSCs, may blunt effective intratumoral drug delivery on the one hand

[80]. On the other hand it was shown that targeting the stroma can result in undifferentiated

aggressive pancreatic tumors, suggesting a protective role of the stroma [81]. According to the

stromal character of PDAC, cytokeratines and mucins are commonly upregulated in the tumor

tissue [82].

Depending on the stage of progression of PDAC, the disease can be treated surgically (tumor

removal) or by appliance of chemotherapy or radiotherapy; also, a consecutive combination of

these methods is possible. If progressed too far, palliative care is applied.
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In most cases (around 80%), surgical treatment is not possible due to metastasis and tumor

invasiveness [83]. If possible however, surgery is generally followed by adjuvant treatment. In

Europe, chemotherapeutic treatment with gemcitabin or 5-fluorouracil is the current standard

of care, while in the USA radiotherapy is also considered [84]. For this group of patients, which

can be regarded as “early stage group”, average survival time is 18-20 months with a five-year

survival rate of 10%; in cases of complete tumor resection, five-year survival rate can raise up

to 25% if the tumor has not yet spread to the lymph nodes [75]. For patients with an advanced

stage of PDAC progression however, the average expected survival time is as low as 6 months

[75].

Recent progresses in chemotherapy have been made with Folfirinox (folinic acid, fluorouracil,

irinotecan and oxaliplatin) treatment, achieving an average survival benefit of 4 months which

is the best improval documented yet [85]. It thus exceeds established treatment methods using

gemcitabine or fluorouracil only. Folinic acid (Fol) is used in order to reduce fluorouracil side

effects, F (fluorouracil) itself blocks DNA synthesis, Irin (irinotecan) prevents DNA from uncoil-

ing and Ox (oxaliplatin) inhibits DNA repair/synthesis. Folfirinox has become one of the active

chemotherapeutic regimens [85]. Clinical studies for identification of new regimens are focussing

on TGFβ, hedgehog, Notch and VEGF/VEGFR inhibition [86].

1.3.1.2 Epidemiology

The median age of occurrence of PDAC is 70 years [87]. The risk of developing pancreatic cancer

once in a life is around 1% for both men and women. Risk factors for pancreatic carcinogenesis

are associated with genetic and environmental factors including personal life-style. Smoking

has been documented to cause a 2-fold risk increase for developing PDAC and is assumed to

be responsible for 20%-30% of all cases [88]. Alcohol abuse is an indirect factor as it increases

the risk for developing chronic pancreatitis which in turn increases PDAC risk. Obesity is

an additional risk-increasing factor. Furthermore, previous diseases including gastric ulcers,

Chron’s disease and diabetes increase the risk of developing PDAC. Correlations with nutrition

style or drug abuse have not been identified [87].

Apart from these individual life-style preferences and personal disease history it has been

shown that PDAC incidence correlates with latitude being higher in northern countries and

lower in southern countries. An unproven assumption is that decreased vitamin D production

due to decreased sunlight exposure has negative impact on the risk of developing PDAC [87].

Studies have shown that there is also a race-dependent factor with an increased risk for the

black population and lowest risk for the Asian population [87].

However, genetic susceptibility appears to have the greatest impact on the personal PDAC

risk. Persons with first-degree relatives that had PDAC have an up to 4-fold increased risk which

can further increase up to 57-fold if more than 3 relatives are affected with PDAC [89]. This

can be explained by the fact that several mutations have great impact on PDAC development

when coinciding with a triggering factor like inflammation.

The affected genes mainly comprise functional players required for cell homeostasis or growth
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signal transduction in the pancreas, respectively. Previously discussed PRSS1 mutation increases

PDAC risk as well as alterations of the cystic fibrosis gene (CFTR) [90, 91]. Also, several

germline mutations were reported to increase the risk, including BRCA1/2, FAMMM, p16, p53

or DNA repair gene mutations including ATM and PALB2 [92]. These hereditary factors account

for ∼20% of familiar pancreatic cancer cases. Also NR5A2 (liver receptor homolog-1), required

for acinar differentiation, was reported as a relevant factor [93].

1.4 Early pancreatic carcinogenesis and progression to PDAC

Apart from hereditary mutations, spontaneous genetic alterations can accompany or give rise to

PDAC: Generally, these specific mutations can act as a “switch” dramatically increasing the risk

of developing PDAC, though tissue transformation requires an additional trigger; or vice versa,

they can occur as a consequence of already initiated tissue transformation and then promote

further tumor growth, metastasation and invasion. Major genes whose abnormalities can act as

this kind of “switch” include KRAS, p16, p53 and SMAD4 [76].

KRAS (Kirsten rat sarcoma viral oncogene homolog) is an oncogene that is found to be

mutated in more than 90% of all PDAC patients. It is commonly assumed to be an initiating

force for PDAC development as it is also mutated in many precursor lesions [76]. As an important

growth-mediating factor it is not only associated with initiation but also progression.

Being a GTPase, KRAS normally works as a switch (not to be confused with the

above mentioned genetic “switch”) between an on- and an off-state. When bound to GTP,

KRAS transduces incoming growth signals causing activation of the RAF/MEK/ERK and

PI3K/PDK1/AKT cascade. Due to its intrinsic enzymatic activity (GTPase characteristic) it

cleaves the terminal phosphate and thereby automatically changes into the off-state. It can then

be reactivated by SOS1 or other guanine nucleotide exchange factors (GEFs) [94].

When mutated, e.g. frequently occuring KRASG12D, the ability to hydolyze GTP is lost and

KRAS remains in the on-state; accordingly, transient growth signal changes into a persistent

growth signal.

Both major downstream cascades of KRAS, RAF and PI3K play an important role during

tumorigenesis. PI3K/AKT signaling is required for cell cycle maintenance and proliferation by

differentiation of adult stem cells and thus promotes uncontrolled proliferation while at the same

time preventing apoptosis. Amplified AKT2 was found in different tumor entities without KRAS

mutations [95]. Loss of Pten, a natural inhibitor of PI3K signaling, also promotes uncontrolled

proliferation in mouse models [96]. The RAF/MEK/ERK signaling cascade is required for

further growth signal transduction and, accordingly, can also cause uncontrolled proliferation

mutated. Mutations of B-RAF were found in several pancreatic tumors that did not show KRAS

mutations [97].

p16 is a tumor suppressor which is commonly deactivated in PDAC cells [76]. As it is also

found to be deactivated in precursor lesions it is regarded as an early genetic event contributing to

further malignant transformation and uncontrolled growth. However, p16 is generally assumed to
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be mutated after the KRAS alteration occurred [98, 99]. As a cyclin-dependent kinase inhibitor

(CDK), p16 inhibits cell cycle progression between G1 and S phase, leading to a decreased

proliferation. p16 prevents proliferation by binding to CDK4/6 which then cannot bind to

cyclin D and phosphorylate pRB anymore [100]. This phosphorylation normally allows pRB to

dissociate from transcription factor E2F1, which then can migrate from the cytoplasm to the

nucleus where it initiates transcription of genes relevant for the transition from G1 to S phase

[100].

Loss of p53 tumor suppressor genes is observed in most PDAC patients (around 85%).

However, this mutation is usually observed after p16 and KRAS mutations, i.e. in progressed

lesions or in the tumor stage. As p16, p53 is able to arrest growth by targeting the G1/S

regulation point of the cell cycle by binding to CDK4/6, CDK2 and CDK1 and inducing cell

cycle inhibitors. Accordingly, it can also induce apoptosis. Usually, p53 is in an inactive state,

being bound to MDM2. After cell damage, dissociation from MDM2 activates p53 to allow

for cell repair. Depending on the extent of damage, the p53 then either arrests the cell cycle

as described in order to induce DNA repair or directly induces apoptosis. The exact decision

mechanism remains still unknown. When p53 is mutated, DNA-damaged cells are able to

reproduce their genetic abnormalities, leading to an accumulation of the deficiencies.

SMAD4 mutations are another critical genetic event in early pancreatic carcinogenesis. The

gene is found to be mutated in 50% of PDAC patients [101]. Comparable to p53, it is mostly

found to be mutated in progressed precursor lesions and tumors, indicating that SMAD4 alter-

ations are likely to be the consequence of prior genetic events as KRAS mutations. SMAD4

is a member of the SMAD family. It dimerizes, trimerizes or hexamerizes together with other

SMAD members (e.g. SMAD1-SMAD2-SMAD4 or SMAD3-SMAD4), forming different tran-

scription factors. Those relatively unspecific factors then contribute to regulation of many genes

contributing to functions as differentiation, apoptosis, cell cycle and, importantly, embryonic de-

velopment. As a mediator of the TGFβ pathway, SMAD4 mutations are a double-edged sword:

During early stages of pancreatic carcinogenesis, TGFβ signaling malfunction can contribute

to uncontrolled growth, as TGFβ signals mediate epithelial growth and survival inhibition and

apoptotic signals. However, also proliferation and migration epithelial-mesenchymal (EMT)

signals are transduced by TGFβ activity; accordingly, SMAD4 mutations can prevent further

tumor growth in advanced stages of PDAC formation [102, 103].

Apart from the discussed mutations, dysregulation of mucins (heavily glycosylated high

molecular weight glycoproteins), is another characteristic of early pancreatic carcinogenesis.

Mucins are gel-forming proteins functioning as chemical barrier and lubricators. In early pan-

creatic precursor lesions, MUC1 and MUC6 were shown to be strongly upregulated. In advanced

PDAC, MUC1 and MUC4 showed a strong upregulation [104]. Recent studies are considering

mucins to be potential drug targets for PDAC treatment [105].

An appropriate quantifier of PDAC progression is S100P, a calcium-binding protein. Expres-

sion of this protein has been reported to increase stepwise with progression of precursor lesions

to tumors [106]. It has also been shown to promote tumor growth [104]. However, though it is
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an accurate indicator of PDAC, it appears to be drug resistant.

A non-genetic characteristic of early pancreatic carcinogenesis is telomere shortening. Telom-

eres are composed of repetetive sequences and bind with shelterins in order to avoid truncation

of functionally relevant genes during cell division. Usually, in case of critically short telomeres,

DNA damage response is activated by p53. As most cells in PDAC are p53-deficient, correspond-

ing damage response will be absent here. However, in those cells which are not p53-deficient,

damage response would have to be prevented artificially. Accordingly, short-telomere cells could

be potential targets of therapy [70].

1.4.1 The PanIN model for progression of precursor lesions to carcinoma

1.4.1.1 Stepwise progression from PanIN-1A to PanIN-3 and PDAC

The most common type of pancreatic preneoplastic lesion is called pancreatic intraepithelial

neoplasia (PanIN). PanINs are small lesions (< 5 mm) located in the pancreatic ducts. The

PanIN progression model with different subtypes of PanINs was designed in order to establish

a descriptive model reflecting different stages of progression to PDAC with regard to tissue

transformation. Yet it is not clear whether all precursor lesions undergo the same stepwise

process of tissue transition or whether there are special subtypes of transition in which certain

steps are “skipped”.

The model assumes five transitional steps to take place for the transformation of normal

pancreatic tissue to invasive carcinoma: Normal tissue −→ PanIN-1A −→ PanIN-1B −→ PanIN-

2 −→ PanIN-3 −→ PDAC. Visualization and histological examples are given in Fig. 1.4.

PanIN-1A and -1B lesions are characterized by different extent of mucin expression and pap-

illary growth. The above described KRAS-mutation is found in most of these lesions [107]. First

nuclear abnormalities are observed in PanIN-2 lesions, usually coinciding with p16 mutations

[98]. PanIN-3 is then characterized by pronounced nuclear atypia, mitosis and luminal budding

and generally accompanied by p53 and SMAD4 mutations [108]. PDAC tissue shows invasion

and desmoplasia.

1.4.1.2 Direct transition from normal pancreas to PanIN-2 or PanIN-3

However, the described linear progression of PanIN has not been proven to be correct but rather

describes an attempt to embed commonly observed intermediate steps of tissue transformation

into a well-defined model. In fact, the model contains several implications which are not nec-

essarily correct. Firstly, it implies that once tissue transformation is initiated, PanIN-1A/B

is formed and KRAS is mutated, the lesion will progress towards advanced PanIN stages and

finally PDAC in all cases. However, it could also be possible that KRAS-mutated acinar cells

in PanIN-1 undergo cell cycle arrest leading to destruction of the lesion. An alternative model

by Real et al. [111] assumes that only additional loss of heterozygosity (LOH) in a tumor sup-

pressor gene (e.g. p16, p53, SMAD4) will induce further progression. Accordingly, PanINs

will usually be destroyed if not being promoted by additional genetic events. In addition, when
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Figure 1.4: PanIN model for stepwise progression from normal pancreatic tissue to PDAC. Left:
HE stainings (coloring all nuclei) of different progression stages; staining between PanIN-1A and
PanIN-1B is an intermediate stage. Stainings adapted from [109]. Right: Illustration of acinar
structures undergoing stepwise disruption. Sketch adapted from [110].

several mutation events occur at the same time (e.g. KRAS, p16) it could also be possible

that normal tissue undergoes direct transition to PanIN-2 or even PanIN-3. In accordance with

these objections it was recently found that PanIN-2 and PanIN-3 share many common features

with PDAC on the transcriptional level, in contrast to PanIN-1 which shows higher similarity
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to normal pancreatic tissue [111].

1.4.2 Pathways activated in PDAC

In order to understand molecular mechanisms in different stages of PDAC progression, studies

are not only focusing on the mutational status but moreover on the activity of intercellular

signaling pathways with special regard to growth-relevant embryonic pathways, i.e. Hedgehog

Notch and Wnt/β-catenin signaling [112, 113, 117].

Hedgehog signaling is proven to mediate PDAC progression with sonic hedgehog being hy-

peractivated in all intermediate PanIN stages [112]. Pdx-Shh mouse models with Shh being

dysregulated in the pancreatic endoderm have been shown to develop PanIN lesions and Kras

mutations as well as HER-2/neu mutations [112]. In addition, cyclopamine-mediated inhibi-

tion of Hh signaling induces apoptosis and blocks proliferation in a subset of PDAC cell lines.

These findings indicate that Hedgehog signaling is playing a key role in initiation of PDAC, in

particular as it is predating Kras mutation in mouse models.

Elevated expression of Notch members and the Notch target Hes1 was reported in human

PDAC and PanIN lesions but also in genetic mouse models [113]. In mice, Notch has also

been shown to contribute not only to progression but also to initiation of tissue transformation

[114]. Additionally, inhibition of γ-secretase, a protease required for Notch processing, has been

shown to reduce the number of PanIN lesions and suppress tumor formation in oncogenic mouse

models [115]. This inhibition has also been shown to promote hypoxic necrosis in advanced

mouse PDAC and can thus be regarded as future rationale for clinical translation [116].

β-catenin, member of the Wnt signaling pathway, is commonly found to be enriched in hu-

man PanIN and PDAC in the nucleus as well as in the cytoplasm [117]. However, activity of the

corresponding Wnt pathway has been only demonstrated in a subset of cell lines [118]. Mouse

model experiments have proven the growth-mediating function of β-catenin activity by inducing

β-catenin overexpression using an early Pdx1-driven promoter: When overexpressed in all pan-

creatic progenitors, mice develop exocrine agenesis, cysts and postnatal lethality [119]. Usage of

a late Pdx1-driven promoter however restricted β-catenin activity to the acinar compartments

and islet cells [119]. However, no tumors were found to be developing in these models up to

1 year of age [119]. Ptf1a-Cre mediated activation, on the contrary, has been shown to induce

cystic tumor formation in mice [120].

mTOR (mechanistic target of rapamycin) is a non-embryonic pathway regulating cell growth,

survival, motility, proliferation, protein synthesis and transcription. It has also been shown to

be dysregulated in pancreatic tumor entities and its role in PDAC progression is currently being

studied. Mouse models with Kras mutations and Pten−/− were shown to exhibit a remarkable

dependance on mTOR signaling where mTOR inhibition leads to proliferation arrest and tumor

regression. In mice with Kras and p53 point mutations however, these effects could not be ob-

served [121]. This finding is particularly relevant because p53 mutations are frequently occurring

in human PDAC patients. It has been shown that single inhibition of mTOR (as also of Mek)

does not lead to proliferation arrest due to feedback activation of Erk/Akt [122]. Instead, dual
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inhibition of Mek and PI3K signaling is required for an efficient inhibition of mTOR, leading to

induction of apoptosis [122].

1.4.3 Cross-talk of epithelial and mesenchymal cells

In section 1.2.2.1 it was introduced that under the influence of cytokines and chemokines, pan-

creatic stellate cells (PSCs) can switch from a quiescent state to an active state in which they

become α-SMA expressing, myofibroblast-like cells. In the active state, PSCs then produce

ECM components as well as their inhibitors [57]. Consequently, prolonged production of these

components causes stromal expansion and can further induce fibrosis [57, 16].

PDAC are usually surrounded by an extensive stroma originating from the described effect.

This stroma formed by activated PSCs is also called desmoplasia. Tumor environment studies

raised the question whether there is a cross-talk of tumor cells and surrounding mesenchymal

cells, and if so, which signaling pathways are mediating this cross-talk [136]. After a variety of

pathways has been shown to contribute to the communication of epithelial and mesenchymal

cells, more and more studies are focusing on this subject called tumor-stroma interactions.

Once regarded as a host response for protection of the environmental tissue, desmoplasia

formation is now being investigated as a “dynamic series of autocrine and paracine signaling

interactions between host cells and tumor cells that both enhances the desmoplastic response and

accelerates pancreatic cancer initiation, progression and metastasis” [136]. Indeed, a variety of

experiments has shown that PSCs contribute to progression of PDAC: conditioned PSC media

induces proliferation, invasion and migration when added to pancreatic cancer cells in vitro

[137]. In vivo, injection of a mixture of pancreatic cancer cells and PSCs causes increased

tumorigenesis as compared to injection of pancreatic cancer cells alone [138]. MMP production

of stroma cells suggests that migration of tumor cells is supported through degradation of the

extracellular matrix, explaining the promoting effect. Other tumor-promoting factors released

by stroma cells include PDGF, FGF, SPARC, EGF, HGF [136].

Though the exact mechanisms of the tumor-stroma cross-talk remain still unknown, recent

studies have shown that elements of embryonic development are recapitulated, including in

particular activity of the Hedgehog, Notch and TGFβ signaling pathway [136].

1. An experiment for assessing the role of Hedgehog (Hh) is based on the implantation of

human pancreatic cancer xenografts in mice: implantation of the generally Hh-ligand

producing human PDAC xenografts in sub-optimal numbers alone did not cause tumor

formation, whereas additional injection of mouse embryonic fibroblasts (MEFs) subse-

quently induced tumor formation [139]. In contrast, when the experiment was repeated

with wild-type non-Smo-expressing MEFs (Smo is a Hh transducing membrane protein),

tumors were found to be reduced in size significantly [139], suggesting that pronounced Hh

signaling activity contributes to the tumor-stroma cross-talk, promoting tumor invasion.

Further studies confirm the important role of Hh in this process [140, 141].

2. Notch is not only an important regulator of pancreatic development but also expressed
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in adult PSCs [142]. Co-culture experiments with pancreatic cancer cells and pancreatic

myofibroblast cells showed that mRNA levels of Hes1 (a downstream target of Notch) are

increased in both of these cell types, suggesting a cross-talk mediated by Notch which can

either be just stromal-to-epithelial or also epithelial-to-epithelial [138].

3. TGFβ is known to be secreted by pancreatic cancer cells; accordingly, corresponding sig-

naling pathway was regarded a potential candidate for the tumor-stroma cross-talk. TGFβ

receptors II and III were frequently found to be upregulated in PDAC patients, TGFβ-RII

being upregulated in cancer cells and TGFβ-RIII being upregulated in stroma cells [143].

This finding could indicate a potential role of TGFβ-mediated interactions between tumor

and stroma cells. Still, this hypothesis has not been proven yet.

Further investigation of the tumor-stroma cross-talk will be the focus of future research studies.

1.4.4 Epithelial-mesenchymal transition

Epithelial-mesenchymal transition (EMT) is a process in which epithelial cells undergo spe-

cific changes of the molecular program which finally leads to acquirement of the mesenchymal

phenotype. Depending on the context of occurrence, EMT is classified into three subtypes:

developmental (type I), fibrotic and regenerative (type II) and cancer-specific (type III). Stud-

ies focusing on pancreatic cancer have shown that type III EMT plays an important role for

PDAC progression, maintenance and generation of stem cells, metastasis and treatment resis-

tance [15, 144, 145]. Consequently, considerations about molecular mechanisms initiating EMT

are required for studies focusing on early pancreatic carcinogenesis.

EMT can be regarded as a four-step process:

1. Loss of tight junctions, adherens junctions and desmosomes. Epithelial cells are arranged

in clearly shaped compartments, forming a characteristic apico-basal axis of polarity. This

arrangement is supported by tight junctions, adherens junctions and desmosomes. In

contrast, mesenchymal cells are organized loosely in the extracellular matrix (ECM). Initi-

ation of EMT is characterized by loss of the described adhesion structures. This is usually

driven by loss of E-cadherin which is required for their maintenance [147]. In addition, cell

polarity is lost [147]. As E-cadherin loss is the initiating step of EMT, any transcription

factor (TF) leading to E-cadherin inhibiton can be regarded as potential EMT inducer;

these TFs include Snail1/2, ZEB1/2, Slug, E47 and KLF8 [147, 148].

2. Cytoskeletal changes. As a consequence of loss of E-cadherin, β-catenin can now translo-

cate to the cell nucleus, leading to activation of its target genes [147]. The actin cytoskele-

ton starts to form stress fibers anchoring to the focal adhesion complexes, allowing cell

migration.

3. Transcriptional shift. Activation of Snail, ZEB and bHLH transcription factors leads to

inhibiton of epithelial marker genes, while at the same time vimentin is upregulated and

production of ECM components (e.g. collagens) is induced [147].
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4. Migration. Expression of ECM components promote formation of focal adhesion com-

plexes, and activation of N-cadherin allows cell motility. Finally, MMP production leads

to destruction of the extracellular matrix, which in turn allows the cell to migrate to the

mesenchyme [147].

The four steps are illustrated in Fig. 1.5.
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Figure 1.5: The progressive stages of EMT.

Once EMT is initiated by loss of E-cadherin, remaining steps are following immediately. Cor-

respondingly, in order to identify the sources of origin of EMT type III-mediated mesenchymal

expansion during pancreatic carcinogenesis, signaling cascades causing inhibiton of E-cadherin

must be considered relevant. Recent studies have shown that several developmental pathways,

including Wnt, Notch and TGFβ, but also FGF, EGF and HGF signaling can induce loss of

E-cadherin [149]. As several elements of embryonic development have been shown to be reca-

pitulated during pancreatic carcinogenesis, we here want to consider the mechanisms of EMT

induction through developmental pathways.

1. Increased β-catenin levels activate TFs of the TCF family which in turn activate several

EMT-inducing factors. Accordingly, Wnt signaling as an inhibitor of β-catenin degrada-

tion is an inducer of EMT. Wnt-mediated EMT has been observed during carcinogenesis,

gastrulation and cardiac valve [147].

2. TGFβ signaling mediates EMT induction by SMAD phosphorylation or regulation

of cell polarity or tight junction proteins like Par6; additionally it actives the

PI3K/Akt/mTORC1 cascade which leads to activation of EMT inducers through NF-

κB activation. Furthermore, TGFβ induces RhoA activity, leading to cytoskeletal changes

which the EMT process is accompanied by [151]. Due to these manifold mechanisms,
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TGFβ signaling can be regarded as the most relevant EMT-inducing pathway. Accord-

ingly, it was reported to mediate all three types of EMT.

3. Notch signaling can induce EMT indirectly through activation of TGFβ signaling or NF-

κB activation [147].

4. Additionally, microRNA-mediated EMT induction was documented [152, 153].

EMT is thought to play a striking role in PDAC, as reduced E-cadherin expression has been

documented in 42%-53% of PDAC patients [154]. In addition reduction or loss of E-cadherin

was correlated with metastasis formation [155]. Furthermore, it was shown that resistance

to chemotherapy of PDAC patients is correlated to acquisition of EMT traits including ZEB

expression [156]. In this regard, there is great interest in further investigating EMT mechanisms.

1.5 Other types of pancreatic tumors

The above explanations were focusing on PDAC as the major pancreatic tumor subtype. How-

ever, a variety of other tumor subtypes is well-documented though less extensively studied.

Intraductal papillary mucinous neoplasms (IPMNs) are cystic tumors arising from the duc-

tal system which are characterized by mucin-producing cells. Though there is a broad range

of IPMN subtypes with respect to extent of dysplasia and invasiveness, IPMNs are often re-

garded as another subtype of precursor lesion showing similar genetic variations as compared

to PDAC. Patients with IPMNs are older on average, additionally the percentage of female

patients is greater [123]. Additionally, a significant relation between IPMN-related symptoms

and malignant cystic neoplasia was reported [123]. Due to rising incidences, clinical interest in

IPMNs is growing [124]. Generally, it is distinguished between three subtypes of IPMNs, main-

duct, branch-duct an combined IPMNs, with main-duct IPMNs showing an increased malignant

potential and a higher percentage of invasiveness, worsening survival prognosis [125]. Patients

with non-invasive IPMNs have a much better survival prognosis (five-year survival rate 77-100%)

than patients with invasive IPMNs (five-year survival reate 43-65%) [126]. Subtypes of IPMNs

are characterized by specific expression of different mucins [127].

Mucinous cystic neoplasms (MCNs) are another type of cystic pancreatic tumor character-

ized by columnar muncin producing cells [126]. They are regarded as distinct subtype as they

are not communicating with the surrounding ductal system, in contrast to IPMNs [128]. MCNs

are almost exclusively found in women and have a good survival prognosis compared to PDAC

(five-year survival rate approaching 100%) [128].

Acinar cell carcinomas (ACCs) are tumors exhibiting less stroma than PDAC that are

characterized by their production of digestive enzymes. ACCs are highly aggressive with a

survival prognosis comparable to PDAC [129]. They account for 1%-2% of all pancreatic tumors

[130]. They are large in size and patients with ACC have very unspecific symptoms (e.g. weight

loss) [130].
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Pancreatoblastoma form another pancreatic tumor formed by cells with acinar phenotype.

Presence of squamoid nests and extensive lobulation are characteristics of pancreatoblastoma

that are not shared with ACCs. Common symptoms indicating pancreatoblastoma include

abdominal pain, emesis and jaundice [132]. Survival prognosis for pancreatoblastoma is generally

good. The tumor occurs mainly in the childhood.

Pancreatic neuroendocrine tumors (PNETs) are uncommon endocrine tumors with an an-

nual incidence of less than 1 per 100,000 persons [133]. It is generally distinguished between

functional PNETs which produce hormones and non-functional PENs that do not produce hor-

mones and form the majority of PNETs. Clinical prognosis depends on the extent of the disease

and treatment; patients with resectable tumors have a better prognosis [133]. Also, prognosis of

functional PENs is better than of non-functional PNETs. Functional PNETs are named after

the hormone they produce, e.g. gastrinoma, glucagonoma with insulinoma being the most fre-

quent functional PNET type. PNETs do not share typical genetic variations observed in PDAC,

including Kras, p53, p16 or SMAD4 mutations [134].

Solid pseudopapillary neoplasms (SPNs) are cystic tumors. The cell of origin which this

type of tumor is composed of, is unknown [130]. SPNs account for only 2%-5% of all pancreatic

tumors. They are typically round in shape and have a diameter of 2-17 cm [135]. Also they were

shown to be positive for vimentin and alpha 1-antitrypsin expression [135]. SPNs are typically

observed in young women [130]. Mutations of β-catenin are found in around 90% of all SPNs;

also, nuclear accumulation of β-catenin is observed very frequently [131].
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Chapter 2

Motivation

2.1 The KrasG12D model

Oncogenic KRAS mutations are found in approximately 90% of all pancreatic cancer patients

[76]. As KRAS mutations have also been documented as a critical genetic event in early pan-

creatic carcinogenesis, occurring in most PanIN-1A/B lesions, there is great interest in under-

standing causal effects of KRAS mediated tissue transformation.
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Figure 2.1: Ras signaling. Adapted from [157].
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Pancreas-specific expression of KrasG12D in mice is a well-established method allowing to

study early pancreatic carcinogenesis [158]. In section 1.4 it was described how the expression of

oncogenic Kras impairs the switching function of the protein, resulting in a persistent activation

of downstream cascades like PI3K/Akt and RAF/Mek/Erk (illustrated in Fig. 2.1). Corre-

spondingly, once Kras signaling is induced, uncontrolled proliferation and tissue transformation

is induced [159].

2.2 KRAS mutations in human PDAC

Due to the highly frequent occurrence of KRAS mutations in PDAC patients, KRAS has been

considered as a potential drug target, respectively. However, all clinical attempts trying to in-

terfere with KRAS-induced signals have failed and it is now commonly assumed that KRAS is

undruggable [107]. Consequently, current studies are focusing on targeting effector pathways

of KRAS, including PI3K/Akt or RAF/Mek/Erk. Notably, it was shown that tumor microen-

vironment effects like tumor-stroma interactions also depend on KRAS activity and that the

observed stromal expansion regresses after KRAS inactivation [169]. In this regard, persistent

KRAS activity can be regarded as required maintenance factor for pancreatic tumor cells and

inhibition of KRAS-induced effects is a promising perspective for treatment of PDAC.

2.3 Previous PDAC studies on Kras-mutated mice

Previous studies have shown that during development, KrasG12D-mutated mice invariably pro-

duce preneoplastic lesions which in one third of the cases further progress into invasive tumors

[159]. Additional mutations of tumor suppressor genes further decrease survival prognosis. Mice

cohorts with a combination of p53 and Kras mutations exhibit 100% mortality within 12 months,

simple Kras-mutated mice have a survival time increased about 5 months on average [159].

In mature epithelial cells however, tissue transformation cannot be observed in most samples,

even in case of additional deletion of tumor suppresor genes [160]. Also, healthy individuals are

carriers of oncogenic Kras mutations without developing pancreatic cancer [161].

These outcomes suggest that oncogenic Kras alone is not an initiating force for the develop-

ment of PDAC. However, it has been suggested that malignant transformation in Kras-mutated

mice can be triggered with an additional inflammatory stimulus, causing acute or chronic inflam-

mation of the pancreas [162, 163]. This can be possibly explained by a crosstalk of Kras signals

and signals originating from inflammatory response including, for instance, Notch or Hedgehog

signals discussed in section 1.2.2.2. Causal effects of pro-inflammatory chemokine and cytokine

release as discussed in section 1.2.2.1 further contribute to the complex pathway interference in

early pancreatic carcinogenesis. Studies focusing on these crosstalks have unveiled that a canon-

ical component of the NF-κB pathway, Ikk2, synergizes with basal Notch signaling in order to

activate transcriptional Notch targets [164]. Genetic deletion of Ikk2 in Kras-mutated mice led

to a substancially delayed carcinogenesis and also caused downregulation of Notch targets Hes1
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and Hey1 [164]. Hes1 is a suppressor of Pparγ which causes induction of antiinflammatory

signals. The described effect requires NF-κB signaling to be activated. Studies have shown that

this activation is directly tracing back to Kras. Kras activates transcription factor AP-1 which

promotes Il-1α production [165]. Il-1α than induces a feed-forward loop by activating NF-κB

signals which in turn promote Il-1α and p62 expression again. It was further shown that these

feed-forward loops are required for PDAC development and that Il-1α upregulation coincides

with KRAS mutations and NF-κB activation in PDAC patients.

Another study has shown that blocking a single isoform of PI3K, p110α is sufficient to block

the transition from acinar cells to preneoplasic lesions in Kras-mutated mice [168], motivating

further studies on downstream targets of Kras.

Whatever the distinct molecular mechanisms are, it is generally assumed that the combi-

nation of the inflammatory stimulus and oncogenic Kras mutation creates a “transformation-

permissive microenvironment” impairing coordinated proliferation of epithelial and mesenchymal

cell lineages. In order to analyze the mechanisms of normal pancreatic regeneration in wild-type

mice and impaired regeneration in Kras-mutated mice after inflammatory injury, we, for the

first time analyze histological and transcriptional changes in both mouse strains with a high

temporal resolution. In particular, the aims of our study include:

• A detailed description of the temporal course of natural pancreatic regeneration after

inflammatory injury in wild-type mice, with respect to histological and molecular changes.

• Comparative analysis of natural pancreatic regeneration and impaired regeneration in

KrasG12D-mutated mice.

• Characterization of proliferation cascades of acinar, progenitor-like and mesenchymal cells

after inflammatory injury in both mouse strains.

• Detection of marker genes / gene sets indicating an early stage of pancreatic carcinogenesis;

transferability to human PDAC data.

• Identification of intercellular signaling pathways required for successful mediation of re-

generation in wild-type mice or tissue transformation in KrasG12D-mutated mice.
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Chapter 3

Material and methods

In the previous chapter it was discussed that the use of KrasG12D GEMMs is a well-established

method allowing to model early pancreatic carcinogenesis. However, Kras mutations alone are

not sufficient to cause a malignant transformation in adult, but only in developmental mouse

models. In adult mouse models, an additional inflammatory stimulus is required. Caerulein-

induced pancreatitis is a matching trigger inducing tissue transformation.

Our study focuses on the exploration of the molecular and histological landscape of early

pancreatic carcinogenesis. To do this, we perform a comparative analysis between pancre-

atic regeneration in wild-type mice and malignant transformation in Kras-mutated mice after

caerulein-induced inflammatory injury. Particularly, the divergence of the natural course of in-

flammatory response leading to complete regeneration of the organ in wild-type mice and tissue

transformation in Kras-mutated mice will be addressed.

3.1 Experimental design

This section, including all subsections, figures and any other material, is adapted

from Kong, Bruns, Behler et al. [258].

In order to achieve pancreas-specific expression of KrasG12D, strain crossing of Kras-mutated

mice and mice with pancreas-specific Cre recombinase was performed: Mice carrying the Loxp-

STOP-Loxp-KrasG12D gene, obtained from Jackson Laboratory (Bar Harbor, USA) were crossed

with mice carrying p48Cre/+, also known as Ptf1aCre/+, courtesy of Prof. Roland M. Schmidt

and Jens T. Siveke (Dept. of Gastroenterology, TU Munich). These mice will be referred as

“KrasG12D mice” in the following. Wild-type mice (C57BL/6J) were obtained from Charles

River Laboratory (Sulzfeld, Germany).

3.1.1 Treatment protocol

Acute pancreatitis in wild-type (WT) and KrasG12D mice was induced at eight to nine weeks

of age by administering caerulein according to the “consecutive protocol” [171], see also section

29
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caerulein

3 12 24 36 48 60 72 84 96 5 7 14

hours days

wild-type

5 6

KrasG12D

Figure 3.1: Time course of the experiment. Wild-type mice were sacrificed at 13, KrasG12D mice
were at nine different time points.

1.2.3. Caerulein treatment was performed by eight hourly intraperitoneal (i.p.) injections (2 mg

per injection) on two consecutive days. Control animals were treated with 0.9% sodium chloride.

On each day of injection, animals were treated with a subcutaneous bolus of Buprenorphine

(Temgesic; 1 mg/kg bodyweight). The last injection was considered “hour 0” or “day 0”.

Control animals were sacrificed one hour after injections. Mice were injected with 2.5 mg BrdU

i.p. two hours before sacrifice. To follow histological and molecular changes dynamically after

the onset of acute pancreatitis, organs were collected at 13 time points in wild-type and 9

time points in KrasG12D mice, from 3 hours to day 14 after the last injection. Additionally,

organs from control samples were collected, respectively. Fig. 3.1 provides an overview of the

experimental time course.

3.1.2 RNA isolation

In order to allow analysis of the transcriptional changes, RNA isolation was performed for the

extracted tissue samples. Bulk tissues were processed according to instructions provided in the

RNeasy mini kit (Qiagen, Venlo, Netherlands) using 50µl of β-mercaptoethanol in 1ml RLT

buffer. The extracted RNA was eluted in purified water and shock-frozen in liquid nitrogen.

Samples were stored at -80◦C. Cell sorting was not performed.

3.1.3 Immunohistochemistry and immunofluorescence analysis

Hematoxylin and eosin stainings (H&E) as well as immunohistochemistry (IHC) and immunoflu-

orescence (IF) are established methods allowing specific coloring for histological analysis of the

tissue samples. H&E stainings color all nuclei, IHC and IF are antibody-based techniques, col-

oring specifically for a protein. IHC staining for Sox9+ cells was performed in order to detect

pancreatic progenitor cells, or, particularly dedifferentiated acinar cells acquiring a progenitor-

like state as discussed in section 1.2.2.2. Stainings for α-SMA+ were performed for identification

of stroma cells, α-Amy+-specific stainings were used to color acinar cells. Proliferating cells were

colored with stainings for BrdU and immune cells were identified by coloring Cd45+ cells. The

following sections will provide information about the applied protocols and the antibodies used.

3.1.3.1 Tissue extraction, H&E, IHC and IF protocol

Harvested tissues were conserved overnight in 4% paraformaldehyde (PFA), then embedded in

paraffin and cut into 3.5 µm thick slices. Sections were subjected to H&E, IHC and IF, as
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previously described [162]. Briefly, citric buffer was used for antigen retrieval. IHC staining was

performed using 3% BSA (bovine serum albumin, Sigma-Aldrich, Munich, Germany) in PBS as

blocking and antibody dilution. IF staining was performed using Triton x100 diluted to 0.6%

in PBS plus 3% BSA for blocking, except for Ck19 staining where 10% goat serum in PBS plus

0.6% Triton x100 was used for blocking, primary antibody dilution and dilution of the secondary

antibody.

For quantification IHC pictures, five non-overlapping bright-field images were acquired per

animal, resulting in an image size of 355 x 263 µm. For quantification of IF pictures, five

non-overlapping images were acquired, resulting in an image size of 697 x 522 µm (for the

quantification of proliferating α-SMA-positive cells) or an image size of 355 x 263 µm (for the

quantification of proliferating α-amylase- and Sox9-positive cells).

3.1.3.2 Antibodies

The following antibodies were used: rat anti-mouse CD45 (IHC, BD Bioscience, Heidelberg,

Germany), rat anti-BrdU (IF, Santa Cruz Biotechnology, Heidelberg, Germany); mouse

anti-BrdU (IHC&IF, Cell Signaling Technology, NEB, Frankfurt/Main, Germany); mouse

anti-Amylase (G-10, IF, Santa Cruz Biotechnology); mouse anti-α-SMA (IF, Dako, Hamburg,

Germany); rabbit anti-Sox9 (IF, Merck Millipore, Billerica, MA, USA). For IHC, HRP

labelled polymer anti-mouse or anti-rat secondary antibodies (Dako) was applied. For IF,

fluorescence-labelled secondary antibodies: goat anti-mouse IgG Alexa Fluor 488 (Dako), goat

anti-rat 596 and chicken anti-rabbit 488 (Alexa fluor, Invitrogen, Carlsbad, CA, USA) were

used at a dilution of 1:200 and nuclei were counterstained with DAPi. Five non-overlapping

images at a 200-fold magnification were acquired per animal.

Table 3.1: Number of collected tissues samples and number of
microarrays used at different time points.

time WT WT KrasG12D KrasG12D

point tissues arrays tissues arrays

control 5 5 4 4

3h 13 3 6 4

12h 6 3 8 3

24h 13 3 5 4

36h 6 3 9 3

48h 15 3 1 1

60h 2 3 9 3

72h 14 4

84h 2 3 6 2

96h 13 3

d5 16 4

d6 2

d7 13 3 7 2

d14 8 4 4 3∑
128 44 59 29



32 CHAPTER 3. MATERIAL AND METHODS

3.2 Microarrays

DNA microarrays are a well-established technology allowing to perform transcriptome analysis,

based on given RNA samples. The following sections will give an overview about the concept of

microarrays.

3.2.1 Transcriptional profiling with microarrays

Generally, there are different types of microarrays including DNA, protein, tissue arrays and

others. Following explanations are referring to DNA microarrays as those chips are used for

transcriptome analysis.

Today, microarrays are the most frequently applied technology for transcriptional profiling,

as they are relatively inexpensive and easy to handle with respect to data volume. Recent

advances in next-generation sequencing (NGS) approaches suggest that sooner or later microar-

ray technology will be outdated largely due to constantly decreasing costs of NGS technologies

[172]. In contrast to microarrays which allow only for quantification of predefined transcripts,

NGS methods cover the entire transcriptome, making them particularly useful for detection of

unknown transcripts. Still, at the moment, microarrays provide an easy-to-use method for quan-

tification of most transcripts with standardized procedures for data normalization and further

analysis.

The principle of DNA microarrays is based on strand hybridizations. A preselected set of

sequences is placed on the chip during its production. These so-called probes are specifically

designed to measure the expression of a corresponding transcript with the complementary se-

quence. Isolated RNA from the sample of interest is transcribed into complementary DNA

(cDNA) and labeled with a fluorescent dye. Hybridization is then performed under controlled

conditions. Finally, fluorescence intensity of the different probe spots is measured with a laser

and transformed into a quantitative value.

Microarrays can be divided into two classes in terms of production: spotted arrays and in

situ arrays. For spotted arrays, probes are produced from mRNA and then spotted on a glass

slide. For in situ arrays on the contrary, oligonucleotides are produced in place. Spotted arrays

are usually produced using two different dyes, e.g. Cy3 and Cy5 (two-channel-arrays) which

allow for a comparative analysis of two samples with one array. For in situ arrays, only a single

dye is used (one-channel-arrays). In place production of oligonucleotides for in situ arrays is

usually based on a photolithographic process; predefined sequences of nucleotides are extended

base by base using a photholithographic mask [173]. Today, in situ arrays are gereally preferred

due to greater precision [174, 175].

3.2.2 Affymetrix arrays

GeneChip by Affymetrix is today the most popular platform of in situ microarrays. Gene-

specific oligonucleotides (oligos, probes), have a length of approx. 50 base pairs (bp). One
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chip contains around 1 million distinct oligonucleotides which are grouped in up to 50,000

probe sets, each probe set reflecting one predefined gene. In contrast to other manufacturers,

Affymetrix includes two different oligonucleotides in each probe: perfect match oligos (PM)

and mismatch oligos (MM). PM oligos are perfectly complementary to the cDNA of the gene

they are supposed to hybridize with. MM oligos contain a single base alteration compared to

the corresponding PM oligos. The PM/MM concept was designed to allow noise reduction, as

there are always non-matching sequences binding to the probes. As the non-matching probes

are binding unspecifically, they will bind to both PM and MM oligos whereas the actual cDNA

will only bind to the PM oligos. Accordingly, noise can be removed by subtraction of the MM

signal, theoretically.

3.2.3 Applied protocol

Transcriptional profiling was performed using Affymetrix DNA microarrays of type GeneChip

Mouse Gene 1.0 ST. Total RNA (100 ng) was amplified using the WT Expression kit (Ambion)

and the WT Terminal labeling and Fragmentation Kit (Affymetrix). 2 µg of amplified cDNA

were hybridized on the arrays containing about 29,000 probe sets. The Agilent 2100 Bioanalyzer

was used to assess RNA quality and only high quality RNA (RIN > 7) was used for microar-

ray analysis. Staining (Fluidics script FS450 0007) and scanning was done according to the

Affymetrix expression protocol.

Profiling was performed for control samples and samples from all time points except day 6.

Number of collected tissues and number of chips used at different stages is provided with table

3.1.

3.3 Data preprocessing

In order to obtain well-interpretable data, transcriptional profiles are preprocessed in several

steps: quality control, normalization and filtering.

3.3.1 Quality control

Quality control is performed in order to discard microarrays that show large deviations, relative

to other samples, which cannot be explained by biological effects and, accordingly, indicate ex-

perimental failure. These outliers can be detected with different methods including between array

comparison (L1-distance of profiles), comparison of signal intensity distributions and variance-

mean dependance. Additionally, individual array quality can be assessed with MA plots.

MA plots were originally established for dual-channel arrays with two signal intensities per

probe [176]. Given two intensities I1, I2, the MA plot visualizes log ratios M = log2(I1)−log2(I2)

versus mean averages A = log2(I1I2)/2. Both are generally assumed to be correlated. Thus, a

correlation or dependence coefficient and its corresponding test can be used for quality assess-

ment [177]. For single-channel arrays the reference chip is usually imitated using an averaged
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combination of other chips from the same experiment. For Affymetrix chips, further quality

control can be performed using the PM/MM ratios [178].

The above described steps are readily applicable using the arrayQualityMetrics package for

Bioconductor/R [179].

3.3.2 Normalization

Normalization of the expression data is performed in order to correct samples for technical

variation. Here, RMA (robust multi array) normalization is an established standard [180].

In a first step, signals are background-corrected and log2-transformed [180]. In contrast to

previous approaches, RMA background correction does not take advantage the PM vs. MM

ratios of Affymetrix chips which are supposed to improve measurement precision (see section

3.2.2); it has been shown that total exclusion of MM probes yields better results [180]. Instead,

RMA uses so-called convolution background correction which is based on a statistical model for

the PM probes [180].

Afterwards, quantile normalization is performed according to Bolstad [181, 180]. Finally,

each probe set (multiple probes on the chip referring to the same gene) is summarized to a

single gene expression level using Tukey’s median polish [180]. Resulting gene-specific expression

profiles are then used for further analysis.

3.3.3 Probe filtering

After normalization, gene filtering is performed. As generally less than 30-40% of all genes are

expressed in a given tissue, most of the normalized expression profiles can be discarded [182].

Selection is performed variance-based: It was shown, that discarding genes with a small variance

is a viable method for improving the results of further analyses [172]. Particularly, due to the

decreased number of genes, differential expression analysis will yield more true positives after

p-value correction [172]. By default, 50% of the profiles with the smallest variance are discarded

using the genefilter package for Bioconductor/R [183].

3.3.4 Application of preprocessing steps

Our experimental data comprises 73 microarrays (44 for wild-type mice, 29 for KrasG12D mice).

For most time points, three replicates were made; a precise listing of the sample counts is

provided with table 3.1. In a first step, quality control was performed for all 73 arrays. None

of the chips was withdrawn, as all arrays passed at least 4 out of the 5 quality control methods

provided with R package arrayQualityMetrics. Subsequently, RMA normalization was performed

as provided with R package affy. As a final step of data preprocessing, probe filtering was

performed; here, all probes that could not be assigned to an Entrez ID were removed. In case of

multiple probes referring to the same Entrez ID, only the probe with the greatest variance was

retained. Afterwards, 50% of the remaining probes with the smallest variance were discarded.
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After filtering, the normalized expression dataset comprised 10,360 gene expression profiles and

73 samples and was used for all further analysis.

3.4 Data modeling and analysis

3.4.1 Hierarchical clustering

Hierarchical clustering is a distance-based method allowing to identify tree-like structures of

feature or sample similarities in a given dataset. Complete linkage clustering is an agglomerative

hierarchical clustering procedure. Given m samples with n dimensions, x1, ..., xm ∈ Rn.

Initially, each sample forms an own cluster.

X1 = {x1} , ... ,Xm = {xm}

Based on the initial set X (1) = {{X1} , ..., {Xm}}, clusters are merged iteratively according to

the shortest between-cluster distance computed with the complete linkage function. For two

clusters Xi, Xj this is D(Xi,Xj) = maxx∈Xi, y∈Xj d(x, y) where d(x, y) is the distance function.

Commonly, the L2-norm (Euclidean distance) is used as distance function:

d(x, y) =

√√√√ n∑
i=1

(xi − yi)2

The step from iteration k to iteration (k + 1) is then

X ∗1 ,X ∗2 = argminXi∈X (k), Xj∈X (k)D(Xi,Xj)

X (k+1) =
{
X (k) ∪ {X ∗1 ,X ∗2 }

}
\ {X ∗1 } \ {X ∗2 }

The clustering procedure terminates when all subclusters are merged to one big cluster; distances

can then be visualized in a dendrogram.

A dendrogram is a visualization method for hierarchical clustering results. According to

the clustering procedure, a tree-like structure arises. Original samples can then be arranged

according to this structure, i.e. each sample or subcluster is arranged together with the sample

or subcluster it has been merged with. Then, the dendrogram complements data visualization

with a tree reflecting the computed cluster distances. An example is given in Fig. 3.2.

Within the dendrogram, the sum of distances between a node and its two child nodes reflects

the distance between the clusters and its subclusters.

However, paths cannot be interpreted as distances, except for a special case on the leaf level

where the distances of two leaves connected via a common father node can be summed up. In

order to avoid misinterpretation, the leaves are often visualized with a uniform distance. Then,

distance to the father cluster can still be anticipated by distance to the x-axis.
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Figure 3.2: Two dendrograms visualizing the same clustering result. In the right part, leaves
are visualized with a uniform distance.

3.4.2 PCA and PARAFAC

Several factorization-based methods allow general investigation of a dataset with respect to

variance. In this context, they help identifying influential variables and visualizing data using

principal components.

Let Xm×n = (xij) be the expression matrix containing the expression levels of m different

genes in n different samples after preprocessing has been performed. xij refers to the expression

of gene i in sample j. Correspondingly, the ith row of X reflects the gene expression profile of

gene i across samples and the jth column reflects the sample expression profile of sample j for

all genes.

3.4.2.1 Singular value decomposition

Singular value decomposition (SVD) is the factorization of X into

X = UΣV>

where U is a unitary m ×m matrix, V> is the conjugate transpose of a unitary n × n matrix

and Σ is a diagonal m × n matrix. As U and V are defined to be unitary, U>U = Im and

V>V = In. Geometrically, if X is regarded as linear function f : Rm −→ Rn with f(w) = Xw,

application of X can be interpreted as a sequence of three operations: a transformation, followed

by a rescaling, followed by another transformation. U corresponds to the first transformation,

V> to the second transformation and Σ to the rescaling operation. Thus, the gain of information

achieved by application of SVD is the identification of these operations. Particularly, columns

of U yield an orthonormal basis of the variables reflected by the rows of X and rows of V>

yield an orthonormal basis of the samples reflected by the columns of X. The elements of the

diagonal matrix Σ are termed singular values.

3.4.2.2 PCA

Principal component analysis (PCA) is a method which is conceptually closely related to SVD.

Here, the covariance matrix X>X is decomposed in order to transform data into a new vector

space with the basis being formed by the eigenvectors of X>X, the principal components, which
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allow for a variance-maximizing transformation. In a first step, variables in X are standardized

row-wise. Then, factorization into two matrices is performed in a way that

X>X = WΛW>

with W containing the eigenvectors of X>X and Λ containing the eigenvalues as diagonal

entries. Columns of W are then reordered with respect to singular values (decreasingly). The

first L eigenvectors of W are finally used as loading matrix WL. Then, XWL allows the

desired transformation. This “truncated transformation” is used for dimensionality reduction;

the underlying assumption is that those components with the greatest variance also contain the

most information.

The following consideration unveils the relationship between PCA and SVD: Since X>X =

VΣU>UΣV> = VΣ2V>, V contains the eigenvectors of the covariance matrix X>X and thus

corresponds to W, and Σ2 contains the eigenvalues and thus corresponds to Λ.

After PCA has been applied, a biplot can be generated in order to visualize the data in the

new vector space, using two or three of the computed principal components.

3.4.2.3 Extension to tensors: PARAFAC

Given a matrix, PCA is a very useful method for dimensionality reduction and variance max-

imization. However, an extension of the concept is required when factorization should be

performed for multi-way arrays. An approximation algorithm called parallel factor analysis

(PARAFAC) which was described by Richard A. Harshman [186] can be applied in order to

minimize the error in multi-way decomposition. Consider p gene expression matrices X1, ..., Xp

resulting from p different experimental protocols, with the same set of m genes and n samples

prepared under equal or comparable conditions, with (xij)k reflecting expression of gene i in

sample j for protocol k. As dimensions are equal dim(X1) = ... = dim(Xp) = (m × n)

and indexes are matching, this data can be summarized in a three-way array (tensor) Ym×n×p.

Then, PARAFAC performs a three-way array decomposition and reduction to L dimensions by

minimizing the error term in

Y =
L∑
`=1

a` ⊗ b` ⊗ c` + ε

with a`, b`, c` being the `th columns of the resulting loading matrices A, B, C. Depending

on the context of interest, each of the three truncated loading matrices can then be used in

order to visualize the data, i.e. visualization of genes, samples or protocols. Implementations of

PARAFAC are available with the PTAk package for R [187].

3.4.2.4 Confidence ellipsoids

Consider a biplot that was generated after PCA (or another decomposition method) has been

applied to X>, with transformed values Y := X>WL. Let A ⊆ {1, ..., n} be a subset of
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samples from expression matrix X, e.g. samples prepared under a certain condition. Then,

a confidence ellipsoid for a significance level α can be drawn in order to visualize the part of

the space in the plot in which a random sample prepared under the certain condition will be

located with a probability of 1− α (called (1− α) confidence ellipsoid)). This part of the space

is estimated using the sample means µ̂Y[A,] and the covariance matrix C := (Y[A, ])> (Y[A, ]).
Let vC

1 , ..., vC
L be the eigenvectors of C. The ellipsoid is now created in two steps. First, the

size is set up with the standard ellipsoid function for a coordinate z = (z1, ..., zL)

(z1 − (µ̂Y[A,])1)2

(σ̂2
Y[A,])1

+ . . . +
(zL − (µ̂Y[A,])L)2

(σ̂2
Y[A,])L

= s

where (σ̂2
Y[A,])i is the sample variance of row i in Y[A, ] and s is a scaling factor. This scaling

factor s is used to adjust the ellipsoid size according to the significance level α and since we

assume sample values to be distributed normally, and sum of L squared normally distributed

data points is following a χ2-distribution with L degrees of freedom, s can be found using the

inverse cumulative distribution function so that P (χ2
L ≤ s) = 1 − α. Finally, the ellipsoid

must be rotated. The rotation angle for axis i is calculated by θi = arctan
((

vC
i

)
L
/
(
vC
i

)
i

)
, for

1 ≤ i ≤ L − 1. The distance between any coordinate (e.g. other sample) to the center of the

ellipsoid can be simply calculated with d
(
z, µ̂Y[A,]

)
, e.g. using the L2-norm.

3.4.3 Differential expression analysis

Given an expression matrix Xm×n (m genes, n samples) and u disjoint sets of samples

A1, ..., Au, defined with column indexes of X, i.e. the following conditions are fulfilled:

∀k, 1 ≤ k ≤ u : (∀ak` ∈ Ak : 1 ≤ ak` ≤ n ∧ ∀Ak′ , k′ 6= k : Ak ∩ Ak′ = ∅). These sets will also

be called sample groups in the following.

Then, differential expression analysis can be performed in order to determine genes which are

expressed at a different level in at least one of the groups. The analysis is based on comparison

of the mean expression levels. For each single gene i, the null hypothesis is

H
(i)
0 : ∀

{
k, k′

}
, k 6= k′, 1 ≤ k ≤ u, 1 ≤ k′ ≤ u : µik = µik′

and the alternative hypothesis is

H
(i)
1 : ∃

{
k, k′

}
, k 6= k′, 1 ≤ k ≤ u, 1 ≤ k′ ≤ u : µik 6= µik′

where µik is the mean expression level of the gene in group k (which can be estimated using

samples Ak). For the following considerations, let y = X[i, ] be the gene expression profile of a

gene i, i.e. y is a vector of n elements.
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3.4.3.1 t-test for detection of differential expression between two groups

For u = 2, the testing procedure reduces to a single t-test. Given samples of two random variables

reflecting expression of a gene i in two groups k, k′, i.e. gene expression levels yAk
,yAk′ , following

a normal distribution. Then, the null hypothesis of the two-sample t-test is

H
(i)
0 : µik = µik′

where µik, µik′ are the mean expression levels of gene i in groups k, k′. Welch’s t-statistic for

two random variables with different variance is then calculated by

t =
µ̂(yAk

)− µ̂(yAk′ )√
σ̂2(yAk

)

NAk

+
σ̂2(yAk′ )

NAk′

where µ̂(yAk
), µ̂(yAk′ ) are the sample means, NAk

= |Ak|, NAk′ = |Ak′ | and σ̂2(yAk
), σ̂2(yAk′ )

are the sample variances. For the case the null hypothesis is correct, t-statistic is now assumed

to follow a t-distribution with ν degrees of freedom where ν is being estimated with the Welch-

Satterthwaite equation

ν ≈

(
σ̂2(yAk

)

NAk

+
σ̂2(yAk′ )

NAk′

)2

σ̂4(yAk
)

N2
Ak

+ ν1
+

σ̂4(yAk′ )

N2
Ak′

+ ν2

where ν1 = NAk
− 1 and ν2 = NAk′ − 1. Null hypothesis is rejected at significance level α if

|t| > t(1− 1
2α, ν) which is calculated with the probability density function of the t-distribution,

or using a reference table. Unless stated differently, this two-sided variant of Welch’s t-test is

applied in the following. The one-sided variant could be applied in order to test H
(i)
0 : µik ≤ µik′ ;

in this case, null hypothesis is rejected at significance level α if t > t(1− α, ν).

3.4.3.2 F-test for more than two groups (ANOVA)

For u > 2, however, application of multiple t-tests would result in α-error accumulation (i.e.

false positive discoveries, null hypotheses that are rejected erroneously). Here, one-way analysis

of variance (ANOVA) can be applied, using the F-test.

The idea of F-test application is based on the comparison of between-group sample variabil-

ity σ̂2
BGV estimating the variance between groups and within-group sample variability σ̂2

WGV

estimating the variance within the groups. σ̂2
BGV is calculated by

σ̂2
BGV =

u∑
k=1

NAk
(µ̂(yAk

)− µ̂(y))2

u− 1
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and σ̂2
WGV is calculated by

σ̂2
WGV =

u∑
k=1

∑
ak`∈Ak

(yak` − µ̂(yAk
))2

NAk
− 1

From these definitions, it directly follows that σ2
BGV 6= σ2

WGV ⇔ ∃k 6= k′ : µik 6= µik′ , because, if

variances would be equal, then for any two groups k, k′, members would be exchangeable without

σ2
k, σ

2
k′ and µk, µk′ being changed. Correspondingly, the null hypothesis of the F-test is

H
(i)
0 : σ2

BGV = σ2
WGV

and the F-statistic is calculated by

F =
σ̂2
BGV

σ̂2
WGV

and assumed to follow an F-distribution with u− 1, u(n− 1) degrees of freedom.

As the above procedure is repeated for each gene separately, the information about multiple

testing must be included when significance is assessed. To this end, multiple testing correction is

applied, as described in section 3.4.4. Then, if the multiple testing correction yields a significant

positive result for differential expression of a gene, the decision between which pairs of groups

the gene is differentially expressed can be performed based on two-sample t-tests (after F-test

application, differential expression is detected, but the affected groups are not yet identified).

Then, after t-tests were performed, corresponding p-values are corrected again with one of the

multiple testing correction methods.

3.4.3.3 Linear models for microarrays and RNA-Seq (Limma)

An advanced method for differential expression analysis has been developed by Smyth et al.

and is provided in R package limma (linear models for microarrays and RNA-Seq) [191]. Here,

linear models are set up for each gene. Let y = X[i, ] be the expression profile of gene i across

all samples. Then, a binary design matrix Γ = (γ`k) ∈ {0, 1}n×u is set up, based on sample

grouping :

γ`k =

1, if ` ∈ Ak
0, otherwise.

As groups were defined to be disjoint, Γ can contain only up to one positive entry (1) per row.

The linear model is then

y ∼ Γβ + β0 + ε

After β has been estimated, statistics are computed according to the concept in the above

sections. As sample values are replaced by the linear model here, moderated F-statistics and

t-statistics are computed instead of the standard statistics described above. These statistics take

advantage of the variance distribution across different genes which can be estimated. Estima-
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tion of the moderated statistics is performed with an empirical Bayes approach [191]. Finally,

multiple testing correction is performed.

3.4.4 Multiple testing correction

With each null hypothesis being tested on the same dataset, the probability for a null hypothesis

being rejected erroneously increases. Multiple testing correction can be applied in order to

counterpoise this α-error accumulation effect.

3.4.4.1 False discovery rates

P-values can be transformed into false discovery rates (FDR) in order to correct for multiple

testing. Concept of FDRs was first introduced by Benjamini and Hochberg [188]. Let p1, ..., pm

be the p-values of independent testing procedures (null hypotheses H
(1)
0 , ..., H

(m)
0 ) and let α be

the desired significance level. Then, the Benjamini-Hochberg procedure searches for the largest

i with

p̃i ≤
i

m
α

where p̃ is the reordered list of p-values with p̃1 < ... < p̃m, i.e. p̃i is the ith smallest p-

value. Then, all null hypotheses H̃0
(1)
, ..., H̃0

(i)
are rejected, i.e. corresponding variables are

regarded as positive discoveries, where H̃0 is the reordered list of null hypotheses, according to

the reordering procedure from p to p̃.

3.4.4.2 Bonferroni correction

Bonferroni correction is a familywise error rate (FWER) method which is more strict than

Benjamini and Hochberg’s FDR concept [189, 190]. Here, any null hypothesis H̃0
(i)

is rejected

only if

p̃i ≤
1

m
α

3.4.5 Detection of differential expression of a gene set without predefined

groups

In section 3.4.3 it was discussed how differential expression analysis is performed, given two or

more groups. Another question arising is how differential expression can be detected for a given

set of genes if the groups are unknown. Here, the concept of aggregated z-scores can be used.

Assume, expression levels are distributed normally across samples in an expression ma-

trix Xm×n = (xij) (m genes, n samples). The z-score of a single gene i with expres-

sion profile y = X[i, ] for a given sample j, is calculated by zij = (xij − µ̂(y)) /σ̂(y),

with µ̂(y) and σ̂2(y) referring to sample mean and sample variance. For a set of gene in-

dexes G = {g1, ..., gk | ∀g` : 1 ≤ g` ≤ m}, we can aggregate this z-score by simply calculating

ZGj = 1/
√
k
∑

g`∈G zg`j ; correspondingly ZGj summarizes the expression of genes from the set G
in sample j. These values can be summarized in the n-element vector ZG .
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According to our assumption, for a given gene set G, ZG should follow a standard normal

distribution across the samples, if there is no differential expression which we want to detect. It

can now simply be tested whether this is the case or not, e.g. using a Kolmogorov-Smirnov test

or Shapiro-Wilk test.

If the null hypothesis H0 : ZG ∼ N (0, 1) can then be rejected for a certain significance

level α, differential expression can be assumed with a p-value pG . However, this result does not

consider whether the given gene set has a specific characteristic that allows to separate samples

into two or more groups. Assume all genes in the dataset to be differentially expressed between

two distinct groups of samples; then, the null hypothesis would be rejected for any random set

of genes. Accordingly, we set up a null model based on the p-value distribution for randomly

assembled gene sets. Let E(pS) be the expected p-value for differential expression of a random

gene set S with |S| = |G| (equal size). Then, we design a null model in order to test for the null

hypothesis

H0 : pG ≥ E(pS)

To this end, N (e.g. N = 100, 000) random sets are generated and p-values are computed and

collected in a list. Finally the list of p-values is sorted increasingly. Let now rG be the list index

of the first p-value which is greater than pG . Then, significance can be assessed by calculating

p∗G =
rG
N

3.4.5.1 Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test can be applied in order to compare two distributions (two-sample

test) or to compare a given sample distribution to a reference distribution (one-sample test).

Let Z̃G be the vector of aggregated z-scores, with values reordered increasingly. Then, the one-

sample test for normality is based on the empirical distribution function E
Z̃G

(i) = ξ(i)/n. Here,

n refers to the number data points Z̃G1, ..., Z̃Gn and ξ(i) is the number of values smaller than

i. Test statistic is then computed by

D = sup
1≤i≤n

∣∣∣ Φ(Z̃G i)− EZ̃G
(i)
∣∣∣

where Φ represents the cumulative standard normal distribution function. Significance can then

be assessed with tables, published by Nikolai V. Smirnov [203].

3.4.5.2 Shapiro-Wilk test

The Shapiro-Wilk test is specifically designed for testing whether the random variable of a given

sample follows a normal distribution. Test statistic is

W =
b2

(n− 1)σ̂2
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where σ̂2 is the sample variance. b considers the structure of the sample in order to estimate

variance. Based on the reordered vector of aggregated z-scores Z̃G with Z̃G1 < ... < Z̃Gn, it is

calculated by

b = a1(Z̃Gn − Z̃G1) + a2(Z̃G(n−1) − Z̃G2) + ...

where a is a vector calculated by

a =
(

(ψ>V−1V−1ψ)−
1
2

)
ψ>V−1

where V−1 is the inverse of the covariance matrix Cov(Z̃G) and ψ is an n-element vector with

ψi = Φ−1(Z̃G i). Here, Φ−1(Z̃G i) is the inverse function of the cumulative normal distribution

function N (µ̂, σ̂2) with µ̂ being the mean estimated from the sample and σ̂2 being the variance

estimated from the sample. The closer W is to 1 (equality of both variance estimators), the more

likely it is that ZG follows a normal distribution. Critical values of W for a given significance

level α and a given sample size n are provided with tables.

3.4.6 Enrichment analysis

Given a selection of features (e.g. genes) from a set, it can be interesting to test whether in this

selection, there is an overrepresentation of features that share a certain characteristic (e.g. genes

with a specific function). To this end, enrichment analysis is applied, based on hypergeometric

tests.

3.4.6.1 Hypergeometric test

In order to find out whether there are significant enrichments of set members (e.g. groups

of functionally related genes) in a given subset (e.g. set of differentially expressed genes), a

hypergeometric test can be applied.

Let G = {g1, ..., gm} be a gene universe, given with the names of the genes of an expression

matrix Xm×n. Furthermore, let J ⊂ G be a subset of the universe, e.g. a set of genes that

were found to be differentially expressed with one of the above described methods, and J = |J |.
Finally, let K ⊂ G be another subset, covering all genes in G that share a certain functional

relationship in terms of biology (e.g. genes involved in a certain process), and K = |K|. It

can now be interesting to find out whether there are more of those genes included in the set of

differentially expressed genes than it would be expected randomly. The number of these cases

of interest is called the number of hits q = |J ∩ K|. q is assumed to follow a hypergeometric

distribution. Hypergeometric test can now be applied, in order to find whether q is larger than

expected; if so, this can be regarded as indicator that the process or function which is covered

with the set of genes K can play an important role in one or multiple of those groups compared

with differential expression analysis which yielded the set J . Hypergeometric test is then based
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on the probability mass function for a random variable Y

P (Y = q) =

(
K

q

)(
J −K
m− q

)
(
J

m

)
which describes the probability to observe exactly q hits. P-value is simply calculated by P (Y ≥
q).

3.4.6.2 GO and KEGG enrichment

Several ontologies have been created in order to document the particular functions of genes, the

most popular ones being MSigDB (molecular signatures database, often combined with GSEA),

GO (gene ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) [192, 193, 194].

Genes are annotated with so-called terms which refer to a certain function or subgroup of genes.

Corresponding datasets can be easily imported into Bioconductor/R [195, 196, 197]. Given a

set of differentially expressed genes, hypergeometric test is then applied to all sets of an ontology,

summarizing genes which are linked to the same function. The analysis then unveils groups of

functionally related genes that are overrepresented in the set of differentially expressed genes.

3.4.6.3 Model-based gene set analysis for gene ontologies

After enrichment analysis was applied for a multitude of sets, multiple testing correction should

be applied in order to derive significant results, respectively. However, many ontologies, in par-

ticular GO, exhibit tree-like structures. Accordingly, an ontology set might be entirely included

in another, larger ontology set which is located on a higher level of the GO tree. In practice, this

often leads to redundant results, because hypergeometric test yields small p-values for a specific

term and also corresponding less specific terms. This is called the inheritance problem [198]. In

addition, due to the tree-like structure, ordinary p-value correction is not possible; accordingly,

established R packages implementing GO enrichment analysis do not perform p-value correction.

Several approaches are addressing the inheritance problem, including the elim algorithm

[199] which eliminates all genes from a set that are included in a subset which has already been

added to the “list of significant sets”. Still, elim and similar algorithms are based on sequential

testing procedures. An alternative concept was introduced with an approach called GenGO

[200]. Here, a model is set up for simultaneous fitting of all ontology terms; optimization of the

model is performed in order to determine the most likely combination of active terms [198].

An even more advanced method is provided with model-based gene set analysis (mgsa), a

Bayesian approach using a Markov Chain Monte Carlo (MCMC) algorithm [198]. Its Bayesian

network model consists of three layers, a term layer, in which each node represents one term, a

hidden layer in which each node represents one gene, “capturing” the output of the term layer

and an observation layer in which each node represents one gene again, which is connected to the
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hidden layer in a one-to-one-fashion. All three layers are boolean. The term layer and the hidden

layer are connected according to the annotation in the respective database; the observation layer

reflects whether the respective gene is differentially expressed or not. Nodes of the term layer

are then modelled to a Bernoulli distribution.

According to the concept of mgsa, posterior distributions are provided instead of p-values

here. In practice, mgsa has been shown to outperform GenGO [198] and yields less but more

accurate results than normal GO term enrichment, respectively.

3.4.7 Cross-validation for gene signature extraction

Commonly, differential expression analysis is performed in order to identify a set of genes that

are dysregulated in the respective group. However, if the focus is not put on the individual

genes but more on the general purpose of characterizing or classifying a group of samples, there

is great interest in the extraction of a robust gene signature.

Robustness of an estimation or inference method refers to its sensitivity to outliers. For

instance, consider the sample q = (q1, ..., qu)> of a random variable Q, with values ordered

increasingly. Then, two different estimators for the average of Q are given with the sample mean

µ̂
(1)
Q and the sample median µ̂

(2)
Q

µ̂
(1)
Q =

1

u

u∑
i=1

qi, µ̂
(2)
Q =

qu+1
2
, if 2 - u

1
2

(
qu

2
+ qu

2
+1

)
, otherwise.

The sample median is more robust against outliers than the sample mean, because more incorrect

observations or outliers are required in order to cause a large deviation of the estimator from

the real mean of the random variable. More precisely, its breakdown point is greater. The

breakdown point ε∗u of an estimator is the proportion of samples that must be outliers in order

to make the estimation arbitrary. Since one outlier is enough to achieve this for the sample

mean, ε∗u

(
µ̂

(1)
Q

)
= 1/u, whereas for the sample median ε∗u

(
µ̂

(2)
Q

)
= 1/2 which is also the

greatest possible breakdown point value. The idea of robustness can also be transferred to gene

signatures. In order to reduce a set of genes (e.g. that were found to be differentially expressed)

to a robust signature allowing for a reliable classification of groups, genes with outliers must be

discarded from the set. This training procedure can be performed with a k-fold cross-validation.

Here, the dataset is split up into a training set and a test set, and validation is performed in k

steps. For instance, if k = 5 cross-validation is a 5-step process and in each step, the classifier

is trained on 80% of the dataset and then tested on 20% of the set. Fig. 3.3 illustrates the

process. Algorithm 1 provides an implementation of a k-fold cross-validation for gene signature

extraction, given a set of differentially expressed genes. In this specific case, training is based

on t-tests assessing differential expression and testing is based on fold change computation.
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training

testing

5-fold cross-validation

dataset
group 1 group 2

20% of the samples in group 2

accuracy

signature

Figure 3.3: Illustration of the cross-validation procedure.

3.4.8 Identification of active subcircuits in regulatory networks

Given a network with gene regulatory interactions describing a distinct biological process, one

might be interested in finding out whether the process described by this network is mediating

the switch of gene expression which is observed between two different states recorded with gene

expression profiling. Moreover, it can be interesting to find out whether there is a subcomponent

in the network which is specifically active.

Ideker et al. have developed a method which can be applied to address this issue [202]. The

underlying assumption is that if the players of a subcomponent or even of a whole network are

differentially expressed in gene expression data with two distinct states, then it is likely that

the dynamics reflected by the considered network or subcomponent are driving the expressional

change which is observed in the data. For instance, consider a gene expression matrix Xm×n (m

genes, n samples) and two disjoint groups of samples, A1 ⊆ {1, ..., n} ,A2 ⊆ {1, ..., n} ,A1 ∩
A2 = ∅. Assume that sample groups A1,A2 here refer to two different steady states and that

there is a transcriptional switch driving the change from the state reflected by samples in A1 to

the state reflected by samples in A2; this could be the case for two different time points where

gene expression was recorded. Then, if there are several interconnected players in the provided

prior network which are also differentially expressed between the two states, it can be likely that

this network component is the cause of the transcriptional switch which is observed.

Given a fixed prior network with u nodes (genes) and a set of corrected p-values P =

{p1, ..., pu} referring to the significance of differential expression of the corresponding genes

between samples A1 and A2. p-values can be converted into z-scores zi = Φ−1(1− pi) with Φ−1

being the inverse function of the standard normal cumulative distribution function. z-scores

then follow a standard normal distribution. The so-called aggregated z-score for a set of p-values
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Algorithm 1 k-fold cross-validation for an expression matrix (of preselected features)

1: procedure GeneSignatureCrossValidation
2: Xm×n ← expression matrix of group 1 samples
3: Ym×n ← expression matrix of group 2 samples
4: Am×k ← accuracy matrix initialized with zeros
5: θFDR ← FDR-value threshold
6: θfc ← fold change threshold
7: θacc ← accuracy threshold
8: S ← ∅
9: for i := 1 .. k do

10: s← (i− 1)(n/k) + 1 .. i(n/k)
11: Xtest, Xtrain ← X[, s], X[,−s]
12: Ytest, Ytrain ← Y [, s], Y [,−s]
13: excl← ∅
14: for j := 1 .. rows(X) do
15: p← t-test(Xtrain[j, ], Ytrain[j, ])
16: fc← µ(Xtrain[j, ])− µ(Ytrain[j, ])
17: if p ≥ θFDR or |fc| < θfc then
18: excl← {excl ∪ j}
19: for j := 1 .. rows(X) do
20: for h := 1 .. cols(Xtest) do
21: acc← 0
22: fc← Xtest[j, h]− Ytest[j, h]
23: if |fc| ≥ θfc then
24: acc← a+ 1

25: A[j, i]← acc
k

26: X ← X[−excl, ], Y ← Y [−excl, ], A← A[−excl, ]
27: for j := 1 .. rows(A) do

28: if
∑k

i=1 A[j,]
k ≥ θacc then

29: S ← {S ∪ j}
30: return S

P ′ ⊆ P is also following a standard normal distribution

ZP ′ =
1√
|P ′|

∑
pi∈P ′

Φ−1(1− pi) ∼ N (0, 1)

In principle, random sampling could now be applied in order to find the largest aggregated

z-score for the given set of p-values, regardless of the size of the set. To this, random sets of

genes p-values are drawn from the network repeatedly, and the aggregated z-score is calculated.

The set P∗ with the best aggregated Z score is regarded as active subcomponent if the score

does not exceed a predefined threshold.

However, several problems have to be considered.

1. The number of possible candidate gene sets is 2u for an u-node network. Accordingly,

optimization must be performed in an organized, algorithmic fashion.
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2. Not each gene set is actually a subcomponent. Only if each gene can be reached from all

other genes in the set, the set can be regarded as subcomponent (conntected component

in terms of graph theory). To consider subcomponents only, the topology of the network

must be used.

3. The number of possible subcomponents depends on the network’s topology but can also

be 2u in the worst case.

4. For a given network and corresponding p-values, the expected average of the aggregated

z-score differs for different set sizes, i.e. for P1,P2 with |P1| 6= |P2|, E(ZP1) 6= E(ZP2).

The last issue can be addressed easily: In order to correct calculated aggregated z-scores for

randomly expected ZP ′ , Monte Carlo sampling is applied for each possible set size k, 1 ≤ k ≤ u.

During optimization, calculated ZP ′ scores can then always be corrected against these values.

The corrected ZP ′ is then computed by

SP ′ =
ZP ′ − µ̂k

σ̂k

for a given subcomponent of size k. Here, µ̂k and σ̂k are the values derived from Monte Carlo

sampling of random subcomponents of the same size.

The other issues can be addressed by optimizing the SP ′ scores, using a Simulated Annealing

algorithm. Here, subcomponents are optimized by toggling nodes with a temperature-function

dependent probability stepwise until a predefined number of iterations has been performed.

3.4.9 k-means clustering

k-means is a method allowing to partition a set of samples into k clusters in a way that the sum

of distances of cluster members to their corresponding cluster centers is minimal.

Given an expression matrix Xm×n (m genes, n samples). Assume that samples should

partitioned into k clusters. For k given clusters S1, ..., Sk, ∀i, 1 ≤ i ≤ k : Si ⊆ {1, ..., n} with

∀i, j, i 6= j : Si ∩ Sj = ∅, sum of distances between sample expression profiles X[, 1], ..., X[, n]

and their corresponding centers is calculated by

J =
k∑
i=1

∑
sij∈Si

d(X[, sij ],µi)

where d is the L2-norm and µi = X[,Si] are the vectors of cluster means calculated using

the element-wise sample mean for all cluster members. Optimization of J (and corresponding

assingment of samples to clusters) is usually performed with Lloyd’s algorithm [204].

Initially, random clusters S(1)
1 , ..., S(1)

k are formed and corresponding means µ
(1)
1 , ..., µ

(1)
k

are calculated. The iteration step from t to (t+ 1) now includes sample reassignment and mean
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recalculation. Reassignment:

S(t)
i =

{
` ∈ {1, ..., n} : d(X[, `],µ

(t)
i ) ≤ d(X[, `],µ

(t)
i′ ) ∀ 1 ≤ i′ ≤ k, i 6= i′

}
Mean recalculation:

µ
(t+1)
i =

1

|S(t)
i |

∑
sij∈S

(t)
i

X[, sij ]

Termination condition is t > 1 ∧ S(t)
i = S(t−1)

i ∀i, 1 ≤ i ≤ k.

k is the crucial parameter in k-means clustering. Established methods for determination of

the best k are based mainly on functions f(k) evaluating the corresponding clustering results.

Here, the so-called gap statistic which analyzes change of the within-cluster dispersion σ̂2
i /µ̂i

(for some cluster i) with increasing k, is commonly used [205]. The resulting distribution is

corrected against the within-cluster dispersion expected for normally distributed random data.

Then, k is selected according to the minimal gap statistic [205]. An implementation of k-means

clustering with Lloyds’s algorithm is available in R package stats [206], gap statistic calculation

is available in R package cluster [207].

3.4.10 Survival analysis

Given a population of N subjects with known death events ti at t1 ≤ ... ≤ tN after one

common initial event t0, e.g. diagnosis. Then, the Kaplan-Meier estimator is applied to predict

the probability for a random subject from the population to survive longer then a given time t.

It is defined as

Ŝ(t) =
∏
ti≤t

ni − di
ni

where di is the number of death events at time ti and ni is the number of subjects under risk

until then (including death cases at ti). The great advantage of the estimator is that it can

be applied to censored data, i.e. studies in which survival information about certain subjects

is lost (e.g. patients leaving the study). These cases, called lost to follow-ups, are subtracted

from the number of subjects under risk ni, but not included in the death cases di, respectively.

Correspondingly, ni is the number of subjects which are still alive with certainty. Example:

Consider two time points ti, ti+1. If there are no lost to follow-ups between ti and ti+1, then

nti+1 = nti − dti , and accordingly, Ŝ(ti+1) = Ŝ(ti)
nti−dti−dti+1

nti−dti
. If, however, there is an interme-

diate time point t′, i.e. ti < t′ < ti+1 with 1 lost to follow-up, then, nti+1 = nti − dti − 1, and

correspondingly, Ŝ(ti+1) = Ŝ(ti)
nti−dti−1−dti+1

nti−dti−1 . Still, t′ itself is not part of the “list of events”,

because recalculation of the estimator is not required at t′, since dt′ = 0 and thus Ŝ(t′) = Ŝ(ti).

Survival statistics can be easily visualized in so-called Kaplan-Meier curves visualizing Ŝ(t)

which allow direct comparison of multiple populations. In order to assess whether the expected

survival is different for two populations, significance tests can be applied. Here, most commonly,

log-rank test is used.
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3.4.10.1 Log-rank test

Given two populations of subjects (e.g. patients), X = {x1, ..., x`}, Y = {y1, ..., ym} and time

points of events (in either group) T = {t1, ..., tN} , t1 ≤ ... ≤ tN . Let nX ,nY be the N -element

vectors of subjects under risk i.e. nXi, nY i, 1 ≤ i ≤ N be the number of subjects in X,Y that

have not had an event (death) or been censored at time point ti, according to the definition in

section 3.4.10; and define n := nX + nY . Additionally, let dX ,dY be the N -element vectors

of events (deaths), and correspondingly dXi, dY i be the number of events in X,Y taking place

exactly at time ti, and define d := dX + dY .

Now, if dX ,dY ,nX ,nY are given, the null hypothesis is that survival functions of X and Y

are equal, i.e. proportions of events that have taken place and events that have not taken place

are equal, di/ni = dXi/nXi = dY i/nY i. Correspondingly, if the null hypothesis is correct, dXi

follows a hypergeometric distribution with parameters ni, nXi, di. In this regard also variance

of dX must match the hypergeometric distribution. Accordingly, the null hypothesis is

H0 : ∀ 1 ≤ i ≤ N : E(dXi) = nXi
di
ni
∧ Var(dXi) =

di(nXi/ni)(1− nXi/ni)(ni − di)
ni − 1

If H0 is correct, i.e. dXi follows the described hypergeometric distribution then the log-rank

statistic Z follows a standard normal distribution function

Z =

N∑
i=1

dXi − µ̂(dXi)√√√√ N∑
i=1

σ̂2(dXi)

Here, µ̂(dXi), σ̂
2(dXi) are the estimated mean and the estimated variance, being calculated anal-

ogously to the terms in the null hypothesis. Null hypothesis can now be rejected at signficance

level α if Z > zα where zα is the upper α-quantile of the standard normal distribution function.

3.4.10.2 Peto-Peto test

An alternative to the log-rank test was introduced by Peto and Peto [208]. Generally, the above

described test can be regarded as a special case in the class of weighted log-rank tests. In this

class of tests, a weight function w(i) is applied to both the nominator and the denominator

of the above described long rank statistic Z in a way that Z =
∑N

i=1 w(i)(dXi−µ̂(dXi))√∑N
i=1 w

2(i)(σ̂2(dXi))
. For the

Peto-Peto test, w(i) := Ŝ(ti), accordingly, early events have more impact here [208].

3.4.11 Support vector machines

Support vector machines (SVM) are supervised learning models that can be applied for binary

classification problems. In many cases, data is not separable linearly. Using the so-called kernel



3.4. DATA MODELING AND ANALYSIS 51

trick, SVMs transform the original data into a higher dimensional vector space where the data

is separable. SVMs are maximum margin classifiers.

Given a set of training data {xi, yi} with i = 1, ..., n, xi ∈ Rd and yi ∈ {−1, 1}. Generally,

any hyperplane in the d-dimensional input space can now be described by

w · x + b = 0

where b is a constant and w is the vector which is orthogonal to the hyperplane. Then, a linear

classification functionf is described by

f(x) = sign (w · x + b)

ideally yielding the original group where x belongs to. Requiring a minimal distance of 1 of each

sample to the hyperplane, we can define the canonical hyperplane requiring

yi(w · x+ b) ≥ 1 ∀ 1 ≤ i ≤ n

Since the distance of the two margin hyperplanes w · x + b = 1 and w · x + b = −1 is 2
||w|| ,

the optimization problem is now to minimize the norm ||w|| subject to the above conditions.

This minimization problem corresponds to the minimization of 1
2 ||w||

2 which eliminates the

square root from the norm. In order to include the constraints in the optimization problem,

Lagrange multipliers must be introduced. For a two-dimensional function f(x, y) that should

be optimized with the constraint g(x, y) = c where g is another two-dimensional function (that

should be constant here), the conditions ∇x,yf = −λ∇x,yg (tangency) and ∇x,yg 6= 0 must be

satisfied, where λ is the so-called Lagrange multiplier and

∇x,yf =

(
∂f

∂x
,
∂f

∂y

)
The problem can be formulated using the Lagrange function which is here defined as

Λ(x, y, λ) := f(x, y) + λ · (g(x, y)− c)

The optimization problem is now to solve the equations

∇x,y,λΛ(x, y, λ) = 0

The third equation guarantees the original constraint g(x, y) = c to be fulfilled and the two first

equations guarantee ∇x,yf = −λ∇x,yg. If the Lagrange multipliers have been derived for the n

original constraints from above, the original optimization problem can be formulated as

argminw,bmaxλ≥0

{
1

2
||w||2 −

n∑
i=1

λi (gi(yi,xi)− 1)

}
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where gi(xi, yi) = yi(w ·x+b). According to the Karush-Kuhn-Tucker condition for stationarity,

the solution is a linear combination of training vectors xi

w =

n∑
i=1

λiyixi

which also corresponds to the geometric definition of the optimal hyperplane which is based on

the vectors. It can be shown that

λi(yi(w · xi + b)− 1) = 0 ∀1 ≤ i ≤ n

which means that λi 6= 0 only for vectors xi whose functional distance is smaller than 1 to the

hyperplane. These vectors are termed support vectors.

After optimization, b is identified by calculating

b = −1

2

(
w · x+ + w · x−

)
where x+ are those support vectors for which w · x+ + b = 1 and x− are those for which

w · x+ + b = −1.

As many datasets are not separable linearly, the kernel trick is applied. Here, input vectors

xi are first transformed using a predefined kernel function and optimization described above is

performed with the transformed values. A function K : X×X → R is a kernel if there is an inner

product space (F, 〈·, ·〉) and a function φ : X → F with K(x, y) = 〈φ(x), φ(y)〉 ∀x, y. F is also

called feature space and φ feature mapping. According to Mercer’s theorem, the feature space

is not required to be known, because all kernel functions are characterized by clear properties.

Several kernel functions are established as standards in SVM application, the most popular ones

being the linear kernel

K(x, y) = 〈x, y〉

the polynomial kernel

K(x, y) = 〈x, y〉d

and the radial basis function kernel

K(x, y) = exp

{
−||x− y||

2

2σ2

}
A powerful SVM implementation is available in R package e1071 [210].

3.4.12 Correlation networks

Correlation networks provide a simple method for identification of potential interactions between

a set of preselected features. Given two random variables X,Y , Pearson correlation coefficient
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is defined as

%XY =
cov(X,Y )

σXσY

where cov(X,Y ) is the covariance of X and Y and σX , σY are the standard deviations of X

and Y . Given samples x = {x1, ..., xn}>, y = {y1, ..., yn}> of two random variables X,Y , the

estimator for the Pearson correlation coefficient is calculated by

rXY =

n∑
i=1

(xi − x)(yi − y)√√√√ n∑
i=1

(xi − x)2
n∑
i=1

(yi − y)2

According to this definition, rXY estimates the linear relationship of two random variables

and, as %XY , can vary between -1 and 1. An interaction network can be assembled based on

pairwise correlation coefficients between any two genes; a significance test for the coefficient

can then be applied in order to derive the set of edges which are considered as “significant

interactions”, using a hard cut-off threshold:

For two independent random variables X,Y which are following normal distributions, %XY

is following a t-distribution with (n− 2) degrees of freedom with n being the sample size of X

and Y [213]. To test for significant correlation of X and Y , the null hypothesis is

H0 : %XY = 0

and the alternative hypothesis is

H1 : %XY 6= 0

Corresponding test statistic is calculated by

t∗ =
r
√

(n− 2)√
1− r2

H0 is rejected at a significance level α if |t∗| > tα/2 with tα being the αth upper percentile of

the corresponding t-distribution with (n− 2) degrees of freedom.

However, several limitations of this approach must be considered when Pearson correlation based

networks are calculated:

1. If X and Y are regarded as significantly correlated based on the test result, this information

does not include the influence of any third variable which can impact the correlation

coefficient, so-called confounders. Consider a transcription factor represented by variable

Z that controls expression of both genes (corresponding to X and Y ), then |rXY | can be

large though there is no interaction between these genes. Here, Z would be the confounder.

Generally, similar scenarios must be expected to occur in a large number in our dataset.
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The problem of removing confounding effects has been addressed with partial correlations.

A method allowing computation of partial correlations even for cases with a large number

of variables and a small number of samples has been developed by Strimmer et al. [212],

based on the inverse variance lemma by Whittaker [201]. Though this method has been

successfully applied for metabolomics data in the past [209], application on genome-wide

scale is not feasible, due to the extremely large variable number.

2. The complexity of the resulting correlation network is regulated according to the selection

of the significance cut-off, i.e. the number of resulting edges is chosen arbitrarily.

3. Generally, if two genes “interact”, e.g. a transcription factor controlling a target gene,

corresponding reactions are following complex kinetics, e.g. Michaelis-Menten kinetics.

Still, for large time intervals between different points of measurement, the exact underlying

reaction kinetics can be disregarded.

4. Non-directionality: The direction of regulation cannot be identified with Pearson’s corre-

lation coefficient.

5. Hard cut-off threshold: Selection of a hard cut-off threshold is arbitrary. Interactions

which are slightly under this threshold remain undetected which can lead to distortion of

the interaction network’s topology. A popular approach addressing this issue is weighted

correlation network analysis (WGCNA) which has often been applied to transcriptional

data and is particularly useful for identification of highly connected nodes [215].

Even though there are several limitations for correlation-based networks and whilst the identi-

fied interactions can also be indirect, this approach allows us to find interaction candidates, and

the list of candidates can then be evaluated, e.g. for enrichments. This allows us to identify

pathways whose members are overrepresented among the interaction list.

After the above described steps have been applied, the so-called relevance network is extracted.

This relevance network can be analyzed like an undirected graph. A graph is a 2-tuple G = (V,E)

where V = {v1, ..., vn} is a set of vertices or nodes and E = {{e11, e12} , ..., {em1, em2}}
is a set of edges or links. G is called undirected if the set E is unordered. n is the order

of the graph (number of nodes) and m is the size of the graph (number of edges). The de-

gree deg(vj) of a node vj is the sum of the number of edges starting at vj and ending at vj :

deg(vj) = |{ei ∈ E : ei1 = vj}| + |{ei ∈ E : ei2 = vj}| (loops are counted twice). The degree

distribution in biological networks has been shown to be scale-free, i.e. the degrees follow a

power-law distribution [216]. Based on the observed degrees in the relevance network, proba-

bility that an additional randomly inserted edge will connect nodes vi and vj is calculated by
deg(vi)deg(vj)∑m

k=1 deg(vk)
, assuming maxiw

2
i <

∑m
k=1 deg(vk) [217]. Accordingly, an edge between vi and vj is

deg(vi)deg(vj) times more likely to occur than an edge between a pair of two nodes with degree

1. This aspect has to be considered with care when the relevance network is analyzed. Highly

connected nodes are also called hubs.
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Results

4.1 Temporal course of acute pancreatitis

This section, including all subsections, figures and any other material, is adapted

from Kong, Bruns, Behler et al. [258]. Stainings were performed by Nora Behler

and Sina Fritzsche.

In order to investigate the natural inflammatory response of the pancreas, acute pancreatitis

was induced with consecutive caerulein injections in wild-type mice, as previously reported

[171, 219]. As previous studies did not describe pancreatic regeneration with a high temporal

resolution, histological changes and transcriptional profiles were analyzed for a multitude of time

points (12 time points between 3 hours to 14 days after the first injection and control samples),

as described in section 3.1. The purpose of this high-resolution design of the experiment is

to uncover the dynamic changes of transcriptional activity and morphology after inflammatory

injury.

4.1.1 Regeneration in wild-type mice is characterized by three stages: in-

flammation, regeneration and refinement

4.1.1.1 Histological observations suggest three predefined stages

Histological analysis revealed that acute pancreatitis is a self-dissolving process which can be

divided into three phases which were termed “inflammation” (from 3 to 36 hours), “regeneration”

(from day 2 to day 6) and “refinement” (from day 7 to day 14). Further examined samples were

able to be assigned post-hoc to the identified phases. At 3 hours, pancreata were edematous and

infiltrated by immune cells (Fig. 4.1). Vacuolization of acinar cells with scattered apoptotic cells

was observed. Formation of acinar-to-ductal metaplasia (ADM) or tubular complexes (TCs) was

initiated. As the inflammatory process progressed, immune cell infiltration and ADM formation

became more pronounced (Fig. 4.1). This process was completed at 36 hours, where atrophic

acini and ADM lesions with apoptosis were observed in the pancreatic parenchyma. Hereafter,

histological changes compatible with organ regeneration started to appear. This phase lasted

55
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acute inflammation phase (wild-type)

3h 36h

regeneration phase (wild-type)

60h60h 84h

refinement phase (wild-type)

d7 d14

Figure 4.1: Representative H&E-stained sections with histological features of the inflammation,
regeneration and refinement phases in WT pancreata (scale bars: 50 µm).

from day 2 to day 6 (Fig. 4.1).

From day 2 on, immune cell infiltration began to resolve; ADM lesions slowly disappeared

and regular pancreatic parenchyma was gradually re-established. On day 6, only minimal inflam-

mation, focal atrophic acini and ADM were observed. From day 7 to day 14, organ regeneration

was almost complete and residual inflammation resolved (Fig. 4.1), accordingly the phase was

termed refinement.

4.1.1.2 Transcriptional profiling confirms three stages

To test whether histologically predefined phases from above were also reflected by microarray

data, hierarchical clustering with complete linkage distance function and L2-norm was performed

for wild-type mice. Samples were clustering according to histological observations showing high

transcriptional similarity between samples from the same predefined phase as compared to sam-

ples from different phases. Particularly, four distinct clusters were observed, each representing
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Figure 4.2: Unsupervised clustering of transcriptional profiles in WT mice: homogeneous clusters
correspond to the histologically predefined phases.
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Figure 4.3: PCA biplot of transcriptional profiles with 95% confidence ellipsoids: the temporal
course of inflammation in WT pancreata is a self-resolving process forming an end-to-end pattern
(as underscored by arrows pointing to the centers of the groups’ samples, right panel).

one group (three predefined phases and control samples). Except for the “regeneration cluster”

containing all three 36h samples from the inflammatory phase and a single day 14 sample from

the refinement phase, all remaining three clusters were homogeneous. Transcriptional profiles of

samples from day 7 and day 14 were similar to control samples but formed a separate “refinement

cluster”. Clustering results are visualized with the dendrogram given in Fig. 4.2.
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4.1.2 Temporal gradient unveils regeneration as a stepwise self-resolution

process

Principal component analysis (PCA) was applied in order to visualize the temporal gradient of

inflammatory response in wild-type mice. Using PC1 and PC3 which together explain 57.57% of

the variance (PC1: 47.18%, PC3: 10.39%), biplot unveils that the course of normal pancreatic

regeneration follows a cyclic “end-to-end” pattern as shown in Fig. 4.3. 95% confidence ellipsoids

and arrows, pointing to the centers of the ellipsoids of the consecutive stage, illustrate that

predefined phases form distinct sub-steps of the process. PC2, which explains 11.27%, was not

chosen, because the temporal gradient is not visible here, though samples of the same stage

are clustering together. In sum, we conclude that histological characterization of pancreatic

regeneration as a three-phase process is confirmed on the molecular level.

4.2 Inflammatory response in KrasG12D mice

This section, including all subsections, figures and any other material, is adapted

from Kong, Bruns, Behler et al. [258]. Stainings were performed by Nora Behler

and Sina Fritzsche.

Similarly, pancreatitis was induced in 8-week old P48cre/+; LSL-KrasG12D/+ mice (hereafter

referred to as “KrasG12D mice”) and pancreata were collected at 9 time points for histological

and transcriptional analysis (from 3 hours to day 14; as well as pancreata from NaCl-treated

control mice; see also section 3.1). We did not use an inducible KrasG12D system (e.g. Elastase-

CreERT) because we aimed at collecting pancreatic tissues from mice with Cre recombination

rather than not being able to strictly control time and efficiency of recombination in each animal.

As previously recorded, only low grade pancreatic intraepithelial neoplasia (PanIN) lesions were

detected in control mice.

4.2.1 Histological observations suggest sustained inflammation

In contrast to WT mice, no clear histological phases after caerulein injection could be identified.

Within the first 36 hours (inflammation phase of WT mice), histological patterns of KrasG12D

mice were similar to those of WT mice. Focal vacuolization of acinar cells and incomplete ADM

lesions were found; immune cells were scattered in the edematous pancreas. ADM formation was

complete after 36 hours, accompanied by incipient lobular fibrosis (Fig. 4.4). During further

progression, no clear organ regeneration was observed - which is in line with the published

data [219, 171]. Particularly, ADM lesions remained in their ductal phenotypes. Immune cell

infiltration persisted and progression of lobular fibrosis was seen (Fig. 4.4). On day 7 and

14, putative precursor lesions of PDAC - atypical flat lesions (AFLs [220]) and PanINs - were

observed in atrophic areas (Fig. 4.4). Thus, activation of KrasG12D together with injection of

caerulein induces a phenotype without clear histological phases, as compared to the sequence of

events in WT mice. A comparison of histological changes in both mouse strains is provided in
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table 4.1.

Table 4.1: Histological observations in wild-type and KrasG12D mice.

time histological changes in WT mice histological changes in KrasG12D mice

0h normal pattern Focal vacuolisation of acinar cells, Acinar-to-

ductal metaplasia (ADM)

3h Vacuolisation of acinar cells

Single apoptotic acinus cells

Initial transformation to tubular complexes

(TC)

Focal vacuolisation of acinar cells

Dilated/cystic ducts

12h Acini with larger lumina, more inflammation,

initial TC

Less apoptotic cells compared to 3 h

Acini with larger lumina, More inflammation,

Initial TC

Acini with larger lumina, More inflammation,

Initial TC

Edema, Pancreatic intraepithelial lesions

(PanIN I; rare)

24h No complete TC, single apoptotic cells, single

mitosis

More neutrophile granulocytes

Acini with larger lumina, No complete TC,

More inflammation + Edema

36h Edema, atrophy of acini, several complete TC

Plenty of apoptosis

Complete TC, Lobular fibrosis

Edema, Less inflammation

48h Apoptosis and complete TC Complete TC, Lobular fibrosis, Small areas

with intact (regenerated) acinar cells

60h Regeneration,

Mild changes, only few TC, less inflammation,

no apoptosis

Complete TC, Lobular fibrosis, Small areas

with intact (regenerated) acinar cells

72h Small foci with TC (10-15%) and atrophy, re-

generation, minimal inflammation

84h Single lobuli with TC and atrophy

Regeneration, minimal inflammation

Complete TC, Lobular fibrosis, Small areas

with intact (regenerated) acinar cells

Initial (atypical flat lesions) AFLs

96h Less atrophie and TC (only small foci) com-

pared to 72 and 84 h

d5 Minimal inflammation, only small foci with

TC and atrophy

d6 Pattern comparable to day 5
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d7 pattern comparable to day 5 and 6; Small foci

with TC and atrophy (less than day 5 and 6)

Sparse inflammation

Lobuli with TC, Initial AFL

Focal lobuli with acinar cell regeneration can

be observed

d14 Almost normal pattern, almost complete re-

generation

Lobuli with TC + Fibrosis, AFL

Focal areas with solid AFL high-grade suspi-

cious of initial carcinoma, Lobular architec-

ture preserved, dilated ducts

4.2.2 Transcriptional profiling indicates disordered process

Unsupervised clustering of transcriptional profiles from KrasG12D/caerulein pancreata was per-

formed analogously to the above description (section 4.1.1.2). Consistent with the histological

observations, this analysis failed to identify distinctive sub-clusters reflecting the clearly distinct

phases in WT mice. All transcriptome profiles of KrasG12D pancreata after caerulein treatment

formed two heterogeneous clusters, whereas non caerulein-treated control samples formed one

cluster of similar expression profiles (Fig. 4.5).

4.2.3 PCA indicates end-to-open pattern

PCA was performed analogously to above. Here we did not find any combination of PC1 (cov-

ering 51.36% of the variance) and another principal component (PC2: 11.28%, PC3: 8.24%, ...)

demonstrating an “end-to-end” pattern as described above. Instead, pronounced dissimilarity

between control and late stage samples (day 7 and day 14) is observed and samples are disor-

dered, indicating great heterogeneity. According to the similarity of all samples except controls,

we identify and “end-to-open” pattern as visualized in Fig. 4.6.

4.3 Persistent inflammation in KrasG12D mice corresponds to the

WT mouse inflammatory phase

This section, including all subsections, figures and any other material, is adapted

from Kong, Bruns, Behler et al. [258]. Stainings were performed by Nora Behler

and Sina Fritzsche.

We then went on to test the biological relevance of these histological and molecular findings

and to assess proliferative contribution of different cellular compartments of the pancreas to

inflammation, regeneration and refinement (and its absence in KrasG12D mice). First, the index

of proliferating cells (BrdU-positive) and the number of immune cells (Cd45-positive) over time

was determined in WT and KrasG12D mice. Two distinctive waves of proliferation were found

in WT mice (Fig. 4.7 and 4.8, left panel). The first wave corresponded exactly to the time

frame of the inflammation phase, whereas the second wave covered the regeneration phase. In

KrasG12D mice, however, no clear segmentation of the proliferation wave was found (Fig. 4.7
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Figure 4.4: Representative H&E-stained sections with histological features of inflammation (3h
- 36h), of the anticipated regeneration phase (48h - day 7) and of the anticipated refinement
phase (day 7 to day 14; scale bars: 50 µm).

and 4.8, right panel). Instead, the organ proliferation index, describing the count of proliferative

cells in one high-power field, continuously increased from 3 hours to day 7 until its decrease on

day 14. Immune cell infiltration in WT mice increased dramatically in the inflammatory phase

and then slowly decreased during regeneration and refinement (Fig. 4.9 and 4.10, left/upper

panel). In KrasG12D animals, the number of Cd45-positive cells steadily increased, indicating

a non-resolving immune response within the observation period (Fig. 4.9 and 4.10, right/lower

panel).

To allow for direct analysis of all transcriptional profiles taking account of two conditions,

parallel factor analysis (PARAFAC) was applied [184]. In line with our previous findings, the

analysis reproduced three predefined phases and the “end-to-end” pattern of the natural course

of inflammation in WT samples (Fig. 4.11, left panel). The “end-to-open” pattern seen in

KrasG12D mice was also reproduced (Fig. 4.11, right panel). Areas of different phases were
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distinguished using confidence ellipsoids indicating a probability of 95% for respective samples

of this phase to be located in this region. Interestingly, 74% (17/23) of KrasG12D samples (except

for controls) overlap with the confidence ellipsoid of the WT inflammation phase. Additionally,

four of the remaining six outlying KrasG12D samples were located closer to the center of the

WT inflammation phase ellipsoid rather than to any other WT ellipsoid (based on Euclidean

distance), indicating that 91% (21/23) of the KrasG12D samples demonstrate highest similarity

in their transcriptome profile to the WT inflammation phase. Remarkably, all ellipsoids from

KrasG12D samples (except controls) spatially overlap with the WT inflammation phase, which
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Figure 4.8: Representative IHC pictures show BrdU-positive cells in the different phases (or
anticipated phases) of inflammation in WT (left panel) and KrasG12D pancreata (right panel;
scale bars: 50µm).

indicates that their transcriptional profiles are not clearly distinguishable.

These data demonstrate that the transcriptional signatures of KrasG12D mice during regen-

eration and refinement correspond to the WT mouse inflammatory phase, showing a persistent

inflammatory status.
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Figure 4.10: Representative IHC pictures show Cd45-positive cells in the different phases (or
anticipated phases) of inflammation in WT (left panel) and KrasG12D pancreata (right panel;
scale bars: 50 µm).

4.4 Comparison of the identified time frames in wild-type mice

and KrasG12D mice

In order to compare the identified stages of pancreatic regeneration in wild-type mice to the

anticipated stages in KrasG12D mice, we performed a differential expression analysis (absolute FC

> 2, FDR< 0.05, Benjamini-Hochberg correction) between each pair (wild-type inflammation vs.

KrasG12D 3-36h frame, wild-type regeneration vs. KrasG12D 48h-d5 frame, wild-type refinement

vs. KrasG12D d7-d14 frame), according to section 3.4.3.3.
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4.4.1 Comparison of inflammatory phase samples

According to our expectations, only few genes were found to be differentially expressed com-

paring samples from the inflammation phase (n=20). Those included Agr2 which was found

upregulated in KrasG12D and is known to be expressed in preneoplastic lesions and correlate

with downregulation of p53 response [251] [252]. Also, Tspan8 which has been reported to be

activated in various cancer types, was found upregulated [253]. Vsig1 which is known to be ex-

pressed in gastric, pancreatic and ovarian cancer types, was also found upregulated in KrasG12D

[254]. A list of all 20 genes is given in table 4.2.

4.4.2 Comparison of regeneration phase samples

Comparison of the regeneration phase showed that more than 1,000 genes were differentially ex-

pressed; consequently, GO term enrichment was performed using mgsa and KEGG term enrich-

ment was performed, based on hypergeometric tests. The analysis shows that genes annotated

by the GO term “inflammatory response” were overrepresented among differentially expressed

genes, confirming our previous observations. In addition, “cytokine activity” related genes were

found to be enriched, indicating that this subtype of inflammatory response-related genes is con-

tributing significantly to the tissue transformation process. We also found genes annotated by

the term “extracellular matrix” being enriched, indicating mesenchymal expansion. KEGG en-

richment yielded similar results, but additionally identified “pancreatic secretion” related genes

to be enriched, indicating an impaired function of the organ. Also “p53-signaling” related genes

were found to be enriched. A detailed list of the identified terms and pathways is given in tables
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4.3 and 4.4.

4.4.3 Comparison of refinement phase samples

For the refinement phase, more than 1,500 genes were found to be differentially expressed. Here,

GO term enrichment and KEGG enrichment yielded similar results as for the regeneration

phase, but also additional terms, including in particular the GO terms “cell adhesion” and

“actin cytoskeleton reorganization” which could indicate epithelial-to-mesenchymal transitions.

Among the identified KEGG pathways, we found “pancreatic cancer”, which indicates that

tissue transformation has already progressed in Kras-mutated mice at this time; also, we found

“chemokine activity” to be enriched, suggesting a potential role of these molecules for further

progression of tissue transformation. Furthermore, additional indicators for EMT could be found

including terms “focal adhesion” and “tight junctions”. Also, “TGFβ signaling”-related genes

were found to be enriched. Lists of terms and pathways are given in tables 4.5 and 4.6.

Table 4.2: Genes differentially expressed between wild-type and KrasG12D inflammation. Due
to high similarity of both stages, the number of genes found to be differentially expressed is
small, and no GO terms or KEGG pathways were found to be enriched.

Gene log2 Fold Change adj.P.Val

Tff1 -3.017362076 3.33E-07

Tspan8 -2.105441086 8.87E-07

Mcpt2 -3.840491666 1.57E-06

Gkn2 -4.031858542 1.64E-06

Slamf7 1.494899801 4.60E-06

Sprr2a1 -3.642284448 4.60E-06

2210407C18Rik -3.70143059 4.60E-06

Gpnmb 2.471844476 4.60E-06

Gal 1.621528891 5.43E-06

Lgals4 -2.39862183 7.10E-06

Ly9 1.026111156 2.41E-05

Mpeg1 1.007947001 6.70E-05

Agr2 -3.278496002 0.000114556

Rgs17 -1.161133977 0.000199657

Ifit3 1.679235749 0.000209965

Gsta1 -3.231977051 0.000304763

Pllp -1.153871986 0.000367459

Mgat4a -1.022773585 0.000402205

Gcnt3 -2.527271481 0.000500391

Vsig1 -2.79386996 0.000624111
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Table 4.3: GO terms that were found to be enriched for genes differentially expressed between
wild-type regeneration and KrasG12D anticipated regeneration (mgsa).

GOID Count Size Posterior Term

GO:0016323 31 146 0.9692666 Basolateral plasma membrane

GO:0008236 28 167 0.9533530 Serine-type peptidase activity

GO:0006954 38 214 0.9372224 Inflammatory response

GO:0001725 14 51 0.9246292 Stress fiber

GO:0031225 20 121 0.8599868 Anchored component of membrane

GO:0004364 8 24 0.8522842 Glutathione transferase activity

GO:0005125 30 171 0.8186694 Cytokine activity

GO:0008652 8 25 0.6077514 Cellular amino acid biosynthetic process

GO:0031012 35 201 0.5996836 Extracellular matrix

GO:0004806 6 15 0.5484838 Triglyceride lipase activity

Table 4.4: KEGG pathways that were found to be enriched for genes differentially expressed
between wild-type regeneration and KrasG12D anticipated regeneration.

KEGGID Pvalue Count Size Term

4060 1.43E-09 39 228 Cytokine-cytokine receptor interaction

4972 4.65E-08 22 98 Pancreatic secretion

4640 2.51E-06 17 78 Hematopoietic cell lineage

480 4.93E-06 13 50 Glutathione metabolism

4610 1.76E-05 15 72 Complement and coagulation cascades

4512 0.000116488 15 84 ECM-receptor interaction

5146 0.000262696 17 110 Amoebiasis

4670 0.000405606 17 114 Leukocyte transendothelial migration

260 0.002908055 7 33 Glycine, serine and threonine metabolism

5140 0.003492912 10 62 Leishmaniasis

4975 0.004112055 8 44 Fat digestion and absorption

4115 0.004955945 10 65 p53 signaling pathway

1100 0.005230295 84 1081 Metabolic pathways

4974 0.005283946 11 76 Protein digestion and absorption

561 0.00805778 8 49 Glycerolipid metabolism

982 0.008418386 10 70 Drug metabolism - cytochrome P450

4145 0.009847888 17 153 Phagosome

Table 4.5: GO terms that were found to be enriched for genes differentially expressed between
wild-type refinement and KrasG12D anticipated refinement (mgsa).

GOID Count Size Posterior Term

GO:0070062 381 1408 0.9508358 Extracellular vesicular exosome
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GO:0008289 52 213 0.9290848 Lipid binding

GO:0003779 91 305 0.8960582 Actin binding

GO:0043065 72 255 0.8806580 Positive regulation of apoptotic process

GO:0045121 60 191 0.8541354 Membrane raft

GO:0002376 89 291 0.8511042 Immune system process

GO:0006935 39 106 0.8423098 Chemotaxis

GO:0006629 105 414 0.8096078 Lipid metabolic process

GO:0007155 130 470 0.7966920 Cell adhesion

GO:0031012 62 201 0.7906754 Extracellular matrix

GO:0031532 16 42 0.5164660 Actin cytoskeleton reorganization

GO:0004252 39 159 0.5146582 Serine-type endopeptidase activity

Table 4.6: KEGG pathways that were found to be enriched for genes differentially expressed
between wild-type refinement and KrasG12D anticipated refinement.

KEGGID Pvalue Count Size Term

5140 7.47E-11 33 62 Leishmaniasis

4145 1.15E-09 57 153 Phagosome

4060 5.37E-09 74 228 Cytokine-cytokine receptor interaction

4810 8.48E-09 68 205 Regulation of actin cytoskeleton

5150 8.78E-09 25 46 Staphylococcus aureus infection

4380 1.06E-08 44 111 Osteoclast differentiation

4670 2.74E-08 44 114 Leukocyte transendothelial migration

4062 9.26E-08 57 170 Chemokine signaling pathway

4666 3.91E-07 34 85 Fc gamma R-mediated phagocytosis

5323 4.35E-07 32 78 Rheumatoid arthritis

5144 4.25E-06 20 42 Malaria

480 7.19E-06 22 50 Glutathione metabolism

4210 2.08E-05 30 83 Apoptosis

5142 2.67E-05 34 100 Chagas disease (American trypanosomiasis)

4662 3.19E-05 26 69 B cell receptor signaling pathway

4142 5.57E-05 38 120 Lysosome

4620 5.64E-05 32 95 Toll-like receptor signaling pathway

4540 7.57E-05 28 80 Gap junction

5146 9.75E-05 35 110 Amoebiasis

5100 0.000161504 24 67 Bacterial invasion of epithelial cells

4650 0.000162279 33 104 Natural killer cell mediated cytotoxicity

4610 0.000209581 25 72 Complement and coagulation cascades

4972 0.00027028 31 98 Pancreatic secretion

5145 0.000348944 36 121 Toxoplasmosis

4510 0.000411873 52 195 Focal adhesion
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4514 0.000460875 39 136 Cell adhesion molecules (CAMs)

600 0.000669752 16 41 Sphingolipid metabolism

4010 0.000984848 63 255 MAPK signaling pathway

1100 0.001058046 220 1081 Metabolic pathways

4530 0.001409668 35 125 Tight junction

5214 0.001571412 20 60 Glioma

4360 0.001640115 35 126 Axon guidance

4971 0.0018037 22 69 Gastric acid secretion

4115 0.001890891 21 65 p53 signaling pathway

4640 0.001968879 24 78 Hematopoietic cell lineage

5212 0.002216216 22 70 Pancreatic cancer

4350 0.00222498 25 83 TGF-beta signaling pathway

4664 0.002542365 23 75 Fc epsilon RI signaling pathway

5020 0.002621346 13 34 Prion diseases

5210 0.003031006 20 63 Colorectal cancer

4970 0.003283823 22 72 Salivary secretion

4512 0.005710118 24 84 ECM-receptor interaction

5219 0.00602403 14 41 Bladder cancer

5220 0.007290356 21 72 Chronic myeloid leukemia

5412 0.008634601 21 73 Arrhythmogenic right ventricular cardiomyopathy (ARVC)

4.5 Alterations of the cellular programs

This section, including all subsections, figures and any other material, is adapted

from Kong, Bruns, Behler et al. [258]. Stainings were performed by Nora Behler

and Sina Fritzsche.

4.5.1 Loss of exocrine maintenance characterizes inflammatory phase and

early carcinogenesis

To address whether the similarity in transcriptional profiles of acute inflammation and of early

carcinogenesis was reflected in the patterns of the proliferating cells, proliferation was analyzed in

different cellular compartments. Co-stainings of the proliferation marker BrdU with cell-specific

markers for pancreatic acinar (α-Amylase), progenitor-like (Sox9) and mesenchymal cells (α-

SMA) were performed. This allowed for generating time- and cell type-specific quantitative

data including the exact number of proliferating cells and its proportion to overall proliferation.

Acinar cells form the largest cell population of the exocrine compartment, which is specifically

injured by caerulein injection. We thus expected this population of cells to compose the largest

number of proliferating cells during repopulation. In WT pancreata, we observed two waves

of cell replication, the first one peaking at around 24h, the second one on day 4 (Fig. 4.12,

4.13). The overall number of proliferating acinar cells during the regeneration phase was higher
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Figure 4.12: Number and percentage of proliferating α-amylase-positive cells in WT and
KrasG12D pancreata.
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Figure 4.13: Representative IF of proliferating α-amylase-positive cells in WT (upper panel) and
KrasG12D (lower panel) pancreata in different phases (or anticipated phases) of inflammation;
scale bars: 50 µm.

than that in the inflammatory phase (p < 0.0001; t-test, Fig. 4.15, left panel). Furthermore,

only 25% of proliferating cells were acinar cells during the acute inflammation phase while this

number increased to 92% during regeneration (p < 0.0001, t-test, Fig. 4.15, right panel). These

data demonstrate that acinar cell proliferation is transiently compromised during the acute

inflammation phase in WT pancreata and that, as previously described, many cells negative

for α-amylase were proliferative [218]. Interestingly, the number of proliferating acinar cells

in KrasG12D pancreata during the first 36 hours (i.e. corresponding to the WT inflammation

phase) was comparable to that in WT pancreata (Fig. 4.12, 4.13). However, during anticipated

regeneration and refinement, the total number of proliferating acinar cells was significantly lower

than in WT mice (p = 0.0001; t-test, Fig. 4.15, left panel). Overall, acinar cells accounted only
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Figure 4.15: Absolute and relative amount of proliferating acinar cells in wild-type inflammation,
regeneration and KrasG12D samples from 3h to 36h.

for an average of 21% of all proliferating cells in KrasG12D pancreata over the entire time course,

which is similar to that of inflammatory phase (25%) but significantly lower than that of the

regeneration (92%) phases in WT pancreata (p < 0.0001; t-test, Fig. 4.15, right panel).

From the quantitative data of the dynamic proliferation of acinar cells, we hypothesized that

the molecular machinery governing the exocrine program may exhibit a similar pattern. To

test this hypothesis, we extracted a list of 61 “acinar cell homeostasis” genes from the litera-

ture [218, 221, 222, 223, 224] and investigated the temporal courses of expression of these genes

during different phases of inflammation and KrasG12D-driven early carcinogenesis. This list in-

cluded Bhlha15 (also known as Mist1), Xbp1, Nr5a2, Hnf1a and Gata6 and a set of 53 genes

related to the transcriptional complex switch between Ptf1a-Rbpj and Ptf1a-Rbpjl. Based on

the WT dataset, differential expression analysis was performed, with three groups being defined

by the control samples, inflammation phase samples and regeneration phase samples. Specif-

ically, we extracted genes that were differentially expressed during inflammation as compared

to control samples and regeneration phase samples. Of 61, eleven genes were differentially ex-

pressed between inflammatory phase and regeneration phase or control samples in WT mice

(FDR < 0.05, absolute FC > 2, two independent t-tests, Benjamini-Hochberg correction, Fig.

4.14, left panel), differential expression analysis with limma. This proportion (11/61) was signif-

icantly higher than expected for a random gene set (hypergeometric test: p = 5.98×10−10). We
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Figure 4.16: Number and percentage of proliferating Sox9-positive cells in WT and KrasG12D

pancreata.

thus concluded that the transcriptional program responsible for maintenance of the acinar phe-

notype is altered during inflammation in WT mice. Except for Ttc9 (tetratricopeptide repeat

domain 9), the expression of 10 other genes displayed a similar kinetic pattern with transient

down-regulation during the inflammatory phase. In particular, transient down-regulation of

the transcription factors Bhlha15 (Mist1) and Rbpjl terminated earlier than down-regulation

of the remaining 8 genes. This suggests that these transcription factors are major players in

the complex dynamics governing loss of acinar cell homeostasis. We then compared these re-

sults with those from the KrasG12D samples; here, constantly altered gene expression patterns

were observed with an exception for Ttc9 and Agr2 (Anterior gradient 2), comparable to the

above mentioned changes during inflammation in WT animals. Importantly, two transcription

factors (Bhlha15 and Rbpjl) and target genes of the Ptf1a-Rbpjl complex such as Tmed11,

Cuzd1, Derl3, Gal and Slc39a5 (important for protein transport and thus exocrine cell function)

remained persistently down-regulated in KrasG12D pancreata (Fig. 4.14, right panel).

Thus, we provide quantitative histological and molecular evidence that disturbance of the

exocrine program characterizes both the inflammatory phase in WT mice and KrasG12D-driven

early carcinogenesis. As acinar cells constitute only 25% and 21% of proliferating cells during

the inflammatory phase of the inflammatory response WT mice and early carcinogenesis, re-

spectively, these data argue for a significant contribution of other non-acinar proliferative cells

to inflammation and early carcinogenesis.

4.5.2 Expansion of progenitor-like cells characterizes the inflammatory phase

and early carcinogenesis

It has been described that mature acinar cells transiently assume a “progenitor state” or “duct-

like morphology” that allows for rapid repopulation of the exocrine compartment after inflam-

matory injury [219, 225]. We thus set out to quantify the proliferative activity of pancreatic

progenitor-like cells in different phases of the inflammatory response (comparing WT to the re-

spective KrasG12D results). Pancreatic tissues were co-stained with BrdU and Sox9 - which labels

cells with progenitor properties during embryonic development and in the adult organ [226, 227].

This analysis revealed that in WT mice, Sox9-positive proliferating cells were mainly expanded

during the inflammatory phase and that the number of proliferating cells decreased during the
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Figure 4.17: Representative IF of proliferating Sox9-positive cells in WT (upper panel) and
KrasG12D (lower panel) pancreata in different phases of inflammation (upper panel) and antici-
pated phases of KrasG12D-mediated early carcinogenesis (lower panel); scale bars: 50 µm.

regeneration phase (Fig. 4.16, 4.17). In contrast, the number of proliferative Sox9-positive cells

was consistently high in KrasG12D samples compared to WT pancreata. Sox9-positive cells con-

stituted up to 50% of proliferating cells in WT pancreata at 36h (the end of the inflammation

phase) but their contribution decreased rapidly afterwards (Fig. 4.16). In KrasG12D pancreata,

Sox9-positive cells accounted for an average of 31% of the proliferating cells and showed no de-

crease over time. Thus, the proportion of Sox9-positive cells in KrasG12D pancreata throughout

the experiment was 50% higher than in WT animals during the regeneration phase (p = 0.011;

t-test) but not during the inflammation phase (Fig. 4.16, Fig. 4.19). These data demonstrate

that putative pancreatic progenitors or cells with progenitor features are transiently expanded

within the inflammatory phase in WT mice but that their number is continuously increased in

KrasG12D-mediated early carcinogenesis.

Next we analyzed a key gene regulatory network (GRN) from the gene expression data that

may support progenitor-like cell expansion in the inflammation phases of WT and of caerulein-

treated KrasG12D pancreata. Because it has been demonstrated previously [228] that elements

of embryonic development are recapitulated during organ regeneration in adult animals, we

hypothesized that GRNs governing organ development might be partially active in our model.

To test this, we extracted a previously compiled transcription factor (TF) GRN governing the

embryonic development of the exocrine pancreas [229].

We reimplemented and applied a method developed by Ideker et al. [202] which allows to

identify active subcomponents in a network, based on p-values for differential expression of the
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in different phases of inflammation (upper panel) and anticipated phases of KrasG12D-mediated
early carcinogenesis (lower panel).

single genes between two or more groups of samples, i.e. phases in our case (C++ implementation

of the method is available at ICB, Helmholtz Zentrum München). These subcomponents which

could also comprise the entire network are assembled based on corrected aggregated z-scores sA

(for details see section 3.4.8). The method was applied four times, in order to identify active

subcomponents mediating transcriptional changes during 1) wild-type inflammation, 2) wild-
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Figure 4.19: Percentage of proliferating Sox9+ cells in wild-type inflammation, regeneration and
KrasG12D samples between 3h and 36h.

type regeneration and 3) KrasG12D inflammation 4) anticipated regeneration in KrasG12D mice.

Hereto, differential expression analysis was performed individually for each of the four cases,

according to section 3.4.3.3. In contrast to above where we performed pairwise comparison of

groups, we are here interested in genes which are dysregulated in the respective group compared

to both surrounding groups, e.g. wild-type inflammation samples are compared to wild-type

control samples and also wild-type regeneration samples. Correspondingly, corrected p-values

(FDR, Benjamini-Hochberg correction) were derived from one-way ANOVA incorporating the

respective phase and the two surrounding phases. Afterwards, we applied a simulated annealing

algorithm as part of Ideker’s method, in order to optimize the active subcomponent in the

network extracted from literature, scored with sA. 100,000 iterations were performed in the

simulated annealing procedure for each of the four cases separately. For wild-type mice, we

obtained an active subcomponent with a corrected aggregated z-score sA = 3.21 (p = 0.0007)

for inflammation and another one with sA = 3.17 (p = 0.0008) for regeneration. For KrasG12D

mice, we identified a subcomponent with sA = 2.92 (p = 0.0018) for inflammation and another

one with sA = 3.24 (p = 0.0006) for regeneration. Subcomponents are visualized in Fig. 4.18;

each of the network visualizations represents one of the two mouse strains, and each node is

split up into two parts, the left part representing transcriptional activity during inflammation

and the right part representing transcriptional activity during regeneration. Color refers to the

expression change compared to the previous phase with red indicating up-regulation and blue

indicating down-regulation.

Our analysis unveiled that, though not all individual players show differential expression

when regarded separately, regulatory subcircuits comprising extensive parts of the network show

significant activity during inflammation and regeneration, indicating that the progenitor differ-

entiation network mediates cellular reorganization in both pancreatic regeneration and tissue

transformation in Kras-muated mice. Two “regulatory elements” within the identified subcom-

ponents are of specific biological interest, according to the dynamics of pancreatic development

described in section 1.1.3.2. Ptf1a-Rbpj/Rbpjl-Nkx6.1 and Hes1-Sox9-Onecut1-Hnf1b-Neurog3;

both of these have previously been linked with proliferation of pancreatic progenitors. Within

the negative feedback loop consisting of Ptf1a, Rbpj/Rbpjl and Nkx6.1, the Ptf1a-Rbpj complex
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Figure 4.20: Number and percentage of proliferating α-SMA-positive cells in WT and KrasG12D

pancreata.

is presumably activated while the activity of Rbpjl and Nkx6.1 is suppressed in the inflammatory

phase, which would hypothetically promote the formation of “immature” acinar cells. At the

same time, only the negative feedback component of the Hes1-Sox9-Onecut1-Hnf1b-Neurog3

subcircuit is active: Hes1 integrates the intercellular signaling (particularly from the Notch

pathway) and suppresses the activity of Neurog3 [230], stimulating proliferation of progenitor-

like cells. These data suggest a coordination of the Ptf1a-Rbpj complex and the Notch-Hes1

pathway in expanding progenitor-like cells in the inflammatory phase of WT pancreata. During

progression into the regeneration phase, the Ptf1a-Rbpjl complex seems to be “re-activated” and

suppression of the activity of Nkx6.1 is released within the Ptf1a-Rbpj/Rbpjl-Nkx6.1 subcircuit,

which facilitates the expansion of mature acinar cells. In the Hes1-Sox9-Onecut1-Hnf1b-Neurog3

subcircuit, Hes1 activity decreases whereas the signal loop between Sox9, Onecut1 (also known

as Hnf6) and Hnf1b is activated. Together with the function of Ptf1a-Rbpjl, the activation

of this signal loop (in the absence of Hes1) may provide the proliferative momentum for more

differentiated acinar cells under physiological circumstances.

In KrasG12D and exogenous inflammation-induced early carcinogenesis, however, we did not

observe the dynamic changes in the activity of the Ptf1a-Rbpjl complex, Nkx6.1 and the Notch-

Hes1 pathway in the course of time. Here, no “re-activation” of the Ptf1a-Rbpjl complex was

observed; Nkx6.1 was persistently suppressed while the Notch-Hes1 pathway was constantly

activated. These changes seem to provide continuous proliferating signals for (expansion of)

progenitor-like cells during early carcinogenesis. This analysis also revealed a consistent acti-

vation of Gata6 in WT samples and its entire absence in KrasG12D samples. This observation

is largely in line with the recently uncovered role of Gata6, where its presence is required for

maintaining the function of the exocrine pancreas while its absence promotes carcinogenesis by

dedifferentiating acinar cells [224, 231].

4.5.3 Expansion of mesenchymal cells characterizes the inflammatory phase

and early carcinogenesis

Because the pancreatic mesenchyme plays an important role in instructing expansion of pan-

creatic progenitors during embryonic development and because pancreatic injury is linked with

expansion of resident fibroblasts, known as pancreatic stellate cells (PSCs) [232, 233], we quanti-
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Figure 4.21: Staining for α-SMA-positive cells in WT and KrasG12D pancreata.

Figure 4.22: Heatmap of 8 genes linked to activation of PSC in vivo; voxel color: transcriptional
up- (red) and down-regulation (blue) as compared to the mean; each voxel indicates gene activity
in one mouse sample arranged in chronological order; colored bar: different phases or anticipated
phases in WT and KrasG12D samples, respectively.
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fied the number of such proliferating cells. In response to injury, PSC proliferated and expressed
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Figure 4.24: Workflow for selection of the “PSC activation signature”, overlap of a literature-
based gene set of PSC-specific genes and genes specifically up-regulated during the wild-type
inflammation phase (compared to wild-type controls and regeneration).

α-SMA. Compellingly, we observed that proliferation of α-SMA-positive cells was strictly lim-

ited to the inflammatory phase in WT pancreata and that the magnitude of proliferation was

relatively low. In contrast, proliferation of α-SMA-positive cells in KrasG12D samples was more

persistent (from 3 hours to day 7) and more excessive (Fig. 4.20, 4.21). Accordingly, mes-

enchymal cells composed on average 22% of proliferating cells in KrasG12D tissues throughout

the experiment whereas in WT pancreata, these constituted only 8% of the proliferating cells

during the inflammation phase and less than 1% during the regeneration phase, respectively

(Fig. 4.20, Fig. 4.23).

To validate this histological finding on the gene expression level, we extracted a previously

characterized in vitro PSC “activation signature” from published data which was defined by com-

paring the transcriptomes of isolated pre-activated (3-day culture) to culture-activated PSCs (7-

day culture) [234]. This in vitro PSC activation signature, which contained 67 genes including ex-

tracellular matrix (ECM) proteins, cell adhesion molecules, inflammatory cytokines/chemokines

and modulators of signal transduction, was used as a positive reference to identify a potential in

vivo PSC activation signature (Fig. 4.24). Eight of the 67 genes were differentially expressed in

the inflammatory phase in WT samples compared to controls and regeneration phase samples

(FDR < 0.05, absolute FC > 2, one-way ANOVA with three groups) Fig. 4.22, left panel).

This ratio (8/67) was significantly higher than expected for a random gene set (hypergeometric

test: p = 2.57 × 10−6). Furthermore, these eight genes exhibited exactly the same kinetic ex-

pression pattern: transient up-regulation in the inflammatory phase and normalization in the

regeneration phase. Notably, all of these showed sustained up-regulation in KrasG12D samples

treated with caerulein (Fig. 4.22, right panel), which is consistent with the persistent expansion

of PSC on histological levels. Selection procedure is illustrated in Fig. 4.24.

Among these eight genes, the proteinase inhibitors responsible for ECM turnover, tissue

inhibitor of metalloproteinase 1 (Timp1) and serine (or cysteine) peptidase inhibitor, clade E,

member 1 (Serpine1, also known as PAI-1) have been reported to be associated with PSC

activation [235]. Col12a1 (collagen, type XII, α1) and Col8a1 (collagen, type VIII, α1) are

ECM molecules whose function in pancreatic carcinogenesis requires further investigation. Ccl2

(chemokine (C-C motif) ligand 2), Ccl7 (chemokine (C-C motif) ligand 7) and Il6 (interleukin
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Figure 4.25: Workflow for selection of inflammation-specific genes in wild-type mice after one-
way ANOVA.

6) are cytokines and chemokines, which promote pancreatic carcinogenesis by amplifying the

inflammatory response [236, 237]. Our data thus suggest a pro-inflammatory role of PSC in early

carcinogenesis. In particular, Tnfrsf12a (also known as Fn14 (fibroblast growth factor inducible-

14 receptor)), which is the receptor for Tnfsf12 (also known as TWEAK (tumor necrosis factor-

like weak inducer of apoptosis)), was identified as a novel PSC activation marker in vivo, which

is in line with the recently uncovered function of the TWEAK/Fn14 pathway in promoting

inflammation, cell proliferation and the fibrotic response in other biological contexts [238, 239].

4.6 The signature of early carcinogenesis is recapitulated in hu-

man PDAC and allows for survival stratification

This section, including all subsections, figures and any other material, is adapted

from Kong, Bruns, Behler et al. [258].

4.6.1 Extraction of an inflammation-specific signature

To identify genes characterizing the inflammatory phase, differential expression analysis followed

by Benjamini-Hochberg p-value correction was performed on the transcriptional profiles of WT

samples, based on three groups, control samples, inflammation samples and regeneration samples

(one-way ANOVA, followed by independent t-tests for the groups). The analysis yielded a set of

365 genes (254 up-regulated; 111 down-regulated) with significant differential regulation (abso-

lute FC > 2, FDR < 0.05) in the inflammation phase of WT mice compared to control samples

and to regeneration samples (Fig. 4.25). A 5-fold cross-validation was applied to generate an

“inflammation-specific” signature consisting of 143 genes, allowing for significant differentiation

between inflammation phase samples and other samples. As shown above, early carcinogenesis

in KrasG12D mice and the inflammatory phase in WT mice are similar in both the composition

of proliferating cells and in the corresponding selected gene set. We thus went on to test whether

this also holds true without using the “histology-guided” gene selection (analyses from the above

sections were motivated from histological observations, gene selection was performed according

the function of specific cell type; here, in contrast no “prior information” except the identified
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phases are used, in order to find a signature best characterizing the inflammatory state). Thus,

unsupervised clustering was performed using all WT and KrasG12D samples, based on the 143

genes (the “inflammatory signature”). As visualized in Fig. 4.26, all KrasG12D samples treated

with caerulein were clustered together with the samples of the inflammatory phase of WT mice.

In contrast, this gene set did not distinguish the regeneration phase from control or refinement

samples in WT pancreata. As such, we identified a highly specific signature for early carcinogen-

esis that may be present even before the acquisition of oncogenic Kras. We thus asked whether

this signature would be preserved in (advanced) human pancreatic adenocarcinomas.

4.6.2 Differential expression and survival analysis

An independent dataset of human PDAC tissue samples and samples from the surrounding

tissue was obtained from GEO (Gene Expression Omnibus), dataset ID GSE28735, and used

for further analysis (previously published by Zhang et al. [240]). Homologous genes of the

“inflammation-specific” signature (143 genes) were identified using Biomart. Gene expression

in PDAC samples was corrected against expression in the surrounding tissue by subtraction of

the matched sample signals. The aggregated z-score zA of the signature’s genes was used to

describe the level of expression of the signature as a whole in a given sample (Fig. 4.27). We

found that this score was not normally distributed in the samples, as it would be expected for

a random set of genes (Shapiro-Wilk-Test, p = 0.001, Fig. 4.28).

A null model with random gene sets was applied to correct this distribution for chance,

showing that the cross-validated, inflammation-specific signature was not equally expressed in

the PDAC samples with p=0.002 (Fig. 4.28). K-means clustering was performed separating the

patients into two clusters (k = 2 was chosen according to the best gap statistic), one reflecting a

high score (high expression of the signature’s genes, n = 16) and the other one reflecting a low

score (n = 29) (Fig. 4.28). Survival analysis was performed to determine whether expression

of the signature related to survival time (median survival 12 months; Fig. 4.28, right panel).

Even though the observed clustering was robust, significance for differences in survival was not

reached, most likely because of the relatively small sample size (log-rank test: p = 0.106 and

Peto-Peto test: p = 0.056). Kaplan-Meier survival curves showed an increased survival time

for patients with a high score (median survival: 24 months) compared to low-scoring patients

(median survival 12 months; 4.28, right panel).
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Figure 4.29: SVM based on zA score and clustering information allows classification of long-term
and short-term survival patients with an accuracy of 0.86 (leave-out-one cross-validation).

In order to find whether the signature expression score zA can be used for classification

of long-term and short-term survival patients, linear regression was performed. According to

clinical definitions, patients with a survival time less or equal to 12 months were regarded as

short-term samples (n = 14) and patients with a survival time greater or equal to 24 months
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(n = 7) were regarded as long-term samples, other samples were discarded.

However, regression did not yield significant results. In a next step, a support vector ma-

chine (SVM) with radial kernel function was trained on the samples; still samples could not be

separated with a satisfying accuracy. We then used the relative distance (based on L2-norm) of a

sample to the centers of the clusters as an additional variable: d(x,C1)
d(x,C1)+d(x,C2) where x represents

the signature expression vector (143 elements) of the respective sample and C1, C2 represent

the two cluster centers. According to the definition, the variable ranges from 0 to 1 describing

distance of the sample to cluster 1 and at the same time closeness to cluster 2. We trained

another SVM with radial kernel function, based on the two variables, and found that samples

could be classified correctly with an accuracy of 0.86 now. Leave-out-one cross-validation was

performed in order to test for robustness of the classifier.

4.7 Identification of potential mediators of the inflammation-

regeneration transition

Our study unveiled that pancreatic regeneration in wild-type mice is a three-stage process; in

Kras-mutated mice, however, regeneration is blocked and persistent inflammation is observed.

Here, we want to address the question which regulatory mechanisms are mediating the regener-

ation process in wild-type mice or blocking regeneration in Kras-mutated mice.
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Figure 4.30: The petri net describes our model of pancreatic regeneration and early pancreatic
carcinogenesis, derived from the results presented in sections 4.1 and 4.2.

In order to concretize our previous observations formally, we define the “dual model” of

pancreatic regeneration and early pancreatic carcinogenesis as our working model, depicted in

the petri net in Fig. 4.30. The model is composed of four steady states each representing the

identified stages including the control state, termed “healthy state”. Based on our findings from

above, we know that the temporal course of inflammatory response in KrasG12D mice diverges



4.7. IDENTIFICATION OF POTENTIAL MEDIATORS 85

from natural pancreatic regeneration after 36 hours, as inflammatory response in KrasG12D

mice fails to enter the “regeneration phase”. Accordingly, we are particularly interested in

identification of gene interactions mediating the inflammation-regeneration transition in wild-

type mice and the prolonged inflammation in KrasG12D mice, between 3h and 84h after caerulein

injections. As the regeneration phase is characterized by repair of the acinar cell structures

Figure 4.31: Interactions of epithelial genes and cell-cell signaling related genes in wild-type mice
between 3 hours and 84 hours. Occurrence of 16 interactions involving Fgf/Fgfr-related genes
suggests that corresponding pathways contribute to the transition from inflammation phase to
regeneration phase.

and redifferentiation of progenitor-like cells into acinar cells, we particularly focused on genes

involved in maintenance of the acinar cell fate as well as differentiation of Sox9+ genes. Here, we

used the same genes extracted from literature in sections 4.5.1 (acinar homeostasis) and 4.5.2

(progenitor network) which together form a set of 77 genes; these genes will be called epithelial

genes in the following. As we are interested in identification of intercellular signals impacting

the expression of those genes, we further selected a set of signaling genes, based on the GO term

“cell-cell signaling” (GO:0007267) which yielded a set of 420 genes; these genes will be called

intercellular signaling genes in the following. Now, correlation networks were generated in four

steps:
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1. Sample selection. As we aimed to compare interactions in wild-type mice and KrasG12D

mice for the time frame 3h-84h, we selected samples from corresponding time points;

however, if correlation networks are assembled based on a hard significance cut-off, then

there will be detected more interactions for a dataset with more samples, as the confidence

interval is larger here (see methods). Accordingly, sample number was reduced for wild-

type mice, leaving out the time point 72h which was not available for KrasG12D mice. In

addition, for several time points, the number of samples available was differing (e.g. for

12h, four KrasG12D but only three wild-type samples were available). Here, numbers of

samples were reduced for the dataset with more samples; to this end, samples with the

greatest sample ID were removed, i.e. selection was performed arbitrarily in these cases.

Finally, two datasets, each comprising 18 samples, were used. For each sample of a given

time point in one dataset, there was one corresponding sample from the same time point

in the other dataset.

2. Correlation tests and p-value correction. In a next step, for each of the two datasets inde-

pendently, all-to-all Pearson correlation networks were generated by calculating Pearson’s

r pairwise for all of the available genes; correlation tests were performed based on Fisher’s z

transformation. Afterwards, p-value correction was performed using Bonferroni’s method.

3. Extraction of relevant interactions. Then, from the assembled global networks, interactions

of interest were extracted. These include interactions between two epithelial genes or

between an epithelial gene and an intercellular signaling gene. All of these interactions

with a corrected p-value smaller than 0.05 were extracted.

4. Analysis and visualization. Finally, networks were analyzed and visualized. For wild-type

mice, 296 interactions were observed; 162 of those were interactions between an epithelial

gene and an intercellular signaling gene. Corresponding wild-type network is visualized in

Fig. 4.31. For KrasG12D mice, on the contrary, we obtained 14 interaction pairs only as

visualized in Fig. 4.33. Among these 14 interactions there was not a single one between

an epithelial gene and an intercellular signaling gene.

Figure 4.32: Neighbourhood of the Fgf/Fgfr nodes in the wild-type network.

Notably, with Fgfr1, Fgfr2, Fgfr3 and Fgf12, four representatives of the fibroblast growth

factor family and corresponding receptors were included in the wild-type network, suggesting

that Fgf signaling plays a crucial role in the mediation of the inflammation-regeneration transi-

tion. Particularly, Fgfr3 is a highly connected player in the network, interacting with nine of the
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Figure 4.33: In KrasG12D mice, 14 interaction pairs were found.

preselected acinar/progenitor genes, including Mist1 (Bhlha15) which is a key factor of acinar

homeostasis, and also other important acinar-specific genes. Neighbourhood of Fgf/Fgfr genes

is in the wild-type network is visualized in Fig. 4.32.

Hypergeometric test was applied in order to find whether there is a significant enrichment

of edges involving Fgf/Fgfr family members among the identified interactions between epithelial

genes and intercellular signaling genes. Here, the number of all possible interactons is 77 ×
420 (each epithelial gene interacts with each intercellular signaling gene) and the number of

positive cases is 77 × 13, as there are 13 Fgf/Fgfr family members included in the set of 420

intercellular signaling genes. The number of identified interactions is 162 and among these,

there were 16 interactions involving Fgf/Fgfr family members. However, this test is based on

the assumption that for any pair of random genes A and B, it is equally likely that there will be

an interaction between both. As most biological networks are scale-free (i.e. degree distribution

is following a power law function), this assumption is not correct; it could be the case, that

Fgf/Fgfr genes are hubs in the global network and in this case it would not be surprising that

interactions involving these genes are also “enriched” in the identified subnetwork. However,

the number of positive cases (16) can be corrected: Let deg(A) and deg(B) be the degrees of

genes A and B in the global all-to-all network, then, the “expected number” of interactions

between A and B is deg(A) deg(B) times greater as compared to two nodes with a degree

of 1. Correspondingly, we rescale the identified interactions. While initially each interaction

was counted with weight 1, now each interaction is counted with weight (deg(A) deg(B))−1.

Afterwards, each weight is divided by the sum of weights for the identified interactions (i.e. now

the sum of all weighted interactions is 1) and finally multiplied with 162, so that the total number

of identified interactions remains constant; now, weights for members of the Fgf/Fgfr family are

summed up, yielding a total number of 10.85 (weighted) interactions. As the hypergeometric

distribution is discrete, we test for the ratio 10/162 against (13 × 77)/(420 × 77), which yields

a p-value of 0.012. This indicates, that there is a significant enrichment for Fgf/Fgfr-involving
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interactions among the identified set of interactions between epithelial and intercellular signaling

genes.

We conclude, that the inflammation-regeneration transition in wild-type mice, described with

t1 in our working model in Fig. 4.30, which is required for successful pancreatic regeneration, is

potentially mediated by members of the Fgf/Fgfr family.

Previous studies strengthen the potential relevance of this finding: It was reported that Fgfr3

has a dual role in pancreatic carcinogenesis [255]. Being generally regarded as oncogene which

is often found to be mutated in PDAC patients, it has been shown that Fgfr3 limits cell growth

and promote differentiation in epithelial cells [255]. In mesenchymal cells however, it possesses

oncogenic properties [255]. In this regard, Fgfr3 could play an important role, mediating the

redifferentiation into epithelial cells after inflammatory injury in wild-type mice. Accordingly,

missing Fgfr3 activity in KrasG12D mice could be the explanation for missing redifferentiation

and finally mesenchymal expansion.

Generally, comparison of wild-type mice and KrasG12D mice shows that a complex interaction

network is required for successful initiation of regeneration; this complex network requires both

interactions between acinar- or progenitor-specific genes and exterior signals.
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Discussion

5.1 Loss of coordination in cell proliferation initiates early car-

cinogenesis

For the first time, we here analyzed the natural course of pancreatic regeneration after inflamma-

tory injury with a high temporal resolution on both histological and transcriptional level. Tissue

and RNA samples were extracted at 13 time points after injections of supramaximal concen-

trations of caerulein. Our analysis unveiled that pancreatic regeneration is a process which can

be separated into three distinct phases which we termed inflammation, regeneration and refine-

ment. Corresponding definitions were based on histological observations and could be entirely

confirmed on the transcriptional level by application of hierarchical clustering. Comparative

analysis unveiled that the inflammatory phase is perpetuated in mice, conditionally expressing

oncogenic KrasG12D. Correspondingly, tissue damage cannot be resolved; instead altered pro-

liferation cascades and persistent cell expansions are observed. Here, the key question is which

molecular mechanisms are required for mediation of regular cellular reorganization in wild-type

mice and which mechanisms are driving the divergence of the response in KrasG12D mice.

Quantification of Amy+ cells and histological analysis indicated that acinar complexes are de-

stroyed during the inflammatory phase in both mouse strains. Transcriptional profiles confirmed

this observation, suggesting that the acinar homeostasis program is disturbed by caerulein-

induced signaling cascades. As we can observe a simultaneous expansion of Sox9+ cells, we

agree with previous studies suggesting a dedifferentiation of acinar cells into progenitor-like

cells expressing Sox9 [256]. It has been previously proposed that lacking expression of Mist1

(Bhlha15) is initiating the loss of acinar homeostasis which is also in line with our findings.

Particularly, we observe, that shortly after reactivation of Mist1 and Rbpjl in wild-type mice

at t=24h, other acinar homeostasis related genes are reactivated as well and that the repair of

acinar structures is initiated as indicated by the up-following peak of proliferation of BrdU+

Amy+ cells. In KrasG12D however, reactivation of the acinar program fails; instead, massive

expansion of Sox9+ cells is observed, finally leading to formation of acinar-to-ductal metaplasia.

Correspondingly, we addressed the question how the redifferentiation of Sox9+ cells is impaired
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in KrasG12D mice as we assume this to be a crucial step preventing these mice to enter the

regeneration phase after inflammatory injury. To this end, we considered a previously published

gene regulatory network describing differentiation programs of progenitor cells during pancre-

atic development, assuming that the same mechanisms are also influencing the cell fate of the

observed progenitor-like cells. We were searching for subcomponents in this network that are

particularly activated during the inflammation phase and the regeneration phase for both mouse

strains separately. Here, we regarded subcomponents to be “active” if corresponding genes taken

together showed differential expression (corrected aggregated z-score). Though subcomponents

identified for wild-type mice and KrasG12D mice showed a large overlap, several key factors

showed a different expression pattern and potentially influence the cellular fate and thus altered

proliferation cascades. In particular we found Hes1 to be persistently activated in KrasG12D

(in wild-type mice it was inactivated after 36 hours), potentially indicating a sustained Notch

signaling. Previous studies have shown that after loss of the acinar cell fate (e.g. induced by

loss of Mist1 expression), elements of embryonic development are recapitulated, including in

particular Notch signaling but also other pathways [11]. Accordingly, once the acinar fate is

lost, different scenarios give possible explanations for the induction of uncontrolled expansion of

Sox9+ cells in KrasG12D mice. Either, the persistent inactivation of Mist1 is perpetuating the

proliferation of Sox9+ cells, with Notch signals being a side effect accompanying this process.

Or, once the acinar cell fate is lost, persistent Notch signaling governs expansion of Sox9+ cells

and together with Ptf1a suppression prevents redifferentiation to acinar cells at the same time.

Alternatively, it is also possible that a combination of these two forces is promoting uncon-

trolled expansion. Mist1 inactivation causes loss of the acinar cell fate, and Notch-mediated

disturbance of the Hes1-Sox9-Onecut1-Hnf1b-Neurog3 regulatory circuit disallows redifferentia-

tion, promotes further proliferation (due to Neurog3 inhibition [226]) and also intensifies further

Mist1 inhibition. Recent studies based on Mist1 knock-out mice with KrasG12D mutations have

shown that Kras signaling cooperates with Notch and EGFR signaling promoting the formation

of PanIN lesions [257]. Enhanced activity of these pathways and accelerated PanIN formation

could indicate that effects caused by Mist1 inactivation and Notch signaling strengthen each

other which finally initiates tissue transformation. According to these findings, elements of

the Hes1-Sox9-Onecut1-Hnf1b-Neurog3 regulatory circuit could be considered as potential drug

targets for efforts aiming at inhibition of uncontrolled expansion of Sox9+ cells, particularly,

because the other driving force, Mist1 inactivation is directly tracing back to Kras signaling,

and Kras is an undruggable molecule. Additionally, activity of the Rbpjl-Ptf1a complex is po-

tentially impaired in KrasG12D mice, as we observe persistent down-regulation of Ptf1a here.

As this complex is required for differentiation of progenitor cells to acinar cells, we assume that

missing Ptf1a activity contributes to Sox9+ cell expansion.

Apart from the distinct molecular mechanisms, temporal coordination of proliferation of the

different cell types has been shown to be required for faultless development of organs. Recent

studies uncovered that optimal control theory is governing intestinal development, with an

expansion of stem cells and progenitor cells followed by proliferation of epithelial cells; these
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well-defined cascades of cell proliferation have been shown to be the most efficient way for

(re-)generation of the intestinal system [249]. In line with these findings, we observe similar

cascades in the natural course of pancreatic regeneration. Here, proliferation of progenitor-

like cells peaks prior to the strong elevation of the proliferation of acinar cells. In KrasG12D

mice however, these clear cascades of proliferation could not be observed. Although it remains

unknown whether acquisition of proliferative capacity and progenitor-like features is a default

program after failure of the exocrine program in acinar cells, it has been shown that inflammation

inevitably promotes the inactivation of the exocrine program and accelerates KrasG12D-driven

pancreatic carcinogenesis [250]. Taken together, these data suggest that interaction between

inflammatory pathways and KrasG12D destabilizes the exocrine program and induces acquisition

of progenitor-like features and proliferative capacities.

It is commonly known that cytokine and chemokine release as a causality of inflammatory

response leads to recruitment of quiescent PSCs which in turn become α-SMA expressing, ac-

tive PSCs [16]. Activated PSCs in turn release further cytokines and chemokines, but also

produce MMPs and other ECM components as well as their inhibitors, leading to mesenchymal

expansion [16]. We quantified the number of α-SMA+ cells in order to compare the extent of

mesenchymal expansion between wild-type and KrasG12D mice. We observe that mesenchymal

expansion during the inflammatory phase is strongly increased in KrasG12D mice, compared to

wild-type mice. Particularly, we found that TWEAK activation allows quantification of the

extent of inflammatory response and PSC expansion in both mouse strains; TWEAK/Fn14 has

also previously been reported to promote cell proliferation and fibrotic response [238, 239]. In-

creased PSC expansion in KrasG12D during the inflammatory phase can be possibly regarded as

a self-induction effect; once pronounced inflammatory response is initiated in KrasG12D mice, ac-

companied by the above discussed cellular expansion, activated PSCs release additional cytokines

and chemokines promoting further mesenchymal expansion. Possibly, once the population of ac-

tive PSCs is sufficiently grown, signals induced by PSCs then also influence the population of

remaining epithelial cells. Cross-talk of epithelial and mesenchymal cells has been studied and

documented extensively for patients in advanced stages of PDAC as discussed (tumor-stroma

interactions, see section 1.4.3). As impaired regeneration and loss of epithelial cells in KrasG12D

mice is accompanied by massive mesenchymal expansion during the anticipated regeneration

phase (48h - d5), such a cross-talk could further accelerate disruption of acinar structures. Ad-

ditionally, we assume that acinar cells undergo EMT during inflammation phase and anticipated

regeneration phase, because we observed a persistent Notch signaling which can cause activation

of EMT-inducing transcription factors [149] (see also section 1.4.4). This effect would explain

further enhancement the observed mesenchymal expansion and disruption of acinar cells.

Our findings indicate that an extended and enhanced inflammatory response in KrasG12D

mice generates a transformation-permissive microenvironment which, once initiated, causes a

loss of coordination in cell proliferation, characterized by acinar dedifferentiation, missing red-

ifferentiation, extensive PSC recruitment and possibly EMT and epithelial-mesenchymal cross-

talk. The resulting premalignant cellular mileu of stromal cells, Sox9+ cells and inflammatory
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cells then potentially leads to a self-induction effect promoting further tissue transformation.

We indicate that the extended inflammatory phase in KrasG12D mice is the “incipient phase of

early pancreatic carcinogenesis” and provide histological and molecular evidence that pancreatic

carcinogenesis adheres to the old concept proposed by Dvorak: “cancer is a wound that never

heals” [247]. One major characteristic of impaired regeneration in KrasG12D mice is uncontrolled

mesenchymal proliferation. Here, the question raises in how far the steps of pancreatic organo-

genesis are recapitulated during normal regeneration. Studies focusing on pancreatic growth and

branching during organogenesis have shown the emergence of a strict temporal order regarding

proliferation of precursor cells, mesenchymal cells and differentiated cells [248]. Assuming that

similar coordinated proliferation cascades are required for organ regeneration, altered temporal

course of mesenchymal expansion explains induction of tissue transformation. Still, biological

relevance of the early mesenchymal expansion of in the long-term carcinogenic process requires

further investigation with special focus on the epithelial-mesenchymal cross-talk. Particularly it

is unknown whether early mesenchymal expansion finally causes desmoplastic reaction leading

to PDAC formation.

We conclude that inflammation-accelerated early pancreatic carcinogenesis in KrasG12D-

mutated mice is characterized by two properties,

• persistent inflammation, corresponding to the inflammatory phase in wild-type mice on

both histological and transcriptional level

• loss of coordinated cell proliferation the lineages of epithelial, progenitor-like and mes-

enchymal cells.

In order to further investigate the impact of Notch signaling, Ptf1a-Rbpjl inactivation and

other molecular factors on the expansion of progenitor-like cells, we suggest to perform cell-

sorting based experiments. Additionally, in order to identify molecular interactions of epithelial

and mesenchymal cells which potentially induce massive mesenchymal expansion and tissue

transformation, further in vitro studies are proposed.

5.2 Transferability to pancreatic carcinogenesis in humans

Generally, genetically engineered mouse models (GEMM) provide an excellent opportunity

to investigate early carcinogenesis and recent successes have shown that GEMM-based studies

provide indispensable contributions for cancer research. In particular, invention of Kras models is

regarded as milestone in cancer research [170]. However, attention must be paid when conclusions

drawn from mouse model-based experiments are generalized.

Human PDAC show a high intrinsic variation across different patients due to differences in

genetic, epigenetic and microenvironmenal factors. This implies variation in response to surgery

and chemotherapy: Even for patients with the same mutational status, e.g. mutation of EGFR,

therapies targeting the corresponding molecule can result in different outcomes [170]. In order

to cover intrinsic variation in human PDAC, more differentiated GEMMs are required, covering
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additional mutations or epigenetic factors. One further limitation of GEMMs is that given

mutations are implicitly assumed to be the initiating event of early carcinogenesis. However,

preceding events might have initiated mutagenesis; these events are not covered by GEMM-based

experiments.

Nonetheless, our findings from above raise the question whether specific molecular charac-

teristics of early pancreatic carcinogenesis in mice are also found in human PDAC patients.

Based on differential expression analysis followed by a 5-fold cross-validation, we have extracted

a signature of 143 genes, characterizing the inflammatory phase of pancreatic regeneration and,

correspondingly, also sustained inflammation in KrasG12D-mutated mice. Since we assume that

expression of this signature corresponds to the early stage of carcinogenesis, it could be poten-

tially applied for survival prediction of PDAC patients. Provided with a dataset of transcrip-

tional profiles of 45 pancreatic cancer patients, published by Zhang et al. [240], we found our

signature to be differentially expressed between two groups of patients which were identified

using k-means clustering. Differential expression was highly significant (p = 0.002). Subsequent

survival analysis showed that the median survival time of patients with a high signature expres-

sion was 24 months, whereas median survival time of patients with a low signature expression

was 12 months; however, this result was not significant (log-rank test: p = 0.106, Peto-Peto

test: p = 0.056). Based on the signature expression score (aggregated z-score), and the sample

distance to the cluster centers, we trained a support vector machine, followed by leave-out-one

cross-validation, which allowed to classify long-term (≥ 24 months) and short term survival

patients (≤ 12 months) with an overall accuracy of 0.86. Our findings indicate, that expression

of the previously identified signature might be applied as indicator of progression of PDAC. We

suggest to evaluate the signature’s expression on a larger dataset of human PDAC samples with

a similar experimental design, comprising tumor tissue and surrounding tissue. If our hypothesis

should turn out to be correct, a next step would be to find generalizations of this concept that

possibly unveil a correlation of PDAC progression and degree of inflammation.

5.3 Mediators of the inflammation-regeneration transition

Based on our findings, we set up a “dual model” of pancreatic regeneration and early pancre-

atic carcinogenesis. Here, previously defined phases and control samples are regarded as four

different steady states. In both mouse strains, transition between the “control state” and the

“inflammation state” is initiated by caerulein injections and subsequent inflammatory response.

In wild-type mice, all further transitions are self-resolution steps. In KrasG12D mice, the “inflam-

mation state” is perpetuated. According to these observations, we hypothesize that impaired

regeneration in KrasG12D mice mainly depends on the inability of entering the inflammation-

regeneration transition which causes divergence of the temporal courses of both mouse strains.

Correspondingly, investigation of the molecular mechanisms during the time segment between 3h

(earliest time point regarded as “inflammation phase”) and 84h (time point regarded as peak of

the “regeneration phase”) could help understanding this divergence. Particularly, as we assume
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that loss of the acinar cell fate and missing redifferentiation of progenitor-like cells into acinar

cells is driving the sustained inflammation in KrasG12D mice, we are interested in identification

of intercellular singals impacting acinar homeostasis genes which are required for maintenance

of the acinar phenotype but also redifferentiation.

Here, we applied a correlation-based approach in order to assemble networks of potential

interactions. We assembled networks on the time segment from 3h to 84h for each mouse

strain separately, incorporating previously introduced acinar-specific genes (literature-based list

of 77 genes) and genes annotated by the GO term “cell-cell signaling”. Finally, we extracted

interactions which were identified exclusively for one of both mouse strains (using two different

q-value cut-offs after Bonferroni correction). Analysis of the resulting networks showed that four

members of the Fgf/Fgfr family were impacting acinar homeostasis genes with several of these

genes being highly connected. For KrasG12D mice, on the contrary, only a single member of this

family, Fgfr1, was included with a single interaction. As interactions involving Fgf/Fgfr members

are significantly enriched among the identified interactions with acinar homeostasis genes in wild-

type mice (p¡0.012), we conclude that Fgf signaling and expression of Fgf receptors are potential

driving forces of the initiation of the inflammation-regeneration transition. Particularly, we

found Fgfr3 being highly connected in the wild-type network; also Fgfr3 was predicted to interact

with Mist1 directly. This result was first surprising as Fgfr3 is commonly regarded as oncogene

also mediating mesenchymal expansion [255]. But notably, recent studies have shown that Fgfr3

has tumor-suppressing properties when expressed in epithelial cells [255]. Our findings confirm

this result and indicate that Fgfr3 activity is potentially required for successful regeneration

of the acinar components. In addition to this specific result, structural comparison of the

assembled correlation networks shows that the number of intercellular signaling genes interacting

with epithelial cell-linked genes is greater in wild-type mice. For KrasG12D mice, only a small

number (14) of isolated interactions was predicted. Furthermore, among these interactions,

we found several development-related genes to be involved (Gata4, Gata6, Hnf1b) but none of

the most important acinar homeostasis-related genes (Ptf1a, Mist1). This further underscores

that potentially, several exterior signaling effects required for induction of the acinar repair

mechanism are absent in the anticipated regeneration phase of KrasG12D mice.

We chose pearson correlation coefficients with predefined q-value cutoffs for prediction of in-

teractions. Accordingly, resulting networks must be treated with care, as it cannot be assumed

that highly correlated genes interact with each other in general. Particularly, confounding effects

must be expected: Two variables can be highly correlated due to a third variable (confounder)

controlling both of them. This problem has been addressed in methods which use partial cor-

relations instead of pearson correlations (e.g. GeneNet by Strimmer et al. [212]). However,

partial correlation approaches are unsuitable for our dataset due to the extremely large num-

ber of variables compared to the number of samples. Also, our approach does not incorporate

the temporal information from our dataset, as sample reordering does not affect calculation of

the pearson correlation coefficient. However, as the temporal gradient for a small time frame

which we analyzed (3h - 84h) is unclear with high variance across samples from surrounding
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time points, we decided to exclude this information on purpose. Still, though we cannot as-

sume that each individual predicted interaction is correct, the significant frequency of Fgf/Fgfr

related genes and the large number of interactions with relevant genes (particularly Mist1) in-

dicates that the corresponding signaling pathway has an important role for mediation of the

inflammation-regeneration transition in our model.

Accordingly, we suggest to perform in vitro studies with populations of acinar, progenitor-like

and mesenchymal cells in order to investigate the effect Fgf/Fgfr during pancreatic regenera-

tion. Here, transcriptional profiling for the distinct cell types will further help to unveil other

intercellular mechanisms mediating the described regeneration process. Furthermore, studies

on KrasG12D mice with cell-sorting based experiments could help unveil the impact of distinct

cytokines and chemokines on tissue transformation, as we observe sustained up-regulation of

these genes after inflammatory injury.
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Conclusion

Our analysis provides new insights into the mechanisms of early pancreatic carcinogenesis. We

found that

• Normal pancreatic regeneration is a default process characterized by three distinct stages:

inflammation, regeneration and refinement.

• Regeneration is blocked in KrasG12D-mutated mice and characterized by a sustained in-

flammatory status which we are able to describe with a signature.

• Altered proliferation cascades of acinar, progenitor-like and mesenchymal cells are charac-

terizing early pancreatic carcinogenesis. Massive mesenchymal expansion is observed.

Application of the homologous genes of the extracted gene signature to a dataset of 45 human

PDAC samples showed that

• PDAC patients are separable with regard to expression of the inflammation-specific sig-

nature.

• According to survival analysis, inflammation-specific signature can be possibly regarded

as an indicator of an early stage of pancreatic carcinogenesis.

We studied our “dual model” of pancreatic regeneration and early pancreatic carcinogenesis,

with special respect to the inflammation-regeneration transition, using correlation networks.

We found that

• Interactions involving members of the Fgf/Fgfr family are overrepresented in the wild-

type network, suggesting that corresponding genes could play a major role for successful

regeneration of the pancreas.

• Fgfr3 is a highly connected player in the network. This is in line with recent studies

repor ting that Fgfr3 expression in epithelial cells limits cell growth and promotes differ-

entiation.

We suggest to continue with follow-up studies focussing on the distinct impact of Fgf/Fgfr

members and selected cytokines and chemokines on the regeneration in wild-type mice or tissue

transformation in KrasG12D mice.
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[212] Schäfer J, Strimmer K, A shrinkage approach to large-

scale covariance matrix estimation and implications

for functional genomics, 2005, Statist. Appl. Genet.

Mol. Biol. 4:32.

[213] Beversdorf LM, Tests for correlation on bivariate non-

normal distributions, 2008, UNF Theses and Disser-

tations, 284.

[214] Fisher RA, Frequency Distribution of the Values of the

Correlation Coefficient in Samples from an Indefinitely

Large Population, Biometrika, 1915, 10(4):507-521.

[215] Langfelder P, Mischel PS, Horvath S, When Is Hub

Gene Selection Better than Standard Meta-Analysis?

PLoS One. 2013 Apr 17;8(4).

[216] Barabási AL, Oltvai ZN, Network biology: under-

standing the cell’s functional organization, Nature Re-

views Genetics, 2004, 5:101-113.

[217] Chung F, Linyuan L, Connected Components in Ran-

dom Graphs with Given Expected Degree Sequences,

Annals of Combinatorics, 2002, 6(2):125-145.

[218] Molero X, Vaquero EC, Flandez M, et al., Gene ex-

pression dynamics after murine pancreatitis unveils

novel roles for Hnf1alpha in acinar cell homeostasis,

Gut 2012, 61(8):1187-1196.

[219] Morris JPt, Cano DA, Sekine S, Wang SC, Hebrok

M, Beta-catenin blocks Kras-dependent reprogram-

ming of acini into pancreatic cancer precursor lesions

in mice, J Clin Invest. Feb 2010;120(2):508-520.

[220] Aichler M, Seiler C, Tost M, et al., Origin of pancre-

atic ductal adenocarcinoma from atypical flat lesions:

a comparative study in transgenic mice and human

tissues, J Pathol, Apr 2012;226(5):723-734.

[221] Direnzo D, Hess DA, Damsz B, et al., Induced Mist1

expression promotes remodeling of mouse pancreatic

acinar cells, Gastroenterology, Aug 2012;143(2):469-

480.

[222] Lee AH, Chu GC, Iwakoshi NN, Glimcher LH,

XBP-1 is required for biogenesis of cellular secre-

tory machinery of exocrine glands, Embo J. Dec 21

2005;24(24):4368-4380.

[223] Figura G, Morris JPt, Wright CV, Hebrok M. Nr5a2

maintains acinar cell differentiation and constrains

oncogenic Kras-mediated pancreatic neoplastic initi-

ation, Gut, Apr 2014;63(4):656-664.

[224] Martinelli P, Canamero M, del Pozo N, Madriles F,

Zapata A, Real FX, Gata6 is required for complete

acinar differentiation and maintenance of the exocrine

pancreas in adult mice, Gut, Oct 2013;62(10):1481-

1488.

[225] Kong B, Michalski CW, Erkan M, Friess H, Kleeff

J, From tissue turnover to the cell of origin for pan-

creatic cancer, Nat Rev Gastroenterol Hepatol, Aug

2011;8(8):467-472.

[226] Seymour PA, Freude KK, Tran MN, et al., SOX9 is

required for maintenance of the pancreatic progen-

itor cell pool, Proc Natl Acad Sci U S A, Feb 6

2007;104(6):1865-1870.

[227] Furuyama K, Kawaguchi Y, Akiyama H, et al, Con-

tinuous cell supply from a Sox9-expressing progenitor

zone in adult liver, exocrine pancreas and intestine,

Nat Genet. Jan 2011;43(1):34-41.

[228] Jensen JN, Cameron E, Garay MV, Starkey TW, Gi-

anani R, Jensen J, Recapitulation of elements of em-

bryonic development in adult mouse pancreatic regen-

eration, Gastroenterology, Mar 2005;128(3):728-741.

[229] Arda HE, Benitez CM, Kim SK, Gene regulatory net-

works governing pancreas development, Dev Cell, Apr

15 2013;25(1):5-13.

[230] Jensen J, Pedersen EE, Galante P, et al., Control

of endodermal endocrine development by Hes-1, Nat

Genet, Jan 2000;24(1):36-44.

[231] Hermann PC, Sancho P, Canamero M, et al., Nico-

tine Promotes Initiation and Progression of KRAS-

Induced Pancreatic Cancer via Gata6-Dependent Ded-

ifferentiation of Acinar Cells in Mice, Gastroenterol-

ogy, Nov 2014;147(5):1119-1133 e1114.

[232] Omary MB, Lugea A, Lowe AW, Pandol SJ, The pan-

creatic stellate cell: a star on the rise in pancreatic

diseases, J Clin Invest, Jan 2007;117(1):50-59.

[233] Landsman L, Nijagal A, Whitchurch TJ, et al.,

Pancreatic mesenchyme regulates epithelial organo-

genesis throughout development, PLoS Biol, Sep

2011;9(9):e1001143.

[234] Sherman MH, Yu RT, Engle DD, et al., Vitamin d

receptor-mediated stromal reprogramming suppresses

pancreatitis and enhances pancreatic cancer therapy,

Cell, Sep 25 2014;159(1):80-93.

[235] Erkan M, Adler G, Apte MV, et al., StellaTUM: cur-

rent consensus and discussion on pancreatic stellate

cell research, Gut, Feb 2012;61(2):172-178.

[236] Sanford DE, Belt BA, Panni RZ, et al., Inflamma-

tory monocyte mobilization decreases patient sur-

vival in pancreatic cancer: a role for targeting

the CCL2/CCR2 axis, Clin Cancer Res, Jul 1

2013;19(13):3404-3415.

[237] Lesina M, Kurkowski MU, Ludes K, et al.,

Stat3/Socs3 activation by IL-6 transsignaling pro-

motes progression of pancreatic intraepithelial neopla-

sia and development of pancreatic cancer, Cancer Cell,

Apr 12 2011;19(4):456-469.



108 BIBLIOGRAPHY

[238] Burkly LC, Michaelson JS, Hahm K, Jakubowski A,

Zheng TS, TWEAKing tissue remodeling by a multi-

functional cytokine: role of TWEAK/Fn14 pathway

in health and disease, Cytokine, Oct 2007;40(1):1-16.

[239] Maecker H, Varfolomeev E, Kischkel F, et al.,

TWEAK attenuates the transition from innate to

adaptive immunity, Cell, Dec 2 2005;123(5):931-944.

[240] Zhang G, Schetter A, He P, et al., DPEP1 inhibits tu-

mor cell invasiveness, enhances chemosensitivity and

predicts clinical outcome in pancreatic ductal adeno-

carcinoma, PLoS One, 2012;7(2):e31507.

[241] Kuo TC, Tan CT, Chang YW, Hong CC, Lee WJ,

Chen MW, Jeng YM, Chiou J, Yu P, Chen PS, Wang

MY, Hsiao M, Su JL, Kuo ML, Angiopoietin-like pro-

tein 1 suppresses SLUG to inhibit cancer cell motility,

J Clin Invest. 2013 Mar;123(3):1082-95.

[242] Clausen KA, Blish KR, Birse CE, Triplette MA,

Kute TE, Russell GB, D’Agostino RB Jr, Miller LD,

Torti FM, Torti SV, SOSTDC1 differentially modu-

lates Smad and beta-catenin activation and is down-

regulated in breast cancer, Breast Cancer Res Treat.

2011 Oct;129(3):737-46.

[243] Thawani JP, Wang AC, Than KD, Lin CY, La Marca

F, Park P, Bone morphogenetic proteins and can-

cer: review of the literature, Neurosurgery. 2010

Feb;66(2):233-46.

[244] Wente MN, Mayer C, Gaida MM, Michalski CW,

Giese T, Bergmann F, Giese NA, Büchler MW, Friess
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normalization, 34
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