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Abstract

Multispectral imaging (MSI) acquires a collection of images at separate wavelengths
bands lying within the ultraviolet to near infrared part of the electromagnetic spectrum.
MSI capitalizes on the wavelength dependent properties of light when interacting with
objects or tissues in order to reveal hidden objects, chemical compositions or processes
that are otherwise invisible to the human eye. In biomedical context, MSI can be em-
ployed to detect the spectral signatures of molecules, therefore enabling their classification
and distinction. It thereby exhibits the unique potential to simultaneously probe multiple
molecules, a property that can contribute invaluably to the field of molecular imaging, and
that yet remains to be explored.

This work investigates the potential of MSI to image multiple molecular components in
living subjects. This endeavor is complicated by the fact that optical imaging is strongly
affected by absorption and scattering of light in biological tissues, and their mixed contri-
bution on the detected optical signal. Appropriate systems engineering and mathematical
methods have to be developed and applied to such diffuse imaging regimes in order to
obtain reasonable and quantitative read outs on physiological properties.

To meet this requirement, developments on the methodological and systems level were
realized, spanning a wide range of potential application areas: from surface investigations
of intrinsic tissue molecules to volumetric imaging of extrinsic molecular markers.
Presented theory and experiments encompass three different approaches. The first ap-
proach shows the development and optimization of a method for quantitative assessment
of intrinsic tissue properties, i.e. tissue oxygenation, based on mathematical transforma-
tions of spectral curves. This enables the rejection of influences from non-hemoglobin
absorption and tissue scattering on the computed oxygenation values. The second ap-
proach aims at translating multispectral methods for the distinction of multiple extrinsic
molecular markers, i.e. fluorochromes, to in-vivo applications. For this purpose a novel
multispectral fundus camera was developed that combines multi-wavelengths illumination
with multi-wavelengths detection. This allows for a customized combination of excitation

and emission for each fluorochrome, as well as the employment of multispectral unmixing
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methods to in-vivo spectral acquisitions. The third approach finally tackles the method-
ological development for volumetric detection of multi-molecular data. In contrast to the
first two problems, imaging of intrinsic and extrinsic contrast in planar geometries, this
approach is based on the acquisition of tomographic data and reconstruction of images
through the inversion of a light-tissue-interaction model. Due to the ill-posedness of the
inversion problem, adequate regularization schemes had to be found and are presented
herein.

Based on these three representative examples, this thesis shows the successful transla-
tion of multispectral concepts to in-vivo biomedical investigations. The assessment of
multi-molecular information can drive biomedical research by improving the systems un-
derstanding of dynamic processes and interactions. This can ultimately affect the study of

disease progression, treatment efficacy and drug development.

il
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1 Introduction

1.1 The role of engineering in biomedical sciences

Technological developments have driven progress in biological and medical research
for centuries. The cellular composition of life and the existence of tiny creatures like
bacteria, for instance, only became known with the invention of microscopy in the 171
century [66]. The optimization of grinding and polishing methods for lenses led Anton
van Leeuwenhoek to be the first to observe and describe bacteria, yeast plants and the
circulation of blood. With the first assembly of lenses into a compound microscope in
1665, Robert Hooke set the ball rolling for many biological discoveries and laid the
foundations for the developments leading towards the intricate microscopy devices of
today [66]. Indeed, modern biology and medicine would be unimaginable without the
support of this optical device that is now one of the standard tools of investigation in

areas like histopathology, cell and molecular biology.

The emergence of imaging technology constituted a further important achievement
that had considerable impact on many aspects of healthcare delivery [46]. Imaging
provided a means of preservation of snap-shots previously only projected onto and
captured by the human eye. Furthermore, it lead to enhanced visualization and detection
of the observed objects. Resuming the microscopy example, addition of optical detectors
to microscopes enabled for instance the observation of previously undetectably weak
signals (by adjusting exposure times) or of increased resolution (through the development
of scanning technology). Physicians nowadays routinely rely on medical images for
diagnostic purposes and treatment monitoring [46]. Not least because of this fact was
imaging selected as one of the 20 greatest engineering achievements of the 20™ century

by the National Academy of Engineering (of America) [142].

Beyond microscopy, physicists and engineers have been the brains behind many
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medical imaging developments that are now standard in clinical examinations, like ultra-
sonography, X-ray Computed Tomography (XCT), Magnetic Resonance Imaging (MRI)
and Positron Emission Tomography (PET). The continuous demand for new imaging
methods, ever faster devices, higher resolution, better contrast and the capability to
handle larger data sets will most likely further increase the need of dedicated technology

oriented research and developments.

1.2 Motivation and background

One of the key questions in current biomedical research calling for engineering and
computational aid at different levels is the investigation of systems properties of whole
organisms, i.e. the interaction of all (or at least several important) components making
up one functional system. This concept is opposed to focusing on isolated parts of a
system, which was (and partly still is) the accustomed paradigm in traditional biological
research [23, 104].

Typically, biological methods for investigating a certain molecule of interest con-
sist in extracting the desired cell or tissue sample from a living subject and further in-vitro
processing. While such methods have contributed significantly to the comprehension of
biological entities and processes and still constitute the backbone of biological research,
they have the disadvantage of isolating the desired molecule from its most natural
environment, the living organism. This may affect its behavior and ultimately falsify
results. Experts agree that many biological reactions cannot sufficiently be explained by
just summing up the knowledge on each single component that takes part in it, but that
complex dynamic interactions and feed-back govern the final function of the complete
system [104]. It is therefore crucial to investigate ways to track multiple molecular

components simultaneously and over extended time periods in-vivo.

Imaging is an ideal technique for meeting the needs of modern biomedical research.
Well established modalities like ultrasound or X-ray imaging have proved for decades
their potential of non-invasively creating visual representations of the interior of the
body. However, they predominantly visualize anatomical structures. With the advent of
genomics, proteomics, and technological advances, modern targeted molecular imaging
strategies are replacing the traditional anatomical or physiological approaches to the

detection, evaluation, and monitoring of a variety of diseases and their treatment [46].



1.2 Motivation and background

Molecular imaging attempts to non-invasivaly visualize, characterize and quantify
biological processes at the cellular and subcellular level in living subjects [198]. It
usually exploits targeted molecular markers as well as intrinsic tissue characteristics as
the source of image contrast, and provides the potential for understanding of integrative
biology [198].

Molecular probes designed to recognize disease-specific markers can be specifi-
cally developed to be employed in such diverse imaging modalities as Magnetic
Resonance Imaging (MRI), X-ray Computed Tomography (XCT), nuclear imaging,
optical imaging and Ultrasound (US) [193]. Hence, molecular readouts can be obtained
based on different contrast mechanisms. In theory, an appropriate imaging modality can
consequently be chosen based on the molecule, organ or disease under investigation.
However, a limitation of most current molecular imaging approaches is their inability
to simultaneously image more than one molecular target. While for instance one single
target is used to diagnose and monitor cancer progression in nuclear imaging, this imag-
ing modality cannot give representative feedback on the entire biochemical processes
accompanying the disease. The entire process is however important in order to under-

stand disease progression and to design efficient drugs addressing all key factors involved.

Following the demand for new in-vivo multi-molecular imaging concepts, this
work presents research aiming at the development of new methods and systems for
multi-molecular optical imaging in pre-clinical in-vivo settings. Pre-clinical studies are
concerned with the investigation of disease progression, treatment efficacy and drug
development for better understanding of molecular processes and efficient translation
into human medicine. Such studies are typically conducted on animal models bearing
diseases of particular interest to society that still lack sufficient understanding, like for
instance cancer or diabetes. Apart from contributing to new biomedical insight, imaging
methods and systems developed in pre-clinical settings can often be themselves translated

to applications in human medicine.

Optical imaging typically refers to methods employing electromagnetic radiation in
the visible (~400 nm - 700 nm) and near-infrared (~700 nm - 1400 nm) region. Figure
1.1 depicts the electromagnetic spectrum and allocates different imaging modalities to
the radiation wavelength range that each one employs for imaging. In order to understand
the choice of focussing on optical imaging methods for molecular imaging of multiple

targets, we will first review the basic principle of operation and main characteristics of
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Figure 1.1: Electromagnetic spectrum and corresponding wavelength, frequency and en-
ergy ranges.

in-vivo imaging devices that are commonly disseminated to laboratories and clinics. The
presented technologies are mainly approached with respect to their ability of molecular
detection. Considered methods are: US, XCT, MRI, nuclear imaging and optical
imaging, also including optoacoustics (OA). Key aspects like principle of operation,
resolution, sensitivity etc. are visualized and summarized for every modality in a figure
accompanying the respective modality description. Therein, the ability of simultaneously
imaging multiple molecular targets is referred to as multiplexing. Data on the listed
characteristics was assembled from References [46,92,115,137,195,198].

Ultrasound: Ultrasound produces high resolution images based on reflected sound
waves at boundaries between tissues of different acoustic impedance. A US transducer
is placed in direct contact with the imaged object, where it sends sound frequencies be-
tween 1 and 20 MHz into the body. The same transducer detects the reflected waves and

produces an image using time and direction of arrival of the reflected sound wave. The
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Figure 1.2: Principle of operation and characteristics of ultrasound with respect to molec-
ular imaging. Drawing adapted from [92]
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with respect to molecular imaging. Drawing adapted from [92]

principle of operation of US is visualized in Figure 1.2, where the green dot represents a
contrast agent, i.e. microbubbles in US, and its effect. The figure also summarized the
characteristics of US, in particular with respect to molecular imaging.

Intrinsic tissue contrast only provides structural or functional (using the Doppler effect)
information on the imaged object but gives no insight into molecular processes. Gas filled
microbubbles have been used to improve image contrast by increasing the backscattered
signal intensity at the tissue-microbubble boundary, for instance in imaging tumor vas-
cularity in small animals [198]. Functionalization of these microbubbles with specific
molecules including peptides or proteins has also enabled real-time, non-invasive molec-
ular imaging of tissue targets expressed on vascular endothelial cells [198]. However,
due to the comparatively large diameter of microbubbles, targeted molecular ultrasound
is restricted to the intravascular compartment employing markers such as a,f3 [49] or
vascular endothelial growth factor [197]. Apart from this limitation, US is not capable of

distinguishing reflections originating from different molecular markers.

X-ray Computed Tomography: XCT (Figure 1.3) measures the differential levels of
attenuation of X-rays after having traversed a subject, i.e. source and detector are placed
on opposite sides of the body. By rotating source and detector around the subject, XCT
acquires projections at different angles. These are used to reconstruct a three dimensional
map of the tissue density distribution. For instance, bones strongly absorb X-rays and are
therefore imaged with high contrast compared to surrounding tissues.

Typically, XCT provides high resolution anatomical information at high penetration depth,
but is limited by the lack of soft tissue contrast [198]. To increase soft tissue contrast, ra-

diocontrast agents that strongly absorb X-rays are employed, like e.g. barium sulfate
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Figure 1.4: Principle of operation and characteristics of magnetic resonance imaging
with respect to molecular imaging.

or iodine. The latter is commonly injected into the blood stream to enhance X-ray con-
trast for blood vessel imaging [156]. Attempts at labeling molecular probes with CT-
compatible contrast agents have proved challenging [163]. Even successful implementa-
tions (e.g. [192]) suffer from the low detection sensitivity of the agents by XCT, which
results in high agent concentration doses that would need to be administered to the im-
aged subject. Furthermore, even if better molecular probes should be available in fu-
ture, there still remains the fact that ionizing radiation is employed, hence hampering the
multiplexing potential of XCT. Multiplexed XCT requires the ability to separate photon
energies [32,95]. This is because X-ray attenuation in different tissues, or in contrast
agent materials, varies depending on the employed X-ray energy. Individual energy de-
pendent attenuation properties allow hence for the distinction of materials of different
densities. However, detecting multiple energy levels means that the imaged subjects also
have to be subjected to even higher radiation doses. This fact renders XCT inadequate for
multi-molecular investigations. XCT is therefore hardly employed as a molecular imag-
ing modality per se, but is usually rather combined to other molecular imaging modalities

as complementary imaging device.

Magnetic Resonance Imaging: MRI (Figure 1.4) is a potent imaging modality that
provides variable contrast to elucidate anatomical structures or pathologies based on mag-
netic properties of atomic nuclei within the body. Shortly, it relies on the alignment of
magnetic moments of nuclei with an external magnetic field which leads to a steady-state
magnetization of protons in tissue. In response to a specific resonance frequency, the mag-
netization changes orientation. The signal produced during the return (or relaxation) to

the nuclei’s initial position in alignment with the external magnetic field can be used to
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produce an image representative of the proton density and tissue specific relaxation times.
The MR signal is generated from the very small net difference in the number of nuclei
that align parallel versus those that align anti-parallel with the magnetic field [92]. This
effect, called polarization, depends on the magnetic field strength and is typically very
low, resulting in poor sensitivity of MRI.

The versatility and uniqueness of MRI is derived from the fact that the nuclear magnetic
resonance properties of a proton (most commonly used nucleus) are sensitive to its local
physicochemical microenvironment. The MRI experiment can be tailored to exploit these
properties to interrogate pathophysiology [198].

MRI provides both anatomical and functional information based on intrinsic contrast gen-
eration. Physiological and functional parameters can be furthermore monitored by special-
ized MRI techniques like dynamic contrast-enhanced MRI, where a paramagnetic contrast
agent like gadolinium is employed to study for instance blood flow or perfusion [198], or
by diffusion weighted MRI and blood oxygen level dependent MRI. (The detailed descrip-
tion of the general theory of MRI and its specialized techniques is beyond the scope of
this thesis. Please refer to References [55,92] for more exhaustive reviews of this subject.)
Molecular imaging with MRI was attempted by development of various paramagnetic tar-
geted agents reporting on cell death [208], tumor development [37] or angiogenesis [169],
just to name a few. An alternative approach, magnetic resonance spectroscopy imaging
(MRSI), measures the concentration of intrinsic tissue metabolites and has been used to
probe metabolic pathways in cancer [55]. However, the intrinsically low detection sen-
sitivity of MRSI, due to the low concentrations of tissue metabolites compared to water,
results in very poor resolution and long acquisition times [92] and limits its utility for
employment in molecular imaging.

Strategies of increasing the polarization of nuclear spins above the equilibrium polariza-
tion endowed by the field of the MRI magnet (i.e. creating hyperpolarization), are there-
fore currently among the top research topics in MRSI and have already shown great poten-
tial in imaging molecular targets [27]. Despite ongoing efforts, hyperpolarized MRSI is
till in its early stages of development. The requirement of additional hardware for hyper-
polarization and the short lifetime of hyperpolarized contrast agents (0.5-5 min) are just

some of the current limitations of this technique.

Nuclear imaging: Two clinically employed imaging modalities are based on the mea-
surement of the radioactive decay of intravenously injected, radiolabeled agents (Figure
L.5).
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Figure 1.5: Principle of operation and characteristics of positron emission tomography
and single photon emission computed tomography.

Positron Emission Tomotgraphy (PET) is a molecular imaging modality that determines
the biodistribution of a radiolabeled agent using a ring of gamma ray detectors placed
around the imaged subjects. PET takes advantage of the properties of radioisotopes which
decay via positron emission. Positrons are ejected from the nucleus into surrounding tis-
sue where they collide with electrons after a mean traveling distance of typically 1-2
mm, fundamentally limiting achievable resolution in PET. The positron-electron annihila-
tion process leads to the production of two 7-ray photons, each with energy of 511keV,
traveling at opposite directions to one another [92]. Three dimensional images of the ra-
dioisotope’s biodistribution are reconstructed based on directional information provided
by the y-ray trajectories. These trajectories are identified by coincidence detection of the
two anti-parallel y-rays (Figures 1.5).

The radioisotope is typically bound to a molecule of diagnostic interest, in nuclear imag-
ing called a tracer. One of the most frequently employed PET tracers targets the body’s
metabolic activity by injecting a radiolabeled analog of glucose, '3F-2-fluoro-2-deoxy-
glucose ( '8 F-FDG). Since tumor cells often display increased metabolic demand com-
pared to surrounding tissue, accumulation of FDG tracers can be used as indicator for

cancer.
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Single Photon Emission Computed Tomography (SPECT) employs tracers which de-
cay via direct emission of single 7y-rays. In order to obtain directional information for
the reconstruction of 3D images from SPECT, a different setup has to be employed than
in PET. Typically, SPECT scanners employ a gamma camera which is rotated around the
subject to acquire tomographic data, similarly to XCT. Lead collimators are added to the
camera that reject any photon whose trajectory is not normal to the camera plane, hence
providing information on the photon’s direction of emission.

Of all imaging modalities introduced so far, the two nuclear imaging techniques PET
and SPECT are the only dedicated molecular imaging modalities, specifically developed
for the purpose of imaging targeted molecules. Both PET and SPECT display in theory
very high sensitivity to the imaged tracer. However, since the collimator in SPECT rejects
many photons, SPECT sensitivity and resolution are significantly lower than for PET [92].
Because 7y-ray energies in PET are always of 511keV, different tracers cannot be em-
ployed simultaneously. Conversely, SPECT has some multiplexing capabilities due to the
employment of different nuclides giving rise to gamma rays with differing energies [92].
Despite of some undeniable strengths of PET and SPECT in imaging molecular targets,
nuclear imaging is clearly limited by its use of ionizing radiation, preventing frequent

imaging of the same subject for instance for longitudinal monitoring.

Optical Imaging: Optical imaging is a generic term comprising a variety of modalities
that employ light to produce imaging contrast. The best known technology in this field,
microscopy, is traditionally employed for ex-vivo investigations. However, macroscopic
imaging techniques enabling noninvasive, repetitive, whole body imaging (the latter only
in small animals), have emerged during the past two decades [92].

Implementations of optical imaging devices for in-vivo applications comprise both tomo-
graphic (e.g. diffuse optical tomography, fluorescence molecular tomography) and surface
imaging modalities (epi-illumination systems) (Figure 1.6). They typically measure the
differential absorption of light in tissue.

First attempts at deep-tissue volumetric imaging using light resulted in the development
of diffuse optical tomography (DOT). DOT is an imaging modality delivering NIR light,
typically via fibers, to several locations (source locations) on the surface of the body part
under investigation. Transmitted or reflected intensities are measured with an array of de-
tectors [80]. For each source location each detector records the light reaching it, providing
an image of the light transmission from that particular source. A model of the propagation

physics is then used to infer the localized optical properties of the illuminated tissue [19].
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Figure 1.6: Principle of operation and characteristics of fluorescence molecular tomogra-
phy and epi-illumination fluorescence imaging.

This model is parameterized in terms of the unknown scattering or absorption as a func-
tion of position in tissue [19]. Absorption in the NIR is primarily affected by oxygenated
and deoxygenated hemoglobin. Typical DOT images therefore investigate effects related
to hemodynamics and blood oxygenation, as for instance increased blood supply in tu-
mors vs. normal tissue [135] or cerebral activity [48].

The diffusion approach was adapted to additionally measure concentrations of exogenous
contrast agents [47], typically by employing some fluorescent dye. Such fluorescent dyes
can be used as labels for molecular targets (analogously to PET/SPECT) to obtain molecu-
lar specificity. The technique based on this concepts is known as Fluorescence Molecular
Tomography (FMT) and is typically employed in pre-clinical, small animal research [139].
State-of-the-art FMT systems typically scan focussed laser sources over the surface of the
imaged subject for excitation of a fluorochrome, and employ CCD cameras and filters
for emission detection on the opposite side of the subject. Source and detector can be
mounted on rotation gantries in order to obtain projections at 360 degrees.
Epi-illumination (i.e. reflectance) systems for surface investigations of molecular pro-
cesses probe the same contrast mechanisms as tomographic modalities, i.e. tissue chro-

mophores or fluorescence. However, depth information is reduced and mainly planar
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information of spatial distributions can be obtained. Current application areas of in-vivo
molecular epi-illumination imaging are for instance fluorescence guided surgery, where
tumor resection is aided by labeling tumors with fluorescent dyes [184], or in small ani-
mal imaging [111,122].

One limitation of optical imaging approaches is the short penetration depth of light in the
visible (um - few mm) and near infrared (NIR) (mm - few cm) range. This has hampered
the application of in-vivo diagnostic optical imaging methods to become standard clinical
investigation tools. Exceptions exist, like for instance in fundus photography (for retinal
diagnosis) or dermoscopy (for skin diagnosis). However, devices employed in these fields
essentially acquire only simple reflectance images like any standard photographic camera
would do, only adding some magnification optics. Otherwise, mainly prototypic devices
have been employed in pilot studies in humans. Examples encompass fluorescence guided
cancer surgery and diffuse optical tomography of breast or brain, as previously discussed.
Furthermore, light in the visible and NIR region is strongly scattered leading to limited
achievable resolution with increasing imaging depth.

Despite its diffusive character and low penetration depth, optical imaging has several ad-
vantages rendering it a particularly interesting concept for both small animal research and
clinics. As already mentioned, optical imaging methods can image both intrinsic tissue
contrast based on differential light absorption properties of tissue chromophores, and ex-
trinsic tissue contrast like fluorescence. In comparison to the previously listed imaging
modalities, optical methods have the unique capability of simultaneously assessing infor-
mation on multiple molecules at once, employing non-ionizing radiation. This is due to
the spectral properties of light and its interaction with biological tissues. Since every chro-
mophore has an individual absorption spectrum, distinction of different chromophores can
be done based on their light reflectance or transmittance characteristics. In simple terms,
as in human vision, objects can be distinguished by their color. To enhance contrast and
to enable the distinction of specific molecules, a variety of labeling strategies have been
developed and still constitute a focus in molecular imaging research. Labeling cells and
molecules with fluorochromes having different emission characteristics (i.e. colors) has
already become a standard procedure to stain ex-vivo slices for fluorescence microscopy.
Labeling concepts are currently modified to produce in-vivo compatible probes of high
specificity, and image analysis methods can be adopted to analyze images from in-vivo
experiments.

Not least, optical imaging was shown to provide very high sensitivity to molecular tar-

gets.
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Figure 1.7: Principle of operation and characteristics of optoacoustics with respect to
molecular imaging.

Optoacoustic imaging: Strictly speaking, optoacoustic imaging belongs to the optical
imaging field, given the definition of optical imaging used above as being a generic term
for any modality using light to create imaging contrast. However, optoacoustic imaging
combines the advantages of optical imaging with those of ultrasound by providing optical
absorption contrast at ultrasound resolution. Shortly, the basic principle of operation
of optoacoustics relies on the differential absorption of short laser pulses by tissue
(Figure 1.7). The absorption process leads to thermal expansion of the illuminated
tissue proportional to its absorption properties at the employed wavelength, resulting
in the emission of broadband ultrasound waves. US waves are detected by arrays of
US transducers and used to reconstruct images of the light absorption differences in the
imaged tissue. This concept allows imaging at depths of several centimeters and provides
higher resolution images than pure optical approaches. Furthermore, multispectral
investigations are also possible since light at different wavelengths can be employed for
tissue illumination, and molecular labeling approaches can be applied. There currently
remain, however, some important limitations to optoacoustic imaging, restricting its
applicability to multi-molecular studies. Most problematic is the issue of sensitivity to
fluorescent targets, which is considerably lower than the sensitivity obtained with FMT.
Although research to improve OA sensitivity is ongoing, current methods still require
high contrast agent concentrations. A different complication arises from the fact that
mainly direct-contact measurements can be obtained due to the low transmission of
ultrasound through air (at least when high signal sensitivity is wanted). This hampers
OA from being easily employed in areas like surgery where distance measurements are

required.
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Due to considerable research efforts, all presented in-vivo imaging modalities are
on their way towards enabling molecular readings in clinical and/or pre-clinical settings.
These efforts demonstrate the importance of molecular imaging in modern biological and
medical research. However, most technologies are still limited by either low sensitivity
(XCT, MRI, OA), restricted probe distribution (intravascular compartment in US), or by
employment of high radiation doses (PET, SPECT, XCT). More importantly, however,
is the fact that most technologies still fail at meeting the requirements set on modern
molecular imaging as defined above, i.e. investigating multiple molecules at once. The
only modalities potentially allowing for multi-molecular read outs are SPECT, OA and
optical imaging. Of these three, optical imaging is the only candidate that can provide
both high sensitivity and safety. Besides, a variety of optical imaging setups for in-vivo
investigations can be conceived at relatively low cost, thus enabling the employment
of similar multispectral methodology to a wide range of in-vivo applications, from

epi-illumination imaging of surfaces to tomographic investigations of volumes.

1.3 Objectives and outline

The goal of this thesis was to investigate different methodological and hardware im-
plementations enabling multispectral molecular readings in-vivo. The focus lay on
the development of methods that could provide high molecular sensitivity, rather than
particularly high resolution. Therefore, purely optical (i.e. employing optical methods in
both illumination and detection path) approaches were considered herein. Purely optical
methods allow a high degree of flexibility in terms of imaging setup, since contact-free
strategies can be implemented leading to a high variety of potential application areas of

such imaging setups.

The methods presented in the following chapters were developed for three different
application areas and on three different levels which are all relevant to clinical and pre-
clinical diagnosis and research. They all take advantage of the multispectral separation
properties of light and aim at providing means for multi-molecular investigation of tissue

to drive future biomedical advances.
The first method aims at the quantitative assessment of tissue oxygenation. Tissue

oxygenation and vascular oxygen saturation are important indicators of physiology and

the viability of human tissues and organs. Perturbation of oxygenation from physiological
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values is a strong indication of systemic or local disease and has significant implications
to the functioning of tissues and organs. Accurate assessment of tissue or vascular
oxygenation is hence of great significance in the clinical environment. Oxygen transport
to tissues is performed through the vascular system by red blood cells. These cells in
turn contain hemoglobin, a molecule that has the ability to bind oxygen. Interestingly,
the absorption spectrum of blood changes proportionally to the oxygen saturation of
the hemoglobin present within. Oxygenated hemoglobin has a distinctively different
spectrum than deoxygenated hemoglobin which can be even seen by the naked eye when
in high concentration, for example via the bluish appearance of veins versus the redder
color of arteries. This work capitalized on this property by developing a computational
method using multispectral reflectance images from a custom made system that quanti-
tatively computes tissue and vascular oxygenation independent of other tissue optical
properties. The challenge consisted in finding a method that appropriately rejects the
influence of other chromophores and more importantly of tissue scattering. This method
was developed in an experimental approach on tissue mimicking phantoms and first pilot
studies in tissues were performed.

While the first method was based on the detection of intrinsic tissue contrast, the second
approach aimed at translating multispectral methods for fluorochrome separation, which
have been established in ex-vivo microscopy, to in-vivo applications. For this purpose
a novel multispectral fundus camera was developed that combines multi-wavelengths
illumination with multi-wavelengths detection. This allows for a customized combina-
tion of excitation and emission for each fluorochrome, as well as the employment of
multi-spectral unmixing methods to in-vivo spectral acquisitions. The mouse retina was
chosen as a biological training set, as this tissue represents a highly ordered histological
and cellular stratification. Furthermore, the retina is the only organ apart from skin that
is non-invasively accessible in planar imaging geometry, due to the transparency of the
pupil and lens. Since it is considered to be the outermost part of the brain it reflects
on neuronal diseases and is furthermore affected by several systemic diseases as well
as eye specific dysfunctions. Choosing this tissue as a test-case aimed at providing
proof of successful technology development as well as generation of data sets suited for
biomedical systems-level investigations.

The third approach finally tackled the methodological development for volumetric detec-
tion of multi-molecular data. In contrast to the first two problems, imaging of intrinsic
and extrinsic contrast in planar geometries, this approach was based on the acquisition
of tomographic data and reconstruction of images through the inversion of a light-tissue-

interaction model. This project employed a Fluorescence Molecular Tomography system
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in limited-projection-view configuration that recovers the biodistribution of fluorescence
agents in the near-infrared regime in mice. The developed methodology improved upon
the general reconstruction ability of this system by proposing a coregistration approach in
order to incorporate anatomical information into the reconstruction of the molecular data.
This allowed for the implementation of an adapted regularization method that affords

independent reconstruction of multiple fluorochromes with improved accuracy.

The following chapters present theory, developed methods and instrumentation, as
well as results obtained in pre-clinical experiments. Chapter 2 introduces to theory that
is common and fundamental to all methods and systems presented in this work. It first
presents and defines the term multispectral imaging and related data acquisition concepts.
It further gives an overview on photon propagation in tissue, general optical properties
of tissue and the basic principle of fluorescence and its use in biomedical research. This
chapter also introduces standard modeling approaches describing light propagation in
biological tissue. Theory that is specific to either surface or volumetric imaging will be
covered in the respective chapters.

Chapter 3 describes the development of multispectral systems and methods for surface
investigations. For that, a thorough introduction to the two considered imaging appli-
cations, oxygenation imaging and multi-fluorochrome imaging in the retina, is first
given. The significance of oxygenation monitoring is outlined and previous work on
oxygenation measurement devices and methods is reviewed. Equivalently, state-of-the art
in-vivo multi-fluorochrome imaging in general and in particular in the retina, is discussed.
Subsequently, two multispectral epi-illumination systems are introduced followed by
mathematical and computational methods respectively applied to oxygenation and/or
multi-fluorochrome imaging. First pilot studies on real tissues for oxygenation detection
and on multi-fluorochrome imaging in the retina are shown.

Chapter 4 presents the developed methodology for volumetric multi-molecular investiga-
tions. First, the state-of-the-art in FMT imaging is examined, giving an overview over
the historic development of optical tomography technology. Modeling and inversion
schemes necessary for reconstructing tomographic fluorescence data is subsequently
covered. The concept of hybrid imaging by introducing data from an anatomical
imaging modality into the FMT reconstruction scheme is illustrated and its realization
for limited-projection-angle FMT shown. The development of an adapted reconstruction
method independently recovering different fluorescent probes is finally presented and the
effects evaluated in in-vivo mouse experiments.

Chapter 5 offers a conclusion on the significance of the presented work.
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2 Theoretical background for optical

imaging of surfaces and volumes

The goal of this chapter is to introduce the reader to some of the basic concepts of optical
imaging.

Section 2.1 defines the term multispectral and its meaning in the context of imaging em-
ploying visible and near-infrared light. Different acquisition methods for a full spatio-
spectral data set are further introduced and application areas of multispectral imaging
shortly discussed. Section 2.2 subsequently covers the theoretical background of light-
tissue interactions. Here, basic optical properties of biological tissue are defined, as well
as their description in tissue optics. These definitions are the foundation for the light
propagation models presented in Section 2.3. Section 2.4 finally gives an overview of
application areas of multispectral imaging versus light-transport modeling approaches.
Theory presented and notation used in this chapter are mainly based on two excellent
textbooks by Wang [191] and Vo-Dinh [188].

2.1 Imaging spectroscopy

2.1.1 Combination of spectral and spatial information - the data

cube

Spectroscopy is defined as the process of measuring the wavelength dependence of the
interaction between matter and any portion of the electromagnetic spectrum, in the con-
text of this thesis the interaction with light. Hence, imaging spectroscopy combines the
detection abilities of two methods for the acquisition of light-matter interactions, namely

wide-field (i.e. two dimensional or planar) epi-illumination imaging and spectroscopy.
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The acquisition of scenes by some light-sensitive two dimensional detector is an in-
tuitively comprehensible concept. Human vision and perception is based on the same
concept, employing the retina as detection device and the brain for data processing.
Similarly, standard photographic cameras attempt to reproduce the properties of human
vision by capturing the interaction of light with physical objects through a combination of
lenses and detectors (typically charge couples devices, CCD). Both, retina and standard

photographic cameras, however, are limited in terms of spectral resolution and bandwidth.

In contrast to imaging, pure spectroscopy lacks spatial information but provides
high resolution spectral information that can range from the ultraviolet to the infrared
range of the electromagnetic spectrum. Light-tissue interaction, as will be discussed in
Section 2.2, depends on the chemical composition of the respective biological material,
which defines its absorption and scattering properties at each wavelength. The resulting
reflectance spectrum can be a unique identifier, known as spectral signature, of a specific
chemical compound like a molecule or, on a macroscopic level, of the physiological state

of a biological entity (like tissue or organism).

The combination of spatial and spectral information leads to a three dimensional
data set, a so called data cube, of increased descriptive potential compared to the
individual data sets. In this case, two dimensions encode space, and each pixel within
this spatial representation contains spectral information that is added as a third dimension
to the data set. This concept is visualized in Figure 2.1 for random data elements, and
Figure 2.2 gives an example of spectral reflectance acquisitions of a mouse retina. An
example for the spectrum in one random pixel of the 2D image of the retina is presented

above the images in Figure 2.2.

The information contained in a data cube can be employed to distinguish intrinsic
tissue parameters like different tissue chromophores, or extrinsic contrast like fluores-
cence. Every pixel of the 2D spatial distribution can accordingly be assigned a spectral
signature, therefore allowing for spacial mapping of spectral (and ultimately chemical)
properties.

A forth dimension can be added to the imaging problem by introducing time, i.e. by
sequentially acquiring a full data cube at different time points. Depending on the
speed of the biological processes under investigation, dynamic imaging can impose
hard requirements on the imaging hardware, as discussed in Section 2.1.2. Typically,

spatial, spectral and temporal resolution are weighted against each other for every
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2.1 Imaging spectroscopy

Figure 2.1: Spectral imaging data set consisting of two spacial and one spectral dimen-
sion. Adapted from [56].

P

intensity [a.u.]

Figure 2.2: Reflectance images of a mouse retina acquired at different wavelength bands
using spectral scanning.
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Filters / spectral scan

Whiskbroom / point scan

Pushbroom / line scan

Figure 2.3: Methods for the acquisition of a spectral cube: whiskbroom or point scan-
ning, pushbroom or line scanning and spectral scanning by employment of
filters. Adapted from [188]

individual multi-spectral imaging application, resulting in a trade-off between the three

parameters.

2.1.2 Data acquisition concepts

There are four major concepts to the acquisition of a full data set that fills the entire data

cube.

The first two employ dispersive elements like prisms or gratings to separate light
into its wavelength components (devices employing this concept are called spectrome-
ters). The spectra are then collected simultaneously while scanning has to be performed
along one or both spatial dimensions. The whiskbroom approach collects a full spectrum
at one single point in space. Therefore, both spatial dimensions of the data cube have to
be scanned to obtain an entire data cube. Pushbroom spectrometers acquire full spectra
of all data points along one spatial dimension. Thus, the scanning process is reduced to
the second spatial dimension.

The third concept is based on simultaneous acquisition of both special dimensions.
Scanning is realized in the spectral domain by employing filters in front of a CCD camera
and sequential acquisition of 2D images. The concepts of whiskbroom, pushbroom and
spectral scanning are depicted in Figure 2.3.

The forth concept, finally, aims at acquiring all dimensions in a snap-shot. This can be
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2.1 Imaging spectroscopy

realized, for instance, by employing a two-dimensional computer-generated hologram
grating to diffract light from a two-dimensional scene. The various diffraction orders
are then distributed as a mosaic on a large two-dimensional CCD array and can be

reconstructed to a data cube by adequate reconstruction algorithms [54, 54,69].

Each of these four data acquisition concepts have advantages and disadvantages
that have to be weighted against each other for every application area. Depending on
the requirements on acquisition time, spatial resolution, spectral resolution and hardware
considerations, the adequate choice for a certain experimental setup has to be done indi-
vidually. Snapshot devices, for instance, are advantageous to image very fast biological
processes that may otherwise be missed when employing more time consuming scanning
technology. Although fast scanners exist, sensitivity limitations often impose longer
acquisition times and make scanning mode time costly [54]. Large CCDs are however
required to record both spatial and spectral information simultaneously, which usually
results in a trade-off on spatial or spectral resolution, or both. Additionally, while the
data acquisition process with snapshot technology can be very short, reconstruction of
the data cube from dispersed images can be computationally intense.

When time considerations are less stringent, scanning technology may be a more adequate
choice. High spectral resolution can be achieved by devices employing spectrometers as
detection devices and scanning over space. In living specimens, however, such spatial
scanning may be inadequate due to movement artifacts of the imaged subject. In such
cases, and if spectral properties do not change fast, scanning the spectral domain and
acquisition of the full two dimensional space at once may be more advantageous.
Hardware cost and other setup requirements may further influence the decision for one of

the data acquisition concepts.

2.1.3 Processing multispectral images

Several approaches to process and analyze multispectral images have been developed in
the past. Such approaches comprise for instance filtering for noise reduction or correction
of uneven illumination. Coregistration of individual 2D images may be required when
moving objects are investigated, or wavelength filters are employed that may not be per-
fectly aligned. While these concepts are part of the standard image processing toolbox,
other methods aim at specifically analyzing spectral properties by computing the contri-

butions of different chromophores or fluorochromes to the overall appearance of the de-
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2 Theoretical background for optical imaging of surfaces and volumes

tected spectrum. Such approaches are generically termed as unmixing and will be subject

of more detailed description in chapter 3.

2.1.4 Applications

Spectral imaging was initially developed for remote sensing of the earth, as well as plan-
etary exploration. The latter, for instance, allowed for the identification of the nature of
surfaces of extraterrestrial bodies [62]. Remote spectral imaging of terrestrial surfaces
has found applications in agriculture and forestry for the remote distinction of soil types,
crops, forest fires etc. Applications were extended to numerous areas like weld control,
the evaluation of art and archeological findings, or water resource control [120].

More recently, imaging and analysis concepts developed for the before mentioned appli-
cation areas were translated to life sciences to distinguish between multiple fluorescence
labels in microscopy slices (e.g. [122]).

The adaptation of multispectral concepts to fluorescence microscopy are comparatively
easy, since microscopy slices are very thin and can therefore be similarly treated as the
reflectance images obtained from remote sensing of opaque surface. However, when con-
sidering thicker tissue samples as given in in-vivo applications, it becomes inevitable to
first consider the interactions taking place between light and biological tissues and their

influence on the detected images.

2.2 Light - tissue interaction

2.2.1 Photophysical processes of photon-matter interaction

The absorption of an incident photon by a molecule can give rise to a variety of secondary
processes, which are best described by the Jablonski diagram in Figure 2.4. The diagram
illustrates the quantized orbital energy levels of a molecule ( Sp, S;, S», etc.) and the
transitions that can occur between them or their vibrational states ( Vy, Vi, V,, etc.) upon

excitation and relaxation.
A photon is only absorbed if its energy matches the energy difference between two

discrete energy levels in a molecule, otherwise the molecule will be transparent to that

radiation. These energy levels define the absorption and the emission bands, i.e. the
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Figure 2.4: Jablonski diagram showing photon excitation and different relaxation mech-
anisms. Compiled from [110, 187, 191]

perceptible color, of the molecule [191]. The energy gained by a molecule causes the
elevation of an electron to a higher energy level, i.e. from its ground state Sy to an
excited state S,. Once elevated to an excited state, the electron can fall back into lower

energy states by different, either radiative or non-radiative, processes.

Non-radiative energy dissipation, which means loss of energy in the absence of
light emission, takes place by vibrational relaxation or internal conversion. Vibrational
relaxation describes the transfer of energy to other vibrational modes as kinetic en-
ergy. If the excited electron transitions from one electronic state to another through
vibrational relaxation, this process is referred to as internal conversion. Rarely, a third
non-radiative phenomenon can occur which is called intersystem crossing. In this case

an electron changes its spin multiplicity, i.e. it transitions to the lowest excited triplet state.
Radiative energy dissipation takes place through emission of a photon. The pro-

cess of relaxation from the lowest excited singlet state ( S7) by light emission is known

as fluorescence. The process of relaxation from triplet excited states after intersystem
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2 Theoretical background for optical imaging of surfaces and volumes

crossing is known as phosphorescence.

All non-radiative and radiative processes take place on different time-scales, which is
relevant for their probability to happen. The faster one transition, the more likely it is to
occur. Absorption is the fastest process, followed by vibrational relaxation and internal

conversion, fluorescence, intersystem crossing and finally phosphorescence [191].

A second type of photon-matter interaction is scattering, i.e. redirection of light.
Scattering can happen without any energy exchange between photon and molecule, and is
then known as elastic or Rayleigh scattering. This is the dominant scattering phenomenon
in biological tissues [110]. Inelastic or Raman scattering in contrast describes a process
that involves energy transfer, resulting in a scattered photon of either higher or lower
energy compared to the incident photon. The energy of the emitted photon depends on
the initial state of the hit molecule (being in ground state or a vibrational state) before
interaction with the incident photon [191]. Compared to absorption, where an electron is
raised to a real stationary state, scattering only raises the electron to a virtual, very short

lived, energy state.

These basic photo-physical processes at a microscopic scale can be summarized
into coefficients representing the average effects of microscopic interactions on macro-
scopic observations [110]. Relevant processes for the macroscopic optical description
of tissue in the context of in-vivo diffuse optical imaging are absorption, scattering and
fluorescence. The following sections therefore address the definition and description of

these macroscopic optical parameters.

2.2.2 Absorption and scattering and their description in tissue

optics

The two governing properties of tissue when it comes to interactions with light in the
visible and near-infrared range of the electromagnetic spectrum are absorption and

scattering. These properties are related to the generation of contrast for imaging.

The probability of an incident photon being absorbed after a unit path length of
propagation in tissue is given by the tissue’s absorption coefficient t,. The mean depth
to which a photon can penetrate in a non-scattering medium is hence defined as 1/,

and is called absorption mean free path. The attenuation of light in a non-scattering
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Figure 2.5: Absorption spectra of tissue chromophores. Data for figure extracted from
[70,147].

medium can be described by the Beer-Lambert law
I(x) = Ipe (2.1)

where x denotes the propagation distance in the medium, Ij the initial light intensity at
x =0and [ the light intensity at x.

Absorption results in the loss of the incident photon and energy transfer from the photon
to the absorbing molecule. This energy can either be converted to another energy form

like heat or can be partly re-emitted in form of fluorescence or phosphorescence [110].

Biological tissue is mainly composed of three absorbers: hemoglobin, melanin and
water. Hemoglobin possesses two distinct forms having different absorption properties:
oxygenated and deoxygenated hemoglobin. The apparent color of tissue hence depends
on the combination of those absorbers. Absorption spectra for melanin, water, oxy
and deoxy hemoglobin are depicted in Figure 2.5 for the ultra-violet to near-infrared
wavelength range. Points of intersection between the two hemoglobin spectra are called
isosbestic points. The spectral values in these points are insensitive to oxygenation

changes of hemoglobin.
Equivalently to the attenuation coefficient, the scattering coefficient u; is defined

as the probability of an incident photon being scattered after a unit path length of
propagation in tissue. The non-scattered component [(x) of light after traveling for a path
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2 Theoretical background for optical imaging of surfaces and volumes

length x through a non-absorbing medium can also be described by the Beer-Lambert
law [191]:
I(x) =ILe (2.2)

Scattering is defined as the redirection of the radiation of a photon [110] and mainly
occurs when photons hit structures of similar dimension as the optical wavelength in
presence of a refractive index mismatch between the structure and the surrounding
medium. Light scattering in biological tissues therefore stems from its interaction with

cells, cell membranes and subcellular structures [120].

The angular probability of a photon traveling along direction s being scattered
into direction s’ is given by the scattering phase function (SPF) which is a function of the

cosine of the scattering angle ($,§') = cos9, i.e.

p($,8") = f(cos 0) (2.3)

Since the SPF can be difficult to calculate, an approximation often used is the Henyey-
Greenstein phase function [188]:

1 1—g?

2 (1442 —2gcos0)3

p(cosB) = (2.4)

The Henyey-Greenstein function is a convenient approximation because it is parameter-

ized by the anisotropy factor g, which is the average cosine of the scattering angle 0:
1
g z/ cosOp(cosB)dcos6 (2.5)
~1

Anisotropy is a measure of directionality retained after a single scattering event. It allows
the description of highly forward scattering media ( g = 1), highly backward scattering
media ( g = —1) and isotropic scattering ( g = 0). Biological tissues are typically strongly

forward scattering and have anisotropy values in the range between 0.8 and 0.99 [188].

The reduced scattering coefficient p; is defined as

W =ps(1—g) (2.6)

and describes the equivalent isotropic scattering coefficient in a medium, i.e. the isotropic

scattering in average as approximation by many anisotropic steps.
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Figure 2.6: Scattering and reduced scattering coefficients of 10%-intralipid. Data for
figure extracted from [185].

The average distance that a photon travels between consecutive scattering events is
given by 1/ and is called the scattering mean free path. In contrast, 1/u! represents
the distance traveled by a photon packet before it becomes effectively isotropic. This
property can describe the diffusion of photons in a random walk of step size 1/u! and is

called reduced scattering mean free path.

Tissue scattering properties are wavelength dependent. Typically, an exponential
drop with increasing wavelength can be observed within the visible and near-infrared
spectral range. This is shown in Figure 2.6 using the example of 10%-intralipid, an aque-
ous suspension of lipid droplets that is customarily employed to mimic tissue scattering
in phantoms. Note that the shape of the scattering and reduced scattering coefficients
represent the general wavelength dependence of scattering in tissue, but that absolute
scattering strength is significantly lower in real tissue (by a factor of approximately 5 to
20).

The total attenuation coefficient for a medium exhibiting absorption and scattering
is defined as
Mr = Ha + Us (2.7)

and the transport attenuation coefficient as

Her = Mo+ g (2.8)
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Reduced scattering Absorption coefficient
Tissue Wavelength r : 1 1
coefficient ' [cm ] Ma'[em™]
Skin 633 - 800 nm 30-6 0.96 - 0.024
Brain, Cortex || 674-956 nm 10-8 0.25-0.1
Breast 630 - 800 nm 13+9 0.046- 0.017
Lung 780 nm 20 0.02
Uppertorso 750 nm 20 0.25
Lower torso 750 nm 15 0.5

Table 2.1: Exemplary values for typical optical properties of biological tissues. As indi-
cated in the first three rows, scattering and absorption decrease with increasing
wavelength. Extracted from References [110, 188].

Accordingly, the mean free path in an absorbing and scattering tissue is given by [134]

1
MFP = — (2.9)
My
and the transport mean free path by
1
TMFP=— (2.10)
Her

Scattering in most biological tissues dominates over absorption, i.e. s > U, and u) >
Ug. Therefore, p; and Ly, in 2.9 and 2.10 can be replaced by u, and u!, respectively. An
equation describing the relation between MFP and TMF P is then obtained:

MFP =TMFP(1—-g) (2.11)

An intuitive interpretation of 2.11 would be that for high values of g (i.e. forward
scattering) light will have to travel longer before becoming diffuse [134].

Typical values for p, and p; are given in 2.1.

Figures 2.5 and 2.6 together with Table 2.1 summarize the challenges optical imag-
ing is subjected to due to light-tissue interactions. Penetration of light into tissues in the
visible part of the spectrum is relatively low due high oxy and deoxy hemoglobin absorp-
tion. Penetration depth at wavelengths above 1300 nm in turn is limited by the absorption
of water. The wavelength range between 600 nm and 1300 nm has become known as
therapeutic window in which absorption is relatively weak and hence penetration depth
up to several cm can be reached. However, within the therapeutic window scattering

becomes dominant over absorption [188]. This results in light diffusion.
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2.2 Light - tissue interaction

Although scattering also decreases in the near-infrared compared to the visible
wavelength range, it still affects imaging in both regions considerably. Scattering leads
to degradation of image resolution with increasing sample thickness due to the blurring
effect of diffused light. Methods for rejecting scattered light have been developed for
microscopic imaging and resulted in confocal and two-photon microscopy, which can
image deeper and at higher resolution than traditional microscopy. However, these modal-
ities are still limited to a penetration depth of several hundreds of micrometers. When it
comes to deep tissue imaging, scattering plays a fundamental role on the appearance of
the detected signals. The separation of effects originating from scattering and absorption
becomes an ill-posed problem. Accurate light propagation models have been developed
in order to extract useful information from such a diffusive imaging regime. Nevertheless,

deep-tissue optical imaging usually comes at the expense of imaging resolution.

2.2.3 Fluorescence and its application for contrast generation in

biomedical research

A fluorochrome is a molecule or chemical compound that emits photons in form of
fluorescence upon excitation with light. The spectral characteristics of a fluorochrome
are determined by its quantum properties. A wide range of transitions from various
vibrational energy levels of the ground state to different vibrational levels of the excited
states are typically allowed. These have different degrees of probability and ultimately
combine to form the absorption spectrum of the fluorochrome. Similarly, transitions
from the lowest excited state to different vibrational energy levels of the ground state are
possible. This produces a wide range of photon energies and results in emission over
a band of wavelengths rather than at one single wavelength. Most fluorochromes have
distinct absorption and emission spectra, which may partly overlap. Examples of some
widely employed fluorescent proteins and their characteristic absorption and emission

spectra are shown in Figure 2.7.
Macroscopically, fluorescence processes can be characterized by their quantum

yield, absorption coefficient (wavelength dependent) and fluorescence lifetime [110, 188].

The quantum yield n is defined as the ratio of the number of fluorescence photons
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Figure 2.7: Excitation spectra of some of the most frequently used fluorescent proteins:
GFP (green fluorescent protein), YFP (yellow fluorescent protein) and RFP
(red fluorescent protein). Data for figure extracted from [116]

emitted N,irreq to the number of photons absorbed N, pg0,ped5 1-€.

n= Nemitted (2.12)
Nabsorbed
and gives the efficiency of the fluorescence process. A quantum yield of 1 would mean
that photon absorption always leads to a photon emission.

The absorption coefficient , 7, at excitation wavelength Aex 1S given as

Ha, fiuo(Aex) = € In(10) “Cfluo (2.13)

where € is the molar absorptivity of the fluorochrome and Cyy,, is the fluorochrome
concentration. The observable fluorescence emission intensity depends on the absorption
coefficient at the excitation wavelength and the quantum efficiency of the fluorochrome.

The third important characteristic feature of fluorescence is its lifetime 7y;,,. It gives the
decay of fluorescence after excitation with a short light pulse and depends on the time

spent in the excited state, i.e.
1

Tfluo = m (2.14)
where k, and k,, are the rate constants of radiative and non-radiative transitions, respec-
tively. For an excitation at time #y leading to an initial fluorescence intensity (1), the
fluorescence intensity /() at a later time ¢ is given by [110, 187]:

_I70

e Yo (2.15)

1) =1(to)- Tfluo
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Fluorescence lifetime is characteristic to the molecules and their chemical environ-
ment [156].

Fluorescence is particularly interesting to biomedical optical imaging research. That is
because fluorescence dyes may be attached to specific molecules of interest to target
molecular processes or visualize structural entities that are otherwise imperceptible.

If the observed property of a target of interest is not sufficiently different from that of the
surrounding medium, extrinsic substances can be introduced into the body to artificially
enhance or create contrast [156]. These so called contrast agents identify the location
of specific molecules and report on their presence through their characteristic contrast
mechanism. Different medical imaging fields employ contrast agents as a standard
feature, as discussed in Chapter 1 in the context of molecular imaging. An example is
the injection of iodine into the blood stream to detect blood vessels with X-ray imaging.
Blood and surrounding soft tissue display similar X-rays absorption properties and can
therefore not be distinguished in normal X-ray applications. lodine, in contrast, is a
strong X-ray absorber and its injection greatly enhances the differentiation capability
between vasculature and soft tissue. In this case, the contrast mechanism is reporting on
structural properties of the imaged object.

Molecular properties can be investigated by designing contrast agents that specifically
bind to certain molecules. One prominent medical imaging modality capitalizing on this
contrast mechanism is PET. For example, ['®F]-FDG is injected into a patient and is
accumulated at sites of high metabolic activities. Because tumors often display increased
metabolic activity compared to surrounding, non-diseased tissue, they have a higher
demand for energy. ['®F]-FDG therefore accumulates in the tumor region and this

accumulation can be detected with PET.

Similarly, biomedical optical imaging employs fluorescence to increase contrast on
structural, functional or molecular level. There are two major fluorescence reporter
strategies that are classified as direct and indirect methods [133].

Direct methods employ injectable fluorescent probes that can be used to selectively
highlight internal organs, tumors or molecular processes [193]. The probes can be
categorized into three subgroups. Figure 2.8 visualizes and compares the three labeling
concepts (columns) for direct fluorescence imaging in terms of labeling mechanism (1%

3 row).

row), fluorochrome biodistribution (2" row) and resulting contrast (
The first group represents the majority of injectable probes and consists of non-targeted,

i.e. non-specific, fluorescent agents. They distribute in different body compartments
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Figure 2.8: Comparison of different direct imaging fluorescent probe labeling concepts.
Green arrows represent excitation light, orange arrows fuorescence emission.
Partly adapted and modified from [130, 133, 193].

and report on physiological processes like blood flow and perfusion. Two of the best
known non-targeted fluorescence probes are fluorescein (FITC) and indocyanine green
(ICG). They are also two of the few fluorescence probes that are approved to be used in
human medicine, where they are customarily employed in retinal angiography [10] or
intraoperative imaging for tumor detection [184]. In animal studies, non-targeted probes
may for example be employed for the detection of angiogenesis in tumors, or blood

vessel leakage as a result of inflammation [103, 170].

The other two categories of fluorescence probes are designed to target specific an-

tibodies, receptors or enzymes. Targeted probes are further divided into active and
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activatable probes. Active probes consist of a fluorochrome that is attached to an affinity
ligand specific for a certain target (therefore often called targeted probes) [133]. As
their name implies, the characteristic of active probes is that they fluoresce even when
they are not bound to the intended tissue target, i.e. they are always active. This may
result in significant background signal from the unbound probe that is still present in the
blood stream. Conversely, activatable probes carry quenched fluorochromes (i.e. their
fluorescence is suppressed) that can only be activated in the presence of a specific enzyme
of interest. These sensors increase signal-to-noise ratios because they remain dark in
the absence of the tissue target, thus reducing background contributions to the detected
signal. In contrast to the isotope tracers used in PET, fluorescent targeted probes are
not yet applied to in-vivo human medicine but are still restricted to pre-clinical research.
They have however found wide applications in small animal studies as imaging labels for
the detection of tumors, inflammation, apoptosis and many other diseases (e.g. [5, 139]).
One important aspect in fluorescent probe design for in-vivo imaging applications is
the use of fluorochromes that absorb and emit light in the NIR, where light penetrates
deepest [133].

Indirect fluorescence imaging visualizes gene expression and regularization by quantifi-
cation of fluorescent protein presence. A reporter gene (transgene) is introduced into the
cell and its transcription leads to the intrinsic production of a fluorescent protein by the
cell [133]. Therefore, it indirectly reports on gene expression and regulation. Whole cells
can be transfected to track their location or the transgene can be placed under a promoter
for studying regulation. Furthermore, the fluorescence encoding gene can be fused to
a gene of interest thus enabling the visualization of virtually every protein [133]. One
of the most commonly used fluorescent proteins is green fluorescent protein (GFP) but
several color shifted variants have become equally common during the past years. Efforts
to produce fluorescence proteins in the NIR are ongoing and have shown continuous
progress [166], but do still not belong to the standard toolbox for transgenic animal
production. The use of transfected animals is therefore often restricted to in-vitro tissue

investigations or to in-vivo experiments in very superficial tissue layers.

Figure 2.9 presents two different approaches to genetically encoded production of
fluorescence. The first shown in Figures 2.9(a) illustrates the production of genetically
modified animal lines by introduction of an indicator gene into the fertilized egg. The egg
is then transplanted into a foster mouse resulting in offspring that have the gene randomly

inserted into their genome [105]. Purely genetically modified mouse lines (F2) can be

33



2 Theoretical background for optical imaging of surfaces and volumes

Enhancer/ Indicator
promoter E gene
s p ‘
Offspring
.II
.\.
l,."’ 7 o
"
Prcnuc!m Ly
F 2
OJ '
Fertilizedegg i S T
1 i = L
&—v Foster mother =
F1 F2

1) entry into nucleus {
2) viral genome conversion and L

J
inlegrf'nignintohostqenome A\__ __:/.

3] transciption { i
4) translation | lt |||
5) protein synthesis t\. o //

=S las P —— —a
ARV heme' plasmid Cultured cells / packaging

cells

viral binding to membrane
rece ptor-’coreceptor ARV %

i i La bﬂ{tfamreal
— 7 I'_‘ injection

endocy’tosﬁ x_:ﬁ . \ /-—\ ,X_\x
\? r’.?} ) A{ ‘ \

Y \i Vitreous

h 3 j e || | L |
host DNA - S, ens |
i (2 ® ~ \;/ mtraceilulartraf I\ ) ?}\[/
T — ] :
l'l\}/ = | & Dol freking Comea\\x -~ / /# Retina
mRNA / endosomal escape
<k e

Figure 2.9: Fluorescence labeling approaches for indirect imaging. (a) Production of
transgenenic mice by breeding. Adapted from [105]. (b) Transfection
through local incorporation of viral vectors. Compiled and adapted from
[105,143,190].

created by propagating the transgenic offspring from the first generation (F1). As a

results of this approach, every cell or protein that is regulated by the respectively modified

gene produces fluorescence in the transgenic mouse line. The second approach locally

introduces a modified gene into an animal by viral vectors and hence only transfects cells

in the injection area. The effect of transfection can be observed in the same animal days to

weeks after transfection. Depending on the regulatory sequences included, the indicator
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is expressed in specific cell classes [105]. The process of viral transfection is depicted
in Figure 2.9(b) from culturing of adeno-associated viruses (AAV), over injection into a

tissue of interest, here the eye, to the transfection of the cells in the respective tissue.

2.3 Models of light transport in tissue

This section introduces to two light-tissue interaction modeling concepts, based on the
radiative transport equation. General aspects of the diffusion equation and Monte Carlo
modeling are discussed. An implementation of the diffusion equation was used for the
work presented in Chapter 4 and will be discussed in more detail there. Monte Carlo
simulation was not used for this thesis, nevertheless the understanding of its concepts is

fundamental for the discussions in Chapter 3.

2.3.1 Radiative transport theory

The most widely applied equation for describing photon transport in biological tissue
is the radiative transport equation (RTE) [9]. It is based on a particle interpretation
of light, therefore ignoring electromagnetic wave properties such as polarization and
interference [9]. This is justified because multiple scattering events lead to decoherence
effects in turbid media which in turn leads to the suppression of the wave nature of
light [188]. Instead of tracking light waves, it suffices to track only the average energy
they contain [188]. The RTE further only considers elastic scattering events, which
means that the energy of non-absorbed photons always stays the same. In spite of these
assumptions, RTE has proven to be sufficient to describe light - tissue interactions for

many biomedical imaging applications.

The fundamental quantity in the radiative transfer model is the radiance L(7,§,¢)

[Wm~2sr~!], which can be defined by the following relationship:
dE = L(7,5,1)(5,7)dAdQdr (2.16)

where dE is the amount of radiant energy at point 7 that is transported during differential
time df in the direction defined by the unit vector § across differential area element

dA normal to 7 within differential solid angle element d€. (See Figure 2.10 for a
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dE=L(F,5,t)(3-A)dAdQdt

Figure 2.10: Radiant energy at point 7 that is transported in direction § across differential
area element dA normal to § within differential solid angle element dQ.
Adapted from [188]

visualization of the energy flow and the involved variables.)

The RTE is derived from the principle of conservation of energy and describes the
fundamental dynamics of the radiance L(7,$,t) at time ¢ and position 7 along

propagation direction §[191]:

1 IL(7,8,1)

DL VL 8,0) — WL, 5.1) + i / L8 0 p(8,§)dQ + S(7,6,1) (2.17)
C

4r

l; [cm™1] is the total attenuation coefficient and p(§,5) is the phase function, as
respectively defined in Equations 2.7 and 2.3. As p(§',3) describes a probability density
function we have [, p(§',8)dQ = 1. c is the speed of light and S(7,$,r) represents

radiance created by internal sources at position 7 along .

The rate of change of the photon radiance in Equation 2.17 (1! term) is dependent
on the energy diverging from point 7 (2" term), losses due to absorption and scattering
(3™ term) and gain due to photons scattered into dQ around §-direction (4™ term) and

local radiation sources at 7 (5™ term).

The RTE is mathematically difficult to solve. Simplified methods that still retain
functionality have therefore been derived from the RTE. These are either based on
stochastic or deterministic approaches. The most prominent examples will be introduced

in the next sections.
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2.3 Models of light transport in tissue

2.3.2 The deterministic approach: Diffusion approximation

A simpler deterministic model that is derived from the RTE is the diffusion approximation.
The diffusion approximation assumes both scattering and internal sources to be isotropic.
It is obtained by expanding the radiance to a series of spherical harmonics and retaining
only a limited number of terms. Only considering the first order spherical harmonics
expansion results in the P1 approximation. The expansion of the radiance can then be

written in terms of photon fluence rate ®(7) and photon current density J(7,7)

1 3.
L(7,8,1) = _®(F0) + T (71) -8 (2.18)
with
®(F1) = | L(#3§,1)dQ (2.19)
Am
and
J(# 1) = / SL(#,§,1)dQ (2.20)
4r

Substituting Equation 2.18 into the RTE (Equation 2.17) and integrating over all 47 solid

angles leads to
1 d®(7)1)
c dt

where S(7,t) is the isotropic source. Substituting Equation 2.18 into the RTE (Equation

= —VJ(7,1) — U, ®(7,1) + S(7,1) (2.21)

2.17) and multiplying with § prior to integration over all 47 solid angles leads to

1 o (7,1)
ot

- 1
+ (Ug + U T (F,1) + V(1) =0 (2.22)
Assuming the fractional change in J| (7,¢) within the transport mean free path small, we
can neglect the time-dependent term in Equation 2.22, which results in Fick’s law of
diffusion
J(#,1) = —DV®(7,1) (2.23)

where D is the diffusion coefficient, defined as

1
D=—"F-—— (2.24)
3(Ha + 1)

Substituting Equation 2.23 in Equation 2.21 directly yields the inhomogeneous diffusion

equation
1 d®(7)1)
c dt

—VDV®(F, 1) + D, 1) = S(7,1) (2.25)

37



2 Theoretical background for optical imaging of surfaces and volumes

which reduces in a time-independent state to
— VDV®(7) + u, (¥) = S(¥) (2.26)

Analytical solutions to the diffusion equation are scarce and have been obtained for only
very simple cases [9]. Generally, solving a partial differential equation (PDE) which
involves a source condition is done by the application of Green functions, which are a
solution when the source is a delta function [9]. For instance, for the simple case of an in-
finitely short-pulsed point source S(7,#') = 6(#,¢’) in an infinite homogeneous scattering

medium, the fluence rate ®(7,¢) at position 7 and time ¢ is:

2 1.7 _ ¢ L?.;P—uac(z—t’)
QA7) = anDelt — )2 e 4D (2.27)

For a time-independent state the analytical solution is given by:

Due to the difficulty of finding analytical solutions for arbitrarily shaped geometries and
inhomogeneous media, practical implementations employ numerical methods. The most
common methods are finite difference (FDM) and finite element methods (FEM). Finite
difference approaches are solved on cartesian meshes, which pose complications in the
accurate representation of the tissue boundaries. For FDM the diffusion equation is simply
discretized into three points for the X, y, z coordinates, and the fluence at each location
calculated by a straight forward approximation of the derivative by a finite difference [91].
The FEM is more versatile in regard to complex geometries and for modeling boundary
effects [9]. In contrast to FDM, elements have arbitrary shapes and are connected by
nodes. FEM finds an approximate solution of the discretized general problem that lies in
the vector space spanned by a finite number of basis functions. This reduces the forward

problem to one of matrix algebra of finite size [9].

2.3.3 The stochastic approach: Monte Carlo Modeling

The Monte Carlo (MC) method for modeling of light propagation in tissue follows a
stochastic approach that explicitly describes individual photon interactions. Photons are
simulated as they undergo scattering and absorption events governed by local values of

optical parameters [9]. Light is considered to travel in straight lines between different
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2.3 Models of light transport in tissue

scattering and absorption events. Random number generators are used to simulate the
change of direction that occurs at each scattering event in accordance with the scattering
phase function p [156]. Photons are injected into a medium and are traced until they
get absorbed or escape the surface as reflection or transmission, thus contributing to a
measurement [9]. The repetition of this tracking process for a large number of photon
packages yields statistically relevant information on macroscopic photon distributions.
The result is a set of different trajectories that are averaged to determine the reflectance

or transmittance of the medium.

The MC method defines rules for photon propagation from the probability distribu-
tion of the angles of scattering and step sizes [191]. These are derived from macroscopic
values of absorption and scattering coefficient, and the scattering phase function [58].
The sampling method repeatedly derives a variable yx lying within an interval (a,b)
based on its probability density function p()) by generation of random numbers &
uniformly distributed between O and 1. The approach, known as inverse distribution
method (IDM) [191], samples yx by solving

X
P(x) = / p(x)dx =¢& (2.29)

a

where P() is the cumulative distribution function. Its inverse transformation is given
by
=P (2.30)

Equation 2.30 correctly samples y if P()x) is uniformly sampled by & between 0 and
1. For better demonstration purposes Figure 2.11 offers a visual interpretation of the
IDM. The arrows show the mapping from p(&) (blue function and axes) to p(yx) (green
function and axes) via P(&) and P(y).

The free path length of a photon between two interactions, the step size s, is cal-

culated based on the probability density function
ps = e (2.31)
the cumulative probability of which is given by

S /
/0 e M'ds =1—e M = £ (2.32)
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Figure 2.11: Inverse distribution method (IDM) for sampling of a random variable from
a non-uniform distribution. Adapted from [191]

where & € [0...1] is a random number. Therefore, the step size can be randomly sampled

as

_ Ly ey @)
5= Mu1§) m (2.33)

Once the step size is determined, the photon packet can be moved. When it reaches

an interaction site, absorption and/or scattering can occur. Absorption is modeled by
introducing a weighting scheme. A fraction AW of weight W € [0...1] is absorbed at

every interaction event according to

Aw = Haw (2.34)
H:

W is updated after every such step, i.e. W+ W —AW.
To model scattering, the polar angle 6[0 < 6 < x| and azimuthal angle ¢[0 < ¢ < 27]

are sampled relative to the previous direction of motion. The probability distribution of

cos 0 is commonly given by the Henyey-Greenstein phase function (see Equation 2.4).
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2.4 Application areas of imaging spectroscopy versus light transport models

Monte Carlo simulation accordingly samples cos6 € [—1...1] as follows:

_o2 .
ﬁ{1+g2_ (1flgf2g§ )2} lfg%()
26 —1 ifg=0

cosO = (2.35)

The azimuthal angle is sampled as
¢ =2n& (2.36)

As in Equation 2.29, & € [0...1] represents a random number. The photon paths are
finally terminated when either the weight becomes negligible or the photon leaves the
boundary. In the latter case and if the photon hits the detector the photon weight is saved

and contributes to the simulated diffuse signal [58].

Monte Carlo is based on the RTE and similarly considers only particle aspects of
light and neglects wave phenomena. Compared to the diffusion approximation, MC
simulations do not require that p! > p, and accurate results can be obtained close to
sources and boundaries [84]. Other advantages of MC simulation include the ability to
model transport processes in arbitrary geometries, in the presence of inhomogeneities
and with complex boundary conditions. A major drawback is the long computational
times required to obtain good statistics. This is especially true if the point of interest is

located very far from incident light and absorption and scattering are high [201].

2.4 Application areas of imaging spectroscopy versus

light transport models

Traditionally, the fields of imaging spectroscopy and diffuse optical imaging (including
the appropriate modeling approach) were separate research areas.

Originating in remote sensing, imaging spectroscopy was previously mainly applied
to reflectance imaging of surfaces which are not strongly influenced by subsurface
interactions with light, like for instance in microscopy. Hence, typical application areas
were in ex-vivo investigations.

Equivalently, diffuse optical modeling approaches were mainly applied to investigate
one or few spectral regions, i.e. one fluorochrome, or 2 to 3 wavelengths for oxygen
saturation detection. Hence, typical diffuse optical imaging implementations, although

operating in-vivo, mainly investigated one single molecular marker.
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Recently, combined approaches integrating light-tissue interaction modeling with
multi-spectral data acquisition, and the development of appropriate computational
methodologies were presented. Such approaches were for instance developed for surface
investigations in skin. There, spectroscopic images were used combined with models
of light propagation through different skin layers to extract disease specific parame-
ters [98]. Alternatively, tomographic imaging of fluorescence distributions employing
multi-spectral sources or detectors has been attempted. Multispectral data in tomography
was in this case used for the correction of the influence of autofluorescence [43] or for
quantification of probe binding [42]. However, all these approaches mainly aimed at
improving the acquisition of one or few parameters in-vivo by employing multispectral
methods. They did not aim at acquiring multiple readings of spectral properties originat-

ing in separate components.

Whether and how optical properties influence the accurate detection of multiple
molecules in in-vivo applications of optical imaging always depends on the imaging
context. Some surface imaging applications may not necessarily need to account for the
influence of optical properties, like for instance retinal angiography. There, all relevant
optical contrast is produced within 300 hundreds of micrometers from the surface. Hence,
in-vivo multispectral imaging of shallow fluorescence signals can be treated similarly
as ex-vivo multispectral cases. When it comes to deeper seated fluorescence signals or
intrinsic tissue chromophores, influences of surrounding optical properties have to be

considered either by modeling or development of alternative correction methods.
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multi-molecular surface imaging

Chapter 2 introduced to the fundamental concepts of multispectral imaging and light-
tissue interaction and modeling. In the light of these fundamental properties and the
discussed considerations for surface versus volumetric imaging, implementations of
multi-molecular imaging technology for in-vivo applications can take various forms. This
it not surprising given the multitude of potential application areas (e.g. surface: skin,
retina, surgical guidance etc.; volumetric/deep seated: cancer, inflammation, infections
etc.). This thesis covers research conducted on three approaches for multispectral or
multi-molecular imaging in living subjects. Two approaches investigated different
concepts for epi-illumination imaging of surfaces and will be subject of this chapter.
The third approach investigating volumetric imaging will be subsequently discussed in
Chapter 4.

This chapter presents two practical implementations of systems for epi-illumination
multispectral imaging, which were developed within the scope of this thesis. While both
systems rely on the same spectral detection approach, i.e. filter based scanning, illumi-
nation concepts and acquisition optics differ due to the respectively intended application
area. The overall goal was to develop systems and methods for (1) quantitative imaging
of tissue oxygenation from arbitrary tissues based on multispectral images and (2) for
imaging of multiple fluorochrome expression in the mouse retina. In the latter case,
the retina was chosen to exemplify the translation of multispectral concepts to in-vivo
research.

Section 3.1 introduces to the respective background for both application areas. Previous
research and state of the art in oxygenation imaging, and multi-fluorochrome imaging in
living subjects, with particular focus on retinal imaging, are discussed.

Subsequently, Section 3.2 presents the systems developed within the scope of this thesis

and defines their respective characteristics. First, the non-contact multispectral system for
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3 Multispectral methods for multi-molecular surface imaging

oxygenation imaging is introduced, followed by the multispectral mouse fundus camera.
General commonalities of multispectral systems are outlined as well as the particular
individual system requirements for specific application areas.

Multispectral image processing is addressed in Section 3.3. A linear mixing model is
introduced that describes spectral images as a mixture of individual spectral contributions
of each imaged component. Theoretical concepts for the recovery of original spectral
components by linear unmixing, blind source separation (BSS) and pixel classification
are subsequently presented. This section provides the fundamental background necessary
for the comprehension of the image processing and analysis steps presented in the
remaining of this chapter.

Sections 3.4 and 3.5 present the application of unmixing and/or classification methods
to oxygenation and multi-fluorochrome detection scenarios, respectively. Section 3.4
in particular shows the development of a spectral transformation method correcting for
the effects of optical properties on measured oxygenation spectra. This methods allows
for quantitative oxygenation computation by linear unmixing of the transformed spectra.
The imaging potential of the multi-spectral fundus camera is evaluated in Section 3.5.
First, assessment of single fluorochromes and changes in their expression are illustrated.
Then, BSS techniques and classification are evaluated as to their potential to separate
overlapping fluorochrome spectra acquired in-vivo from the mouse retina.

The chapter closes with a summary of the presented concepts and an outlook on potential

application of multispectral surface imaging in future.
The work presented in this chapter has resulted in two manuscripts, one in prepara-
tion and one submitted, to be published in peer-reviewed scientific journals (See list of

publications, papers VI and VIIL.). Several figures and text passages were adopted from

these manuscripts.

3.1 Introduction to multispectral imaging of intrinsic and

extrinsic tissue contrast

3.1.1 Tissue oxygenation imaging

Tissue oxygenation and vascular oxygen saturation are important indicators of physiology
and the viability of human tissues and organs [17,25,33,77,78,98, 132]. Perturbation of
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3.1 Introduction to multispectral imaging of intrinsic and extrinsic tissue contrast

oxygenation from physiological values is a strong indication of systemic or local disease
and has significant implications to the functioning of tissues and organs [77, 102, 176].
Accurate assessment of tissue or vascular oxygenation is therefore of great significance

in the clinical environment.

Oxygen binds to hemoglobin molecules present in red blood cells and is by this
means transported and delivered to the body. Oxygen saturation is a relative measure
of the percentage of hemoglobin that has an oxygen molecule bound (oxygenated
hemoglobin) compared to the total amount of hemoglobin (oxygenated + deoxygenated
hemoglobin). Arterial blood has typical oxygen saturation values of 95 - 98 % and venous
blood of 60 - 80 %. As previously shown in Chapter 2, oxygenated and deoxygenated
hemoglobin are the two major absorbers of light in tissues [45]. Optical methods
are therefore ideal candidates for characterizing oxygenation because oxy and deoxy
hemoglobin detection can be performed without labels.

While arterial oxygenation is customarily measured in clinical settings using pulse
oximetry [164], measurements of tissue oxygenation and the ability to image tissue oxy-
genation is more elusive. Optical imaging methods have been proposed for oxygenation
measurements since the 70’s. First attempts employed near infrared spectroscopy (NIRS)
to measure cerebral oxygenation [31,94, 186]. Extension of spectroscopy approaches to
systems consisting of multiple illumination points and detectors in the 90’s enabled NIR
spectroscopic tomography. Tomographic NIRS systems have since been employed to

resolve brain, muscle and tumor oxygenation [26,79, 159,202].

Chapter 2 discussed the challenge of quantifying oxy and deoxy hemoglobin in tis-
sues due to photon scattering. Scattering increases the path length of photons traveling
through tissue, thus resulting in increased attenuation and diffusion of transmitted
or reflected light (see for instance [13, 45, 154, 171]). This hinders quantification of
absorption properties in general and of oxygenation measurements in particular. Accurate
knowledge of the reduced scattering coefficient is desirable to accurately quantify tissue
absorption but can be difficult to obtain. Complications arise from mixed contributions
of absorption and scattering on the detected signal, which generally make the recovery of

scattering and its separation from absorption contributions an ill-posed problem.
Spectroscopic methods based on a source-detector pair, typically implemented with

fibers that physically separate the illumination location from the detection location

have shown promising results in resolving absorption from scattering tissue proper-
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ties [20, 152,211]. Correspondingly, imaging based on source-detector pairs has been
considered to reveal the spatial distribution of oxygenation measurements [35, 136]
but come with difficulties in interfacing multiple fiber pairs onto tissue. Imaging with
non-contact source-detector pairs was also proposed for oxygenation imaging [28,36] but

only showed the capability of measuring relative changes at comparatively low resolution.

A broad range of planar epi-illumination non-contact imaging methods based on
photographic approaches using CCD cameras have been proposed for oxygenation
imaging in diagnosis, monitoring and treatment [102, 176]. Images are obtained through
optical filters and combine spatial and spectral information [98]. Planar epi-illumination
wide-field camera measurements have been considered in imaging skin cancer [98],
wound healing [99], retinal oxygenation in the context of diabetes [74], open surgery
applications [60] and in endoscopic applications [16]. Besides the acquisition of images
in non-contact mode, epi-illumination setup have the additional advantage of being able
to acquire images in real time. Real-time oxygenation imaging can offer feedback on
disease, abnormal physiology or organ viability as has for instance been studied in the

context of laparoscopic renal donation [33] and heart surgery [132].

Different approaches have been proposed to derive functional tissue metrics using
data obtained in planar epi-illumination by CCD cameras. Differences between the
red and blue channels of an RGB camera have been shown to correlate to tissue
oxygenation values [33], but only in a qualitative manner. Characterization of the
effects of scattering changes would also be critical for better determining the accuracy
of the method. For improving performance in resolving tissue oxygenation, the use
of light propagation models has been considered. Such models may assume different
skin layers [97,204,211] but make an assumption of constant scattering. Then they can
solve for the tissue’s absorption properties only [72,97] but are prone to errors carried
by the accuracy by which the scattering coefficient can be assumed known. Models that
solve for both scattering and absorption have been also considered [204]. For example,
continuous wave measurements at multiple wavelengths between 480 nm and 650 nm
were inverted assuming a semi-empirical two-layer skin model predicting diffuse photon
propagation [203,204]. This approach accounted for melanin and hemoglobin absorption,
scattering, layer thickness and internal reflections and found an estimate for these values
by minimization of the error between prediction and simulated measurements. Errors
of less than 5% were achieved in simulations assuming thin epidermal layers and low

melanin concentrations. Errors increased with increasing layer thickness and melanin
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concentration [205]. The method produced skin oxygenation measurements consistent

with literature-based values but not yet in relation to the actual tissue imaged.

The use of spatially modulated light has been considered as an alternative method
to improve on the ill-posed nature of solving for absorption and scattering using CW
light. Structured illumination has been shown to extract tissue optical properties at a
single wavelength [34], or measure oxygen saturation by using measurements at different
wavelengths [60]. This approach has shown oxygenation measurement errors of less than
10% when measuring in a skin flap, bowel, and liver vascular occlusion experiments in
pigs. For accurate operation, the method nevertheless requires calibration based on tissue

mimicking phantoms and the generation of a lookup table.

An alternative approach for extracting tissue oxygenation is the use of isosbestic
points that can compensate for scattering influences [17,44,73]. The advantage of this
method over the structured illumination approach is that it can be applied without elabo-
rate illumination and high computational requirements so it may be more appropriate for

video-rate imaging.

An isosbestic point correction method was initially applied for measuring oxygen
saturation in superficial arteries and veins, by retrieving the percentages of oxy and deoxy
hemoglobin in whole blood [44]. The method assumed that oxy- and deoxy-hemoglobin
in whole blood can be determined using only three measurements, two at isosbestic wave-
lengths and one at an oxygen sensitive wavelength. Corrections in two isosbestic points
were assumed to be enough to account for the effects of scattering from the red blood
cells and total hemoglobin concentration. Using a third isosbestic point, an alternative
method was shown to additionally account for the influence of background tissue optical
properties on the calculation of oxygen saturation, resulting in measurements of blood

oxygenation ex-vivo [73].

Despite the demonstration on superficial blood-vessels or blood ex-vivo, the use of
1sosbestic methods for obtaining quantitative tissue saturation images in-vivo has not
yet been demonstrated in other organs than the retina. Tissue measurements in-vivo
present additional complexity compared to ex-vivo measurements or measurements of
specific organs or structures. This is because tissue imaging comes with a wide variation
of optical properties in the different organs and structures contained in the image. In

addition, in-vivo tissue measurements are subject to more measurement errors, including
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reduced signal-to-noise ratio compared to ex-vivo measurements which can be acquired
with longer exposure (averaging) times, or measurement uncertainties due to tissue

movement.

One of the aims set in this thesis was to identify a strategy for imaging tissue satu-
ration in-vivo, using an isosbestic point method. A multispectral setup was developed
and will be shown later, capable of acquiring up to 25 wavelength bands from any given
surface. The investigation of different methods for a generalized approach for tissue
saturation measurements in-vivo, employing data acquired with the multispectral setup,
is then illustrated. The underlying hypothesis was that the employment of different
1sosbestic points and additional spectral transformations could increase the accuracy
of the isosbestic method for imaging tissue saturation in-vivo. Therefore, the effect of
introducing alternative isosbestic point combinations, distributed over a wider spectral
range, additional transformations, and varying wavelength ranges for oxygenation com-
putation is investigated. Finally, an optimized method that employs an ideal combination

of isosbestic points, transformations and wavelengths is proposed.

3.1.2 Imaging of fluorescent labels

The detection of intrinsic tissue chromophores and fluorochromes (autofluorescence)
is one application area of multispectral imaging. Such imaging strategies which do
not employ labels to increase or create contrast are particularly adequate for clinical
adaptation. Beyond their diagnostic potential, no contrast agent injection is required and
related risks like allergy development against the contrast agent can be avoided. However,
using only intrinsic tissue properties to investigate diseases or their therapy significantly
limits the molecular targets that can be studied. Not all hallmarks of diseases display
absorption characteristics that allow their nonambiguous identification and distinction
from background. In such cases, introduction of additional contrast mechanisms is

necessary in order to enable the observation of the desired target.

As introduced in chapter 1, molecular imaging modalities like PET work based on
the injectable tracer principle. Similarly, fluorescence labels can be used in in-vivo optical
imaging to visualize molecules, proteins, cells or organs (see Chapter 2). By capitalizing
on the multispectral properties of light, multiple fluorescence labels can theoretically be

employed simultaneously, providing multi-molecular read outs on molecular presence,
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activation, expression, interaction etc. As can be expected, labeling with multiple fluo-
rochromes is unfeasible in humans and falls into the domain of preclinical investigation.
It nevertheless can be an important research tool for understanding disease progression

and for the development of new, efficient and possibly personalized drugs.

A second topic in this chapter is therefore the development of hardware and methodology
for in-vivo multispectral surface imaging of multiple fluorescent labels. In particular, the
aim consisted in enabling the detection of a mix of molecular markers on a whole organ
level in-vivo and at once. This approach contrasts other multispectral imaging approaches
that have previously been applied to biological investigations which focus mainly on
microscopic imaging of tissue slices [59, 118, 210] or macroscopic imaging of whole
animals [82,106,111].

It was previously mentioned that the most common application of multispectral
imaging in life sciences is in microscopy. Staining of biological samples with color or
fluorescence dyes is a standard procedure in pathology. The development of multispectral
illumination or detection systems in microscopy has moreover enabled simultaneous
staining for multiple targets and appropriate unmixing methods have been developed to
separate even overlapping spectra [131,210]. The adaptation of multispectral imaging
and unmixing to ex-vivo tissue samples is comparatively straight forward because
labeling is easier than in in-vivo experiments. Influence of background tissue optical
properties is significantly reduced and no movement artifacts have to be considered.
While fluorescence microscopy is an essential tool in biological research, it can only
provide static information on excised tissues, and more specifically only on microscopic
parts of them. Macroscopic effects or interactions can hence easily be missed or are

erroneously interpreted.

In-vivo multispectral imaging employing multiple labels has up till now mainly
consisted in proof-of-principle studies imaging the fluorescence expression in whole
mice. Levenson and Mansfield (2006) [112] for instance injected three unspecific
fluorescent dyes with overlapping emission spectra subcutaneously into a mouse and
imaged the fluorescence intensity employing a multispectral camera system. They
succeeded in unmixing all three fluorochromes as well as two autofluorescence types
(skin and food) and mapped them to their specific emission area on the mouse skin. In
another study, the same authors used an antibody bound nanoparticle fluorescent probe to

label subcutaneously injected cancer cells, and unmixed contributions of the nanoparticle
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fluorescence from food and skin autofluorescence [122]. Their studies demonstrated the
general potential of multispectral imaging of multiple fluorochromes for in-vivo studies.
The unspecific distribution of fluorescent dyes in comparatively large areas however is
not representative for real biological processes. Moreover, whole body imaging may not

always provide sufficient resolution to depict specific processes of interest.

The approach herein instead focused on developing hardware and methods for imaging
multiple fluorochrome distributions at whole organ level in-vivo. This approach not
only allows to probe a whole functional entity at once, it also provides enough detail to
visualize localized fluorescence of cells and molecules. The labeling strategy employed
for this purpose consisted in “smart” contrast generation that combines multiple fluores-
cence delivery mechanisms to the targeted cells or proteins in the organ of interest. This
strategy allows to flexibly produce adapted fluorescence mouse models to investigate a

disease or biological process of interest by selective labeling of relevant cells and proteins.

Advances in fluorescence labeling technology for in-vivo applications during the
past decade have provided new means for targeting specific molecules in living or-
ganisms [83, 118, 130, 166, 193]. Besides the time consuming procedure of producing
transgenic animals through breeding, alternative approaches for short term labeling
are now available. Viral vectors can for instance be locally injected in adult mice to
selectively transfect cells in one organ [39, 105, 189], resulting in fluorescence expression
within weeks. Injectable probes in turn can provide targeted labeling within hours or
days after injection [133, 138]. The strategy hence consisted in combining fluorescence
expression from transgenic mice, which already had a fluorescent protein integrated into
their genome, with fluorescence delivery by viral vectors and through injectable probes
(see Section 2.2.3). Combining these three labeling methods provides a flexible and
“smart” way to produce multispectral animals that specifically express fluorescence in

the molecules, cells or organs of interest.

The model organism considered in this study was the mouse retina. The retina is
an approximately 300 um thick, optically semi-transparent organ on the posterior part
of the eye. It contains photoreceptor cells which transform light into electrical signals.
Several nerve cell layers are subsequently responsible for transmitting those signal to the
brain for processing. Therefore, the retina is the central organ responsible for vision in
vertebrates. Figure 3.1 shows a cross section of the anatomy of the retina, and its location

within the eye, for future reference.
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Figure 3.1: Cross section of the rodent eye (left) and the retina (right) with indication of
retinal layers and cells. Adapted and modified from [7, 175, 190]

The retina was chosen because of its non-invasive accessibility and its diagnostic
value not only for eye-specific pathologies but also systemic diseases. The posterior
segment of the eye is easily accessible to in-vivo epi-illumination imaging due to the
transparency of the lens. Therefore, surface imaging methods for visualizing the retina
and the optic nerve can easily be applied. In fact, fundus imaging is already a standard
diagnostic method employed in the clinics. Due to the retina’s thin structure and semi-
transparency to light, fluorescence stemming from any layer of the retina can be imaged
in epi-illumination mode. Intravascular oxygen saturation, having diagnostic value in
many diseases, can furthermore be assessed from the retinal vasculature. The retina
hence constitutes an ideal model organism for the development of in-vivo multispectral

imaging methods.

More important, however, than the accessibility of the retina for imaging is its di-
agnostic potential and high research interest. Generally, diseases affecting the retina can

often result in significant disturbance or complete loss of vision. This affects life quality
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of patients and their families considerably since vision is the central sense for perception
of the environment for humans. Many important diseases manifest themselves in the
retina. There are diseases that originate directly in the eye, like age related macular
degeneration or glaucoma, which account for the most common causes of visual loss [1].
An additional interest in retinal research lies in its diagnostic significance for systemic
diseases, i.e. originating in other parts of the body, like diabetes, hypertension or carotid
artery occlusion [65, 100, 180]. Finally, the retina is considered to be the “window to
the brain” because it is anatomically and developmentally an extension of the central
nervous system. It consists of retinal ganglion cells (see Figure 3.1), the axons of which
form the optic nerve, whose fibers are, in effect, CNS axons. [119]. Several well-defined
neurodegenerative conditions that affect the brain and spinal cord have manifestations
in the eye, and ocular symptoms often precede conventional diagnosis of such CNS
disorders. [119]

Clinical investigations of the posterior segment of the eye typically employ fundus
cameras, confocal scanning laser ophthalmoscopes (cSLO) or optical coherence tomogra-
phy (OCT) for diagnosis. A fundus camera essentially acquires a photograph of the retina
which represents the amount of reflected quantity of light [1]. An external illumination
is projected through the pupil into the eye and the reflected light is typically collected
by a CCD camera. Illumination and detection paths are separated on the pupillary plane
by optical apertures in order to avoid corneal and lenticular reflections which result
in diminished image contrast [1]. Fundus cameras can be upgraded by integration of
appropriate excitation and emission filters for angiography and autofluorescence imaging.
More advanced technology is present in form of cSLO. cSLO employs a focussed laser
beam that scans the retina at different depth. Reflected light originating from other layers
than the focal plane of the laser is rejected by a confocal aperture in front of the optical
detector. This results in higher resolution images than those obtained by fundus cameras
and allows for an estimate of the 3D shape of the retina. Axial resolution is however low
compared to the thickness of the retina [162], thus limiting the significance of the third
dimension for diagnostic purposes.

When axial characteristics of the retina need to be investigated, OCT would be the
modality of choice. OCT is an interferometric technique that computes the difference
between a reference light beam and a second light beam backscattered from the retina,
based on their cross-correlation. The depth of the occurrence of backscattering can hence
be determined and an image of the differences of refractive indices of retinal structures is

produced. In contrast to normal fundus photography or cSLO, OCT produces structural
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images allowing for investigations of retinal layer structure [53] but is currently not
employed to image molecular characteristics.

Recently, some prototypic implementations of optoacoustic systems for retinal imaging
in rats were presented [93, 172]. However, only imaging of the vasculature was shown
so far and cellular or molecular detection capabilities have yet to be realized. The most
common systems currently employed in small animal retinal imaging for molecular
imaging of fluorochromes are human fundus cameras and cSLO systems, adapted by
integration of lenses to the size of the respective animal eye [51,64, 81, 162]. They have
successfully been employed for imaging molecular markers in mouse or rat retinae, but
no study has yet investigated more than 2 fluorochromes at once (e.g. [148, 149]). To the
best of the author’s knowledge, no truly multispectral system has yet been implemented,

capable of imaging multiple fluorochrome expressions in the retina of the same animal.

A further aim of this thesis was therefore to develop a multispectral fundus camera
system for mice. Results from its application to a multispectral retina mouse model, cre-
ated by smart labeling, is shown and unmixing and classification approaches previously
developed for ex-vivo applications are evaluated in-vivo. The presented results show that
the developed system is appropriate for imaging multiple fluorochromes, to separate
fluorochromes having overlapping spectral bands, and to detect oxygenation. The system
furthermore provides images that can be used for characterizing changes in morphology
and fluorescence expression in the retina.

While some part of the hardware was specifically designed for imaging the retina,
the applied image analysis methods could be generally applied to any surface-bound
multi-fluorescence experiment, like for instance skin, given appropriate labeling is

available.

3.2 Spectral imaging systems

Two multi-spectral imaging system setups were developed within the scope of this thesis.
Both systems share the same image acquisition hardware but differ in employed image
transmission optics and illumination. This difference arises from the individual require-
ments that each application area imposes on the imaging system.

The first multi-spectral setup was designed for acquiring wide-field epi-illumination im-
ages in contact-free applications. That is, both objective lens and illumination are placed

away from the imaged surface, which is separated by air from the imaging system. This
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Figure 3.2: Non-contact multispectral imaging setup. (a) Schematic of the imaging op-
tics employed. (b) 3D rendered image of the system as employed for imaging
of tissue oxygenation phantoms.

is the most intuitive system design and can be employed to acquire reflectance images
in many areas like, for instance, ex-vivo tissue slices as well as in-vivo images of skin
or for surgical guidance. This system, which is described in Section 3.2.1, was used in
this thesis for tissue oxygenation measurements and provided the data necessary for the
development of an oxygenation quantification method.

The second multi-spectral setup was specifically designed for acquiring wide-field epi-
illumination images of the mouse fundus. In contrast to the first system design, this setup
is conceived to work when the objective lens is placed in direct contact with the mouse
eye (using a coupling gel between cornea and imaging lens surface). Such a direct-contact
design accounts for the additional boundary of the mouse eye lens and its abberation prop-
erties [144], which are otherwise not present in typical epi-illumination applications like

the ones stated above. The multispectral fundus camera is described in Section 3.2.2.

3.2.1 Non-contact multispectral imaging setup

Figure 3.2(a) shows a schematics of the non-contact multi-spectral epi-illumination

system, and Figure 3.2(b) a 3D representation of the setup. The detection part was
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Figure 3.3: Maximal and minimal field of view of the multispectral non-contact imaging
setup. A resolution chart was imaged where each line has a thickness of 1
mm.

composed of a 1 Megapixel EMCCD camera (LucaR, Andor Technology, UK), a custom
made 25 position filter wheel (Cairn Research, UK) and an achromatic zoom system (Z16
APO, Leica Microsystems, Germany). The zoom system in the used configuration could
provide magnifications between 0.36x and 11.5x. The filters (all Chroma Technology,
USA) could be exchanged depending on the specific requirements of an experiment.
Typically, narrow band filters of approximately 10 nm bandwidth were employed
for acquisition of white light reflectance spectra in order to obtain sufficient spectral
resolution.

The imaged objects were illuminated through a fiber optics light guide coming from
a halogen cold light source (KL2500 LCD, Schott, Germany). Polarizers (Techspec,
Edmund Optics, Barrington, NJ, USA) were positioned in front of the light guide and the
detection lens in perpendicular arrangement in order to reject non-diffusively reflected

light. The setup was connected to and acquisition was controlled by a personal computer.

For tissue oxygenation imaging, every sample was placed under the lens and illu-
minated by white light throughout the acquisition process. For every filter position one
image was acquired and stored. One spectral acquisition could therefore consist of up to
25 images.

The system could also be employed for imaging fluorescence. An additional fil-
ter wheel was in this case placed in front of the light guide to select the appropriate

excitation wavelength band. Alternatively, laser sources could be employed for excitation.

In the following, several properties of the system are characterized.

[1] Field of view (FOV): Figure 3.3 shows the maximal and minimal field of view
that could be obtained with the multispectral system presented in Figure 3.2. A

resolution chart (Edmund Optics) was imaged. The left image shows the maximal
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Figure 3.4: Resolution evaluation of the multispectral system by imaging of fluorescent
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microspheres. Left: Detail of the acquired microsphere image. Right: Inten-
sity profile of a microsphere and fitted gaussian to the pixel intensities.

field of view and the right image a zoom in with the highest magnification resulting
in the minimum field of view. One line on the resolution chart had a thickness of 1

mm.

Resolution: The maximal resolution of the system was characterized using 4 um
fluorescent microspheres mounted on a slide (TetraSpeck, Life Technologies, Carls-
bad, CA, USA) with excitation and emission properties of 488 nm and 509 nm re-
spectively. Appropriate excitation and emission filters were placed in front of the
light guide and into the emission filter wheel and an image was acquired with high-
est magnification. Figure 3.4 shows the resolution characterization. On the left a
detail of the original image is shown and on the right is an intensity profile through
one of the microspheres, after subtraction of the background intensity. The red dots
indicate the pixel intensity at the respective location and the blue line is a gaussian
fit to the discrete pixel data. The full with half maximum (FWHM) of the resulting

curve is indicated in the graph. The resolution was computed as [191]

resolution =/ FWHM? — d? (3.1

where d is the finite microsphere diameter. This resulted in a resolution of 7.18 pm

for the non-contact multispectral system.

Spectral sensitivity: Each of the components of an imaging system has its specific
spectral transmission (for optical lenses, filters and light sources) or detection (for
CCD camera or other detectors) characteristics. l.e. the spectral sensitivity of the
overall system is a result of the cumulative sensitivities/transmission characteristics

of its single parts. Quantitative measurements have to take this system sensitiv-
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Figure 3.6: Correction of fluorescence spectra. (a) Reflectance acquired from a white re-

flectance standard. (b) Raw data from GFP and YFP imaging. (c) Corrected
reflectance.

ity into account and correct the acquired spectra accordingly. Figure 3.5 shows
the overall sensitivity and the correction of reflectance spectra using the sensitivity
curve. Figure 3.5(a) depicts the detection gain at each spectral band considered
for oxygenation imaging, as measured with a white reflectance standard (Ocean
Optics, Dunedin, FL, USA). The dots represent the center wavelength of the em-
ployed 10 nm filters. Figure 3.5(b) gives two examples of raw oxy (red) and deoxy
(blue) hemoglobin spectra acquired from a tissue mimicking phantom. Figure 3.5(c)
shows the corrected oxy and deoxy spectra after division of the spectra in (b) by the
spectral sensitivity curve in (a). It can be seen that the oxy and deoxy spectra dis-
play the expected shape only after correction with the spectrum of the reflectance
standard (see Figure 2.5 for reference on the absorption spectra of hemoglobin).

Figure 3.6 shows the equivalent procedure for the correction of fluorescence spec-

tra. Figure 3.6(a) shows the system sensitivity curve measured at nine spectral
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bands between 500 nm and 590 nm (center wavelengths of filters represented by
dots). Figure 3.6(b) depicts the raw fluorescence emission curves of GFP (green)

and YFP (yellow) and Figure 3.6(c) the corrected spectra.

3.2.2 Multispectral fundus camera

Figure 3.7(a) shows a schematic of the multi-spectral mouse fundus camera, and Figure
3.7(b) a 3D representation of the setup. The detection part consisting of CCD camera and
25 position filter wheel were the same as used in the system presented in Section 3.2.1.
The optical system for projecting an image of the mouse retina onto the CCD was
designed to account for the challenges imposed by the nature of the mouse eye and the
dilation of its pupil. Typically, the pupil of a mouse eye can be dilated up to approxi-
mately 3-4 mm of diameter. This small opening hampers light coupling into the eye.
Furthermore, corneal reflections can affect the contrast of the acquired image. Paques et
al. [144] showed that the placement of an illuminating endoscope on the cornea allows
counteracting corneal refractions by optical applanation and enables wide-field fundus
imaging given that the diameter of the endoscope is equal or inferior to the diameter of
the pupil.

Therefore, the centerpiece of the setup presented here consisted of an endoscope with
6 cm long otoscope (AA1218, Karl Storz, Germany) with parallel illumination and
observation channels. This otoscope had an outer diameter of 3 mm and consisted of step
index lenses, an angle of view of 0°, a field of view of 80° in air and a crescent-shaped
illuminating tip. The small diameter of the endoscope allowed not only for wide-field
image acquisition but also for efficient light coupling into the eye. The image of the retina
was focused onto the CCD using a focussing adapter matched to the otoscope (20200043,
Karl Storz, Germany). An additional zoom system with appropriately chosen achromatic
lens pairs (Edmund Optics) was assembled and used for image relay and to allow for
flexible magnification.

[llumination was introduced by an ”octopus-arm” light guide connected to the endoscope.
This custom made light guide (SEDI-ATI Fibres Optiques, Courcouronnes, France)
consisted of 36 single fibers, four of which were separated at one end of the light guide
from the bundle as single fibers that were coupled to laser sources. The remaining 32
fibers were bundled to guide white light from a could light source (KL2500, Schott,
Mainz, Germany). The 32-fibre bundle and the 4 separate fibers coming from the light

sources were bundled into one single light guide that was coupled into the endoscope.
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This enabled multi-spectral illumination, in addition to the multi-spectral detection part.
In theory, any laser can be connected to the single fibers, making this system highly
flexible and adaptable. The employed lasers for the experiments presented in this thesis
had peak emission wavelengths at 488 nm (Obis, Coherent, Santa Clara, CA, USA),
594 nm (Excelsior, Spectra Physics, Santa Clara, CA, USA), 670 nm and 750 nm (both
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Figure 3.7: Multispectral fundus camera setup. (a) Schematic of the imaging optics em-
ployed. (b) 3D rendered image of the system as employed for imaging of the
mouse retina.
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Figure 3.9: Evaluation of fundus camera resolution by imaging of fluorescent micro-

spheres. Left: Detail of the acquired microsphere image. Right: Intensity
profile of a microsphere and fitted gaussian to the pixel intensities.

BWFI1, B&W Tek, Newark, DE, USA).

Field of view, resolution and spectral sensitivity were characterized equivalently as

for the non-contact multispectral system presented in Section 3.2.1.

[1]

[2]

[3]
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Field of view: Figure 3.8 shows the maximum, intermediate and minimal FOV used
in retinal imaging. The image was taken of an albino mouse and shows the fundus
of its eye with the vasculature parting radially from the optic nerve head. The white

scale bar in each of the three magnifications corresponds to 100 um.

Resolution: Figure 3.9 depicts the characterization of resolution of the fundus cam-
era. The same microsphere slide as in Section 3.2.1 was employed. A detail of the
acquired image is displayed on the left and the graph on the right shows the inten-
sity profile through one of the microspheres. The resolution was computed using
Equation 3.1 and resulted in 15.51 pm.

Spectral sensitivity: The spectral sensitivity of the fundus camera was evaluated
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by placing a white reflectance standard in front of the endoscope and acquiring
images at every employed wavelength. Fluorescence and reflectance spectra could
be hence corrected using the reflectance standard spectrum. Results corresponded

to those previously shown in Figures 3.5 and 3.6, and are therefore omitted here.

3.3 Spectral mixing and unmixing

In this section we assume a data cube acquired with any of the approaches introduced
in Section 2.1, or the systems presented in Section 3.2. A closer look at the actual inter-
pretation of the data in the cube and its information content is required. Understanding
the underlying principles that produce the measured spectra in every imaging pixel allows
for the application of mathematical tools to extract "hidden” information on the (spectral)

composition of the imaged scene.

3.3.1 Linear mixing model

We define a spectral image as a spatial-spectral distribution described by a function
f(#,4) of position 7 and wavelength A [156], where 7 can be 2D or 3D.!

In this chapter we exclusively deal with 2D reflectance images and add as a third
dimension the wavelength, resulting in f(7,4) = f(x,y,A). Such an interpretation of a
spectral image was also shown in Figures 2.1 and 2.2. All examples and results shown
in this chapter will therefore be implicitly from, or based on, spatial-spectral data from
2D spatial distributions. The 3D imaging case where wavelength is integrated as fourth

dimension (and time could be the fifth, if considered) will be subject of Chapter 4.

The dependence of the spectral image f(7,A) on the position and the wavelength
may take different forms [156]. Descriptive examples for three representative cases are

given below and visualized in Figure 3.10.

IFor the sake of completeness it has to be mentioned that all concepts introduced in this chapter would also
apply to 1D spatial measurements. However, this would conflict with the interpretation of an “image”
being a spatial distribution in two or three dimensions. The 3D case is included here, although the
previous definition of a spectral cube only included 2D spatial images, since the presented methods
could in theory be applied to any dimensional space.
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Figure 3.10: Linear mixing of three components having (a) the same spectrum but dif-
ferent intensities, (b) same intensities but different non-overlapping spectra,
and (c) same intensities but different overlapping spectra. Ideal filters are
represented as dashed lines. The resulting images employing the respective
filter are depicted below the respective graph.

[1] Single spectrum: The first case assumes an object having the same spectral distri-

bution in every point (i.e. only one substance makes up the whole object). Hence,

all points differ only in intensity. This can be expressed by a separable function of
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(2]

[3]

the form

f(7,A) = aop(7)so(A) (3.2)

where f(7, 1) is the product of a function of position ag(7) and a function of wave-
length so(7). This is the simplest case of spectral imaging because the two processes
of spatial imaging and spectral analysis are independent. Acquiring the spectrum
in one single point would result in full spectral characterization of the object, and
acquisition of an image at one single wavelength would suffice for complete charac-

terization of the spatial distribution of the object within the imaged area.

Multiple, non-overlapping spectra: The second case assumes that the imaged
object contains N substances with spectral distributions s;(4), s2(4), ..., sny(4),
which are all non-overlapping. They have the according spatial distributions a; (),
a(7), ..., ay(7), which are normalized such that YV ,a;(7) = 1. The resulting

spectral image is then given by

=

FRA) =a1(F)si(A) +ax(F)sa(A)+...+an(F)sn(A) = ) ai(F)si(A)  (3.3)

i=1

The different spectra s;(A) of the N substances are called endmembers and their
fractions «;(7) are called abundances. For non-overlapping spectra, employing N
appropriate filters in front of the acquisition camera will allow for the identification
of all a;(7).

Multiple, overlapping spectra: The third case assumes that the imaged object con-
tains N substances with spectral distributions sj(4), s2(A), ..., sy(A), which are
at least partly overlapping. This results in the same linear mixing model as pre-
sented in Equation 3.3 where all spectral contributions add up linearly. However,
the employment of filters is not sufficient in this case to recover the original values
of ai(7), ay(¥), ..., an(¥), because each spatial image acquired with one filter con-
tains mixed contributions of more than one substance, as shown in Figure 3.10. The
process of estimating the abundances (and in some cases the endmembers as well)
becomes more complicated and requires the employment of algebraic techniques.

The generic term for this process is know as unmixing.

Generalizing and summarizing the insight from the previous examples, it can be said that

spectral mixture data are interpreted as the weighted sum of the unknown component

spectra [30]. A mixing model assumes that the measured spectra f(7,A) are a linear

combination of N unknown pure substance spectra s;(4), s2(4), ..., sy(A). The mixing
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coefficients, or abundances, a(¥), ax(¥), ..., an(7), are proportional to the concentration
of the respective pure substance in the mixture.
To represent a realistic experimental scenario, an additive noise term w(A) has to be

integrated into Equation 3.3, yielding the final expression for the linear mixing model:

3
=~
>

I
M=

ai(7)si(A) +w(d) (3.4)

I
—_

This noise term represents the measurement errors and model imperfections.

The main constraint in this mixing model is the non-negativity of both, the source

signals (endmembers) and the mixing coefficients (abundances):
ai(F) >0 Vi,Fand s;(A) >0 Vi,A
To be physically realizable, the abundances should furthermore sum to one.

Equation 3.4 can be written in a discretized form to represent the digital imaging

data acquired within this thesis. Using matrix notation, this results in
M=AS+W 3.5)

where M is the (n x m) multispectral measurement matrix, with n being the number of
image pixels and m the number of spectral bands at which a 2D image is acquired. A is
the (n X p) mixing matrix with its p column vectors representing the abundance of each
pure spectrum. S is a (p x m) matrix containing the p pure spectra of the substances at

the m measurement wavelengths. W is the (n x m) additive noise matrix.

Every pixel in a spectral image typically contains mixed contributions from differ-
ent components having overlapping spectra, resulting in a situation as described in case
3.2 Imaging non-overlapping spectra (case 2) can be a convenient approach to measuring
multiple components because all component’s contributions can directly be identified
employing appropriate filters, without post processing of the data. Such an approach
can be used for instance in fluorescence microscopy or fluorescence molecular tomog-

raphy (see Chapter 4), where appropriate fluorescence dyes or probes can be chosen

Imaging of single spectra (case 1) is not within the scope of this thesis, which is dedicated at investigating
imaging of multiple components.
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for labeling different molecules. Selection of separate emission bands is sometimes
possible because emission spectra of fluorochromes are typically designed to be narrow.
However, if more than two or three fluorescent labels are required, finding completely
non-overlapping fluorochromes can already become challenging. Furthermore, intrinsic
tissue chromophores and fluorochromes usually do not have narrow emission spectra
but emit over broad ranges of the electromagnetic spectrum. An examples for this
was given in Figure 2.5 for oxy and deoxy hemoglobin absorption. Consequently, the
desire to extract from a spectrum the substances in the mixture as well as the propor-

tions in which they appear, is important to many multispectral imaging applications [101].

Spectral unmixing is the procedure by which the measured spectra of mixed obser-
vations are decomposed into a collection of constituent spectra (endmembers) and a set
of corresponding fractions (abundances) that indicate the proportion of each endmember
present in the pixel [101].

Essentially, unmixing performs the inversion of Equation 3.5. Appropriate inversion
algorithms are dominated by approaches that usually invoke some aspect of the method
of least squares [101]. The next section will describe least squares methods for spectral
fitting. Two blind source separation (and dimensionality reduction) methods, princi-
ple component analysis (PCA) and independent component analysis (ICA), will be

subsequently treated.

3.3.2 Least squares methods

Assuming the absence of additive noise and that the spectra of the endmembers are known,
the simples solution of the abundance estimation problem is obtained by an unconstrained
linear least-squares problem formulation that has an explicit solution in terms of the

pseudo inverse matrix [156]:
Ayrs = (STS)"IsTM =S*M (3.6)

where Ay is the matrix of unmixed abundances and S™ the pseudo inverse of S. This
unconstrained estimate for A minimizes |M —SAys/|5. ST exists when there are
more spectral bands than endmembers, and if S has full column rank, both requirements
which are typically satisfied in multi-spectral imaging. Although Equation 3.6 provides

an easy way to implement a solution of the problem in Equation 3.5, it enforces none of
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the physical constraints on Agys. This could result in negative values for the abundances

or non-unity of their sum, both cases being without physical meaning.

The unconstrained solution can be refined by constraining it to fulfill the full addi-
tivity condition, i.e Zﬁil a; = 1 [101], but without imposing a positivity constraint, yet.

The explicit solution is given by

(STS)~'1

Asto=Ayrs+ (1 —TTAypg) =t
STO ULS ( ULS)IT(STS)_lMI

(3.7)
where I is the identity matrix. The solution in Equation 3.7 consists of the unconstrained
solution from Equation 3.6 with an additive correction term that depends on S and the

error incurred by Ayrg in satisfying the full additivity constraint [101].

There is no closed form solution fulfilling the complementary constraint of nonneg-
ativity [156]. Hence, to integrate the nonnegativity condition into the computation of
the solution of the minimization problem, iterative approaches are commonly used. A
well known algorithms including only the non-negativity constraint is for instance the
nonnegative least squares algorithm (NNLS) [156]. Algorithms exist for transforming
the fully constrained problem into an NNLS problem. Alternatively, the Trust-region
reflective least squares algorithm [21, 24], which is implemented in MATLAB can be

used for solving constrained linear least squares problems.

The methods presented above all require a priori knowledge on the endmember
spectra present in the images. Their performance depends on the accuracy and complete-
ness of these spectra and the absence of systematic errors in the data [61]. However,
this kind of information is often not available. Alternative approaches to unmixing of
multispectral imaging data that do not require a priori spectral information have to be

consulted in such cases.

3.3.3 Blind source separation methods / dimensionality reduction

Blind source separation (BSS) methods aim at estimating the abundances only based on
the measurement data without any information on the type of source signals (endmem-
bers) or the mixing process. Two of the best known concepts are introduced here, princi-

pal component analysis and independent component analysis.
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For this section we assume a measurement matrix M of zero mean. This can be easily
obtained in any case by subtracting the mean of the measurements from M and re-adding

it to the unmixed estimation of the endmembers.

3.3.3.1 Principal component analysis

Principal component analysis (PCA) is a simple non-parametric method of extracting
estimations of endmember distribution and their spectra from mixed data sets. PCA
furthermore provides a roadmap for reducing a complex data set to a lower dimension to
reveal the hidden properties that underlie it [167]. The theory presented in this section is

mainly based on an excellent educational paper by J. Shlens [167].

We assume two (n x m) matrices M and Rpcy related by a linear transformation
P as follows:
Rpca = PM (3.8)

M can be interpreted as the original recorded multispectral data as presented in Equation
3.5. Rpcy is the re-representation of M. PCA aims at finding matrix P that best
re-expresses the data in M in order to dispose of the redundant information in M. For
that purpose, PCA makes several assumptions: (a) The source components / endmembers
are statistically uncorrelated but the measurements in M are not [61]. (b) The probability
distribution of the measurements is gaussian. (c) The principle components are orthogo-

nal. (d) Large variances between measurements contain important components.

Given these assumptions are fulfilled, correlations between all possible measure-
ments can be quantified using the covariance matrix of M. Whereby the covariance
matrix is given by

Cov(M) = ﬁMMT (3.9)
To reduce redundancy each variable should correlate as little as possible with other
variables, 1.e. covariance between different measurements should ideally be zero. Con-
sequently, PCA tries to find the orthonormal matrix P that transforms the measurement
matrix M such that the covariance matrix of Rpcy is diagonalized. The rows of P are
then the principal components of M. Projecting M along the new basis spanned by the

principal components estimates the endmember distribution.
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3 Multispectral methods for multi-molecular surface imaging

To calculate the principal components, Cov(Rpcs) is first rewritten in terms of
P:

1
Cov(M) = mPEPT (3.10)

where E = MM is a symmetric matrix. A symmetric matrix can be diagonalized by an

orthogonal matrix of its eigenvectors, resulting in:
E = UDU’ (3.11)

where D is a diagonal matrix containing the eigenvalues and U is a matrix of eigenvectors
of E, arranged as columns. A matrix P is selected so that each row of P is an eigenvector
of E,i.e. P=U. Substituting U’ by P in Equation 3.11 and subsequently substituting

E in Equation 3.10 yields a new expression of the covariance matrix

1
Rpca) = ——(PPHD(PP ') = ——D 12
Cov(Rpca) = ——— (PP~ )D(PP1) =~ (3.12)
where P7 = P~! (because P is orthonormal). Since the choice of P diagonalizes
Cov(Rpca), we can conclude that the eigenvectors of MM are the principle compo-
nents of M and that the " diagonal value of Cov(Rpcy) is the variance of M along the

i'" row of P. Hence, the unmixed components Rpcy are obtained by

Rpcs = U'M (3.13)

Alternatively, a solution to finding the principle components can be obtained by singular
value decomposition. Since such an implementation is typically computationally much
more intensive than the covariance matrix approach and therefore less practical, it is only
shortly presented here and can be reviewed in more depth elsewhere [167].

M can be decomposed by singular value decomposition (SVD) into an orthogonal matrix

U, a diagonal matrix X and another orthogonal matrix VT ie.
M = UV’ (3.14)
Rewriting Equation 3.14 we obtain
U'M=xV' =7 (3.15)

Equivalently to Equation 3.13, U7 in Equation 3.15 performs a change of basis from M

to Z. Therefore, SVD can be used to compute the principal components of M.
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3.3 Spectral mixing and unmixing

One paradigm of PCA is to associate the largest variances with the most important
principle components. The smallest variances and hence principle components are
associated with noise and can therefore be removed from the data set. This reduces the
dimensionality of the problem which can be beneficial in data sets containing much more

spectral measurements than endmembers.

3.3.3.2 Independent component analysis

In some applications, the assumptions made for PCA are too stringent to apply to the
measurement data. An alternative approach termed independent component analysis
(ICA) aims at providing solutions using a less constrained set of problems. The formu-
lation of the general problem is equivalent to the one defined for PCA [167]. l.e. a
matrix P has to be found that diagonalized the covariance matrix of the measurements.
However, the difference between the two methods is that PCA provides results where
principal components are uncorrelated, while ICA finds endmembers that satisfy the more
general and therefore stronger condition of statistical independence [61]. This condition
accounts for projections that are not necessarily orthogonal. Furthermore, ICA assumes
non-gaussian variables. While independence implies uncorrelatedness, uncorrelatedness

vice versa does not always imply independence for non-gaussian variables [30].

Like in the previous section we assume two (n x m) matrices M and Rycy related by a

linear transformation P as follows:
Rica = PicaM (3.16)

Because of the assumption of independence, ICA finds a basis such that the joint proba-

bility distribution of the columns p; of P can be factorized for all i and j, i # j [167]:

p(P;p;) = p(P)r(P;) (3.17)

Approaches to finding such a basis are based on the Central Limit Theorem, which tells
that the sum of independent random variables tends toward a gaussian distribution, while
the original variables are non-gaussian. Thus, a sum of two independent random variables
usually has a distribution that is closer to gaussian than any of the two original random
variables [89]. Consequently, the ICA problem can be solved by finding a matrix P which
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3 Multispectral methods for multi-molecular surface imaging

maximizes the non-gaussianity of PM and provides the independent components in Rjcy.

In order to use non-gaussianity for ICA estimation, a measure for non-gaussianity
has to be found. Such measures are, for instance, based on kurtosis or approximation
of negentropy [89, 177]. Alternatively, maximum likelihood methods use the degree of
mutual independence as specified by the joint probability density function to find an
unmixing matrix P [178]. Having such measures permits to use standard optimization
methods to iteratively update the unmixing matrix in order to maximize this measure
of non-gaussianity or similarity [178]. In order to find all independent components the
search needs to be furthermore constrained to a space that iteratively gives estimates of

the basis vectors of P which are uncorrelated with the previous ones.

Kurtosis (or the fourth-order cumulant) is a classical measure of non-gaussianity

and is defined for a random variable y as

kurt(y) = E{y*} —3(E{y*})? (3.18)

Since the fourth moment of a gaussian variable y equals 3(E{y?})?, kurtosis is zero
for a gaussian random variable, and for most non-gaussian variables non-zero [88]. An
algorithm estimating the independent components would start with some estimation of
matrix P and compute the direction in which the kurtosis of Rjcq = PM is growing or
decreasing most strongly (depending on the sign of the kurtosis) based on the available
mixed measurements in M. Using some gradient method a new matrix P can be found

iteratively.

Another measure for non-gaussianity can be derived from the differential entropy
of a random variable y, which can be interpreted as the degree of information that the
observation of the variable gives. Differential entropy of a vector y with density p(y) is
defined as:

H(y) =~ [ p(y)logp(y)p(y)dy (319

According to information theory, a gaussian variable has the largest entropy among all
random variables of equal variance. Non-gaussian variables have hence small entropy. A
measure of non-gaussianity that is zero for a gaussian variable and always nonnegative is

given by an alternative expression known as negentropy J:

J(y) = H(Ygauss) - H<y) (3.20)
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3.3 Spectral mixing and unmixing

where y,,, 1S a gaussian random vector of the same covariance matrix as y.
An approximation of negentropy using non-quadratic functions was shown to provide a
more robust estimator [88] than the original negentropy approach. The approximation for

a random variable y is given by

J(y) =< [E{G(y)} — E{G(V)}]? (3.21)

where G is a non-quadratic function that has to be carefully chosen, and v is a gaussian

variable of zero mean. For G(y) = y* one obtains a kurtosis based approximation.

Finally, we shortly discuss the maximum likelihood (ML) estimation method, which is a
popular approach for estimating the ICA model. The ML ideas can be used in the context
of ICA by formulating the mixing problem as one where the observation data is modeled
to have specified probability density function that is parameterized by the mixing matrix
A (Equation 3.5) or its inverse W = A~! [12]. We reinterpret Equation 3.5 (ignoring the

error term) in terms of column vectors, given by

T 7 T o1 T
m m ... m,| =Als; s ... s, (3.22)
Ll L4

This method models the relationship between the likelihood pm,(m;|W) of the signal
mixtures m; given W and the assumed source signal joint probability density function
Ps;(si) = ps;(Wm;) to be

Pm;(m;|W) = pg,(Wm;)|W| (3.23)

where |W| denotes the absolute value of the determinant of the Jacobian matrix |8§%|

[178]. Equation 3.23 defines a likelihood function L(W) which is parameterized by W.
If the m source signals are mutually independent, so that the joint pdf ps, is the product

of its m marginal pdfs, then Equation 3.23 can be written as:

m n
logL(W) = Z Zlogpsi(wika) +nlog |W| (3.24)
k=1i=1

where w; is the i’ row of W. The task of an ICA algorithm now consists in finding a W

that maximizes the function in Equation 3.23 to find the maximum likelihood estimate.

The algorithm used within this thesis for ICA computations was FastICA [88]. FastICA
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3 Multispectral methods for multi-molecular surface imaging

finds the independent sources by using a fixed-point iteration scheme in order to maxi-
mize non-gaussianity, as measured by approximated negentropy as presented in Equation
3.21. (This algorithm can however also integrate kurtosis by appropriately choosing the
non-quadratic function G in Equation 3.21). FastICA can furthermore be considered

as a fixed-point algorithm for maximum likelihood estimation of the ICA data model [89].

An important difference between ICA and PCA, beyond the different assumptions
made on the source component properties, is that ICA does not determine the order, i.e.
the importance, of the independent components. As a consequence, an evaluation of the
information content of each independent component has to be made by the user. Such
evaluation could be biased, and moreover impractical for large data sets. Glatz et al. [61]
proposed a method for combining PCA and ICA to first reduce the dimensionality of the
problem using PCA and then presenting ICA with a better conditioned problem.

3.3.4 Classification

Pattern classification is the process of identifying a pattern as a member of one of a set
of categories, or classes, of known properties [156]. Several nonparametric classification
methods have been widely applied to biomedical spectral image processing [120].
Examples include support vector machines (SVM), artificial neural networks (ANN),
spectral information divergence (SID) and spectral angle mapper (SAM). In this section
we shortly introduce the underlying concepts of support vector machines, being one of
the preferred classification methods in the spectral imaging field [120]. This type of
classification was applied within this thesis as alternative approach to the BSS methods
previously described. The aim was to compare BSS approaches and classification as
to their efficiency in identifying endmembers from overlapping fluorescence emission
spectra in in-vivo applications. Since classification approaches assign every image pixel
to one type of class, in contrast to BSS approaches that allow for mixed pixels, the
comparison of unmixing with one single classification type seemed appropriate for a
general conclusion on the applicability of unmixing versus classification methods.

The following theoretical introduction is mainly based on References [18, 120, 123].
SVM is a kernel based machine learning technique that classifies data by finding

the best hyperplane that separates all data points of one class from the data points of

another class. Such a hyperplane should ideally have the largest possible distance from
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any training data point in order to allow for good classification results. The equation of a

hyperplane for any set of points x can be written given as
w-x+b=0 (3.25)

where w is the normal vector to the hyperplane and b is a real constant.

We assume a training data set x;, i = [1,...,M], containing data points belonging each to
one of two classes y; = £1. If the training data set is linearly separable then there exists
at least one choice of the parameters w and b such that y;(w-x;+b) > 0 for all training
points. In this case, SVM finds a hyperplane that has the largest margin, i.e. the largest
distance, to the closest point Xx; from the data set. The maximum margin solution is found

by solving

1
argmax | —— min(y;(w’x; + b)) (3.26)
w,b ||W|| i

Direct solution of this optimization problem would be very complex. It can however be
converted into an equivalent problem that is easier to solve. The reformulated problem

consists in finding w and b that minimize |w||? for all (x;,y;), i.e.
in ? [w]? (3.27)
argmin — ||w .
& wb 2

such that
yi(w-x;+b) > 1 (3.28)
In order to solve this constrained problem, Lagrange multipliers ¢; are introduced, result-
ingin:
. Loon &
L(w,b,a) = arg minmax <§HWH — ; a;(y;(W-x; +b) — 1)> (3.29)

Since we look for a stationary point of L(w,b, @) we can set its gradient with respect to

w and b to 0, resulting in
W= Z 0, yiX; (3.30)

0=Y oy (3.31)
i

Substitution of 3.30 and 3.31 into Equation 3.29 results in the dual representation of the

maximum margin problem

M
o 1
L(a) =} oi— 5 ) voujyiy jk(xi,x;) (3.32)

i=1 i
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where k(x;,x) = x! - x; is defined as the kernel function. L(«) is maximized over o,
such that
o; >0 (3.33)

Z o;y; =0 (3.34)

Equation 3.32 takes the form of a quadratic programming problem that can be solved for

o. The value of b can the be determined as

1
b= ]\73 Z (yi — Z Oijjk(X,',Xj)> (3.35)

ieS JES

where Mg is the total number of support vectors.

For non separable data the concept of soft margins is employed. That is, a plane
is searched that separates the data sets as cleanly as possible, while allowing misclassifi-
cation. Points lying on the wrong side of the boundary are however softly penalized. The

optimization problem is then expressed as

(1 n
min <5|\wy| +C;si> (3.36)

such that
yi(W-Xi—f—b) >1-—s; (3.37)

5; >0 (3.38)

where s; are are non-negative slack variables which measure the degree of misclassifica-
tion of the data x;. The objective function from 3.36 is hence penalized by non-zero s;.
C is a regularization parameter that controls the trade of between slack variable penalty
and the margin.

Using Lagrange multipliers u; as done above the problem is re-expressed as

»s

‘ 1 M M M
L(w.b,@) = arg min max <§HWH2 =Y (W xi+b) — 1 +5) +CY s~ Y psi
7 i=1 =1 =1
(3.39)

Assuming a stationary point and setting the gradient of L(w,b, ) with respect to w, b

and s; to zeros results in
i
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0=) ai (3.41)
o =C— (3.42)

Substitution of Equations 3.40, 3.41 and 3.42 into 3.39 gives the dual Lagrangian form

M
= 1
L(o) = Z *%—5 Zzaiaj)’i)’jxiTXj (3.43)
i=1 i
such that
0<e;<C (3.44)
Y ayi=0 (3.45)

The solution for b is then given by

1

b= — Z Yi— Z Oijjk(Xi,Xj)> (3.46)
M 34 ( jes

where M denotes the set of indices of data points having 0 < o < C.

After solving Equation 3.43, or respectively Equation 3.32, a new point x can be classified

by the decision function
M
sgn(w-x—+b) =sgn Zy,-a,-k(xi,x) +b (3.47)
i=1

In non-linear classification problems, the kernel takes different forms and can belong to a

variety of function classes, like polynomial functions or gaussian radial basis functions.

3.4 Multispectral image analysis I: Oxygenation

computation

Section 3.3 illustrated how the data contained in a data cube can be interpreted and ana-
lyzed in order to extract possibly hidden information. Before applying such methods to
multispectral images, however, the nature of the imaged subject and the contrast generat-
ing molecule have to be considered. As discussed in Section 3.1.1, optical properties may

influence considerably the acquired data and mask the properties of the molecule that is
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under investigation. This is particularly problematic when quantitative read outs are de-
sired, as in the case of tissue oxygenation detection. This section therefore describes the
development of a method that attempts at correcting the influences of optical properties
on the measured tissue oxygenation spectra. Spectral unmixing can only extract meaning-
ful oxygen saturation information from spectra after such correction methods have been

applied.

3.4.1 Spectral transformations for correction of the effect of optical

properties on oxygenation spectra

The method considered herein assumes measurements obtained from a multi-spectral
epi-illumination imaging system (as presented in Section 3.2.1), i.e. images of an
identical field of view at different spectral bands. Calculation of oxygen saturation is
based on a spectral measurement data set M(A) assumed normalized for the exposure
time and detection gains at each spectral band considered. Two reference spectra Rigo(A)
and Ro(A) are representing the reflectance of oxygenated and deoxygenated hemoglobin,
whereby the subscripts 100 and O represent percent oxygen saturation. The spectra
Ripo(A) and Ry(A) are further assumed of spectral step of 1 nm. Likewise, M(A) is
linearly interpolated to a spectral step of 1 nm. Interpolation is necessary to determine the

location of the isosbestic points for the employed discrete measurement wavelengths.

Three isosbestic points I(Amin), I(Amia)s I(Amax) lying within the measured wave-
length range are further assumed. I(Ay) represents an isosbestic point at wavelength A, ,
whereby x takes the values min, mid and max indicating the isosbestic points located at

the lowest, middle and highest wavelength value, respectively.

Differences in tissue scattering and the presence of tissue absorbers other than
hemoglobin influence the shape of the measurement spectrum M(A) for a given
oxygenation value. Tissue optical properties that are not due to oxy or deoxy hemoglobin
are considered herein as background tissue optical properties. Consequently, accurate
quantification of tissue oxygenation would require that M(A) is insensitive to (or

corrected for the influence of) background tissue optical property variations.

The methods considered herein apply transformations to M(A) in order to reduce

its sensitivity to the background optical properties of tissue. The starting point of the
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methods investigated herein is the method proposed in Reference [73], which performs
two transformation steps. The first step assumes two linear functions m(A) and r(1)
which pass through isosbestic points I(Ay,) and 1(Ayua) of M(A) and Rjpo(A),
respectively, so that m(Apin) = M (Apmin), M(Amax) = M (Amax)s 7(Amin) = R100(Amin) and
7(Amax) = R100(Amax)-

A first transformation M’(A) of the measurement spectrum M(A) can be then

written as

M'(A) = M(A) +r(A) —m(A) (3.48)

where M’(A) is a new spectrum that passes through Rioo(Amin) and Rioo(Amax), i-€.
M (Amin) = R100(Amin) and M’ (Amax) = R100(Amax). This first correction step reduces
influences of scattering and non-hemoglobin absorption on M(A). In other words,

M'(A) represents spectral variations only due to absorption by hemoglobin.

The second transformation resulting in M”(A) further stretches or compresses
M'(A) in order to force M"(A) to pass through the third isosbestic point 1(A,,;4):

Ri00(Amia) — r(Amia)

M”()b) — (M’()L) —r(l)) M/(lmid) — V(;Lmid)

+r(A) (3.49)

This step compensates for experimental setup influences as for instance changes in
illumination. M"(A) represents the corrected measurement spectrum and constitutes the

basis for all following computations.

The method in Reference [73] computes M"(A) using a fixed set of three isos-
bestic points, i.e. I(Apin) = 522nm, I(Ayig) = 569nm and 1(Ayqx) = 586nm and
evaluates the oxygen saturation based on a single additional measurement at 560 nm,
which is an oxygen sensitive wavelength. Alternatively, this thesis investigates whether
the accuracy of isosbestic methods can be improved by using different isosbetic points,
an extended range of oxygen sensitive wavelengths and/or additional transformations

beyond the ones applied in Equations 3.48 and 3.49.

The work herein researched methods that could improve the performance of isos-
bestic methods, a development that was geared towards achieving absolute tissue
oxygenation measurements in-vivo, using multi-spectral epi-illumination images. One

particular aim was to identify a robust method which would account for the increased
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Figure 3.11: Matrix containing N alternative oxygenation values, each computed by
employing different transformations (rows), spectral ranges (columns) and
isosbestic point combinations (depth).

complexity of in-vivo oxygenation detection in arbitrary organs. Increased complexity
may arise from (A) increased noise, e.g. due to movement artifacts or shorter exposure
times, over ex-vivo measurements. Additionally, whole tissue imaging has to handle
(B) possibly widely varying scattering and non-hemoglobin absorption compared to
measuring single targets such as blood or a blood vessel. Another remedy attempted
in the research herein was to improve upon the (C) possibly insufficient measurement
sensitivity in the visible range between 500 nm and 590 nm due to the small absolute
difference between oxy and deoxy spectral curves, compared to the difference in the red

and near-infrared range between 590 nm and 800 nm.

The idea behind this work was that the introduction of alternative isosbestic point
combinations and additional spectral transformations could improve the saturation
computation accuracy. To examine this hypothesis, a comparison of the effects of
including different isosbestic points, different transformations and different spectral
ranges on the results of oxygenation computation is conducted herein. Figure 3.11
summarizes the general concept of this approach, which will be outlined in more detail
below. Figure 3.11 shows a (3 x 3 x J)-dimensional matrix where the rows represent

three different transformations, M” (1), Mj; (1) and Mgmd(/l). M. (1) and Mé’md(l)
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N°® isosbestic point 1 2 3 4 | 5 6
Wavelength [nm] 500 530 544 570 583 797

Table 3.1: Wavelengths and numbering of isosbestic points considered within this thesis.

are additional transformations applied on M”(A), which will be defined later in this
section. The columns represent three different spectral ranges that were used to compute
oxygenation. The depth of the matrix represents the different combinations of isosbestic
points considered for the computation of Equations 3.48 and 3.49. This third dimension
of the matrix (i.e. its depth) can have as many elements as there are isosbestic point
combinations for a given wavelength range. For simplicity, only some examples of
isosbestic point combinations are given in the matrix. Generally, for a wavelength range
containing K isosbestic points and where 3 out of these K points are used, this results in

J possible combinations, whereby J is computed by

J=(1§)=<K+3!)!3z

The combination of all three transformations with all three spectral ranges and all J
1sosbestic point combinations provides N alternative ways to compute the oxygenation
value of a sample, where N =3-3-J. The N O,Sat values (i.e. [O;Sat(1), ...,
0,Sat(N)]) populate the matrix in Figure 3.11. These N values can be evaluated as to
the best accuracy by assessing the error between the computed and the real oxygenation
value in all N cases. The computed value showing the smallest error defines the ideal
method for oxygenation computation. The following paragraphs explain step by step how

these N alternatives are computed.

In this study, all possible combinations of 3 isosbestic points lying within the wavelength
range between 460 nm and 810 nm were used for the computation of M”(A). In this
wavelength range there are 6 isosbestic points and therefore J = 20. Table 3.1 lists all
isosbestic point wavelengths considered. This approach hence provided 20 alternative
versions of M”(A) that could all be used for oxygenation computation and compared
to each other as to their ability to accurately provide quantitative oxygenation readings.
(Note that the employment of more than 3 isosbestic points would lead to nonlinear
distortion of the original spectrum given non-ideal, i.e. noisy, data. This would negate the
linear aspect of the applied transformations. For confirmation, the employment of 4 or
more isosbestic points was also tested in this study and resulted in completely distorted

spectra. These results are however not subject of this thesis.)
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Two additional transformations applied to M"(A) are introduced, resulting in two

new spectral curves M) (A) and M/

wrad(A). These additional transformations account

for points (B) and (C) mentioned above, i.e. widely varying optical properties and

insufficient sensitivity.

The first additional transformation subtracts from M"(A) a piecewise linear func-
tion r;,(A) that connects all isosbestic points. Given K isosbestc points , r;;,(4) can be

mathematically written as

K-1

rlin(2~> = Z ra,a—o—l([la : la—o—l]) (350)

a=1

Where A, is the wavelength of the a™ isosbestic point, aa+1(A) is a linear function
going through M"(A,) and M"(A441), and [A, : Agyq] gives the wavelength interval
where r,,11(A) is defined as non-zero. The function r,(A) essentially computes a
straight line between two neighboring isosbestic points in M”(1).

M//

lin

(A) is obtained by subtracting r;;,(A) from M” (1), i.e.
Miiy(A) = M"(A) = r1in(A) (3.51)

Accordingly, Rjin100(A) and Ry, 0(A) represent the equivalently transformed spectra of
RlOO(A) and Ro(l):

Riin,100(A) = Ri0o(A) — r1in(2) (3.52)
Riino(A) = Ro(A) — riin(2) (3.53)
The second additional transformation consists in computing the gradient Mé’m 4(A) of
M'(A),ie.
d
Mygyq(A) = ﬁM”(M (3.54)
R (L) = iR (1) (3.55)
grad,100 - da 100 .
d
Rgrad.,()()t’) = aRO(}L) (3.56)

whereby Rgrqq.100(A) and  Rgqq0(A) analogously represent the gradients of Rjgo(A)
and Ro(A).
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Figure 3.12: Isosbestic point correction method employing isosbestic points at 500 nm,
544 nm and 797 nm.

My, ,4(A) emphasizes on the spectral variations in " (1) and may therefore be more
sensitive to small oxygenation changes than M”(A). It is computed to better bring out
the variability of M” (1) in the visible range where absolute differences between oxy and

deoxy hemoglobin are small. M”

era 4(A) is employed to investigate whether the increased

sensitivity in the visible is advantageous for accurate oxygenation detection.

Figure 3.12 exemplifies the transformations performed in Equations 3.48 to 3.56
for an assumed measurement M(A) of 60% oxygenation, employing isosbestic points
I(Amin) = 500nm, I(Apiq) = 544nm and I(Apay) = 797nm. Since these were the 1°¢, 3

and 6™ isosbestic points according to their location in the used wavelength range, they
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3 Multispectral methods for multi-molecular surface imaging

are identified in the following as (1,3,6). Other isosbestic point combinations will be

named accordingly.

Figure 3.12(a) depicts the quasi continuous reflectance spectra of oxy and deoxy
hemoglobin as well as the sampling points, i.e. the center wavelength of the used
filters (circles). The discrete reference spectra Rigo(A) and Rp(A) resulting from these
sampling points are presented as dashed lines. Figure 3.12(b) contains M(A) (cyan),
Ripo(A) (red) and Ry(A) (dark blue), as well as the respective lines connecting (i)
and I(Apgyx), i.e. m(A) and r(A). Figure 3.12(c) depicts the transformed spectrum after
the first transformation step as computed in Equation 3.48, i.e. M’(A). The isosbestic
points that were used in the second transformation for scaling of M’(A) are marked
by a circle on Rjpo(A) and a square on M’(A). Figure 3.12(d) shows the transformed
spectrum M" (1) as computed by Equation 3.49. Note that although only isosbestic
points 1, 3 and 6 were used, the curves overlap in all six isosbestic points (circles) for this
(A), Riin100(A) and Ryino(A) (Equations 3.51 -

3.53) which are all zero at the locations of the isosbestic points and only show the oxygen

ideal case. Figure 3.12(e) shows M.

lin

sensitive curves between two neighboring isosbestic points. Figure 3.12(f) finally shows

Mé’,’md(l), Rgraa 100(A) and  Rgraq0(A) (Equations 3.54 - 3.56). It can be observed

that the variability of the spectrum between 500 nm and 590 nm is better brought out

by M”

graq(A) compared to M" (), therefore increasing the sensitivity to oxygenation

changes in this wavelength range.

Ml,:n ()“) and M(;lrad

ing now in J -3 = 60 alternative ways of computing oxygenation (i.e. filling the rows and

(A) were computed for all J = 20 versions of M"(A), result-
depth of the matrix in Figure 3.11).

Relative oxygenation was finally computed by spectral fitting to different wavelength

ranges using a constrained linear least-squares solver (see Section 3.3.2):
- 1 2
Xoxy:mxlnEHRxoxy—MHz such that 0 <x < 1 (3.57)

where M is a matrix or vector taking the spectra M” (1), Mgmd

(A) or M. (A)
and R is a matrix taking the respective reference spectra [ Rjpo(A) Ro(A) |,
[ Rerad,100(A) Rgradgo(A) ] or [ Riin100(A) Riino(A) |- Xoxy represents the original
(and usually unknown) oxygen saturation and X,y, contains the estimated relative

oxygenation value.
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3.4 Multispectral image analysis I: Oxygenation computation

The influence of the employed spectral range on the accuracy of computed oxy-
genation values was further investigated by introducing varying fitting wavelength ranges
(columns in 3.11). Using an extended wavelength range could reduce the influence of
noise and measurement inaccuracies in some wavelength. The first considered option
computes oxygenation based on only one single value at 560 nm (as in Ref. [73]), the
second uses all measurements lying within the wavelength range of the respectively
employed isosbestic points, i.e. between I(A;,) and I(A,4y). The third uses the entire

available wavelength range, i.e. 460 nm to 810 nm.

Summarized, the oxygenation was computed using each of the transformations

M"(X), M] (1) and M”

T gmd(l) according to Equation 3.57, whereby fitting was

performed using three different wavelength ranges, A =560nm, A = [L,in(A) : Lpax(A)]
and A = [Adyin : Amax). Given J = 20 isosbestic point combinations, 3 transformed curves
and 3 wavelength ranges for computation of the oxygenation values, this resulted in

J-3-3 =180 different ways of computing oxygenation (as presented in Figure 3.11).

The last step in computing absolute oxygenation values based on the relative val-
ues provided by Equation 3.57 consisted in finding a mapping curve that maps the relative
values to absolute values. We employed a training subset of M(A) with real oxygenation
given by X;4i, and computed X4, which is equivalent to X, for the training set. The
relationship between X4, and X4, Wwas determined by finding a polynomial curve
Prit (X¢rain) through least squares fitting that best maps X;y4in t0 Xyyqin. This step was only
performed once for each spectrum in the training set to obtain a general mapping curve
Prit Roxy).  Prit(Roxy) was then saved and directly used for all further computations to
map all X, values for all measurements presented later in this section and determine the

absolute oxygen saturation O,Sat, i.e.
O2Sat = pfir(Roxy) (3.58)

Prir basically represents the relationship between real and computed oxygenation values

that may be non-linear due to system specific parameters.

The mean error between the computed O,Sat and real oxygenation values, i.e. Xy, were
(A) and M (A), using all

isosbestic point combinations and all wavelength ranges, as were corresponding standard

assessed and compared for all curve types M" (1), Mé’m J
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deviations and maximum errors. The combination of transformed curve, isosbestic points
and spectral range showing the smallest mean error was then proposed to be employed in
an optimal oxygenation computation method.

Isosbestic point combination 1(530nm), I(570nm) and 1(583nm) and the oxygen
sensitive wavelength 560 nm are included in this analysis, because they are close to the
values used in a previous publication for vascular oxygen saturation detection [73]. This

allows for the comparison with previously published results.

3.4.2 Evaluation based on tissue mimicking phantom data

The proposed method was evaluated based on measurements acquired from tissue mim-
icking phantoms. This provided a controlled and reproducible experimental environment
with measurements that could be validated.

Phantoms were composed of varying quantities of absorbing and scattering materials
in order to obtain different optical properties. Most phantoms were composed of
rabbit blood (treated with Ethylenediaminetetraacetic acid (EDTA) against coagulation),
intralipid for introducing tissue-like scattering, and sodium chloride (NaCl) solution.
Blood volume varied between 2% and 6% of the total phantom volume. Intralipid varied
between 0.4% and 2%. This resulted in absorption and scattering properties at 650 nm
of 0.04cm™! < y, < 1.2em™! and 5.0cm™! < u! < 25.0cm™!.
of sodium hydrosulfite (Sigma-Aldrich, USA) were added to the phantoms to obtain

Different amounts

different oxygen saturations. The quantities were extracted from [22] and adapted to
account for the blood-NaCl mixture. This resulted in a concentration of approximately
0.1 mg sodium hydrosulfite per gramm phantom to fully deoxygenize a phantom. The
actual oxygen saturation value X,,, for intralipid phantoms was measured with a gas
analyzer (Combiline, Eschweiler, Germany) right before and again right after the imaging
experiment in order to ensure the stability of the oxygen saturation value throughout the
experiment, as well as for validation of the computational results obtained from Equation
3.58.

Some additional phantoms were composed of the same components listed above, only
replacing intralipid by titanium dioxide (TiO;). The purpose of this second group was
to validate the accuracy of the proposed method in the presence of a different scatterer.
This also explored scattering properties lying at the limits of the physiological range in
order to assess the continuous accuracy of the proposed method in presence of strong

scattering. TiO, concentrations were between 2.5 g/L and 5 g/L, resulting in scattering
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3.4 Multispectral image analysis I: Oxygenation computation

properties at 690 nm of 20cm~! < u! < 40.0cm~! according to [125]. Due to the
powdery texture of TiO,, the phantoms containing this scatterer could not be measured
in the gas analyzer. Therefore, only fully oxygenated and fully deoxygenated TiO,

phantoms were considered.

The liquid phantom mixtures were filled to the brim into flasks (Falcon 353107,
Becton Dickinson and Company, USA) containing a magnetic stir bar that was air-tightly
closed to avoid oxygen exchange of the phantom with air. The phantom was then placed
in the imaging setup on a magnetic stirrer that kept stirring throughout the acquisition
process. This prevented the blood and intralipid or TiO; to separate and deposit during
the experiment. The stirrer was covered by black absorbing tape.

Images were acquired at 23 spectral bands and corrected for exposure times and spectral
sensitivity. Mean pixel values lying within a region of interest selected from the images

were input as M(A) into the computational process described above.

Figure 3.13 shows spectra of all imaged phantoms before and after isosbestic point
correction, for two representative combinations of isosbestic points, (1,3,6) and (2,4,5).
Figure 3.13(a) depicts Rjpo(A) and Rp(A) in red and blue, respectively. The two used
isosbestic point combinations are numbered and indicated by arrows. Figure 3.13(b)
presents all acquired phantom spectra M(A) in light gray in the background. The
colored, highlighted spectra represent an example of the influence of different optical
properties on the appearance of M(A), given similar oxygen saturation values. The
highlighted curves all had oxygenation values of 97%-99%. The same curves are tracked
throughout Figures 3.13(b-h) in order to show the changes introduces by the different
transformations. The phantom composition for the highlighted curves is given in the
legend, where e.g. 11.2/b4 indicates that the respective phantom was composed of 1.2%
intralipid and 4% blood. M"(A), Mj;,(A) and My, ,(A) using combination 1 are shown
in Figures 3.13(c), () and (g) and M"(A), Mj,(A) and My, ,(A) using combination
2 are shown in Figures 3.13(d), (f) and (h). The inlays in Figures 3.13(c)-(d) and (f)-(h)
each show a zoom into the green/orange part of the spectrum. It can be noticed that
corrections using actual measurements did not result in perfect overlay of all M”(A) in
the isosbestic points that were not used for transformation. This can be seen for instance
in the inlay in Figure 3.13(c) at 570 nm (isosbestic point 4), as well as in Figure 3(d)
at 544 nm (isosbestic point 3) and much more strikingly at 797 nm (isosbestic point
6). Therefore, Figures 3.13(e) and (f) show transformed spectra after subtraction of the

offset between isosbestic points, i.e. M;. (A). The differences in M”(A) compared to

lin
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Figure 3.13: Effect of different transformations employing two different isosbestic point
combinations on M(A). See text for detailed description of (a) - (h).



3.4 Multispectral image analysis I: Oxygenation computation

Rioo(A) and Ry(A) due to the isosbestic points used, affect M. (A) as can for instance
be observed in the relative location of the highlighted curves. For these curves, isosbestic
point combination 1 (Figure 3.13(e)) produced transformed spectra which were closer to
the reference Ry, 100(A) than isosbestic point combination 2 (Figure 3.13(f)). An almost
perfect overlap of all highlighted curves among themselves and compared to Rgy4q,100(4 )
(A) and

isosbestic point combination 1, as finally shown in Figure 3.13(g). Isosbestic point

in the range between 500 nm and 590 nm was achieved when using Mé’m J
combination 2, shown in Figure 3.13(h), yielded less agreement among the transformed

curves.

Figure 3.14 depicts examples for X, and O,Sat computed from the phantom
measurements for some representative isosbestic point combinations (indicated above
each sub-figure). Figure 3.14(a) depicts as squares the computed X;,4i, values obtained
from a training subset of phantoms versus the validation measurements X 4in, as
(A) transformed
by isosbestic point combination (1,4,6), and fitting to the entire spectrum, i.e. 460 nm

measured with the gas analyzer. These values were obtained using M é’m d
- 810 nm. A polynomial fit to these values is presented as dashed line. The polynomial
fit seemed to match data very well, but the computed values underestimated the real
oxygenation. Hence, one of the phantoms having fully oxygenated blood was used
to calibrate all other phantoms of the training set. The adjusted values resulted in the
final O,Sat for the training set and are depicted as circles. The general mapping line
Prit(Xoxy) that was subsequently used for all phantoms is shown as continuous black line.
Figures 3.14(b) to 3.14(e) show O,Sat versus X,,, for all phantoms as circles, as well as
Prit(Roxy) as a continuous line. Figure 3.14(b) shows O,Sat computed using Mgm 4(A)
transformed by isosbestic point combinations (1,4,6) and fitting to the entire spectrum.
Figure 3.14(c) shows O,Sat computed using the same transformation and isosbestic
points like in 3.14(b), but only using the value at 560 nm for oxygenation computation.
Figures 3.14(d) and 3.14(e) show the equivalently computed O,Sat values as in 3.14(b)
and 3.14(c), respectively, when using isosbestic points (2,4,5). It can be observed that
O,Sat values do not fall along pf,-,(ioxy) in Figures 3.14(c) and (e), i.e. when using
only the wavelength 560 nm for O,Sat computation. Individual polynomial fitting curves
adapted to these two data sets are represented as dashed lines. The mean errors, as
well as the standard deviation achieved with these isosbestic point combinations and
fitting ranges are written in the corner of each graph, e, being the error obtained with
Prit(Xoxy), and e; being the error obtained using the individual fitting lines for mapping.

It can be observed that all error values increase when using isosbestic combination (2,4,5)
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Figure 3.14: Fitting line py; and evaluation of oxygen saturation computation errors
for two representative isosbestic point combinations. See text for detailed
description of (a) - (e).

compared to (1,4,6). Using an individual fit that is better adapted to the computed O,Sat

values instead of using p; (Roxy) also did not improve on the mean error.

Figure 3.15 depicts the errors obtained using M"(1), My, (A) and My, ,(A) for
all isosbestic point combinations and fitting wavelength ranges. Figures 3.15(a)-(c) show
the mean errors between X,y, and O,Sat and standard deviations in percent oxygenation
computed for M" (1) (blue), Mj;,(4) (red) and My, ,,(4) (black) using each isosbestic
point combination (x-axis). The circles indicate the maximum error that was achieved
with the respective isosbestic point combination and curve type. Figure 3.15(a) shows

the errors using the entire spectrum for fitting, Figure 3.15(b) using only the respective
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Figure 3.15: Evaluation of oxygen saturation computation errors for all isosbestic point
combinations (x-axis), all spectral fitting ranges (a-c) and all spectral trans-
formations (cyan, black, magenta, see legend).

spectrum between I(A;,;) and I(A,.y) and Figure 3.15(c) exclusively using the value at
560 nm . Note that the employment of isosbestic points (2,4,5) would result in a similar
procedure as used by Hammer et al. [73]. The exclusive use of the value at 560 nm after
transformation with (2,4,5) would hence reproduce as closely as possible their method,
of course still considering that there is difference in the measurement setup and imaged
tissue.

Employing the entire spectrum for O,Sat computation resulted in smallest errors when
the distance between I(A,;,) and I(A,4y) was high and isosbestic point 6 in the NIR at
797 nm was one of the three isosbestic points used. In this case M”(A), M), (A) and

lin
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Mé’;’r .q(A) all showed similarly good results, the smallest error being of 2.96 +/- 2.80 %

using (1,4,6) and M”

gmd(/l). The approach where only isosbestic points in the visible

(A). Note for

instance the error for (1,2,5) being 3.25 +/- 3.04 %, which is similarly small as the errors

spectrum were used also displays smallest errors when employing Mé’m y
using combinations including isosbestic point 6.

Reducing the fitting wavelength range to the wavelengths between I(A,) and 1(Aqy)
(Figure 3.15(b)) did not significantly affect the errors for those combinations including
1sosbestic point 6. The smallest error of 2.90 +/- 2.82 % was still achieved using (1,4,6)
and M/

grad
however, had a significantly reduced wavelength range for fitting of at most 500 nm - 583

(A). Isosbestic point combinations that did not include the NIR region now,
nm. The errors for these combinations increased for Mé’m 4(A), but were partly smaller

when using M”(4) and M. (A). The error at (1,2,5) using M”

graa(A) also increased to

11.00 +/- 11.02 % now that only a reduced spectrum was available for fitting.
Using one single wavelength for O,Sat computation finally resulted in similarly high

errors for almost all isosbestic point combinations.

It is noticeable that the combination (4,5,6) resulted in the worst errors in all cases.
High errors are due to the fact that r(A) (see Equation 3.48) between the 4" and 6™
isosbestic point already almost passes through isosbestic point 5. This affects the second
transformation step drastically since the denominator in Equation 3.49 can become close
to zero or negative, thus either producing infinitely high results or changing the sign of
the problem. It is clear that such a setting cannot be used with our correction method. It

was however included for completeness.

Different conclusions can be drawn from the analysis of the errors presented in
Figure 3.15: Using the entire available measurement spectrum for data fitting, best

results were always obtained with M”_(A). Figure 3.12(f) already indicated that curve

grad
variations could be detected with higher sensitivity in the wavelength range between 500
nm and 580 nm when using M;,’m 4(A). This was confirmed by the results presented
(A) and Rgrqq.100(A) could be

obtained in Figure 3.13(g). Furthermore, smallest error values of less than 3% were

in Figure 3.13, where almost perfect overlap of My, ,
obtained for isosbestic combinations where I(A.,) and I(A,4y) lay the furthest apart, i.e.
(1,4,6) or (1,3,6), as shown in Figure 3.15. Some of the combinations that did not employ
isosbestic point 6 also reached relatively low error values, as for instance (1,2,5), when
using the whole spectrum for fitting. The results from these combinations still relied on

the NIR spectrum since the values in the NIR also influenced the fitting result.
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When employing only the part of the spectrum lying between the respective [(A,,;,) and
I(Anax) used for transformation, isosbestic point combinations like (1,4,6) or (1,3,6) still
performed best and error values stayed almost unchanged. This was expectable, since in
this case the range between isosbestic points covers most of the available wavelengths
range, i.e. 500 nm - 797 nm. L.e. the available fitting data was not strongly reduced. The
combinations without NIR isosbestic points that performed well when employing the
entire wavelength range for fitting, like (1,2,5), however, resulted in an increased error
when their fitting data range was reduced. This suggests that even if the appearance of the
transformed spectra in the NIR seemed disordered when omitting the use of isosbestic
point 6 for correction (Figure 3.13(d)), the curve shape in the NIR region was still
indicative for oxygen saturation and added important input to its computation.

Finally, the errors when employing only the oxygen sensitive wavelength 560 nm were
all similarly high lying around 10%, while in some cases errors were particularly high
like for (1,5,6).

Combing all findings from the three curve types M"(A), M)

lin

(A) and My, ,(7)
(A) and

using isosbestic point combinations that include both wavelengths in the NIR and visible

leads to the suggestion, that best results can always be obtained employing Mgr ad
range. Using only data in the visible increases the error significantly. However, reducing
the influence of the blue and green spectrum to its minimum by choosing three of the
highest isosbestic points for correction resulted in increased errors as well. This suggests
that only having information from the red part of the spectrum is also not sufficient.
The combination of the variability of the spectra in the visible, where oxy and deoxy
hemoglobin rise and fall alternatingly, and the different slope of the curves in the red and
NIR region is important to obtain accurate and quantitative oxygenation readings.

Figure 3.16 summarizes the concepts of the approach developed herein, from the method
proposed by Hammer et al. [73] (a), to the alternative oxygenation computation ap-
proaches investigated herein (b), to the finally proposed optimal computation method (c).
All steps run through are numbered in order, where same numbers in different processes
(i.e. Figure 3.16 (a), (b) or (c)) indicate equivalent steps. The adopted computational

concepts from other publications are highlighted in red.
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Figure 3.16: Schematic of oxygen saturation computation methods. (a) Method as pro-
posed by [73]. (b) Methodology for finding optimal oxygen computation
method. (¢) Proposed optimal solution.

3.4.3 Translation to in-vivo applications

Finally, the findings from the phantom study were applied to three pilot experiments in
real tissues. I.e. O,Sat was computed using M é’m 4(A) and employing the best identified

isosbestic point combination for correction, i.e. (1,4,6).

The method proposed in Figure 3.16(c) was tested for the detection of changes in
three different real tissue scenarios: in a finger subjected to vascular occlusion, in vascu-
lar imaging in a mouse ear and in an intraoperative context by imaging different exposed
organs. Due to movements of the experimental subjects semi-automatic coregistration
of the images was performed prior to image analysis. For the computation of oxygen

saturation, regions of interest were then chosen in the tissues and mean values of the
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Figure 3.17: Decrease of oxygen saturation over time in fingers subjected to vascular
occlusion.

contained pixels were further used as spectra M(A) in Equation 3.48.

Vascular occlusion was achieved by placing an elastic strap around the index finger
of one hand of a volunteer. The occluded index was placed together with the second,
normally perfused index finger under the lens of the imaging system directly after fitting
of the elastic strap. A complete set of multispectral images was acquired every 2-4
minutes for 10 minutes in total.

Figure 3.17 depicts in the graph the computed decrease in O;Sat in occluded fingers over
the time period of 10 minutes in two volunteers. Two different curves are shown per
finger, one displaying the O,Sat values as computed by Equation 3.58 (continuous lines),
the other using the non-occluded finger for normalization (equivalent to the calibration
used for the phantoms). The images on the left give an example of the relative change of

absorption appearance at different wavelengths.

For the measurement of superficial arterial and venous oxygen saturation, nude
mice were anesthetized using i.p. injection of Ketamine-Xylacine and placed under the
lens of the imaging system so that one ear lay in the field of view of the camera. A catheter
was introduced into the tail vein in order to euthanize the mice during the imaging process
without changing their position. Complete sets of multispectral images were acquired
in-vivo, directly after the administration of a lethal dose of Ketamine-Xylacine and 20
minutes after death.

For the computation of oxygen saturation in ear vasculature optical density spectra were
used. Optical density spectra were obtained by dividing pixel values in the vessels by

pixel values of surrounding tissue close to the vessels [44,78].
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Figure 3.18: Arterial and venous oxygen saturation in a mouse ear in-vivo (1), after death
(2) and ex-vivo (3).

Figure 3.18 depicts the results of the computation of O,Sat in arteries and veins in a
mouse ear. OSat values are shown in the graph over three time points - in-vivo, right
after euthanasia, and 20 minutes after death. The three sampled regions are shown in the

image on the left.

For organ oxygenation measurements in intraoperative imaging, CD1 mice were
anesthetized and their abdomen opened to expose different organs. Analogously to
the ear experiment, the organs were imaged in-vivo and post mortem after euthanasia
via a catheter. During the in-vivo acquisitions, mice were subjected to a respiratory
change from normal air to 100% O,. After approximately 8-10 minutes of baseline
measurements with normal air, 100% O, was turned on for approximately 15 minutes.
After this period O, was turned off and mice returned to breathing of normal air. The
mice were euthanized another 12 minutes later and were imaged ex-vivo for 15 minutes.
Complete sets of multispectral images were acquired every 2-4 minutes.

Figure 3.19 presents the change of O,Sat in five different organs measured in two mice:
pancreas, kidney, spleen, stomach and intestine. The five regions are indicated in the
image at the top left. The absorption appearance at a second wavelength is equally
displayed. The graphs for the five organs each show O,Sat over time. The time points
for switching on and off of O, are indicated by vertical lines, as well as the time of
euthanasia. A clear increase in oxygen saturation can be observed in intestine and spleen
for both mice after turn on of O, and a significant drop after euthanasia. Kidney and
stomach show some fluctuations when breathing normal air and O; but an increase is nev-
ertheless perceptible, as well as the drop after euthanasia. In the pancreas area, increase

of O, seemed to affect O,Sat the least, but euthanasia again is clearly visible in the curves.
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Figure 3.19: Oxygen saturation of different organs of mice breathing room air, 100% O,
and after euthanasia.

To conclude, in all three experimental cases oxygenation changes over time were
observed. Dynamical O,Sat changes corresponded to the expectations. O,Sat dropped
the longer the fingers stayed occluded. A difference in arterial and venous oxygen
saturation in a mouse ear was computed in-vivo and both values dropped after death. And
organ oxygenation values mainly increased when mice breathed 100% O2 in comparison

with normal air, and a steep drop was observed after death.
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3.4.4 Discussion and conclusion: Oxygenation computation

The aim of this study was the development of a robust tissue oxygenation detection
method that is independent of the influence of any tissue optical properties other than
absorption by hemoglobin. This was achieved by spectral transformations based on
isosbestic points which enabled corrections purely based on experimental data. This
data-driven approach overcomes the need for elaborate modeling of tissue structure
and properties on a per-tissue basis. Particularly, the aim consisted in applying such a
method to multispectral imaging data, providing both spatial and spectral information,
without significantly compromising acquisition time. Since the proposed approach is
predominantly little affected by tissue properties and the specific imaging setup, it could
be applicable to many biological and medical areas, like in superficial detection of skin
abnormalities, for intraoperative applications to monitor tissue well-being during surgery,
or in retinal imaging. The study adapted and optimized a reflectance spectrum correction
method, which was initially developed for the detection of whole blood oxygen saturation
in superficial vasculature [73]. The investigations presented herein allow the extension of
this concept to general tissue oxygenation detection problems in epi-illumination imaging
setups. The found optimal oxygenation computation method employs isosbestic points at
500 nm, 544 nm and 797 nm for the first two transformation steps (Equations 3.48 and
3.49). Oxygenation is then computed using the gradient curve M é’r .4(A) and the spectrum
between 500 nm and 797 nm. This conclusion was reached by an iterative process em-
ploying different combinations of isosbestic points, transformations and spectral ranges.
All possible isosbestic point combinations and the resulting transformed spectral curves
M"(A) were investigated and compared. Furthermore, two additional transformations
were introduced, namely My, ,(4) and My, (1), in order to evaluate which curve bares
the most accurate oxygenation information. For each of the combinations and curves,
the relative oxygen saturation values X, were computed by spectral fitting to reference
spectra of oxygenated and deoxygenated hemoglobin. The best mapping relationship
Prit(Roxy) between computed and real oxygenation was found based on a training subset
of the phantom measurements. pf;; (X,xy) Was used for mapping of all values resulting
in the absolute oxygenation O,Sat. Errors between O,Sat and x,,, were determined to
assess the performance and conclude on an optimal isosbestic point combination and

transformation method.

Compared to the observations by Hammer et al. [73], the proposed approach found

that the use of an isosbestic point in the near-infrared and fitting for a larger wavelength
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range improves the accuracy and is better suited for retrieving oxygen saturation
measurements from tissue. Hammer et al. obtained errors of less than 3% when only
investigating vascular oxygen saturation. Equivalently, their approach was reproduced
herein employing similar isosbestic points, i.e. isosbestic point combination (2,4,5),
and computing tissue oxygenation based on the value of M”(1) at 560 nm. The error
obtained with this combination for the tissue phantoms was around 10%, while the
alternative approach using the NIR isosbestic point resulted in an error of less than 3%.
This suggests that the approach using the NIR isosbestic point is more robust and can be

applied more widely to general tissue imaging.

The work presented in this study can be extended in various directions. The valida-
tion of the proposed method in different tissues and body regions remains the most
important task for future investigation. The pilot tissue experiments presented herein
were performed to give an indication as to possible applications of the developed
isosbestic point method. While the results presented show that relative changes can be
well assessed in such different tissues as finger, ear and organs, these results have not
yet been validated as to their quantitative accuracy. In all three cases, an independent
validation of the real oxygenation through different modalities would be appropriate. This
however lies beyond the scope of the current study, where the focus lay in methodological
development and evaluation, and should be subject of future studies.

Further work should also focus on optimizing the used wavelengths and hence filters
in order to obtain a minimal filter set that still provides all necessary curve points, but
reduces data acquisition as much as possible. One first reduction was already shown
in this study, where all measurements below the first isosbestic point at 500 nm could
be discarded, as shown by the error comparison in Figures 3.15(a) and (b). Such
wavelength reduction would accelerate the acquisition process, which can be crucial
in some applications like for instance intraoperative imaging. Not only would changes
be detected faster, but movement artifacts would also be smaller and easier to handle.
The combination of the isosbestic point method with good, fast and, according to the
application, real time coregistration methods and motion flow algorithms would enable
a pixel wise oxygenation computation. This would result in real-time, dynamic oxygen

saturation maps of entire imaged tissue regions.
Several limitations are present in this study that may restrict the translation of the

quantification ability from phantoms to real tissue. While the phantoms employed herein

were homogeneous, real tissue hardly ever is. It is well known for instance that skin is
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composed of different layers having different absorption and scattering properties [204],
or that kidneys have different tissue oxygenation in the cortex and the medulla [25]. The
proposed method computes the general oxygenation of the sum of all layers, assuming
that they would react similarly when subjected to changes in oxygen supply. It remains to
be validated if this assumption is sufficient by more thorough experimental tissue studies .
Furthermore, light of different wavelength penetrates to different depth, especially when
comparing the visible and NIR region. If oxygenation values in different tissue layers
change differently, this may affect the computed oxygen saturation values when using
isosbestic points in both the visible and NIR. While this should not affect relative O,Sat
change measurements, it may influence the quantification in certain either very thin or
very heterogonous tissues. Thus, this may limit the applicability of the method to certain

areas or require calibration measurements prior to the actual experiment.

To conclude, this section showed the optimization and evaluation of a method for
quantitative oxygenation measurements independent of non-hemoglobin tissue optical
properties, which is purely data based and does not rely on any modeling or assumptions
about the tissue. Such a method enables the application of the same kind of imaging
setup and methodology to many different medical areas, and reduces the need for
dedicated hardware and algorithmic development for each single application case. Tissue
oxygenation is an important indicator for many abnormalities in the human body and
reliable and accurate measurements are of highest importance. The proposed method
can help laying the foundation for quantitative oxygen measurements in many diagnostic
medical fields.

3.5 Multispectral image analysis II: Detection of multiple

fluorescent labels

This section shows the results obtained from employing the multispectral fundus camera
introduced in Section 3.2.2 to mice expressing multiple fluorochromes. First, imaging of
single fluorochrome expression is shown in-vivo and ex-vivo in order to evaluate whether
the developed system provides sufficient spatial resolution and spectral sensitivity to re-
solve varying spatial distributions and different fluorescence intensities. Then, the ap-
plication of BSS and SVM classification, as introduced in Section 3.3, is shown. Their

respective efficiency in separating overlapping spectra acquired in-vivo is evaluated. The
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multi-spectral capabilities of the fundus camera are furthermore evaluated by imaging
and quantifying intravascular oxygenation in the mouse fundus, employing the isosbestic
point methods previously described in Section 3.4. Finally, after having evaluated the
system capabilities on single or double fluorochrome mice, first results from multispectral

mice simultaneously expressing five different fluorochromes in-vivo are shown.

3.5.1 Experimental animals and procedures

Two transgenic mouse models were employed in this study. The first mouse line expresses
YFP in the ganglion cells under the Thyl promoter (B6.Cg-Tg(Thy1-YFP)16Jrs/J, The
Jackson Laboratory, Bar Harbor, ME, USA) [50]. The second mouse line expresses GFP
in the microglia due to the replacement of the CX3XR1 gene by a GFP reporter gene
(B6.129P(Cg)-Ptprc*Cx3cr1™ WYL jtt], The Jackson Laboratory) [96]. Please refer to

Figure 3.1 for an overview of retinal anatomy and cell types.

Additional fluorescent markers were delivered to the retina by adeno-associated vi-
ral (AAV) vectors (provided by Dr. Stelianos Michalakis, Department of Pharmacy,
Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universitidt, Munich, Ger-
many). pAAV-hSyn-Cheta-mCherry is an AAV-vector driving localized expression of
mCherry fluorochrome on the plasma membrane of different types of neurons under
the control of human Synapsin. Peak excitation of mCherry is at 587 nm and peak
emission at 610 nm. pAAV2.1-sc-EFla-eGFP is an AAV-vector driving expression of
eGFP in a variety of cells in the retinal pigment epithelium and inner nuclear layer under
the promoter EF1la (elongation factor la) [107]. For viral transfection, 1L of the
respectively employed vector was injected intravitreally into the mouse eye. Imaging of

viral vectors was performed between 1 and 3 month after injection.

A targeted probe (scVEGF/Cy, SibTech Inc., Brookfield, CT, USA) was used for
investigating vascular endothelial growth factor (VEGF) expression. VEGF is a signal
protein which stimulates blood vessel formation. Overexpression of VEGF can result in a
variety of retinal diseases and was for instance associated with glaucoma [2]. scVEGF/Cy
is derivatized with Cy5.5 fluorescent dye and was originally intended for imaging mouse
tumor neovasculature. Its labeling potential in retinal tissue has, to the best of the
author’s knowledge, not yet been explored. 1 uL. of 150 ug/mL scVEGF/Cy was injected

intravitreally 24 hours prior to imaging.
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Vasculature was labeled with either indocyanine green (ICG, Pulsion Medical Sys-
tems, Munich, Germany) or fluorescein (FITC, Sigma, Saint Louis, MO, USA), both
injected via catheter into the tail vein (100 nmol of ICG and 5.3 nmol of FITC in 100 pL,
respectively). ICG has peak excitation at around 800 nm and peak emission at around 830
nm. FITC has similar excitation and emission characteristics as GFP. Both ICG and FITC
are frequently employed as contrast agents in angiography, also in human medicine.

In total, this provided five different fluorescence emission bands induced by different
labeling mechanisms: GFP/FITC, YFP, mCherry, Cy5.5 and ICG.

For in-vivo imaging mice were anesthetized with Isoflurane (Isoflurane 2%, O, 0.9
L/min). The pupils were dilated by applying a drop of 0.5% Tropicamide (Mydriaticum
Stulln UD, Pharma Stulln GmbH, Stulln, Germany) on the cornea. Transparent eye gel
(Vidisic, Bausch & Lomb, Madison, NJ, USA) was subsequently applied on the eye to
avoid drying out of the cornea. This gel also served as coupling medium between the
tip of the fundus camera and the mouse eye. The mice were then placed in front of the
fundus camera, one eye being in contact with the endoscope. Multispectral images were

acquired employing the respectively appropriate light sources and emission filters.

After in-vivo imaging, mice were euthanized and the retinae excised for ex-vivo
validation. The retinae where mounted on slides either as flat mounts or as cross sections
and imaged either with a fluorescence microscope or with the non-contact multispectral

system described in Section 3.2.1.

3.5.2 Imaging of single fluorochrome expression

For evaluation of the spectral sensitivity and resolution of the fundus camera, each
of the fluorochromes was separately imaged in individual mice. This allowed for the

observation of pure emission patterns without crosstalk between fluorochromes.

Figure 3.20 shows in the top row in-vivo images of five single fluorochrome ex-
pression patterns and in the bottom row microscopy images of the respective ex-vivo
flat mounts. It can be observed that the multispectral fundus camera provides sufficient
resolution for capturing very different expression patterns, as for instance shown in the

two transgenic mice. In-vivo microglia images show localized GFP expression while
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Figure 3.20: In-vivo and ex-vivo fluorescence emission patterns of five different fluo-
rochromes / fluorescent proteins in the mouse retina.

in-vivo

ex-vivo

Unspecific vascular markers

Figure 3.21: Fluorescence angiography in the mouse retina employing two different flu-
orescent dyes.

RGCs seem to cover almost the entire retina, resulting in uniform YFP expression .
Ex-vivo images confirm these expression patterns.

The two employed AAVs were expected to transfected different cells of the retina and
indeed showed very different distribution patterns in-vivo. This distribution pattern
was confirmed ex-vivo, which also allowed the identification of the labeled cell types.
While the GFP-AAV seemed to be expressed on the whole retina by bipolar cells, the
mCherry-AAV selectively labeled the membranes of a subtype of ganglion cells.

In-vivo images of the targeted VEGFR-2 probe finally showed labeling of the retinal
vasculature, as well as increased signal intensity in several localized spots along the blood

vessels. Ex-vivo imaging confirmed this observation.

Figure 3.21 depicts the fluorescence intensity acquired in the retinae of two pig-
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mented mice after 1.v. injection of different vascular markers. Comparing ICG and FITC
in the vasculature leads to the conclusion that FITC can be imaged with higher resolution
than ICG. This is because light penetrates less deep in the green than in the NIR spectral
range. Therefore, FITC images display less contribution of fluorescence originating
in choroidal vasculature and hence less diffusion than ICG images. Since the vascular
probes FITC and ICG are nonspecific dyes and do not bind to a target molecule, they are

washed out by the blood stream and are therefore not present ex-vivo.

Figures 3.20 and 3.21 show that beyond different expression patterns, also differ-
ent fluorescence intensities can be captured by the fundus camera. GFP expression in
CX3CR1-GFP mice for instance was very weak in comparison to YFP expression in
Thy1-YFP mice, or to FITC emission intensity. Significantly higher exposure times were
necessary to image CX3CR1-GFP given the same illumination intensity. Appropriate

acquisition time and filtering however allowed for the detection of even weak signals.

3.5.3 Assessment of changes

A next step in evaluating the in-vivo imaging capabilities of the multispectral fundus
camera consisted in investigating whether changes in fluorescence intensity, fluorescence
distribution patterns and cell shapes can be captured and quantified. For this, fluorescence
expression changes in Thyl-YFP and CX3CR1-GFP mice was assessed in eyes affected
by glaucoma. Diseased and non diseased eyes were imaged, analyzed and compared.

Glaucomas are a group of progressive optic neuropathies that are characterized by a slow
and progressive degeneration of retinal ganglion cells (RGCs) and their axons, resulting in
optic nerve degeneration and ultimately in vision loss [108,207]. Experimental glaucoma
was induced by intravitreal injection of N-methyl-D-aspartate (NMDA). NMDA-induced
excitotoxicity is a well-known model to induce RGC injury [129]. This kind of injury
has been implicated in the pathogenesis of glaucoma and is widely used as a glaucoma
model. One mouse eye was injected with 2 uL. of 20 nmol of NMDA and the second with
the same amount of phosphate buffered saline (PBS) solution. The PBS-injected eye
served as control. The control was used to ensure that the induced RGC injury did occur
due to NMDA administration and not due to increased intraocular pressure, which can be
a side effect of intravitreal injections. Intraocular pressure changes could also lead to cell
death or changes, however without selectivity to RGCs. Thyl-YFP mice were imaged 1

day and CX3CRI1-GFP mice 5 days after glaucoma induction.
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The images of both NMDA-injected and PBS-injected eyes were post-processed to
allow the quantification of differences between the diseased (NMDA) and healthy (PBS)
eye. Images were first filtered to (at least partly) correct for uneven illumination. Cells
were subsequently segmented by thresholding the images. Only signals lying above a
threshold 7 were defined as originating form targeted fluorescence expression in cells

(in contrast to background autofluorescence emission). 7" was computed by:
T=ul)+2-0(I) (3.59)

where [ represents the respective image, (U is the mean and o the standard deviation of

all pixel intensities in /.

Changes affecting retinal ganglion cells were quantified by computing the difference of
the cell-to-background-intensity ratio in NMDA and PBS eyes, and by assessment of the
cell density. Cell-to-background-ratio (CBR) was computed by

~—

uI>T1
u(I<T)

The enumerator in Equation 3.60 represents the mean value of all pixels of image I hav-

CBR = (3.60)

ing intensities above T and the denominator the mean value of all pixels of I of lower
intensity value than 7'. A low value of CBR indicates little contrast between regions iden-
tified as fluorescent cells and background tissue, and hence rather uniform fluorescence
distribution. A high value of CBR indicates strong contrast between regions identified as
fluorescent cells and background tissue, respectively.
Cell density (CD) was quantified by computing the ratio between the number of pixels
being classified as fluorescent cells and the number of pixels belonging to the background.
CD for an image with N pixels was computed by
MiL>T)

CD = ==

?,:] U <T) (3.61)

The enumerator in Equation 3.61 represents a count of all pixels having an intensity value
above T and the denominator, equivalently, of all background pixels.

Figure 3.22 shows the changes observed in RGCs of the Thyl-YFP mouse 1 day after
injection of NMDA and PBS. Fluorescence images of NMDA and PBS eyes are depicted
in Figure 3.22(a). The yellow box indicates the region of interest (ROI) in the images
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Figure 3.22: Segmentation of retinal ganglion cells in a diseased (top) and healthy (bot-
tom) eye. (a) Fluorescence image and ROI used. (b) Segmentation within
ROL. (¢) Binary image of segmented cells in ROI.
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Figure 3.23: YFP expression changes induced by NMDA injection. (a) Difference in
cell-to-background intensity ratio in PBS and NMDA eyes. (b) Difference
in cell density in PBS and NMDA eyes.

that was selected for analysis. Hence this region goes as [ into Equations 3.60 and
3.61. Segmented fluorescence is highlighted as yellow overlay in Figure 3.22(b). Figure
3.22(c) depicts the binary image of the respectively segmented cells. Figure 3.23 shows
the quantification of changes based on data acquired from three mice. Figure 3.23(a)
depicts CBR values for both PBS and NMDA eyes and Figure 3.23(b) the respective cell
densities. The values for each individual mouse are depicted as dots for PBS eyes and

squares for NMDA eyes. The mean value computed from the three mice plus/minus the
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standard deviation are shown as bars.

CBR was higher in all three NMDA eyes compared to the PBS eyes. In contrast, cell
density was reduced in the diseased eyes. This suggests that NMDA induced cell death,
leading to a reduction in RGC density and hence higher perceptible contrast of the

remaining ganglion cells.

Microglia cell changes were quantified by assessing the fluorescence intensity change at
the optic nerve (ON) head and by measuring the morphological changes of microglia cell
shape. That is because microglia, as the main immune defense cells in the retina, migrate
towards the diseased region. Therefore, the shape of migrating microglia is expected to
be elongated, in contrast to static microglia. Preliminary studies furthermore showed that
migration goes towards the optic nerve. This results in increased cell accumulation in this
region several days after disease induction.
Microglia cells were segmented equivalently to YFP cells using Equation 3.59 for
threshold computation. Fluorescence intensity at the optic nerve was quantified by
computing the ratio between the mean fluorescence intensity within an ROI at the optic
nerve and the rest of the image (henceforth denoted as nerve to retina ratio - NRR). NRR
is given by

g — HUON) (3.62)

u(I1(ON))

where I(ON) are all pixels of I lying within the ROI chosen around the optic nerve, and
I(ON) are all pixels that are not part of the optic nerve ROI.
Morphological changes were quantified by fitting ellipses to all segmented cells and quan-
tifying (1) the maximal axis length of the ellipses and (2) the ratio between the mean
maximal axis length [,,;, of all cells and the mean minimal axis length [, of all cells.

Option (2) resulted in the axis-length-ratio (ALR) computed by

ALR = Hlinar) (3.63)
,u(lmin)

Figure 3.24 shows the changes observed in a CX3CR1-GFP mouse 5 days after injection
of NMDA and PBS. Figure 3.24(a) depicts the fluorescence images where the ROIs give
the regions that go as [ into Equations 3.62 and 3.63. The segmented fluorescence is
overlayed in yellow on the images in Figure 3.24(b). Figure 3.24(c)) depicts the binary
images of cell segmentations and shows the different appearance of cellular structures in
diseased and healthy eyes. Figure 3.24(d) exemplifies how the cell shape was measured

and gives a definition of the ellipse axes used for computation of the axis length ratio.
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Figure 3.24: Segmentation of microglia cells in diseased (top) and healthy (bottom) eye
and cell shape quantification example. (a) Fluorescence image and ROI
used. (b) Segmentation within ROI. (c) Binary image of segmented cells in
ROL. (d) Zoom into segmentation images and example for fitted ellipse to
cell shape.

Figure 3.25 finally shows the quantification of differences between PBS and NMDA

eyes from data of 3 imaged mice. The NRR was higher for all 3 observed mice (Figure
3.25(a)), as was the maximal cell length (3.25(b)) and the ALR (3.25(c)).

RGC and microglia results show that both fluorescence intensity and morphologi-
cal changes could be quantified from in-vivo images. The changes induced by NMDA
on the two cell types showed very different effects which could both be characterized
employing images acquired with the multispectral fundus camera. This suggests that
the imaging system and analysis approach are generally capable of assessing a variety
cellular changes in-vivo, beyond the two shown examples. The presented fundus camera
is therefore not only capable of imaging different fluorochrome distributions but can
detect subtle changes that can be analyzed to diagnose and monitor disease progression
and eventually treatment, or to investigate multiple molecules of interest and their role in

diseases of interest.
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Figure 3.25: GFP expression changes induced by NMDA injection. (a) Difference in
optic-nerve-to-retina ratio in PBS and NMDA eyes. (b) Maximal cell axis
length in PBS and NMDA eyes. (c) Difference in mean axis length ratio in
PBS and NMDA eyes.

3.5.4 Separation of mixed fluorescence

The final goal of the developed multispectral fundus camera was to enable imaging of
multiple fluorochromes. The probability that the emission spectra of the employed fluo-
rochromes overlap increases with increasing number of fluorochromes. This is because
emission spectra of typical fluorochormes are rather broad (20-40 nm), and because many
of the most frequently employed fluorochromes emit in similar wavelength ranges (for
instance GFP and YFP). An appropriate multispectral imaging system therefore needs to
provide sufficient spectral resolution to separate overlapping spectra in order to compute
the unmixed spatial distribution of the original fluorochromes.

A next step in the evaluation of the multi-spectral fundus camera and in the development
of an adequate image analysis methodology for in-vivo imaging consisted in investigating
different methods for endmember identification from in-vivo mixed signal images of the
retina.

For this purpose a dual-fluorochrome mouse line was created by crossing the two
single fluorochrome transgenic mouse lines. Hence a mouse line was obtained that
simultaneously expressed both GFP and YFP in microglia and RGCs, respectively.

The challenge in this unmixing approach was twofold: First, movement artifacts had
to be eliminated by coregistration of the spectral images. Second, the contributions of
two fluorochromes with very different fluorescence intensities had to be separated. IL.e.
Thy1-YFP expression dominated almost all spectral images due to its higher fluorescence
intensity (as evaluated in Section 3.5.2). This fact motivated the employment of a narrow

band laser that allows the measurement of CX3CR1-GFP at an emission wavelength band
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Figure 3.26: First two components computed by PCA using 5 spectral bands for unmix-
ing. (a) Components. (b) Segmented cells from components 1 (cyan) and 2
(magenta). Yellow labeled pixels indicate overlap of both components. (c)
Eigenvectors of first 3 PCA components.

at which Thyl-YFP hardly shows any expression, i.e. at 500 nm (see Figure 3.6 for a
reminder of the spectrum of both fluorochromes). This was the only emission wavelength
that provided higher contribution of GFP than YFP signals, while all other images (i.e.
images acquired at wavelength above 510 nm) where dominated by YFP expression and

often already saturated before sufficient GFP signals could be collected.

Three different unmixing approaches were investigated, as described in Section 3.3.
Retinal images were unmixed with PCA and ICA, using different numbers of spectral
bands, respectively. Then, a combined PCA-ICA approach was employed where the
most important components identified by PCA were used for computation of ICA. The
results of these three unmixing strategies were compared to each other and evaluated
based on the available knowledge of the true fluorescence distribution from the single
fluorochrome mouse experiments. Furthermore, the distinction of GFP and YFP cells
was attempted through classification of each image pixel as belonging to one of the two

cell classes. This was realized using an SVM classifier as described in Section 3.3.4.

Figure 3.26 shows the results after unmixing of mixed GFP and YFP signals using
PCA. For this particular example, PCA was computed using 5 spectral bands between
500 nm and 550 nm. The two main components identified are shown on the left. The cells
in these two images were segmented by computing the threshold as given by Equation
3.59. The image in the center depicts this segmentation as overlay on a fluorescence

reflectance image, where cyan represents the first PCA component and magenta the
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Figure 3.27: Unmixing using ICA and ICA-PCA, and comparison to PCA unmixing re-
sults. Top row: ICA results using 5 spectral bands for unmixing. Central
row: ICA-PCA results after dimensionality reduction. Bottom row: Com-
parison of ICA-PCA and PCA.

second. Pixels where the components overlap spatially are shown in yellow. The graph
on the right shows the computed eigenvectors (i.e. the spectra of the endmembers) for
the first three components. The spectrum of component 1 thereby resembles the emission
spectrum of YFP and the spectrum of component 2 the one of GFP. The third component

may represent autofluorescence or image noise.

Figure 3.27 shows the results from ICA using 5 spectral bands (first row), and
from PCA-ICA where the first 4 component from PCA were used for ICA computation
(second row). A comparison between components computed by ICA-PCA and stand-
alone PCA (as shown in Figure 3.26) is also shown (third row).

Since ICA provides no measure of component significance, the order of the shown
components is random. It can be seen that the component shown in the first column for
both ICA and PCA-ICA is the only one resembling one of the components previously
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computed by PCA (component 2) while the others don’t show cellular structures but
rather seem to represent noise. The last row of Figure 3.27 displays the difference
between the first two PCA component (the respectively used component is indicated
below the images) and the images computed by PCA-ICA as indicated by arrows. White
indicates that the compared images are identical in the respective pixels. Magenta
indicates that the signal intensity in those pixels was higher in the PCA component
than in the ICA component. Green indicates that the signal intensity in the respective
pixels was lower in the PCA component than in the ICA component. It is obvious that
PCA component 2 and PCA-ICA component 1 are similar, only slightly differing in
the peripheral regions of the image, probably due to the uneven illumination. PCA

component 1 however differs significantly from PCA-ICA components 2 and 3.

PCA did not only provide images that corresponded to the expected fluorochrome
distributions as previously observed in single fluorochrome mice. It computed corre-
sponding spectra that resemble well the spectra of GFP and YFP. ICA and PCA-ICA in
contrast only recovered one of the original fluorochromes consistently, namely GFP, and
failed at providing an accurate image of YFP distribution. It can be therefore concluded
that PCA is an adequate method for endmember detection from multispectral retinal

images.

Appendix A shows the complete evaluation of PCA, ICA and PCA-ICA employ-
ing 2 to 7 spectral bands. The images shown in this section are a representative selection

of the obtained results.

After evaluation of the potential of PCA and ICA for accurate endmember compu-
tation, a classification method was applied and adapted to the data, and results compared
to PCA unmixing results. Figure 3.28 depicts the training and classification process.
Figure 3.28(a) shows two images that were used for classification. The top image was
acquired at 500 nm, which is a wavelength band that should be more sensitive to GFP
expression, and the bottom image at 560 nm, which should be more sensitive to YFP
expression. A support vector machine was trained by selecting pixels from the two
images and assigning them to one of two classes: class 1 - GFP and class 2 - YFP. The
training is illustrated in Figure 3.28(b), where the computed support vectors are also
indicated by circles. Figure 3.28(c) shows the classification of all pixels lying within
the region of interest indicated in (a). The continuous line corresponds to the separation
line computed by the SVM classification. The dashed, dotted-dashed and dotted lines at
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Figure 3.28: Support vector machine training and classification. (a) Images used for
training and classification. Top: GFP sensitive image. Botton: YFP sensi-
tive image. Employed ROIs are indicated in each image. (b) Training using
manually selected pixels from images in (a). (c) Classification of all pixels
lying within indicated ROI.
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Figure 3.29: Effects of rejecting classified pixels based on the margin around the clas-
sification line. (a) Employed margins. (b)-(e) Pixel classification using
respective margin.

both sides of the classification line indicate equidistantly increasing margins from the
classification line.

Figure 3.29 shows results obtained from using the SVM classification for separating
GFP and YFP signals. Classification of the pixels lying within the shown region of
interest in Figure 3.28(a) and using all pixels as classified in Figure 3.28(c) results in the
representation shown in 3.29(b). Magenta represents GFP-classified, cyan YFP-classified
pixels. It can be observed that with such a classification method every pixel is assigned
to one class and no background tissue is considered. Margins around the classification
line were therefore introduced, shown in Figures 3.28(c) and 3.29(a). Classified pixels
lying within the respective margin were defined as belonging to the background and

not assigned neither to GFP nor to YFP classes. Four different margin widths were
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Figure 3.30: Comparison of PCA unmixing results with pixel classification using differ-
ent classification margins, as presented in Figure 3.29.

considered as indicated in Figure 3.29(a), whereby the first margin with equaled to
zero. The corresponding classification images are shown in Figures 3.29 (b) to (e),
whereby margin width increases with increasing numerical order. With increasing
margin width, less pixels were assigned to the classes resulting in a representation that
better corresponds to the single fluorochrome images as shown for instance in Figure 3.20.

In order to evaluate the classification results, SVM classification was compared to
PCA unmixing results of the same mouse. The results of this comparison are shown
in Figure 3.30. The columns of the image matrix shown correspond to the 4 margin
regions considered in Figure 3.29. The first row compares the classification of GFP to
the 2" component of PCA, the second row compares the classification of YFP to the
1%t component of PCA. Cyan indicates in all images the PCA result for the respective
fluorochrome, magenta the respective SVM classification results. Yellow indicates
where PCA and SVM classification overlap, i.e. for which pixel classification and PCA

unmixing agree.
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Figure 3.31: Evaluation of SVM classification as a function of employed margin for GFP
emission detection (left) and YFP emission detection (right).

The graphs in Figure 3.31 (a) and (b) quantify this agreement, or rather disagreement. The
cyan curve shows the percentage of the PCA signal that was found by SVM classification
for increasing margin width. The magenta curve shows the percentage of pixels that
were classified as being YFP or GFP respectively, but that did not correspond to PCA
results, i.e. they were false positives. The graphs basically show the effect of choosing
different boundaries for pixel classification. Using the classification line directly (i.e.
margin 1) resulted in the complete fragmentation of the image in two classes, hence also
including areas that might not have been of one of the two cell types, like the vasculature.
Increasing the margin did affect GFP classification significantly. While false positive
classifications were reduced, i1.e. there were less pixels wrongly classified as being GFP
pixels, this also resulted in less overlap with PCA results. YFP classification was for all
chosen margin widths even less accurate than GFP classification. Low agreement with

PCA results was obtained and false positive results were high for all margins widths.

The results obtained in this section lead to the conclusion, that PCA most reliably
computes the original spectral components from the mixed GFP-YFP spectral images.
ICA only detected one of the components, GFP, and seemed to only recover noise in all
remaining components. Classification also performed worse than PCA, resulting in either

too many or insufficient pixel classifications.

3.5.5 Imaging of intravascular oxygenation

In addition to imaging multiple fluorescent labels, the potential of the multispectral

fundus camera in imaging intrinsic tissue chromophores was evaluated. The method
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Figure 3.32: Intravascular oxygenation imaged in an albino mouse.

developed in Section 3.4 for oxygen saturation quantification was applied to retinal
imaging to show its potential in assessing intravascular oxygenation in the mouse fundus.
Imaging retinal oxygenation provides the possibility of extracting information on oxygen
transport changes in diseases in addition to the molecular readings obtained from targeted

fluorochrome expression.

Oxygenation was imaged in both single fluorochomre transgenic mice, the one be-
ing on albino background, the other being on pigmented background. This was done in
order to show that oxygenation can be assessed independent of the background optical

properties, which significantly change the intrinsic spectral reflectance images acquired.

Figure 3.32 shows the computed intravascular oxygenation in the albino mouse.
The image matrix on the left shows the reflectance images at every wavelength band
employed. Note the change in contrast between vasculature and surrounding tissue in the
green/orange spectrum compared to the red and NIR part of the spectrum. The image on
the right depicts the intravascular oxygen saturation computed employing the reflectance
images shown on the left. Based on the obtained oxygenation values veins and arteries
could be identified (labeled by v for veins and a for arteries).

Figure 3.33 presents the computed intravascular oxygenation in a pigmented mouse. The
left images show the reflectance acquired from the pigmented mouse. Contrast differs
now significantly from the albino mouse, as can be in particular seen in the red part
of the spectrum, where vasculature now appears bright compared to the background
tissue. Nevertheless, oxygen saturation could also be computed and is shown on the right.

Arteries and veins can again be distinguished and are labeled in the image.
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Figure 3.33: Intravascular oxygenation imaged in a pigmented mouse.
3.5.6 Multispectral imaging of multi-fluorochrome retinae

Finally, multispectral mice were produced by combining GFY, YFP, mCherry, Cy5.5 and
ICG expression in the same mouse. For this purpose Thy1-YFP mice were injected with
both vectors (expressing GFP and mCherry respectively), the VEGF receptor probe and
the vascular marker ICG. Multispectral mice were imaged using narrow band filters of 10
nm bandwidth in the wavelength region between 500 nm and 590 nm in order to allow the
separation of GFP and YFP signals. The other three fluorochromes were imaged with one
filter each sice their emission spectra were sufficiently apart to allow their non-overlapping
detection. Figure 3.34 is a representative depiction of the images and cell segmentations
obtained from imaging of these multispectral mice. Examples for the original acquired im-
ages at different wavelength are given at the top and on the left (top left and center: mixed
GFP and YFP emission, top right: scVEGF/Cy, left center: mCherry, left bottom: ICG).
The center wavelength of the filter used for acquisition of the respective image is indi-
cated in every image. After application of PCA to unmix GFP and YFP contributions and
segmentation of every fluorochrome emission pattern, the individual contributions were
overlayed in one image, shown on the bottom right of Figure 3.34. This overlay provides
a multispectral representation of the different fluorochrome patterns present in the retina

and allows the visualization of different cell types, receptors or vascular perfusion.

3.5.7 Discussion and conclusion: multi-fluorochrome imaging

The aim of this study was to provide the methods and system for multispectral detection
of multiple molecular markers in-vivo. The experimental model considered was the
mouse retina, which defined the requirements on some parts of the hardware implemen-

tation. Subsequently investigated image analysis methods, although applied to the retina
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Figure 3.34: Multispectral images of a multi-fluorochrome mouse retina. Acquired raw
images employing different filters are shown on the top and left. The result-
ing fluorochrome segmentation is presented on the bottom right.

in this case, could be, however, translated to multi-fluorochrome investigations in other

superficial tissues.

A multispectral fundus camera was developed for this purpose. The fundus camera
employed adaptable illumination by multiple lasers or white light sources and enabled
the measurement of 25 spectral bands of reflected or emitted light from the retina. This
allowed for individual, fluorochrome specific adaptation of illumination and detection

for an ideal separation of fluorescence emission bands. The multispectral imaging
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potential of the system was first investigated by imaging of single fluorochrome emission.
Blind source separation methods, as well as SVM classification were afterwards studied
in order to asses the fluorochrome separation potential when observing overlapping
multispectral signals in-vivo. Best unmixing results were obtained employing PCA,
which not only recovered endmember distributions corresponding to previously observed
single fluorochrome expression patterns, but also provided realistic spectra of the end-
members. Furthermore, the ability to track changes in fluorochrome expression patterns
was investigated, an important ability when imaging disease progression or therapy.
Morphological changes in cell shape, as well as changes in cell density or regional
fluorescence intensity could be observed and quantified by the means of fluorochrome
emission pattern segmentation and fluorescence ratio computation. The capabilities of
the multispectral fundus camera were shown to reach beyond the detection of extrinsic
contrast agents. Intrinsic properties, like intra-vascular oxygen saturation, could be
detected in both albino and pigmented mice, due to spectral imaging of reflected white
light and the employment of appropriate computational methodology (as introduced in
Section 3.4.1). Finally, first experiments in mice expressing simultaneously five different
fluorochromes confirmed the capability to image multi-molecular expression. This proves

promising for future investigations in disease models of multispectral mice.

The work on multispectral retinal imaging could be extended in various directions.
While the focus in this work lay on multi-molecular detection, future work should
concentrate on improving detectable resolution. Adaptation of multispectral excitation
and emission to cSLO systems and the implementation of adaptive optics technology
could be appropriate steps in this direction. Adaptive optics is a technology employing
deformable mirrors in order to reduce the effect of wavefront distortion caused by the
eye lens and cornea. It has already found successful application mainly in human fundus
imaging [124, 155] where photoreceptor cells could be resolved. Recently, adaptive
optics has also been employed in mouse fundus imaging systems providing impressive
resolution. Images, however, still suffer from low signal to noise ratios, therefore
requiring the acquisition and averaging of many image frames [57]. Nevertheless, future
implementations will certainly improve on this shortcoming and integration of multi-
spectral and high-resolution technology should soon become realizable. Further work
should also be dedicated to the application and evaluation of the proposed methodology
to different mouse models, in terms of both fluorchromes employed and diseases studied.
This is to confirm the potential of the multispectral imaging approach in a larger variety

of experimental cases. At the time of writing of this thesis, such a study employing
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multispectral mice is in fact ongoing, performed by the author and collaborators. Finally,
the development of more labels (both probes and vectors) for the retina that specifically
target molecules of interest also remains one topic of future research, although not from

a technical engineering perspective.

To conclude, this section showed the capabilities of a multi-molecular imaging sys-
tem for investigating the mouse retina and introduced methodology for image analysis.
Imaging of multiple molecular markers in the retina bears great potential to research a
variety of systemic and retinal pathologies. The proposed methodology can be translated
to a variety of other applications, enabling multi-fluorochrome detection in superficial
tissues. This approach can help advancing integrative multi-molecular research, by

providing the means to simultaneously track many key parameters of disease.

3.6 Conclusion and recommendations for future work

This chapter introduced concepts, systems and methods for multispectral imaging in
surface tissue investigations. Approaches targeted the detection of both intrinsic as well
as extrinsic tissue contrast. The proposed methods concentrated on some specific pa-
rameters, like tissue oxygenation and fluorescence emission, mainly observed separately
from each other. The integration of imaging hardware and methodology for simultaneous
investigation of both intrinsic and extrinsic contrast was suggested in the case of retinal
imaging, but needs further development to be practically applicable to any kind of
superficial tissue investigation. Besides the suggestions for future work previously made,
further recommendations addressing some common aspects of the multispectral imaging

concepts introduced shall be mentioned here.

One aspect when further enhancing such multispectral imaging approaches should
focus on reducing total acquisition time for the acquisition of a data cube. Detectors
of higher sensitivity would be one solution, the introduction of alternative wavelength
scanning devices another possibility. Wavelength bands in tunable filters (liquid crystal or
acousto-optic type) can for instance be switched at high speed and provide high spectral
resolution. Besides, they have the advantage of providing perfectly overlapping images
acquired at different spectral bands, while separate filters often result in small x-y shifts.
Disadvantages, however, lie in the inflexible hardware, i.e. the spectral rage is determined

by the range of the tunable filter. Filters in filter wheels, in contrast, can be changed
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easily and the spectral range therefore adapted to specific needs. Another limitation is the
transmission of tunable filters, which is often below the one of separate filters. However,
it should be only a question of time until this limitation is overcome.

Further hardware implementations could split the image path by beam splitters and add
a second detector for simultaneous detection of two wavelength bands. This would
for instance allow the continuous detection of very fast processes with one detector,
while the second could be used for wavelength scanning of slower processes. Examples
where such an approach would be interesting is in calcium signalling imaging, a process
typically occurring on a millisecond time scale. The realization of such a two-detector
modification of the fundus camera presented herein was performed during the time of
this thesis and general feasibility of simultaneous imaging confirmed. However, due to
the lack of appropriate test cases that would actually require such a setup, all experiments

presented in this work only used the one detector implementation.

Multi-spectral imaging devices for multi-molecular imaging should in future com-
bine the properties presented here for intrinsic and extrinsic detection. Image analysis
methodology should furthermore be enhanced to include the detection of other intrinsic
tissue chromophores and autofluorescence. Absolute quantification of fluorescence
emission would also be desirable. This, however, would have to involve fluorochrome
specific calibration and correction algorithms taking into account the influence of optical
properties on the detected fluorescence signals. This is a non-trivial endeavor and
currently under investigation at the Institute of Biological and Medical Imaging by

colleagues.
Such further research and improvements would result in truly multi-molecule sur-

face imaging devices and methods, allowing for investigations of high descriptive value.

This would provide a powerful tool for molecular imaging.
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multi-molecular volumetric imaging

The overall goal of the work presented in this chapter was to develop a methodological
framework that enables unbiased volumetric imaging of multiple molecules for in-vivo
investigations. It presents the theory, methods, experiments and results obtained to meet
this goal.

Section 4.1 introduces the used molecular imaging modality - Fluorescence Molecular To-
mography (FMT). The basic principle of operation of this diffuse optical imaging device
is briefly outlined, followed by an overview of the evolution of FMT from stand-alone
devices to hybrid implementations that combine molecular data with anatomical data
obtained from, e.g., XCT or MRI. The section closes with a discussion on considerations
and requirements for multi-molecular investigations using hybrid FMT. The concept of
coregistering limited-projection-angle FMT with XCT is introduced, as well as the gaol
of automatized incorporation of anatomical priors into the reconstruction process.
Section 4.2 presents theoretical background on light transport modeling and image
reconstruction in the context of stand-alone FMT, followed by regularization aspects
introducing anatomical prior information into the inversion process for hybrid FMT
schemes. The incorporation of so called regularization factors into the regularization
matrix for segment wise regularization is discussed.

The imaging systems employed in this work, i.e. limited-projection-angle FMT and
preclinical X-ray CT, are described in Section 4.3. Data acquisition by FMT and
segmentation of XCT images are further subjects of this section. This part is fundamental
for understanding the coregistration strategy developed for combining FMT and XCT
data sets, presented in Section 4.4.

First reconstruction results obtained by hybrid limited-projection-angle FMT-XCT are
reported in Section 4.5. These are compared and evaluated against stand-alone FMT
reconstructions of the same imaged homogenous and heterogenous tissues. This section

concentrates on a proof-of-principle, showing the potential improvements that can be
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obtained by hybrid limited-projection-angle FMT, and therefore employs manually se-
lected regularization factors. Section 4.6 goes one step further, showing the development
of a data-driven scheme for automatically estimating regularization factors from hybrid
limited-projection-angle FMT-XCT data, leading towards user independent FMT-XCT
reconstructions. This method enables independent and unbiased reconstruction of
multiple molecules in the same experimental animal.

Section 4.7 expands the approach of multi-molecular imaging by showing the coreg-
istration of an additional molecular imaging modality, PET, into the multi-molecular
imaging framework. This section aims to give an outlook on the potential of hybrid
limited-projection-angle FMT for multi-molecular investigations.

The chapter closes with a discussion of the results and some recommendations for future

work in Section 4.8.

The work presented in this chapter has resulted in two peer-reviewed journal pa-
pers that have meanwhile been published by the author and colleagues [150,151]. Several

figures and text passages were adopted from these publications.

4.1 Introduction to fluorescence molecular tomography

4.1.1 Background

Fluorescence Molecular Tomography (FMT) is a method that images tissue biomarkers
by resolving the bio-distribution of fluorescently labeled agents and reporters that enable
non-invasive in-vivo imaging of cells and cellular moieties in small animals or other
tissues [138, 165,174,193, 195]. Similarly to other in-vivo molecular imaging modalities
like PET and SPECT, FMT utilizes agents that target functional and molecular tissue
parameters. Due to this basic ability, FMT can study disease progression or monitor
therapy non-invasively, which enables highly diverse applications such as cancer, cardiac,
inflammation or neurodegenerative imaging [14,71, 121,127, 196]. One of the strengths
of FMT over nuclear imaging devices is the use of non-ionizing energy, typically in the
near-infrared range of the optical spectrum. An additional advantage is the ability to
resolve many tracers simultaneously by using fluorescent labels at different wavelengths.
Therefore, different contrast mechanisms can be concurrently studied, for example the

relative expression of different receptors or the relative concentrations of different types

122



4.1 Introduction to fluorescence molecular tomography

of cells. Conversely, the most important limitation is the diffusive character of near
infrared photons that propagate in tissues, which complicates image formation and
quantification and limits the size (depth) of the object that can be imaged, typically to a
few cm [134,194].

The basic principle of operation of FMT relies on the injection of a near-infrared
fluorescent probe into the blood stream of a small animal, and the detection and recon-
struction of its accumulation in specific diseased sites. Tissue is illuminated by a laser
source at the fluorochrome’s excitation wavelength and gets absorbed by the fluorescent
probe. The emitted fluorescence exits in diffuse light patterns on the tissue boundary,
which are collected by some kind of photon detector. These boundary measurements
can be combined in a tomographic scheme and used in a mathematical model describing
the photon propagation in tissue (like for instance the diffusion equation discussed
in Chapter 2) to reconstruct the unknown volumetric distribution of the fluorescence
source [133, 138]. In contrast to surface imaging methods like those discussed earlier
(Chapter 3), FMT operates in trans-illumination mode, meaning that illumination and
detection occur on opposite sides of the imaged subject. Although signals detected in epi-
and trans-illumination mode exhibit similar nonlinear dependencies to depth and tissue
optical properties, the latter provides more information on the imaged subject. This is
due to the different volumes sampled with each of the two imaging geometries. In trans-
illumination mode, light propagates through the whole volume and therefore samples
it entirely. In epi-illumination on the contrary, exact sampling depth is unknown [133].
Additionally, trans-illumination data can further be normalized by dividing the image
acquired at the emission wavelength by the image acquired at the excitation wavelength,
thus correcting for influences like heterogeneous illumination or background tissue

optical properties [4].

The diffusive character of photon propagation in the visible and near-infrared range
generally makes the recovery of fluorescence biodistribution an ill-posed problem and
limits achievable resolution of FMT to an order of magnitude of millimeters. Significant
improvements on employed hardware, setup geometries and reconstruction approaches
since the first appearance of FMT, however, have resulted in current systems that allow
for reconstructions with sub-millimeter accuracy [160]. These improvements mainly
focused on developments on data collection schemes for stand-alone FMT, but also on
the combination of optical tomography with other tomographic imaging modalities into

hybrid systems that offer complementary data on anatomy to guide FMT reconstruction.
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These improvements represent the basis for the methodological developments presented
in this chapter. The next two sections are therefore dedicated to review the evolution of
FMT and hybrid FMT, before introducing to the concept of imaging multiple molecules
with hybrid FMT.

4.1.2 Evolution of stand-alone FMT geometries

Original stand-alone FMT setups employed light guiding fibers to couple light into
and from the tissue. Such arrangements have several disadvantages. Fiber placement,
for instance, can be very cumbersome on irregular tissue surfaces. This difficulty was
in some approaches overcome by the employment of an imaging chamber with fixed
geometry. Experimental objects were placed in this chamber, which was then filled with a
diffuse fluid matching the animal’s mean optical properties. This approach simplified the
imaging geometry to a manageable cylinder or slab shape and improved fiber coupling.
On the downside, it also introduced additional tissue boundaries and inhomogeneities
in the sampled volume. One of the most important drawbacks of fiber-based systems,
however, is the restricted number of fibers that can practically be employed due to spatial
constrains of the imaging setup. Therefore, achievable resolution in such setups is limited

to a few millimeters.

Alternatively, non-contact setups have been proposed that, first, resolve the issues
of fiber coupling, or of additional scattering and absorption introduced by matching
fluids. Second, they enable higher resolution imaging by increasing the detector readings.
In these setups, detection fibers are replaced by CCD cameras and excitation is realized
by scanning a focused laser spot over the tissue surface.

Information on the imaged geometry can be obtained by two approaches: The first em-
ploys imaging cassettes that determine the object’s geometry. They consist of transparent
plates between which the object is slightly squeezed to avoid movements during data
acquisition. These cassettes also create a predefined geometrical shape that can be used
to guide the reconstruction process. With this concept, only limited angular projections
perpendicular to the plate surface can be acquired by the camera.

The second approach extracts arbitrary three dimensional shapes with surface capture
optical methods (like for instance photogrammetry). Since no imaging cassette is
obstructing the view on the object, this concepts allows for full-projection-angle acquisi-

tions. For acquiring projections at all angles, either the imaged subject is rotated and the

124
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hardware is kept in a fixed position, or the hardware can be mounted on a rotating gantry
and the subject remains fixed.

In addition to experimental simplicity compared to fiber-based methods, full-projection-
angle non-contact data collection schemes offer information rich data sets, due to both

large angular and spatial sampling.

Most non-contact fluorescence tomography systems that have been disseminated to
the laboratory operate as limited-projection-angle systems, i.e. more specifically ac-
quiring optical projections from a bounded slab geometry [29, 63, 127, 157, 168, 206].
Compared to full-projection-angle systems, the slab geometry is technically easier to
implement and comes with several operational advantages including easy animal place-
ment, shorter experimentation times and offers systems of reduced cost. This geometry
also offers the possibility to develop rigid animal holders that can be translated between
different modalities for obtaining hybrid data [128]. Full-projection-angle systems, in
contrast, often need dedicated hardware development and integration in order to afford
hybrid data acquisitions. Conversely, the slab geometry attains imaging performance
limitations because it offers limited resolution along the axis of the projections [63,200].
In addition, surface artifacts are more pronounced as the number of available projections
decreases [109].

4.1.3 Evolution of hybrid FMT

Although most optical tomography implementations reported so far operate as stand-alone
systems, several studies have shown that the combination of optical tomography ap-
proaches with other modalities, in particular modalities yielding anatomical information
such as MRI [140, 146] or XCT [160] can further improve image reconstruction perfor-
mance. Improvements can be delivered by utilizing the anatomical information as prior
information to limit the uncertainty of the tomographic problem [15,41,68,113,117,199].
Typically, knowledge about the internal structures of an animal, i.e. the segmentation of
different tissue types like bones, lung, heart, brain etc., allows the assignment of different
optical properties to each of these tissues and consequently more appropriate modeling
of photon propagation inside each tissue type. A similar practice is employed in PET
whereby information on density differences from XCT scans is used for attenuation
correction resulting in superior PET reconstructions [183]. Yet it is even more crucial in

FMT inversions due to the stronger dependence of near-infrared photons on the tissue
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optical properties [153]. In addition, the anatomical information can be used to define
functionals that can be employed in the reconstruction process to restrict the ill-posed

nature of the inverse problem and stabilize the performance of the method [15,41].

The use of priors from an anatomical modality in optical tomography of tissues
has been demonstrated in the past. As early as 1995 Barbour et al. [15] examined
theoretically the potential utility of incorporating MR-derived anatomical image data to
enhance the quality of tomographic optical imaging in order get over the hurdle imposed
by the diffusive character of light propagation in tissue. Their approach consisted in
simulating measurements for segmented 3D MRI data sets of breast tissue in which
different tissue types were assigned different optical properties. Consequently, the
dependence of image quality on different properties, also related to the reconstruction
algorithms, could be investigated. At that time, optical tomography - with or without
priors - was still in its infancy. Nevertheless, the simulations presented in this early
work showed promise to the feasibility of recovering relevant information form optical

measurements and lead on the right track for further hardware and software developments.

Additional methodological approaches incorporating priors in optical tomogra-
phy [90, 114, 145, 146] and implementations that combined DOT or FMT with MRI [67],
ultrasound [209] or XCT [85, 117] were since proposed. Pogue and Paulsen [145],
and Pogue et al. [146], for instance, examined a reconstruction algorithm that would
take advantage of the data available from a composite MRI-NIRS system for imaging
the rat cranium. They tested its ability to obtain high-spatial-resolution images of the
near-infrared optical absorption coefficient in simulations and were able to distinguish
even local perturbations located inside one tissue type. Intes et al. [90] used a different
approach to incorporate prior information. Their algorithm was based on a Bayesian
framework with a spatially varying a priori probability density function extracted from
MRI anatomical maps and the additional incorporation of physiological priors. Further-
more, X-Ray mammography was the anatomical modality of choice with Li et al. [114]
which was included by a modified Tikhonov regularization method in the diffuse optical
tomography reconstruction. They explored the usage of two different types of priors
that combined the L-curve approach for finding one parameter with a signal-to-noise
ratio type of maximization for the second. Their simulations showed promising results
for contrast-to-noise ratio and resolution improvement. On the instrumentation front,
Gulsen et al. [67] presented a combined DOT and MRI system for small animal imaging,

whereby a similar approach was also considered in clinical studies [141]. Ultrasound and
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optical tomography was combined in a handheld device by Zhu et al. [209].

The combination of FMT with anatomical devices has also been investigated. Davis
et al. [40], for instance, incorporated a fluorescence imaging system directly into a
clinical MRI to improve detection of brain tumors in mice. The regularization was based
on segmented MR images and a Laplacian-type regularization matrix that had been
introduced in [41]. The potential gain from integrating MRI and FMT has been realized
by several groups and is currently one major focus of hybrid FMT research [179]. FMT
has also been recently combined with X-ray CT (XCT) in a hybrid animal imaging
system based on free-space CCD camera photon collection [160]. This approach enabled
the collection of high spatial-sampling data at 360 degree projections. The integration of
the optical hardware onto the gantry of a micro-CT device allowed accurate coregistration
of FMT and XCT images. Similar approaches fixed the acquisition system and rotated
the animal instead [38, 200]. Different reconstruction schemes incorporating XCT
anatomical data were investigated both for the forward problem [87] and for the inverse
part [4,85,86,160]. Ale et al. [4], for instance, compared different regularization methods
based on Tikhonov, Laplace and different weighting of segments and concluded from
simulations and ex-vivo experiments that the latter approach was the most promising.
Hyde et al. [86] used a similar approach employing different weighting but additionally
focused on the development of data driven regularization and investigated the influence
of subdivision of anatomical segments on the reconstruction outcome.

Hybrid implementations are scarce when it comes to limited-projection-angle FMT
geometries. While the translation possibility of the imaging cartridge has been used to
compare FMT and anatomical images [128], no investigation so far has examined the
improvements offered when incorporating anatomical information into data acquired

from animal models of disease in-vivo.

4.1.4 Imaging of multiple molecules with FMT

The improvements in reconstruction quality obtained by free-space FMT implementa-
tions and the incorporation of anatomical data into the reconstruction of FMT data are
undeniable. These engineering and algorithmic achievements have afforded distinguished
biological studies [3,5,42] that can result in better understanding of biological processes,
therapy design and drug development.

A next important step in the progress of hybrid FMT approaches is the development
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of multi-spectral schemes that capitalize on the unique ability of the hybrid optical
method to simultaneously image several targeted agents at higher imaging accuracy
than stand-alone FMT systems. Complementing traditional molecular biology methods
with the non-invasive acquisition of multi-molecular information is highly desirable
as a unique method that can offer insight into dynamic processes in unperturbed
biological tissues. Correspondingly, hybrid FMT reconstructions implemented using
automatically computed priors have the potential to deliver better accuracy in volumetric
multi-wavelength imaging, complementing multi-wavelength (multispectral) imaging
strategies considered in two-dimensional surface weighted epi-illumination mode, as

discussed in Chapter 3.

Dual-wavelength concepts based on the combination of one targeted and one untar-
geted probe have been introduced for 360 degree (i.e. full-projection-angle) FMT
systems [42, 181]. These concentrated on the correction and normalization of the
targeted probe by using the untargeted probe as internal control. Conversely, independent
assessment of different targeted probes that simultaneously report on different molecular
events is desirable and adequate data acquisition and reconstruction methods have to be
developed for this purpose. The work presented in this chapter is dedicated to report on
considerations and methodological developments conducted towards the goal of enabling
independent multi-molecular investigations with hybrid FMT, and to show the obtained

results.

Before moving on to the presentation of the conducted work, some considerations
regarding the requirements for multi-molecular FMT imaging are necessary. The
three following points mainly guided the choice of imaging setups and methodological

developments presented in the following sections:

[1] Short acquisition time: One important aspect in in-vivo investigations is the exper-
imental time. An experimental animal cannot be subjected to stress, like imaging,
over extended time periods. Acquisition of N fluorochromes, however, results in an
increase of FMT acquisition time by a factor of N compared to single fluorochrome
acquisitions. Therefore, fast acquisition methods had to be favored and, if necessary,

a trade off against data sampling density had to be considered.

[2] Multi-modality: The minimum requirement towards multi-modality was the incor-
poration of data from an anatomical imaging device, due to the conclusions made

in Section 4.1.3. For a truly multi-molecular approach, however, the possibility
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to integrate different imaging modalities into the FMT framework would be even
more beneficial. Beyond the realization of hybrid reconstructions by incorporation
of anatomical data from XCT or MRI, additional molecular imaging data like PET
or SPECT could be added to the multi-molecular data set. An information rich data

set of molecular distribution could hence be created.

[3] Hardware availability: The developed methods aim at providing an improved
molecular investigation scheme to a broad range of medical and biological re-
searchers. Cumbersome and dedicated hardware developments were therefore
avoided. Instead, methods that can be applied to commercially available imaging

systems were favored.

Based on the defined requirements, a hybrid FMT scheme for independent assess-
ment of multiple molecules was conceived and implemented. For this purpose, a
limited-projection-angle FMT setup was employed and hybrid data was incorporated by
coregistration to micro X-ray CT data (both imaging modalities are described in Section
4.1.3). As stated in the requirements, acquisition of multiple molecules imposes time
restriction on each wavelength in order to keep animal stress on an acceptable level.
While 360 degree systems offer higher information density, they are also time costly
and the measurement of multiple molecules results in long experimental procedures
leading to long anesthesia times for the experimental animal, that may not be survived.
Limited projection FMT offers implementation simplicity, as it does not require rotating
gantries but offers a sub-set of the information available to 360 degree systems. This
subset may not provide the same reconstruction accuracy as 360 degree acquisitions
in stand-alone FMT systems. The combination with anatomical data, however, can
improve the accuracy of limited-projection-angle FMT, and the development of adapted
reconstruction and regularization schemes can subsequently lead to an imaging system
capable of reconstructing many molecular markers after acquisition in comparatively
short time. The employment of limited-projection-angle FMT further enables the
utilization of an imaging cartridge that can be employed to translate the imaged animal
to other imaging modalities beyond XCT, like PET. This results in additional molecular
readouts and increases the diagnostic potential of hybrid FMT.

The improvements achieved in the imaging performance of limited-projection-angle
(slab geometry) FMT systems when incorporating hybrid anatomical information in-vivo,
had to be investigated first. This was preceded by the implementation of an adequate

co-registration approach, which was achieved by means of an animal cartridge that can
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offer rigid animal translation between a stand-alone FMT scanner and a XCT animal
micro-scanner. Based on obtained results, a method for automatic and independent
estimation of regularization factors for the incorporation of priors was derived. All
methodological developments were first evaluated on tissue mimicking phantoms. Their
universality was then confirmed on more realistic, heterogeneous tissues, i.e. in mouse
models of cancer.

By improving the overall reconstruction performance and enabling automatic, data-driven
regularization, this work provides a methodological framework for multi-molecular in-
vivo investigations. The developed method was tested in dual-wavelength, or respectively
dual-molecular-marker, experiments. The obvious extension of this work by employing
a larger number of fluorescent agents at different spectral bands and the possibility of

co-registration with a larger number of imaging modalities is also discussed.

4.2 Forward and inverse models

This section presents theory for modeling light propagation in FMT and for the inversion
of diffuse imaging data. The incorporation of anatomical prior information into the reg-
ularization matrix, as well as schemes for automatic regularization factor estimation are

also introduced.

4.2.1 Forward model

Modeling of photon propagation in tissues is based on the time-independent diffusion
equation (Equation 2.26). In order to incorporate fluorescence into the modeling pro-
cess, two coupled equations describing photon densities at the excitation and emission
wavelengths are used. The propagation of excitation light into tissue from a source S at

position 7y and at excitation wavelength A, is given by
— VDV, (F) + gy Py (F) + €c(F) = SO (F—T7%) 4.1)
and the propagation of the emitted light after excitation by S is given by

— VD, V®,,(7) + tam®Pm(7) = —nec(7)Dx(7) 4.2)
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where the subscripts x and m indicate the wavelength dependence of the variables
on A, and A,, respectively. € is the Molar extinction coefficient, ¢(7) is the
fluorochrome concentration at 7 and 1 is its quantum yield. Assuming the wave-
length difference between A, and A, small, absorption and diffusion coefficients can be

approximated as being equal at both wavelengths, i.e. D =Dy =D,, and U; = Uax = Ham-

The first order Born approximation can be used for describing the fluorescence
measurement at detector position 7y from a fluorescence source at 7, within a volume Q,
yielding

D (ra7s) = Os | G(rg, F)n(F)Px(F, rs)dF (4.3)

FeQ
where G(77,7) is the Green’s function solution (see Equation 2.28) to the diffusion equa-
tion, n(7) is the unknown fluorochrome distribution and ©j is the power of the excitation
point source. As fluorescence photon densities are much smaller than photon densities

caused by the excitation laser source, we further approximate ®.(7,7;) ~ @;G(7, 7).

The normalized Born approximation gives the ratio of photon densities at emission
and excitation wavelengths created by a point source at 7 on the boundary and detected

by a detector at r; on the boundary

Dy (7, 72) _ / G(ra,")n(F)G(F,75) . (4.4)
Q

D (74, T5)

This normalization eliminates system related effects like source intensity variations and
reduces the sensitivity of the reconstruction for errors in the optical properties that are

used for forward model calculation [6, 173].

As discussed in Chapter 2, the analytical formulation of the Green’s functions is
only valid under certain idealized conditions, which are not fulfilled in our case.
Therefore, in this thesis, Green’s functions are calculated numerically using a finite
element system implemented using a proprietary MATLAB-interface to the Deal II
framework [160]. The necessary FEM mesh is generated from the XCT volume, using

the outer surface of the imaged object as boundary.

Discretization of the volume into small volume elements finally leads to a linear

formulation of the forward problem, which can be expressed for a source-detector-pair
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as
Dy (7, 7s) G(ra,7)n(¥)G(7,75)
= — AV 4.5)
q)x(rd7rs) ; G( dars)

where AV represents the size of a voxel.

4.2.2 Inversion

For all source detector pairs, Equation 4.5 can be written in a simplified form as a linear
matrix system, i.e.
y = Wx (4.6)

where W is a  Nyeasurements X Nyoxels Matrix containing the weights (sensitivities) for
every volume element (voxel) and each source-detector pair assumed, and y and x
are vectors containing the normalized measurements and the unknown fluorescence

distribution, respectively.

Equation 4.6 can be inverted to recover the unknown fluorescence distribution in
the volume. However, reconstruction requires uniqueness of the inverse problem,
which is not given in the case of the time-independent diffusion equation [8]. Noisy

measurements further complicate the already ill-posed problem.

Meaningful solutions can nevertheless be found by minimizing the error between
measurements and forward model, and employing regularization methods that stabilize
the solution [76] by imposing e.g. continuity or smoothness. This results in the following
expression:

X = argmin(||Wx —y|[3 + 2%||Lx|}3) (4.7)

whereby L is called the regularization matrix and A the regularization parameter which
determines the order of influence of the penalty term ||Lx|| on the minimization problem
relative to the residual. X is the result of the reconstructed fluorescence distribution.

The choice of an appropriate regularization parameter A can be difficult. To determine
the respective A value for each reconstruction in this work, the minimization of Equation
4.7 is solved for 200 different values of A. Those values are chosen to be logarithmically
spaced between 107¢-||W| and 10'-||W|. An optimal A value is typically selected
by L-curve analysis [75] by plotting the solution norm versus the residual norm and

then choosing the A value at the first corner of the resulting L-curve. In Section 4.6
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an alternative choice of A for the computation of regularization factors will be introduced.

The regularization of the residual norm is often realized by a Tikhonov type regu-
larization matrix [9,71, 182], i.e. L equals the identity matrix I. This is the case when
no prior information is implemented. L = I means that all voxels are equally regularized.
Conversely, prior information can be implemented by using an L matrix that contains
different values for different tissue segments in its diagonal [4, 86], henceforth denoted

as regularization factors.!

These factors are employed to offer a different degree of
regularization to different tissue structures (segments). It was previously shown that
this kind of varying regularization can improve the reconstruction of x in the context
of hybrid FMT-XCT [3, 4] (see also Section 4.1.3 for other hybrid approaches). One
challenge related to the employment of regularization factors, however, consists in their
determination. Manual selection of regularization factors can only be admissible when
the fluorescence biodistribution in the imaged object is very well know. Since this
is rarely the case in diagnostic imaging scenarios, objective, data-driven methods for
regularization factor computation should be employed. The next section addresses this

subject in more depth.

4.2.3 Varying regularization

The integration of anatomical data into the FMT reconstruction enables mapping of
optical measurements to the surface of an accurate geometrical shape. Internal structures
can furthermore be segmented from the anatomical data set, as will be described in
Section 4.3, and used to implement functional priors in the forward model and structural

priors in the inversion of (limited-projection-angle) FMT.

A data-driven two-step inversion method was previously proposed in the context of
360 degree degree systems [4, 86] for automatically estimating spatially varying regu-
larization factors in the L-matrix , employed to establish priors in Equation 4.7. The
two-step inversion method consists of a first inversion step, performed by using anatom-
ical information as prior information in the forward model and employing Equation
4.7 with L =1 to derive relative fluorescence strengths per segment. Regularization

factors for each segment are then estimated from reconstructed intensity values in the

!Other publications use the terminology “weights” to denote the different entries in L. This is omitted
here in order to avoid confusion with the weights contained in the weight matrix W.
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different tissue segments, typically proportionally to the calculated mean signal intensity
per segment. Assuming a tissue containing N different segments and a matrix Iy of
size 1 x N containing the average reconstructed intensity in each segment after the first

inversion, the segment specific regularization factors fj,, are obtained as

_ [ (1+p)max(Ip)
Jreg = \/ To(segs) + p max(Io) (4:8)

Where seg; is the segment containing the voxel i and f is set to 0.066 [86, 126]. This
constrains fy, to be in the range fiee € [1,4/1+ 1/B]. The second inversion step incor-
porates these segment specific regularization factors into the diagonal of the L-matrix
in order to achieve spatially varying regularization in combination with an adequate
regularization parameter A. Depending on the regularization factor, each segment is
stronger (large regularization factor) or weaker (small regularization factor) regularized.
I.e. reconstructed intensities appear smoother as the regularization factor increases. The
advantage of the two-step data-driven approach is that it is free of user-based assumptions

or heuristic selection of regularization factors.

An adaptation of this approach is introduced later in this chapter (Section 4.6.1)
for the development of an automatic computational scheme for regularization factor
estimation in hybrid limited-projection-angle FMT applications. The basic feasibility of
hybrid reconstructions with limited-projection-angle FMT and its evaluation, however,
was first investigated with manually set regularization factors, in order to simplify the

problem (Section 4.5).

4.3 Imaging setup and data acquisition

4.3.1 FMT setup and data acquisition

For fluorescence tomography a limited-projection-angle trans-illumination tomography
system (FMT 2500, VisEn Medical, Woburn, MA) was used. This system consisted of
two continuous wave laser sources for excitation at 680 nm and 750 nm. The laser light
was guided from the laser through light guiding fibers to a x-y—translational stage. The
stage was used to scan a focused laser spot over a region of interest on the surface of the

experimental object. Images were acquired by a CCD camera placed on the opposite
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Figure 4.1: Schematic of a limited-projection-angle FMT system (not in right scale) and
example for acquired images. (a) FMT setup including lasers, x-y stage for
scanning, a filter wheel and a camera. (b) The laser is scanned along the
x and y axis (bottom row) and a camera is acquiring the trans-illumination
images for each scan (top row). The center shows a cross section of the
cartrige containing a phantom with two fluorescent inclusions.

side of the imaged object from the laser sources. A filter wheel in front of the camera
was used for filter selection for the respective emission wavelength. Figure 4.1 depicts a
schematic of the setup arrangement (not true to scale) and representative images of the
scanning process and the respectively acquired diffuse images.

The imaged object was placed in an imaging cartridge consisting of transparent plates,
perpendicular to the angle of projection and parallel to the detection plane of the CCD
camera. The transparent plates were made of glass-reinforced extruded nylon and covered
with an anti-reflection coating for the NIR. The object was inserted between the two
transparent plates which apply mild compression to the phantom or mouse body. In this
manner the object stayed immobile in the same position while sequentially imaged by
FMT, XCT or PET. Figure 4.1(b) shows the cross-section of such a cartridge containing
a tissue mimicking phantom with two fluorescence tube insertions (red circles).

The cartridge was always inserted in the same horizontal position in the FMT system,
by means of rigid rails. It contained fiduciary markers consisting of small cavities
in the frame which were visible in the X-ray CT images. The fiduciary markers are
manufactured to mark a plane that is parallel to the detection plane of the CCD camera

and were employed to track the position of the cartridge when inserted into the XCT bore
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(a) (b)

Figure 4.2: FMT imaging cartridge containing (a) a phantom and (b) a mouse. Small
holes in the non-transparent margin of the cartridge serve as fiduciary mark-
ers (arrows).

so that FMT and XCT data could be accurately coregistered. Figure 4.2 depicts such an
imaging cartridge containing a phantom (a) and a mouse (b). The position of the fiduciary
markers are highlighted by red arrows.

Typical scan patterns assumed spacings of 2 - 3 mm on a regular grid, depending on
the size of the region of interest. On average an area of around 30 mm x 15 mm was
scanned, leading to approximately 66 - 128 source points. For each point scanned, trans-
illumination images were collected at the emission and the excitation wavelengths. White
light mouse photographs were also collected and served as the basis for coregistration.
Exposure times and laser power information were recorded and employed to scale the
intensities in the fluorescence and intrinsic images. The scaled images and information
on respective source positions served as input to the hybrid FMT reconstruction method

presented in Section 4.2.1.

For comparison of hybrid and stand-alone FMT reconstructions, the reconstructed
fluorescence signal distribution computed by the stand-alone FMT device with an
isotropic resolution of 1 mm was also exported in DICOM (Digital Imaging and Commu-
nications in Medicine) format. It was overlaid to the XCT volume by fiducial mapping
using the software package AMIRA (Visage Imaging GmbH, Berlin, Germany). This
post-reconstruction overlay was used to compare and validate the results attained with

the pre-reconstruction overlay.

4.3.2 X-Ray CT data acquisition and segmentation

For anatomical imaging a small animal X-ray CT (Inveon, Siemens Preclinical Solutions,
Knoxville, TN, USA) was used. The imaging protocol for the experiments conducted
in this study was set to acquire a 3D data set at an effective resolution of 104 um after

fourfold binning. The CT x-ray source operated at 80 kV and 500 uA with an exposure
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time of 200 ms for each of the 360 acquired projections. The three dimensional CT data
was post-processed to account for beam hardening and exported in DICOM format for

further processing.

Segmentation of the XCT data was performed to single out different anatomical
structures. When imaging the upper mouse thorax 4 organs were typically segmented,
i.e. the lung, bone, heart and remaining tissue. The segmentation was performed
(semi-)automatically using thresholding, seed growing and signal detection algorithms as
previously reported by Freyer et al. [52].

Summarized, because of the high contrast, bone segmentation could be performed using
an automatically derived threshold. From this first segmentation the ribcage was obtained
and used for localization of the lung, which was finally segmented using a seed growing
algorithm. The seed points were automatically determined from an intensity histogram of
voxels lying inside the region of interest determined by the ribcage. For the segmentation
of the heart a shape model was used that was iteratively adjusted based on the ribcage
and lung segmentations. In contrast to the method described by Freyer et al. the initial
position of the heart was not determined automatically but through user input, since in
the present case the typical thorax shape was deformed by squeezing in the imaging
cartridge.

For subcutaneous tumor mice, an additional segmentation of the tumor area was per-
formed. This area was selected manually based on the XCT images.

For phantom studies, only the tubes and the background medium were segmented from
the complete volume, since no other distinguishable structures were present (see Figure
4.1(b) for phantom shape and tube location). For segmentation purposes, the tube walls
were employed as boundary indicators since they are visible with high contrast on the
XCT images due to their different X-ray absorption characteristics compared to the
phantom background medium. The tube boundaries were manually selected in two
transversal slices of the XCT reconstruction, each at one end of the phantom, and this
input was used for automatic extraction of the rest of the tubes throughout the volume.
All voxels lying inside the extracted tube walls were consequently assigned to the tube

segments.
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Figure 4.3: Coregistration concept for alignment of FMT and XCT data sets. The co-
ordinate systems of XCT and FMT respectively are mapped to each other
through rotation and translation.

4.4 Coregistration of FMT and XCT data

The first step towards the incorporation of priors into the reconstruction of limited-
projection FMT data consisted of integrating XCT data into the FMT framework. This
was achieved by coregistration of the respective data sets.

For registration purposes, information from the fiduciary markers on the imaging car-
tridge was combined with boundary information of the animal, as seen on XCT images
and the animal photographs obtained by the FMT system. These guided the translation
and rotation of the reconstructed 3D XCT volume to fit in a common coordinate system
with the FMT data. A schematic of this concept can be seen in Figure 4.3. The white light
image taken in the FMT device defined the coordinate system to which the XCT volume
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Figure 4.4: Example for coregistered FMT-XCT data set. (a) Fiduciary markers and
boundary mapping were used for the fusion of the FMT and XCT data sets.
(b) The source and detector information from the FMT device were projected
on the boundary computed from the XCT.

had to be coregistered. Since, however, the XCT information is three-dimensional
whereby the photograph is two-dimensional, it was not possible to directly extract
information on possible rotation of the cartridge in the XCT system, but the plane defined
by the fiduciary markers was considered as the horizontal plane corresponding to the
photograph. The fiduciary markers were then employed to measure and correct for the
rotation angle between the x, y and z axis in XCT and FMT.

After rotation, x- y translation was applied to align the XCT images and FMT data
to a common coordinate system. More specifically, the orientation of the cartridge
(transversal, sagittal plane) was extracted from the reconstructed XCT images based on
the cartridge plates and fiduciary markers. According to Figure 4.3, the angles denoted
by «, B, v between the XCT planes ( Xyers Yrer» Zxer) and the ( Xfmts Yfmts Zfmr)
plane of the photograph from the FMT device were computed by projecting the FMT
photograph to the xy¢- yxer ( Zxer = 0) plane and computing the angles between this
plane and the ones defined by the fiduciary markers along the transversal and sagittal
slices. Then the 3D XCT image was rotated so that it could be aligned with the ( xy,,
Yfmt» Zyme) Plane. Having consequently produced two parallel data sets a translation step
was then performed to map the boundary and fiduciary information from the XCT to the
mouse photograph. To achieve this, the animal boundary from the XCT was produced
by projecting the XCT slices along the z axis on one single plane that corresponded
to the FMT photographic plane (i.e. a maximum intensity projection and subsequent

boundary extraction by thresholding). This step is visualized in Figure 4.4. Figure
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Figure 4.5: Evaluation of FMT-XCT coregistration accuracy by imaging of a thin wire
phantom. The XCT image (1% panel from left) and optical image (2" panel
from left) were coregistered and overlayed (3" and 4™ panel).

4.4(a) depicts a black and white image of a mouse acquired with the FMT camera and
the overlaid boundary extracted from the XCT image, shown in blue. The laser source
positions and the location of the fiduciary markers are projected onto the overlay in red.
This projection is enabled by the integration of both modalities into one geometrical
framework. The acquired fluorescence images could then accordingly be projected onto
the same geometrical scheme.

Summing up, in contrast to other coregistration approaches previously used for FMT-XCT
post-reconstruction coregistration using a cartridge [128] this approach is not mapping
two 3D data sets to each other using fiduciary markers but performs pre-reconstruction
2D to 3D mapping and employs additionally the sample boundary for more accurate
coregistration results. The width dimension ( z) of the animal was obtained from the XCT
and confirmed both by the internal measurement system in the FMT device, which mea-

sures the cartridge width using two ultrasound transducers, and the display on the cassette.

The accuracy of the co-registration method was examined using a 230pum copper
wire placed in random directions in the cartridge and imaged by XCT and FMT (only
reflectance image). Figure 4.5 illustrates the results obtained from the validation study
examining the coregistration of FMT and XCT data. It shows an XCT image (1% panel
from left) and a photograph (2" panel from left) of the wire phantom as well as the
overlay of both data sets after rotation, scaling and translation. The wire shape extracted
from XCT data and projected in one plane could be perfectly aligned with the FMT
reflectance image without any apparent non overlapping regions. The coregistration

accuracy was measured as the distance between the wires as seen by the optical and the
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XCT image on the overlay of Figure 4.5, 4" panel. This difference was found to be 1
pixel (worst case), i.e. max. 154 um, i.e. much smaller than the resolution achieved by
FMT.

4.5 Hybrid reconstruction of limited-projection-angle
FMT

This section evaluates the general feasibility of hybrid reconstructions of limited-
projection-angle FMT data. It presents the results obtained after integration of anatomical
data into the reconstruction of limited-projection-angle FMT. Two scenarios were consid-
ered to compare and evaluate the improvements; the first employing homogeneous tissue
in form of a tissue mimicking phantom, and the second employing heterogeneous tissue
in form of an in-vivo mouse experiment.

Because previously well characterized homogeneous and heterogeneous tissues were em-
ployed, manually selected regularization factors could be used for this proof-of-principle
study. For inversions shown in this section, we assigned the smallest regularization factor
( fseg = 1) to the region(s) that were expected to have highest fluorescence signals. The
other regions were assigned a high regularization factor ( fy., = 4). These regularization
factors were lying within the admissible range defined above (Equation 4.8). This alloca-
tion of L-matrix regularization factors is therefore a variation of the method presented by
Hyde et al. [86].

Note that manual selection of weights is only appropriate when using phantoms or spe-
cific mouse models where the appearance of disease or fluorescence distribution is known
before-hand [4, 85]. This approach was only used herein for demonstration purposes
with limited-projection-angle schemes, using known phantoms and animal models. How-
ever, data-driven regularization factor allocation is instead recommended for more general
cases where the appearance of disease or the fluorochrome bio-distribution is not known
before-hand [3] and will be subject of Section 4.6.

4.5.1 Evaluation on homogeneous tissues

First implementation and evaluation of hybrid reconstruction of limited-projection-angle

FMT-XCT was performed on a homogenous tissue mimicking phantom representing
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a mouse thorax in shape and size. The full potential of hybrid versus stand-alone
reconstructions was subsequently confirmed in mouse experiments which constitute more
realistic test cases due to heterogeneous tissue properties.

Cylindrical, tissue mimicking phantoms with inclusions containing a NIR fluorescence
dye with peak excitation at 679 nm and peak emission at 702nm (Alexa Fluor 680,
Life Technologies Ltd, Paisley, UK) were imaged in both modalities. The phantoms
were composed of a mixture of an adequate ratio of intralipid, ink, agar and water
in order to attain tissue properties of u! = 12cm ~! and y, = 0.2cm ~! and were
shaped to semi-cylinders resembling the shape of a mouse torso. The phantom measured
approximately 36 mm in length and had a diameter of 30 mm at the widest point, the two
inclusions had a diameter of approximately 3 mm. The tubes were positioned in the upper
curved part of the semi-cylinder as depicted in Figure 4.1(b) by the red dotted circles, and
filled with the NIR fluorescent dye diluted in liquid with the same optical properties as

the phantom, resulting in a fluorochrome concentration of 100 nmol .

Three ways of integrating anatomical data into the reconstruction of optical signals
were considered and compared in this study: The first did not use any information
from the XCT but was based on boundary detection through the FMT camera and
further assumed slab geometry due to the imposed shape of the imaging cartridge.
Reconstructions based on this method were automatically provided from the used FMT
imaging system. The second used the exact boundary detected by the XCT scan but no
further anatomical information. The third fully integrated all available information from
the XCT data, i.e. boundary and other segmented internal tissues (tubes for the phantom,
organs for the mouse experiments). Consequently, depending on the different level of

available anatomical information, different inversion schemes had to be implemented.

The first two approaches used a regularization matrix L = I in the inversion, since
no knowledge on the internal structures was available, and hence only differed in the
assumed tissue geometry. The third approach employed a regularization matrix with vary-
ing regularization factors in the diagonal. Figure 4.6 depicts the respective geometries
used for reconstruction and regularization, as well as the corresponding regularization
matrixes. Figure 4.6(a) shows one transverse slice of the slightly compresses phantom
between the two transparent plates. The location of the fluorescence tubes can be seen due
to the different X-ray attenuation properties of the tube walls compared to the phantom
attenuation. Figure 4.6(b) presents the tissue geometry that the stand-alone FMT systems
assumes based on the white light reflection image in transparent blue overlay on the XCT
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Fluorescence tubes

Transparent plates

Normal phantom tissue

(a)

Figure 4.6: XCT cross section of the tissue mimicking phantom showing the different
geometries employed for FMT reconstruction. (a) XCT slice. (b) Geome-
try employed in stand-alone FMT reconstructions. (c) Geometry employed
when using the boundary extracted from the XCT data. (d) Geometry em-
ployed when XCT data segmentation is considered.

slice. Only the boundaries of the object are visible on the optical image acquired by the
CCD. They are used to approximate the shape of the object by projecting the boundary
along the z-axis (marked by dashed white lines) and fitting a flattened elliptic shape to the
whole width. The regularization matrix is uniform for the whole blue marked area. When
the exact shape of the object is known, a much more accurate volume can be chosen for
reconstruction, as indicated in Figure 4.6(c). The regularization matrix however stays
the same in absence of internal segmentation. Figure 4.6(d) finally shows the segmented
tubes in yellow. The regularization matrix now contains different regularization factors in

its diagonal, corresponding to each voxel’s affiliation to one of the tissue segments.

Figure 4.7 shows the reconstruction of the fluorescence signal assuming the phan-
tom being an infinite homogeneous slab and without the use of priors (stand-alone
reconstruction). Figure 4.7(a) depicts in gray three-dimensional X-ray CT images of
the cassette and phantom inside the XCT scanner. Reconstructed fluorescence signals
are co-registered on the images in dark red color. Figure 4.7(b) shows transverse (axial)
slices at different locations along the y axis (as referred to in Figure 4.1). The slices are
showing the localization of the reconstructed fluorescence signal inside the phantom. The
location of the tubes can be seen on the XCT images and are highlighted in the first slice
with red circles. It can be observed in the upper image of the 3D representation and in all
transversal slices of Figure 4.7 that fluorescence distribution seen on stand-alone FMT

reconstructions is partially located outside the real volume (highlighted by red arrows)
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(b)

Figure 4.7: Phantom experiment showing reconstructions from stand-alone FMT. (a)
Three dimensional representation of the phantom with cartridge and adapter,
showing the entire reconstruction provided by stand-alone FMT. In the lower
image the fiduciary markers can be seen as red dots. (b) Exemplary slices
through the reconstructed volume.

and only partially coincides with the fluorescent inclusions.

Figure 4.8 shows the corresponding reconstructions without priors, but using the actual
phantom shape as boundary into the inverse code. The upper image in Figure 4.8(a)
shows the location of the five slices inside the phantom. The use of the boundary overall
improves imaging performance, over stand-alone reconstructions in particular along the
horizontal axis (Figure 4.8(b)). On the vertical axis, both reconstructions reconstruct an
elongated shape rather than a circle. The stand-alone reconstruction shows a displacement
of the center of the ellipse toward the phantom boundary. Conversely, the use of the
actual boundary better estimated the center of the fluorescence activity.

Figure 4.9 finally depicts the reconstruction using the actual phantom boundary and
anatomical priors. Here, additionally to the improved horizontal alignment one can
observe improved vertical alignment and confinement of the main fluorescence signal to
the tubes.

The difference in reconstruction accuracy for the three reconstruction methods ap-

plied to phantom imaging was evaluated. For that, the localization of the reconstructed
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Figure 4.8: Phantom experiment showing reconstructions from hybrid FMT-XCT using
the outer XCT boundary for reconstruction. (a) Three dimensional view
of the reconstructed fluorescence distribution using Tikhonov regularization.
The top image shows the position of the five slices that are shown in (b). (b)
Slices through the reconstructed volume.

fluorescence in the phantom was determined by defining concentric circles with increas-
ing radius around the tubes and calculating the percentage of the total reconstructed
signal per slice that was located inside the circles depending on the distance from the
tube. Figure 4.10 (a) shows one exemplary slice with the concentric circles at distances
of 0 mm to 5 mm from the tube depicted in red. The innermost circle is at 0 mm distance
from the tube which means that it represents exactly the tube boundary. Each of the
other circles has a distance of 1 mm from the other circles. The graph in Figure 4.10
(b) shows the percentage of the recovered signal as a function of the distance from the
tube for the stand-alone FMT (blue), FMT-XCT using only the boundary of the phantom
(yellow) and FMT-XCT using priors (red). Stand-alone FMT thus only localized 19% of
the reconstructed signal inside the tube and even in a distance of 5 mm around the tube
not more than 68% of the signal could be found. The reconstruction using the accurate
mouse boundary and Tikhonov reconstruction recovered 33% of the signal inside the
tubes and went up to 91% in a distance of 5 mm. The hybrid reconstruction using priors
finally started with a localization of 77% inside the tubes and already reached 100% in a

distance of 2 mm around the tubes.
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(a)

Figure 4.9: Phantom experiment showing reconstructions from hybrid FMT-XCT using
the segmented XCT volume for reconstruction. (a) Three dimensional view
of the reconstructed fluorescence distribution using differently weighted seg-
ments for regularization. (b) Slices through the reconstructed volume.

The results from the phantom study suggest that the use of prior information can
reduce the ill-posed nature of the limited-projection-angle FMT inverse problem and

improve the imaging performance, as previously seen for 360 degree projection FMT [3].
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Figure 4.10: Comparison of reconstruction accuracy using the three different reconstruc-
tion approaches in the phantom study. (a) Delineation of concentric circles
around fluorescent tubes considered for localization evaluation. (b) Plot
of the percentage of reconstructed signal located inside a certain radius (x-
axis) around the actual tube.
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Lung

Tissue Transparent plates
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Figure 4.11: XCT cross section of a mouse thorax showing different geometries em-
ployed for FMT reconstruction. (a) XCT slice. (b) Geometry employed
in stand-alone FMT reconstructions. (c) Geometry employed when XCT
data segmentation is considered.

It is even more essential for limited-projection-angle FMT, since reducing the information
contained in the data collected increases the ill-posed nature of the reconstruction prob-
lem. The experimental findings from the phantom measurements show that the image
performance improves when using the actual boundary in the inversion, as compared
to assuming the phantom being an infinite slab, a convenient theoretical approximation
of early diffuse optical tomography approaches [63]. Naturally, the most accurate
performance is found when anatomical priors of internal structures were also employed
(Figure 4.9).

4.5.2 Evaluation on heterogenous tissues

Tissue phantoms are convenient approximations to real tissue scenarios and adequate
for pilot experiments and proof-of-principle studies. To fully investigate the potential
of hybrid limited-projection-angle FMT reconstruction, however, real tissue displaying
multiple boundaries and heterogeneous tissue optical properties were required.

Similarly to the phantom study, different reconstruction geometries were assumed for
stand-alone and hybrid reconstructions, also resulting in different regularization matrixes.
Figure 4.11(a) shows a transversal XCT slice of a mouse thorax, where the bones and the
lung can clearly be distinguished from the other tissues. Stand-alone FMT again only uses
the boundaries of the mouse and therefore reconstructs fluorescence biodistribution using

the same geometrical shape as already seen for the phantom (Figure 4.11(b)). Using the
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XCT information on the other hand provides information on the exact mouse shape and a
segmentation of some internal organs, as shown in Figure 4.11(c). Regularization factors
are now individually assigned to all segments. Assuming a mouse with lung tumors
into which a fluorescent probe targeting these tumors is injected, highest fluorescence is
expected from the lungs. Therefore, this segment receives the lowest regularization factor
(marked green in the regularization matrix in Figure 4.11(c)). The other segments, i.e.
bones (yellow), heart (red) and mixed tissue (blue) are all assigned a high regularization
factor, because little fluorescence is expected in these regions.

Segmentation is not only useful for the inversion process. For the mouse study, different
optical properties were assigned in the forward model to each of the segmented organs
to take into account their varying level of scattering and absorption. Optical properties
values were extracted from [3]. The difference in XCT and FMT resolution was taken into
account by proportionally assigning each FMT voxel to its higher resolved anatomical

segments as previously described in [4, 85, 86].

A well-known lung tumor mouse model (Kras [R49]) was used for the evaluation
of hybrid limited-projection-angle FMT reconstructions in heterogeneous tissues. A
targeted fluorescence agent comprising an integrin o, 33 antagonist and a NIR fluo-
rochrome with peak excitation at 675 nm and peak emission at 693 nm (IntegriSense
680, PerkinElmer, Waltham, MA, USA) was administered. Integrins are a group of
transmembrane receptor proteins. Changes in their expression are associated with tumor
growth, which generally makes them an interesting target in molecular imaging.

At the beginning of the imaging session the mice were anesthetized and placed in the
previously described multi-modal imaging cartridge that held the mouse during the entire
acquisition period in both FMT and XCT in a fixed position.

In contrast to the phantom experiments, the exact fluorochrome distribution was un-
known. In order to evaluate the reconstruction outcome, in-vivo reconstructions had to be
compared to ex-vivo validation slices of the same mouse. Following in-vivo imaging the
mice were therefore euthanized and frozen while still in the imaging cartridge in order
to keep their slightly squeezed shape for validation. The mice were sliced in a cryotome
(CM 1950, Leica Microsystems) and each slice was imaged using an epi-fluorescence
system at the according excitation/emission wavelength of 680 nm/700 nm [158]. In the
following, images of ex-vivo slices showing the true fluorescence distribution will be
compared to the corresponding reconstructed slices from the in-vivo measurements as to

their accordance in signal localization and relative signal intensity.
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Figure 4.12 depicts results from the in-vivo studies. It compares stand-alone recon-
struction using slab geometry and hybrid reconstruction using priors with ex-vivo
fluorescence images of the corresponding in-vivo slices. The extraction of boundary infor-
mation and its incorporation into such optical imaging problems was previously already
shown using other means like e.g. imaging with photogrammetric 3D cameras [161]
or volume carving based on silhouette images [43]. The phantom study additionally
showed best results when using priors. This in-vivo study therefore concentrated on
the methodology and improvements specific to the hybrid FMT-XCT approach, namely
through incorporation of priors due to organ segmentation.

Figure 4.12(a) shows stand-alone FMT reconstruction as it is output by the FMT 2500.
In Figure 4.12(b) the reconstruction using varying regularization factors is presented.
Finally, Figure 4.12(c) contains ex-vivo slices indicating the actual fluorescence intensity
and distribution. The corresponding position in the mouse body can be seen in Figure
4.12(top). All slices in one row but belonging to different columns correspond to each
other.

The ex-vivo validation images (Figure 4.12(c)) show several areas with increased fluores-
cence intensity compared to surrounding lung tissue. Some examples are highlighted by
red arrows. While in some slices only single outstanding points can be observed (e.g.
slice 2) others show more than one above-average fluorescent signal source (e.g. slice 4).
The hybrid reconstruction using priors (Figure 4.12(b)) resolves the single fluorescence
sources very well (e.g. arrows in slices 1 and 2) but seems not to be able to distinguish
between three proximate but distinct spots (like in slice 4). Those are reconstructed as
one single fluorescence source centered between the three source points.

The stand-alone method (Figure 4.12(a)) in turn allocates most of the reconstructed signal
outside the lung tissue. Most of this distribution is moreover not in the expected region
but above and below the lung.

As in-vivo optical imaging achieves less resolution than the ex-vivo validation method,
reconstructed distributions can irradiate” into adjacent tissue slices and appear there
with less intensity. This can for example be observed in the third and fourth slice of the
hybrid reconstruction (Figure 4.12(b)). The fluorescence signal in the middle of both
(beneath the spine) only appears in the fourth ex-vivo slice and is quasi anticipated in the
third slice of the hybrid reconstruction.

Note that due to the process of freezing and small displacements of the animal during
this time, small shifts between ex-vivo and in-vivo images are expected and no utterly

identical representation can be achieved.
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Figure 4.12: Comparison of FMT reconstructions computed using (a) stand-alone FMT
without boundary or prior information and (b) hybrid FMT-XCT and the
segmentation information derived from the XCT. (c) Corresponding ex-vivo
slices. All slices in one row are the same. The positions of the slices in each
column are depicted in the top image.

150



4.5 Hybrid reconstruction of limited-projection-angle FMT

(b) (c)

Figure 4.13: Three dimensional representations of (a) stand-alone reconstruction and (b)
hybrid reconstruction using priors visualize the probe distribution and the
fluorescent hot spots. (c) The 3D representation acquired from the ex-vivo
slices shows signals in the same spots as the hybrid reconstruction in (b).

Figure 4.13 finally shows 3D views of the fluorescence distribution as to the stand-
alone (Figure 4.13(a)) and hybrid (Figure 4.13(b)) reconstructions, as well as the ex-vivo
distribution (Figure 4.13(c)). Here it becomes even more obvious where the main
fluorescence signals in the stand-alone reconstruction are allocated to. A threshold to
both in-vivo 3D representations was applied in order to receive similar sized fluorescence
signals in the lung. In the stand-alone case (Figure 4.13(a)) this leads to proportionally
higher signal intensities in those regions that were determined by the reconstruction to be
the main fluorescence hot spots - around the shoulder and below the lung. For the hybrid
reconstruction basically all areas are located inside the chest. This corresponds well
to the ex-vivo 3D image, which was assembled form cryoslices obtained every 250 um,
where the chest region around the heart (transparent structure inside the chest in Figure
4.13(c)) is displayed. The most intense fluorescence spots are shown in red and arrows
highlight the associated regions in Figures 4.13(b) and 4.13(c).

A comparison of all ex-vivo and in-vivo measurements was done by defining in the
cryosections a region around each tumor where a reconstructed signal would be admissi-
ble. Since the FMT reconstruction signal is more diffuse than the real signal, this region
was chosen up to 2 mm around the actual tumor. The ratios of maximum fluorescence
intensity in the tumor over maximum intensity in the muscle and in the lung were
calculated for the cryosections. The same ratios were calculated for the in-vivo data in

the corresponding regions as determined from the cryosections.
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Figure 4.14: Comparison of reconstruction accuracy using the different reconstruction
approaches in the in-vivo mouse study. Plot of tumor/muscle and tu-
mor/lung ratios in the ex-vivo cryoslices vs. in-vivo stand-alone (blue) and
hybrid (red) reconstructions.

Ratios of tumor/muscle and tumor/lung in the cryoslices versus the ratios of the same
regions in the FMT reconstruction are shown in Figure 4.14. Generally, if the FMT
reconstruction corresponds well to the ex-vivo slices the tumor/lung or tumor/muscle
ratios should ideally linearly increase or decrease with increasing or decreasing cryoslice
ratios. Therefore, acceptable data pairs would lie in the two quadrants highlighted in light
red. It can be seen that almost all data pairs (92%) from the reconstruction using priors
fulfilled this requirement and the general trend of the data showed a linear increase (red
dots and line). The reconstructions from the stand-alone FMT in contrast only plotted
half of the data pairs inside the red quadrants (50%) and the trend line shows that the

FMT signal was decreasing with increasing cryoslices signal (blue dots and line).

In conclusion, the in-vivo measurements corroborated the findings from the phan-
tom experiment. It was found that reconstructed fluorescence signals were misplaced
or erroneously allocated to areas outside the tissue volume, leading to imaging artifacts,

when the inversion was performed with software that assumes the mouse as an infinite
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homogenous slab medium. In contrast, when the actual mouse boundary and anatomical
priors were employed into the inversion code the number of artifacts was significantly
reduced and there were significant improvements in the congruency between in-vivo data

and fluorescence cryoslice images.

4.6 Towards multispectral hybrid FMT

Section 4.5 showed the general improvements that can be achieved when using hybrid
schemes in the reconstruction of limited-projection-angle FMT. For this proof-of-
principle, manually selected priors were used. While this is an appropriate approach
for a first evaluation when the employed phantom and mouse model are well known,
alternative schemes have to be developed that can be applied to any mouse model and
any employed fluorescence probe.

Fluorescence distributions are usually unknown prior to imaging. On the contrary,
imaging aims at finding these exact distributions. The approach of adapting automatic
regularization factor computation to limited-projection-angle FMT is all the more impor-
tant the more manual factor selection is likely to bias the outcome of the reconstruction.
This is particularly relevant for studies employing multiple fluorochromes in the same
animal. In this context, anatomical data always stays unchanged while the fluorescence
distribution differs depending on the used probe at each wavelength. Therefore, applying
the same regularization factors for reconstructing all wavelengths may be wrong, since
the different fluorochromes may distribute differently. Manually selecting different
factors per wavelength requires on the other hand exact knowledge on the different
fluorochrome’s distribution, which is rarely available. Making heuristic assumptions on
the probe’s accumulation site by setting regularization factors manually, may therefore

introduce bias and falsify the results.

This section therefore investigates the previously unexplored ability and relative ac-
curacy by which two different fluorescent agents can be resolved in the same object
simultaneously, when using hybrid implementations in limited-projection hybrid FMT us-
ing priors. For this purpose, the previously described method automatically implementing
spatially varying regularization [86] was adapted, which was initially developed based
on 360 degree FMT data, and optimized for limited-projection-angle FMT-XCT. The
particular interest herein was to evaluate whether and how automatic computation of reg-

ularization factors could be translated to limited-projection-angle FMT reconstructions.
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Therefore, different regularization factor computation results are characterized based on
varying regularization parameters used, and improved reconstruction metrics for data
driven a priori regularization are offered. In contrast to manual factor selection as applied
in the previous section, this approach solely relies on automatically computed regular-
ization factors and therefore enables independent reconstruction of different fluorescent
probes. By this experimental study a methodological framework for multi-molecular

in-vivo investigations is provided.

4.6.1 Automatic regularization factor computation

This section introduces the methodological framework for data-driven regularization
factor computation. The influence of different regularization parameters A on the compu-
tation of regularization factors in the step-1 inversion (i.e. after Tikhonov regularization,
see two-step inversion method described in Section 4.2.3) was examined for this purpose.
The objective was to find an ideal A for the automatic estimation of regularization factors
for the step-2 inversion. This was initially tested on phantom data containing fluorescent

insertions.

During the step-1 inversion, Tikhonov reconstruction using the identity matrix was
performed and an initial regularization parameter was chosen by L-curve analysis at the
L-curve corner [75]. The value of A was subsequently increased until an over-regularized
state was created, represented by smoothing the entire reconstruction towards a single
bright lesion in the middle of the phantom. The motivation for this L-curve analysis was
to find a value for A where regularization is high enough to suppress surface artifacts,
but still enable a representative overall fluorescence distribution. The best A value
identified in this process was then used in the step-1 inversion to derive segment-specific
regularization factors, the latter employed in the L-matrix of the step-2 inversion.
The segment-specific regularization factors were determined by computing the mean

reconstructed intensity Ip(seg,A) per segment for all values of A4

_ LegX(4)

Ip(seg,A) = Noorers (522) (4.9)

to be the sum of the reconstructed fluorescence X in each segment divided by the number

of voxels in this segment N, (seg). The Ip(seg) values for each wavelength were then

normalized so that the segment with the highest mean intensity max(Iy) was attributed
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Figure 4.15: Evaluation of the influence of the regularization parameter on Tikhonov re-
constructions. (a) Tikhonov reconstruction (step-1 inversion) of fluorescent
inclusions (red circles) in a tissue mimicking phantom for different regular-
ization parameters A, marked on the corresponding L-curve in (b).

the value 1 in the L-matrix (during the step-2 inversion), the segment with the lowest
mean intensity min(Iy) value was attributed the value of 3 and all other segments were
regularized with a value between 1 and 3 proportionally to their Iy(seg) value. This can

be expressed by the following equation [6] for future reference

f(seg)=2- [ +1 (4.10)

0
max(I; ') —min(I, ")

Figure 4.15 depicts four phantom reconstructions with different values of A using stan-
dard Tikhonov regularization, and the corresponding L-curve. The shown representative
values of A, included A; at the L-curve corner and its 2"~ multiples ( A ~ A; - 2';
A~ A =22 Ag &~ A -2%). Reconstruction for A; shows an elongated appearance of the
circular objects (fluorescent tubes) with the peak intensity biased toward the surface (see
also Figure 4.8 for the whole volumetric reconstruction with this value of A1). As the A
values increase from A; to A4 the reconstructed image appears more diffusive in nature
but the elongation is retained, due to the limited angle projection data collected by the
system. While resolution drops with increasing A, reconstructed signals also become less

surface weighted and overlap between reconstructions and actual tube location increases.

Data-driven regularization factor computation depends on the step-1 reconstruction

and therefore on the used value of A. Step-2 reconstruction in turn differs depending on
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the used regularization factor. This can be summarized in the following relationship:

step-2 inversion o< regularization factor o step-1 inversion o« A

meaning that both step-2 reconstruction and regularization factors can be expressed as
functions of A. In order to evaluate which A yields best regularization factor estimation
and step-2 reconstruction, the dependency of these two parameters has to be more closely

analyzed.

Regularization factors can be directly computed based on Equation 4.10 for all val-
ues of A, as described above.

For the evaluation of step-2 reconstructions two metrics have to be introduced. The
first evaluates the localization accuracy of the reconstructed signals the same way as
presented in Section 4.5.2. That is, an area delineated by a distance of 2 mm around the
fluorescence tubes was assumed as admissible reconstruction area and the percentage of
the reconstructed signal within the region was computed. The threshold set for assuming
that a fluorescence signal originates from a location of true probe accumulation was
set as the mean signal intensity in the entire phantom plus two standard deviations of
background noise (as previously described in [5]). This yields the following formulation

for the assessment of signal localization [(fube, 1) per tube

X(tube,A) >T

[(tube, L) = XA > T

(4.11)

where T is the threshold value and X (A) is the reconstruction obtained from Equation
4.7. X(tube, ) hence denotes only the voxels of X (A) that are localized in the respective
tube.

The second metric compares the relative contrast of the fluorescence strength between
different anatomical segments. For that the relative contrast Crj 72 between any two
regions 7'1 and T2 is computed analogously to standard contrast-to-noise calculations

as:
HT1 — Ur2

%\/ Zn Orn

where ur; represents the mean signal intensity in one region (for instance one tube)

Crirm = (4.12)

and U7y represents the mean signal intensity in a second region (for instance the
surrounding tissue), n is the number of different regions (or segments) in the phantom

(and equivalently in a mouse in Section 4.6.2) and o7, is the standard deviation of
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Figure 4.16: Computed regularization factor of the right tube as a function of A (contin-
uous line), normalized contrast between right tube and tissue (dashed line)
and percentage of signal localized within 2 mm distance of the right tube
(dotted line).

the signal in the n'* region. Cr1,72 can become negative if the mean signal intensity
in 72 is higher than in 7'1,ie. pr; < urz. For |Cryr2| < 1, the contrast is not dis-
tinguishable from the noise level in the images. For good contrast we expect |Cr 72| > 1.

Using Equations 4.10, 4.11 and 4.12, f(seg,A), [(tube,A) and Crir> were com-
puted for all values of A > A;. Figure 4.16 shows the computed regularization factors
for the right tube as a function of all A starting at the L-curve corner with A; as a
continuous line. It can be observed that regularization factors between A; and A3 are in
a similar value range, with a local minimum at A3, but rise quickly for higher values of
A. The dashed line shows the change of the normalized relative contrast (i.e. contrast
values divided by the largest contrast value, which was 17.5) in the right tube after step-2
inversion as a function of the used regularization parameter for regularization factor
estimation. The dotted line depicts the change of the percentage of the reconstructed
signal lying within a distance of 2 mm from the tube. Numerical examples for some
representative values of A are listed in Table 4.1. The rows contain the values for A, to
A¢ (highlighted in Figure 4.16) and the columns the corresponding regularization factors
for the two tubes and the background. The left tube was assigned the lowest regularization
factor of 1 for all cases while the regularization factor for the right tube changed with A.

The step-2 reconstructions resulting from using the regularization factors computed with
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Regularization |Reconstruction

Regularization factors evaluation
parameterA | | left| Right | | Loca-
tube| tube | ™" lization

M| 00216 3 | 1 /1,331,000 100%
| 00447 | 3 |1 1,37 1,00 100%
As| 00926 | 3 | 1 |1,34 (1,00 100%
Nl 01770 | 3 | 1 | 1,41 092 100%
A| 03670 | 3 | 1 |1,74 066 70%
As| 0,7016 3 1 202051 59%

Table 4.1: Regularization factors computed from the respective reconstructions using 6
different A values and resulting contrast ratios and localization accuracy.

A1 to Ag are evaluated in the rightmost two columns. The normalized relative contrast
between right tube and tissue, and the percentage of reconstructed signal lying up to

2 mm outside the tube margin are given.

The results from Figures 4.16 and Table 4.1 suggest that the relative contrast de-
creases for regularization factors computed with A > A3 and the localization accuracy
for A > A4. Intuitively, because the fluorescence content in both tubes is known in this
case, the rising value of the regularization factor in the right tube also already indicates
worsening reconstruction results. Results presented in Figure 4.15 in turn suggest that
low values of A may yield surface weighted step-1 reconstructions which could lead
to erroneous regularization factor computation in deep seated segments. This is less of
an issue for such simple and homogeneous tissues like the phantom, but may be more
relevant when investigating more realistic, heterogeneous tissues.

Visualization of the reconstructed images after step-2 inversion can further elucidate the
resulting effects of the employed regularization parameter in step-1 inversion. Figure
4.17 shows examples for the fluorescence distribution after step-2 inversion using the
regularization factors computed from step-1 inversion with A3, As and Ag. The decrease
in contrast and localization become obvious in the presented examples. The top two
phantom slices show the same reconstruction with regularization factors computed
with A3, but with different scaling to bring out the maximum signal in the right tube.
The two reconstructions on the bottom of Figure 4.17 for As and A¢ are also scaled
to the maximum value of the signal in the right tube. Here it becomes obvious that
similarly high signals are also reconstructed outside the tube area (arrows). Red circles
highlight the region that was used for the localization evaluation, i.e. tube radius +

2mm. The independent regularization parameter A used in step-2 was chosen to be the
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1|

[IWx-yll
(@ (b)

Figure 4.17: Step-2 reconstruction employing regularization factors computed from step-
1 inversion using different A. (a) Reconstructions using regularization
factors calculated for A3, As and Ag (step-2 inversion). The red circles
represent the area for localization evaluation defined by the tube radius + 2
mm. (b) The chosen regularization parameter for step-2 lies near the point
of maximum curvature of the step-2 L-curve, at the L-curve corner.

commonly used optimal solution lying at the L-curve corner. In contrast to the phantom
reconstruction using priors shown in Section 4.5.1 where the regularization factors were
manually set, the result in Figure 4.17 was achieved by automatic computation based on

experimentally determined regularization factors.

According to these results, regularization with A3 ~ 4-A; can be considered a
good choice for automatic regularization factor computation. This value proved to be a
good compromise between high surface weighting and over-regularization in the case of
homogeneous tissue phantom reconstructions and yielded optimal step-2 reconstruction
results. Whether this holds true for the reconstruction of heterogeneous tissues and in
presence of different fluorochrome distributions and imaging wavelength, will be subject

of the following section.

4.6.2 Evaluation in dual-wavelengths experiments on heterogenous
tissues

Two mouse models were employed to study the performance of the automatic regulariza-

tion factor estimation method, one exhibiting superficial tumors and one exhibiting deeper

seated tumors. Optical signals attenuate non-linearly with the source depth. Consequently,
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S KRas 4T1

Wavelength|Segment A, Az A3 |Segment! Ay A LA
Tissue |1,60 2,85 3,00| Tissue 2,89 3,00 3,00
Sl Bone 1,00 1,00 2,10| Bone | 3,9032,54@1_,?8
lung 12,21 1,41.1,00| Tumor | 1,00 1,00 1,00
Heart 3,00 3,00 1,77 _
Tissue | 1,55 3,00 3,00 | Tissue | 3,00 3,00 3,00
Bone | 1,00 1,49 1,92 | Bone 12,9412,76 2,51
Lung 3,00 2,67 1,09| Tumor 1,00 1,00 1,00
Heart |2,08 1,00 1,00

750

Table 4.2: Regularization factors computed for different values of A after Tikhonov re-
construction of Kras and 4T1 mouse models. Columns contain values for each
respective A, rows contain values for each respective segment.

the selection of different depths is important in investigations of optical imaging to exam-
ine the ability of the method to reliably perform as a function of depth.

Deep-seated tumors were investigated using the same lung tumor mouse model as in Sec-
tion 4.5.2. Mice were intravenously injected 24 hours prior to imaging with two dif-
ferent fluorescent probes, one targeting o, f3-integrins (IntegriSense680, Perkin Elmer
Waltham MA) and a blood-pool agent (AngioSense750 Perkin Elmer Waltham MA). The
excitation/emission maxima of IntegriSense680 and AngioSense750 are approximately at
680 nm/705 nm and 750 nm/770 nm, respectively. AngioSense can be used in oncology
to study angiogenesis and was, therefore, chosen to provide information on vasculariza-
tion and perfusion, in addition to the molecular information granted by the «,f3-integrin
over-expression. This study examined therefore a physiological parameter (vasculariza-
tion/perfusion) and a molecular parameter ( o, f3-integrin overexpression).

The second mouse model was a xenograft breast cancer model. 10° 4T1 breast cancer
cells were subcutaneously injected into nude mice in the neck region and the tumor was
allowed to grow for 10 days. 24 hours prior to imaging, mice were intravenously admin-
istered sScVEGF/Cy (SibTech Inc., Brookfield, CT, USA), a fluorescence agent binding to
VEGEF receptor 2 (VEGFR-2) and emitting at around 700 nm. This agent was employed
to study the ability to visualize a second molecular target in one channel, whereby the sec-
ond channel again imaged IntegriSense750. In this way the relative distribution patterns
of VEGFR-2 and «,f33-integrin could be examined.

4.6.2.1 Deep seated fluorescence emission

Table 4.2 lists the computed regularization factors after step-1 inversion both for Kras

and 4T1 mouse models at the two employed wavelengths and represents the mean
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Figure 4.18: Reconstruction of Kras tumor model using two different fluorescent probes
and the two-step inversion approach. (a) Overlay of two representa-
tive slices of in-vivo reconstructions of IntegriSense680 (cyan) and An-
gioSense750 (magenta) of the Kras mouse. (b) Overlay of the correspond-
ing fluorescence cryosection images. (c) 3D representation of the recon-
structions throughout the volume.

reconstructed fluorescence strength per A (columns) and segment (rows).

For Kras mice, step-1 inversion with A; suggests that the fluorescent probe uptake at
both wavelengths was highest in the bones. This would result in a segment specific
regularization factor of 1 in the L-matrix of Equation 4.7, representing the step-2
inversion. The other segment specific entries into the L-matrix, i.e. for tissue, lung and
heart, at 680 nm would for instance be 1.6, 2.21 and 3, respectively. The computation of
these segment-specific regularization factors changes as a function of increasing A, as
can be seen in Table 4.2 for the values computed with A, and A3. In contrast to the results
obtained with A;, step-1 inversion with A3 suggests that the highest fluorescence probe
uptake at 680 nm is in the lung. In this case, the elements of the L-matrix corresponding
to the lung segment would be assigned a value of 1.

Considering the available prior knowledge on IntegriSense distribution in this particular
mouse model (see Section 4.5.2), it becomes clear that only A3 enabled a realistic
assessment of fluorescence strength in the different segments.

Figure 4.18 shows the results after step-2 inversion of the Kras mouse model using the
respective regularization factors from Table 4.2 for A3. Figure 4.18(a) depicts two in-vivo
reconstruction slices at different locations in the chest of the mouse and Figure 4.18(b)

contains the corresponding ex-vivo cryosections for validation. Different regions of
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Figure 4.19: Intensity profiles through the straight white dashed lines in Figure 4.18(a)
and (b) of IntegriSense680 (cyan) and AngioSense750 (magenta), for in-
vivo (dashed lines) and ex-vivo (continuous lines).

interest were chosen for the determination of the relative contrast between tissues using
Equation 4.12. Examples for those ROIs are given in the top in-vivo and ex-vivo slices by
dashed white ellipses for tumor (t), muscle (m), lung (1) and heart (h). The bottom slice in
Figure 4.18(a) additionally shows the segmentation of lung and heart in the in-vivo data
as white dashed contour lines. Figure 4.18(c) depicts a three-dimensional (3D) rendered
image of the whole reconstructed volume. Here, the lung is shown in transparent light
yellow in order to allow the evaluation of the location of the reconstructed fluorescence
distribution. In all panels of Figure 4.18, the cyan signal represents the distribution of
IntegriSense680, and magenta the distribution of AngioSense750. Cyan arrows highlight
the tumors, magenta arrows the heart. A clear difference in the biodistribution of the
two probes is observable in the ex-vivo slices (which were acquired by the same method
as presented in Section 4.5.2). This is reflected in the in-vivo reconstruction, where
IntegriSense680 is mainly reconstructed in the tumor area and AngioSense750 is more
broadly distributed in the lung and heart area.

Figure 4.19 shows normalized intensity profiles through the dashed straight white lines
in the in-vivo and ex-vivo slices in Figures 4.18(a) and (b). Dashed lines in the graph
represent in-vivo and continuous lines ex-vivo data. An arrow is highlighting the position
of the biggest tumor in the ex-vivo slice (Figure 4.18(b)) and the graph (Figure 4.19) to
facilitate correlation of corresponding data points. The ex-vivo intensity profile shows
high IntegriSense680 uptake in the tumor compared to the surrounding lung as well

as to heart and the other tissue. Ex-vivo fluorescence distribution of AngioSense750
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Kras - relative contrast (whole segments) Kras - relative contrast (ROI) ]
Regi in-vivo Regi in-vivo i ex-vivo
RS 15680 AS750 CBIONS 1 1s680 | AS750 | 15680 | AS750
lung / tissue 2,47 1,24 tumor / lung 10,81 5,69 24,43 3,98
lung / bones 1,42 0,18 tumor / muscle | 11,60 6,42 | 20,75 11,01
lung / heart 1,85 -0,37 tumor / heart 12,43 3,89 34,78 5,82

Table 4.3: Comparison of in-vivo and ex-vivo contrast ratios in Kras mouse model. Left:
Computed relative contrast for whole segments for both wavelengths. Right:
Relative contrast of model specific regions of interest.

in tumor, lung and heart on the contrary is of a similar intensity level. The in-vivo
profiles qualitatively mirror the ex-vivo profiles when it comes to recovering the highest
fluorescence peaks. For AngioSense750 though, a descent between tumor and heart area

can be observed that is higher than observable in the ex-vivo validation slices.

A comparison of the agreement between in-vivo reconstructions and ex-vivo cryosections
in terms of relative contrast between tissue segments and between selected regions
of interest is given in Table 4.3. Rows contain the different contrast ratios, columns
the respective fluorescent probe. The respectively compared tissues are given in the
”Regions” column, where the first tissue goes as pr; and the second tissue as pr; into
Equation 4.12. Highest whole segment contrast for IntegriSense680 was obtained for the
lung region and accordingly for ROIs in the tumor, both in-vivo and ex-vivo. While the
contrast between the whole lung and other tissues is still rather low due to the contribution
of both diseased and normal lung tissue, contrast ratios rise significantly when focusing
on the contribution of the tumors alone. For AngioSense750 the small absolute value of
the lung/heart contrast ratio indicates little contrast between those segments. Similarly
high values were also obtained when comparing localized tumor signals to both heart and

lung.

4.6.2.2 Superficial fluorescence emission

Table 4.2 lists the computed regularization factors after step-1 inversion for the 4T1
mouse model at the two employed wavelengths.

The tumor in 4T1 mice already lay close to the surface, which simplifies the imaging
problem and renders it more similar to the phantom case. Therefore, regularization
factors were computed to be 1 in the tumor for A; to A3. However, the regularization

factors for the deeper seated tissues, i.e. bones, changed with increasing A.
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(b) (c)

Figure 4.20: Reconstruction of 4T1 tumor model using two different fluorescent probes
and the two-step inversion approach. (a) Overlay of scVEGF/Cy (cyan) and
IntegriSense750 (magenta) in two representative slices from in-vivo recon-
struction. (b) Overlay of the corresponding fluorescence cryosection im-
ages. (c) 3D representation of the reconstructions throughout the volume.

Figure 4.20 shows the results after step-2 inversion of the 4T1 mouse model using the
respective regularization factors listed in Table 4.2 for A3. Figure 4.20(a) depicts two
in-vivo reconstruction slices at different locations in the neck/shoulder region of the
mouse and Figure 4.20(b) contains the corresponding ex-vivo cryosections for validation.
An example for the choice of ROIs is given in the top in-vivo and ex-vivo slices by
dashed white ellipses for tumor margin (ty), tumor center (t;) and muscle (m). The
bottom slice in Figure 4.20(a) shows the contour of the tumor segment used for in-vivo
reconstruction. In all panels of Figure 4.20, the cyan signal represents the distribution of
scVEGF/Cy, and magenta the distribution of IntegriSense750. Both in-vivo and ex-vivo
slices show IntegriSense750 accumulation in the center of the tumor whereas scVEGF/Cy
is accumulated at the tumor margin (cyan arrows). Figure 4.20(c) depicts a 3D rendered
image of the reconstructed fluorescence at both wavelengths. The reconstruction of
scVEGF/Cy uptake throughout the mouse is equivalent as for the single slices shown in
Figure 4.20(a), namely on the tumor boundary. This probe mainly accumulates in the
margins (note the donut shape of the reconstruction) and IntegriSense750 is in its center,

with some overlap of both probes in the peripheral regions of the tumor.

The same quantitative analysis as for the Kras model was performed on the 4T1
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Figure 4.21: Intensity profiles through the straight white dashed lines in 4.20(a) and (b)
of scVEGF/Cy (cyan) and IntegriSense750 (magenta), for in-vivo (dashed
lines) and ex-vivo (continuous lines) data.

4T1 - relative contrast (whole segments) 4T1 - relative contrast (ROI)
. in-vivo . in-vivo ex-vivo
ratios scVEGF/Cy 1S750 ratios scVEGF/Cy: 1S750 iscVEGF/Cy: 1IS750
tumor / tissue 2,98 3,71 margin / center 5,81 -1,25 5,37 -9,94
tumor / bones 1,68 3,57 margin / tissue 8,46 4,90 20,78 10,11
center / tissue 2,65 6,15 15,41 20,06

Table 4.4: Comparison of in-vivo and ex-vivo contrast ratios in 4T1 mouse model. Left:
Computed relative contrast for whole segments for both wavelengths. Right:
Relative contrast of model specific regions of interest.

model. Figure 4.21 depicts intensity profiles through the dashed white straight lines
in ex-vivo and in-vivo slices in Figures 4.20(a) and (b). The graph shows in cyan the
normalized intensity of scVEGF/Cy emission and in magenta the normalized intensity of
IntegriSense750 emission. Dashed lines represent in-vivo and continuous lines ex-vivo
data. An arrow is highlighting the position of the tumor boundary in the ex-vivo slice
(Figure 4.20(b)) and the graph (Figure 4.21) to facilitate correlation of corresponding
data points. The intensity profile of scVEGF/Cy shows the highest intensities at the
tumor margins while the highest peak for IntegriSense750 is in the tumor center, both
for ex-vivo and in-vivo data. Contrast ratios for whole tissue segments and for selected
regions of interest are listed in Table 4.4. The whole segment contrast ratios show that
both probes are accumulated in the tumor segment. Contrast between ROIs in the tumor
center and margin furthermore confirm the exact localization of the accumulation of

each probe, i.e. in the margin for scsVEGF/Cy and in the center for IntegriSense750.
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In-vivo and ex-vivo contrast ratios were in qualitative agreement, i.e. highest contrast was
achieved for margin/tissue for scVEGF/Cy and for center/tissue in both reconstructions

and cryosections.

4.6.2.3 Comparison of deep seated and superficial reconstruction performance

The results from the two heterogeneous tissue experiments (Kras and 4T1 mice) confirm
the finding from the phantom experiment. By applying the proposed method for regular-
ization factor estimation to different mouse models, containing deep seated tumors and
superficial tumors, individual channel specific regularization factors were found using A3.
In-vivo reconstruction results using this prior knowledge correlated with the validation
from ex-vivo cryosections, both in respect to signal localization and relative contrast.

Several limitations are however present in this study. Slight discrepancies in tumor local-
ization still exist and were observed in this study in mice containing more than one tumor
(Kras). The fluorescence emission from multiple locations, hence, still affects accurate re-
construction. Additionally, broadly distributed fluorescence, as exhibited by AngioSense
in the Kras model, was less consistently recovered than the localized signal from Inte-
griSense, as shown in the intensity profile in Figure 4.19. The distinction of signal from

background in such cases seems less reliable.

4.7 Towards multi-modality hybrid FMT

To exploit the full potential of limited-projection-angle FMT, coregistration with other
imaging modalities like MRI or PET should be considered. This section demonstrates
an extension of the application of hybrid FMT-XCT by using the XCT to further register
hybrid FMT findings with those from another molecular imaging modality, i.e. PET. This
approach leads to the integration of optical contrast with that of other imaging modalities
yielding an information data set, which is of increased descriptive ability as to disease
parameters. The particular example herein combined imaging of o, f3-integrin over-
expression and tumor metabolism using co-registered ['F]-FDG-PET and FMT-XCT,

providing multi-parametric data sets.

For this purpose, a third mouse model was used. 6 x 10® Lewis Lung Carcinoma

(LLC) cells were injected subcutaneously in the right shoulder region and 4 x 10° cells
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Figure 4.22: Reconstruction of LLC mouse model and coregistration of FMT-XCT-PET.
(a) In-vivo reconstruction of IntegriSense680 (orange) and overlay of FDG-
PET reconstruction (green). (b) Ex-vivo validation slice of IntegriSense 680
fluorescence (orange). (c) 3D representation of both FMT (orange) and PET
(green) reconstructions. (d) 3D rendering of mouse skin and highlighted
tumor areas (arrows).

in the left shoulder region of a nude mouse. The tumors were allowed to grow for 9
days. 24 hours before FMT-XCT imaging the mice were injected with IntegriSense680.
Additionally, 45 minutes before PET imaging the mice were injected with approximately
13MBq of ['8F]-FDG tracer. ['3F]-FDG tracer is a commonly used PET agent that is
accumulated in sites of increased metabolic activity. This is usually given in tumors, but

also in regions like heart and brain.

PET data was acquired using the same micro PET-XCT device as for XCT data ac-
quisition. After XCT imaging the mouse was automatically passed on into the PET
device. Reconstruction of PET data was realized by the manufacturer’s software and
DICOM images were exported for coregistration to FMT-XCT data. Since PET and XCT
data were acquired with a hybrid device, coordinates for coregistration of both data sets
were given by the device manufacturer and coregistration to FMT-XCT reconstructions

was therefore straightforward.

Figure 4.22 shows the reconstruction results of the LLC mouse model including
FMT, XCT and PET data. The reconstruction of IntegriSense680 was performed
analogously to the phantom, Kras and 4T1 studies, i.e. using A3 ~22-A;, with A, being

the regularization parameter at the L-curve corner of the step-1 regularization of the LLC
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Figure 4.23: Intensity profiles through the white dashed lines in 4.22 (a) and (b) of
ex-vivo IntegriSense680 (orange), in-vivo InegriSense680 (yellow) and of
[18F]-FDG (green), for line 1 (continuous) and line 2 (dashed).

mouse. Figure 4.22(a) depicts the different distribution of the two tracers, the in-vivo
reconstruction of IntegriSense680 being shown in orange and the ['3F]-FDG-PET tracer
in green. Figure 4.22(b) shows the ex-vivo validation of the optical probe distribution
where the fluorescence signal is shown as contrast enhanced orange overlay on a white
light image. Figure 4.22(c) visualizes the 3D distribution of IntegriSense680 and
['8F])-FDG reconstructions and Figure 4.22(d) indicates the locations of the subcutaneous
LLC tumors on the 3D rendered mouse skin by orange arrows.

Figure 4.23 depicts normalized intensity profiles through the white dashed lines in Figures
4.22(a) and (b). Continuous curves represent profiles through line 1 and dashed curves
through line 2. The graph shows in orange the normalized intensity of IntegriSense680
emission in the ex-vivo slice (Figure 4.22(b)), in yellow the in-vivo IntegriSense680
reconstruction (Figure 4.22(a)) and in green the normalized intensity of [18F |-FDG.
A gray arrow is highlighting the position of the left tumor in the ex-vivo slice (Figure

4.22(b)) and the graph to facilitate correlation of corresponding data points.

It can be observed that IntegriSense680 is only reconstructed in the tumor area, in
accordance with the ex-vivo slice image. The size of the left tumor, though, was
overestimated and a slight dislocation between ex-vivo and in-vivo fluorescence loca-
tions could be observed. As can be expected, FDG (green) shows metabolic activity

and is therefore not only distributed in the tumors but also in heart and brain. An
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additional aggregation of FDG can be observed, though, between the two tumors, as
highlighted by green arrows in Figures 4.22(a), (c¢) and 4.23. This is neither visible af-
ter IntegriSense680 reconstruction nor is a third tumor distinguishable in the ex-vivo slice.

It can be concluded that on the one hand PET reliably reconstructs the tumor loca-
tion while FMT results exhibit a slight displacement between reconstruction and ex-vivo
validation. On the other hand the uptake of [!8F]-FDG in non-diseased tissue can
complicate the distinction of tumors from normal tissue. In this context, FMT was
capable of contributing important information to this study since it reliably enabled
the assessment of the number of tumors. Nevertheless, both modalities were able to
reconstruct one large and one smaller tumor, in agreement with the injected cell number
and cryosection results.

This approach takes advantage of particular strengths that each imaging modality may
have, especially in regard to the availability of different agents that complement the
ability to label desired targets. Thus, combination of PET and FMT in this case provided
complementary information on the mouse model. An obvious further extension would
be the integration of MRI data and the exploitation of its anatomical and functional
imaging properties in combination with the molecular and anatomical data provided by
limited-projection-angle FMT, PET and XCT.

4.8 Summary, conclusions and recommendations for

future work

This chapter showed the development of multi-spectral and multi-modality FMT using
a limited-projection-angle hybrid implementation in combination with X-ray CT (XCT).
The work presented aimed particularly at enabling simultaneous investigation of multiple
molecules using hybrid FMT-XCT, a capacity not documented before in the literature.

First, imaging improvements achieved by limited-projection-angle FMT systems employ-
ing anatomical priors were investigated. The use of priors requires the availability of a
second tomographic modality imaging anatomy, for example an X-ray micro-CT system,
an MRI system or ultrasound. The integration of XCT data into the FMT framework was
achieved by coregistration of the individual data sets by means of a translatable imaging
cartridge. Reconstruction problems inherent to stand-alone limited-projection-angle

FMT, like lower resolution and accuracy along the median axis of projections as evident
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on Figures 4.7 and 4.12(a), could be overcome by this approach. The results proved
that the use of anatomical priors improves the imaging performance over stand-alone
implementations, offering better image fidelity and superior quantification.

The next step consisted in implementing a spatially varying regularization inversion
method, previously described for 360 degree FMT data, to the limited-projection-angle
implementation. The particular challenge herein was to identify on whether regularization
parameters are wavelength dependent and then on overall developing a methodology
for automatic computation of regularization factors which would be optimal for limited-
projection-angle FMT reconstructions. The defined 2-step inversion method proved
suitable for independent assessment of different spectral signatures in the same animal
and can hence be used for multi-spectral studies.

A final aim of the work was to offer the first co-registration of PET-FMT-XCT hybrid
data, based on FMT reconstructions using priors. This study demonstrated how the
combination of a different molecular imaging modality can be also employed to offer

complementary information into different molecular processes.

Future work should tackle some of the remaining limitations, like improvement of
localization in presence of multiple tumors or of broad fluorescence distributions, which
were also outlined throughout the chapter in the respective results discussions. Absolute
quantification, in contrast to relative quantification as shown herein, would be a further
important step in advancing hybrid limited-projection-angle FMT.

Several approaches to account for these limitations are conceivable. Using contrast
agents for XCT or employing MRI as anatomical imaging modality could improve
the segmentation of tumor tissue and hence directly influence the FMT reconstruction
in terms of localization. More importantly, localization as well as quantification and
background detection issues could be resolved by adapting alternative dual-wavelength
approaches, previously proposed in epi-illumination imaging [11]. One such approach
aims at improving quantification of fluorescence expression by separation of probe
uptake and target presence. In this example, one wavelength was used to establish an
internal control by providing a background measurement by an untargeted fluorescence
probe. Similarly, such a concept was recently applied to 360 degree FMT [181] and
showed improved reconstruction of fluorescence localization. Applied to the work
presented herein, one untargeted probe could consequently be used to normalize many
other functional probes.

Needless to say, due to the wavelength independent nature of the presented hybrid method,

an extension of the concept to measuring more than two probes would suggest itself.
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FMT systems containing up to four imaging channels already exist and implementation
of additional channels should be straight forward, from a hardware perspective. Hence,
accurate and quantitative reconstructions of many fluorescence molecules could be

achieved in future.

To conclude, the potential of FMT to perform tomographic imaging in planar ge-
ometry renders it a flexible and fast multi-modality compatible device. The reduced
acquisition times and the coregistration potential to basically any other in-vivo imaging
device provided by the imaging cartridge, make limited-projection-angle FMT particu-
larly interesting for multi-parameter studies.

The automatic computation of regularization factors for a priori reconstruction enables si-
multaneous but independent investigation of multiple molecules and accurate comparison
and combination of limited-projection-angle FMT with other molecular imaging devices.
This is of utmost importance for the realistic assessment of any disease, since multiple
molecules play a role in their progression and therapy. Such in-vivo, non-invasive and
multi-parameter investigations can significantly improve the understanding of dynamic
processes on a volumetric level, because the same animal can be imaged over longer time
periods and information is gathered from the most realistic experimental setup possible -

the living organism.
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5 Conclusion and outlook

This thesis was dedicated to the investigation of appropriate spectral imaging methods
for the detection of multiple molecules in living subjects. Visible and near-infrared
light was employed to enable the study of wavelength dependent effects of light-tissue
interactions of pathological significance. Thereby, two routes for systems and method-
ological developments were pursued. The first aimed at interrogating molecular readouts
in superficial tissue processes, and the second explored molecular characterization in
volumetric investigations. Both, spectral detection of intrinsic tissue chromophores,
as well as extrinsically introduced contrast generating molecules (fluorescent proteins,

probes or dyes) were considered.

A novel method for the quantification of tissue oxygenation based on multispectral
reflectance measurements was developed. The application of transformations on the raw
reflectance spectra allowed for the correction of the effects of varying optical properties.
Spectral unmixing, rather than oxygenation computation based on one single wavelength,
then resulted in oxygenation readouts of increased accuracy compared to previously
published results. The potential of the developed method to monitor oxygenation changes
in a variety of applications was shown in pilot experiments representing surgical, skin
and superficial vascular oxygenation detection.

The same method was employed to quantify intravascular oxygenation in the mouse
retina. A multispectral mouse fundus camera, to the author’s knowledge the first of this
kind, was developed. The system was capable of acquiring fundus images of high spectral
and spatial resolution. Multispectral imaging did not only serve for detection of intrinsic
tissue contrast, but also enabled the acquisition of multiple molecular markers in-vivo.
PCA was shown to provided the means to adequately separate mixed fluorescence
contributions. Furthermore, morphological and fluorescence expression changes could
be assessed using the developed system, therefore proving its utility in monitoring
pathological alterations.

Taking advantage of the spectral properties of light when investigating surface-bound
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5 Conclusion and outlook

molecular processes in-vivo, hence, proved to be a promising approach for simultaneously
detecting different molecular actors.

Biochemical processes, however, do not occur only in superficial tissues. Methods
providing molecular readouts on deep seated processes were therefore adapted and newly
developed to meet the needs of multi-molecular volumetric imaging. The capabilities of
fluorescence molecular tomography to independently reconstruct two fluorescent probes
in the same animal were studied. For this purpose, hybrid reconstruction schemes were
developed to improve limited-projection-angle FMT reconstruction accuracy. Further-
more, a two-step inversion approach providing fluorochrome specific regularization
was translated and adapted to limited-projection-angle FMT-XCT. Accurate volumetric
reconstructions of the biodistribution of different fluorescent probes were hence achieved,

as well as multi-modality molecular read outs using a PET-FMT-XCT combination.

The results presented within this thesis constitute an important starting point for
the advancement of molecular imaging towards multi-molecular investigations. Si-
multaneous imaging of several hallmarks of disease in living subjects would improve
the understanding of underlying biochemical processes and the involved molecular
actors, as well as their dynamics and interrelationship. Besides, some of the presented
multispectral methods show great promise for translation from pre-clinical to human
medicine. Quantitative oxygenation imaging is one example. Furthermore, detection
of both intrinsic and extrinsic contrast, for instance in fluorescence guided surgery or
in retinal imaging in human subjects, could be facilitated by multispectral strategies as
presented herein. Multispectral concepts can therefore have a crucial impact on the future
development of molecular imaging and will surely soon belong to the standard methods

used in molecular imaging research and diagnosis.

I would like to conclude this thesis with a personal remark on the potential signifi-
cance of multispectral molecular imaging in an emerging biological field - systems
biology. Multispectral imaging concepts could be used to deliver input to mathematical
models, providing information that no traditional in-vitro biological analysis method
can deliver: in-vivo dynamics and spatial localization. Both are properties that can
considerably influence a molecule’s role in a biological process. Mathematical and
computational models are increasingly employed to describe and simulate biological
processes involving many components on different levels, from kinetic modeling using
differential equations to network properties investigations using network theory. This

emerging research field, generically termed systems biology, relies on concepts developed
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in computational sciences and engineering to understand systemic, i.e. large scale, corre-
lations. Multispectral molecular imaging, and its panoply of practical implementations,
is an invaluable and unique tool for complementing the data available to systems biology
modeling concepts.

Advancing multispectral molecular imaging by developments directed to hardware as

well as algorithms therefore remains a predominant research topic.
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Appendix A

Examples for BSS employing varying

numbers of wavelength bands

The following figures illustrate the results from employing different blind source separa-
tion methods to separate GFP and YFP signals in retinal images. Figure A.1 depicts the
effects of unmixing with PCA, using 2 to 7 spectral bands in the range from 500 nm to
570 nm. The first three PCA components are displayed (except for the case where only
2 spectral bands were used), as well as the recovered spectra of the endmembers. Fig-
ure A.2 equivalently shows three components of ICA unmixing emplyoing the same 2
to 7 spectral bands as for PCA. Most significant ICA components were chosen manually.
Figure A.3 finally shows the analogue results obtained with PCA-ICA, where the first 4
components of PCA were used for ICA computation.

Figure A.4(left) evaluates the overlap between PCA and PCA-ICA results and Figure

A .4(right) gives an example of the original mixed images that were used for unmixing.
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Figure A.1: First three components computed by PCA employing different numbers of
wavelength bands.
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Figure A.2: Three manually selected ICA components computed employing different
numbers of wavelength bands.
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Figure A.4: Left: Comparison of PCA and ICA-PCA. Right: Example for raw images.
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