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Abstract 1 

 2 

Rationale: Exposure to ambient particulate matter (PM) and ozone has been associated with 3 

cardiovascular disease (CVD). However, the mechanisms linking PM and ozone exposure to CVD 4 

remain poorly understood. 5 

Objective: This study explored associations between short-term exposures to PM with a diameter < 6 

2.5 µm (PM2.5) and ozone with plasma metabolite concentrations. 7 

Methods and Results: We used cross-sectional data from a cardiac catheterization cohort at Duke 8 

University, North Carolina (NC), USA, accumulated between 2001 and 2007. Amino acids, 9 

acylcarnitines, ketones and total non-esterified fatty acids plasma concentrations were determined in 10 

fasting samples. Daily concentrations of PM2.5 and ozone were obtained from a Bayesian space-time 11 

hierarchical model, matched to each patient’s residential address. Ten metabolites were selected for 12 

the analysis based on quality criteria and cluster analysis. Associations between metabolites and PM2.5 13 

or ozone were analyzed using linear regression models adjusting for long-term trend and seasonality, 14 

calendar effects, meteorological parameters, and participant characteristics. 15 

We found delayed associations between PM2.5 or ozone and changes in metabolite levels of the 16 

glycine-ornithine-arginine metabolic axis and incomplete fatty acid oxidation associated with 17 

mitochondrial dysfunction. The strongest association was seen for an increase of 8.1 µg/m
3
 in PM2.5 18 

with a lag of one day and decreased mean glycine concentrations (-2.5% [95% confidence interval: -19 

3.8%; -1.2%]).  20 

Conclusions: Short-term exposure to ambient PM2.5 and ozone is associated with changes in plasma 21 

concentrations of metabolites in a cohort of cardiac catheterization patients. Our findings might help 22 

to understand the link between air pollution and cardiovascular disease. 23 

 24 

 25 

Abstract: 247 words 26 

 27 

 28 
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Non-standard Abbreviations and Acronyms  

AOD   Aerosol optical depth 

AOD + GM  Combination of satellite-based aerosol optical depth (AOD) retrievals and 

PM2.5 concentrations from ground monitors 

CAD Coronary artery disease 

CATHGEN  CATHeterization GENetics cohort 

CMAQ   Models-3/Community Multiscale Air Quality 

DDCD   Duke Databank for Cardiovascular Disease 

IQR   Interquartile range 

NARR   North American Regional Reanalysis 

NEFA   Total non-esterified fatty acids 

NO   Nitric oxide 

PM   Particulate matter 

PM2.5   PM with an aerodynamic diameter less than 2.5 μm 
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INTRODUCTION 1 

Exposure to ambient air pollution affects a range of cardiovascular events (Brook et al. 2010; Rückerl 2 

et al. 2011). Acute (day-to-day) exposure to particulate matter (PM) with an aerodynamic diameter 3 

less than 2.5 μm (PM2.5) is associated with increased risk of cardiovascular mortality, myocardial 4 

infarction, heart failure exacerbation, stroke (Atkinson et al. 2014; Mustafic et al. 2012; Shah et al. 5 

2013; Shah et al. 2015) and induction of a variety of adverse cardiovascular outcomes (Brook et al. 6 

2010; McGuinn et al. 2015). Epidemiological and controlled-exposure studies also suggest that 7 

exposure to ambient ozone may increase cardiovascular morbidity (Arjomandi et al. 2015; Devlin et 8 

al. 2012; Green et al. 2016; Hampel et al. 2012; Lanzinger et al. 2014). The elderly and those with 9 

underlying diseases, for example, cardiovascular diseases or diabetes, are particularly 10 

susceptible to the health effects of PM2.5 (Lanzinger et al. 2014; Rückerl et al. 2011; Shumake et al. 11 

2013; Stafoggia et al. 2010); however, current evidence for the risks of ozone are inconclusive 12 

(Goodman et al. 2014). 13 

The physiological mechanisms linking PM2.5 exposure to cardiovascular disease have yet to be 14 

fully elucidated. Biological pathways thought to be important include: systemic inflammation; 15 

changes in the autonomic balance; local inflammatory response; and oxidative stress due to 16 

translocation of particles or particle constituents (Brook et al. 2010; Peters et al. 2011). Further, 17 

inhalation of ozone may cause systemic inflammation and autonomic dysfunction (Brook et al. 2010; 18 

Devlin et al. 2012; Hampel et al. 2012). However, exploring the possibility that PM2.5- or ozone-19 

induced changes in metabolic pathways may contribute to or mediate cardiometabolic outcomes is 20 

becoming increasing important for understanding potential mechanisms of these effects. 21 

Metabolomics, or metabolomic profiling, refers to the comprehensive analysis of metabolites - low 22 

molecular weight chemicals including sugars, acylcarnitines, amino acids, and lipids - present in 23 

biological specimens (Rhee and Gerszten 2012). Metabolomics has the potential for identifying novel 24 

biomarkers contributing to the onset or progression of cardiovascular disease (Shah et al. 2012a). 25 

Specific metabolomic profiles are associated with coronary artery disease (CAD) and atherosclerosis, 26 

and with major adverse cardiovascular events, including myocardial infarction, stroke, heart failure 27 

and death (Kordalewska and Markuszewski 2015; Shah et al. 2012a; Würtz et al. 2015). 28 

Current literature on short-term exposures to air pollution and blood chemistries has 29 

focused on traditional clinical parameters such as C-reactive protein or cytokines (e.g. 30 

Chuang et al. 2007; Rückerl et al. 2007; Tsai et al. 2012). However, evaluating associations 31 

between air pollution and metabolite levels could provide further evidence of air pollution-32 

related physiologic changes and offer further insights into the pathophysiologic mechanisms 33 

by which short-term exposures to air pollution may increase the risk of acute cardiovascular 34 

events. So far, there has been only one epidemiological study exploring the association between air 35 



5 
 

pollution and changes in metabolite levels (Menni et al. 2015). In this study using a subset of the 1 

TwinsUK cohort, long-term exposures to PM10 and PM2.5 were linked with metabolites related to 2 

reduced lung function. Only a small number of animal or toxicological studies have reported 3 

associations between inhaled toxicants and metabolite levels (Miller et al. 2016; Miller et al. 2015; 4 

Wang et al. 2012; Wang et al. 2015; Wei et al. 2013). 5 

This study aimed to explore the influence of short-term exposures to PM2.5 and ozone on selected 6 

metabolites in a cohort of individuals undergoing cardiac catheterization for suspected coronary artery 7 

disease. Moreover, we evaluated whether these associations were modified by participant or lifestyle 8 

characteristics. Since the study population was at high risk for cardiovascular disease, our findings 9 

may help to uncover and clarify air pollution-metabolomics associations in a population particularly 10 

susceptible to the health effects of air pollution. 11 

 12 

METHODS 13 

Study population 14 

This study was conducted using data from the CATHeterization GENetics (CATHGEN) cohort, a 15 

large cohort of patients undergoing cardiac catheterization for suspected cardiovascular disease 16 

between 2001 – 2010 at the Duke University Cardiac Catheterization Clinic (Durham, NC)(Kraus et 17 

al. 2015).  18 

For each of these patients, home addresses were extracted from medical records. Addresses were 19 

geocoded within the Children’s Environmental Health Initiative (http://cehi.snre.umich.edu/), adding 20 

latitude and longitude information to each record (McGuinn et al. 2015; Ward-Caviness et al. 2015). 21 

Out of the entire cohort of 9,334 individuals, 8,071 (86%) addresses were successfully geocoded; 22 

7,118 (76.3%) resided in North Carolina (Supplemental Material, Figure 1). For participants whose 23 

addresses changed over time, we used the most recent address entered into their records at 24 

catheterization. The average time at an address prior to the catheterization procedure was 587 days 25 

(Ward-Caviness et al. 2015). 26 

Subjects fasted for a minimum of six hours before blood collection. Blood was drawn from the 27 

femoral artery at the time of arterial access for catheterization, immediately processed to separate 28 

plasma, and frozen at -80°C(Shah et al. 2010). Clinical data and patient characteristics were provided 29 

by the Duke Databank for Cardiovascular Disease (DDCD), a database of patients undergoing 30 

catheterization at Duke University since 1969. 31 

The CATHGEN study was approved by the Duke University Institutional Review Board; written 32 

informed consent was obtained from all subjects prior to participation. 33 

 34 

Metabolite data 35 

Metabolomic profiling was available for 3,873 individuals in the interval 2001 to 2007. The plasma 36 

concentrations of 45 acylcarnitines and 15 amino acids were quantitatively determined using a 37 
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targeted mass spectrometry–based approach (Kraus et al. 2015). Proteins were first removed by 1 

precipitation with methanol; aliquoted supernatants were dried and esterified with hot, acidic 2 

methanol (acylcarnitines) or n-butanol (amino acids). For analysis, tandem mass spectrometry with a 3 

Quattro Micro instrument (Waters Corp, Milford, MA) was used. Adding mixtures of known 4 

quantities of stable-isotope internal standards facilitated quantification of “targeted” intermediary 5 

metabolites. Assay ranges are 0.05 to 50 μmol (acylcarnitines) and 5 to 1000 μmol (amino acids). 6 

Two acylcarnitines (C6 and C7DC) did not meet the quality standards and were, therefore, excluded 7 

for further analyses. 8 

Quantitative determination of total ketones, β-hydroxybutyrate, and total non-esterified fatty acids 9 

(NEFA) was performed. Ketones (total and β-hydroxybutyrate) and NEFA were measured on a 10 

Beckman Coulter DxC600 clinical chemistry analyzer, using reagents from Wako (Richmond, VA) 11 

(Kraus  et al. 2015). Methodology and measures of intra-individual variability have been previously 12 

reported (Shah et al. 2010). A complete list of all 61 metabolites can be found in Supplemental 13 

Material, Table 1. 14 

 15 

Exposure data 16 

Daily predictive surfaces of particulate matter with an aerodynamic diameter < 2.5µm (PM2.5) (daily 17 

average in µg/m
3
) and ozone (daily 8-h maximum in ppb) were provided by the U.S. Environmental 18 

Protection Agency (U.S. EPA) for the years 2001 to 2008 (www.epa.gov/esd/land-19 

sci/lcb/lcb_faqsd.html). A Bayesian space-time “downscaler” fusion modeling approach was used to 20 

develop these predictive surfaces (Berrocal et al. 2010a; b; 2012). The approach uses input data from 21 

two sources: air quality monitoring data from the EPA Air Quality System (AQS) repository database 22 

and numerical output from the Models-3/Community Multiscale Air Quality (CMAQ;  23 

http://www.epa.gov/asmdnerl/CMAQ) model run at a 12 km spatial resolution. The fused model 24 

combines the two data sources attempting to adjust for the existing bias in the CMAQ model and 25 

produces predictions for census tract centroids across the entire state of North Carolina (Gray et al. 26 

2013). Further details and descriptions of the modeling technique and predictive performance are 27 

available (Berrocal et al. 2012). Geocoded residential addresses of the study participants were 28 

assigned the exposure as estimated at the closest census tract centroid based on spatial location and 29 

date. 30 

We obtained daily PM2.5 concentrations from a second source to better compare the metabolic 31 

effects of PM2.5 exposure with previously published cardiovascular effects in the CATHGEN cohort 32 

(McGuinn et al. 2015). Based on a combination of satellite-based aerosol optical depth (AOD) 33 

retrievals and PM2.5 concentrations from ground monitors (McGuinn et al. 2015), PM2.5 concentration 34 

levels (µg/m
3
) were predicted at a 10 x 10 km spatial resolution for the state of North Carolina for 35 

2002-2009 using recently developed statistical prediction models. Geocoded addresses were matched 36 

to the centroid of the nearest 10 x 10 km grid location based on spatial location and date. 37 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_cdi=272394&_issn=00139351&_origin=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.epa.gov%252Fesd%252Fland-sci%252Flcb%252Flcb_faqsd.html
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_cdi=272394&_issn=00139351&_origin=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.epa.gov%252Fesd%252Fland-sci%252Flcb%252Flcb_faqsd.html
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_cdi=272394&_issn=00139351&_origin=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.epa.gov%252Fasmdnerl%252FCMAQ
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Daily mean air temperature and relative humidity were obtained from the North American 1 

Regional Reanalysis (NARR) project (Mesinger et al. 2006). Geocoded addresses were matched to the 2 

meteorological data based on spatial location and date. 3 

 4 

Statistical analysis 5 

We restricted our analysis population to those residing in North Carolina and participants with 6 

complete information on exposure, covariates and metabolomics markers. The final analysis 7 

population consisted of 2,869 individuals. We selected only metabolites with less than 10% of values 8 

below the limit of detection and with a high measurement accuracy based on repeated profiling 9 

(R²≥0.85) reported in previous analyses (Shah et al. 2009). This reduced the large number of 10 

(correlated) metabolites to 23 (see Supplemental Table 1 for a complete list of metabolites). With 11 

these 23 remaining metabolites, we performed a hierarchical cluster analysis using Euclidian distances 12 

and the Ward method (Murtagh and Legendre 2014). The number of sufficient clusters was chosen 13 

based on various indices (e.g. Calinski and Harabasz index, Duda index, C-index) provided by the R 14 

package NbClust (Charrad et al. 2014). In general, all indices measure the inter- and intra-cluster 15 

variability. While the variability of observations within a cluster should be low, the between-cluster 16 

variance should be high. Of each of the resulting clusters, we chose the metabolite with the highest 17 

measurement accuracy (=highest R²) and the lowest number of values below the detection limit as the 18 

“main” metabolite for the cluster. Metabolites within the same cluster which showed low correlation 19 

with the main metabolite (|r|<0.4) were also considered as metabolites of interest. At first, the 20 

metabolite showing the lowest correlation with the main metabolite was chosen. If a further 21 

metabolite also exhibited a low correlation with the main metabolite, it was only selected if it also 22 

showed low correlation with the metabolite selected in the previous step. This approach greatly 23 

reduced the number of analyzed metabolites and therefore reduced the multiple comparisons in the 24 

statistical analysis. Further, our approach allows the discussion of the study results to be streamlined 25 

by allowing each biologically relevant cluster to be represented by (a) single outcome(s). Metabolite 26 

levels were natural-log transformed prior to analysis.  27 

 28 

To evaluate the associations of metabolite levels with air pollution concentrations, we used 29 

additive regression models in an a priori defined adjustment model. Penalized splines based on B-30 

spline bases were used to allow for non-linear confounding effects (Eilers and Marx 1996). To control 31 

for systematic variation over time, we introduced a time trend term (using date order) as well as 32 

dummy variables for season and day of the week. We further included a fixed intercept at the county 33 

level to account for unmeasured variation due to population-level characteristics. As other potential 34 

confounders, we considered air temperature and relative humidity, and the subject-related variables 35 

age, body mass index (BMI), gender, race (European-Americans, African-American, and other 36 

race/ethnicity) and smoking status (current vs. never/former smoker). Time trend was modeled using 37 
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penalized splines with four degrees of freedom per year. Adjustment for air temperature was done by 1 

modeling high and low temperatures separately (Stafoggia et al. 2013). Specifically, to control for 2 

heat effects, we calculated the average temperature on the current and previous day (lag 0-1) and fit a 3 

natural spline with three degrees of freedom only for days on which the temperature was higher than 4 

the median annual temperature. Similarly, only for days on which temperature was below the median 5 

annual value, we adjusted for low temperatures by fitting a natural spline with two degrees of freedom 6 

for the average temperature on the previous four days (lag 1–4). Relative humidity was modeled using 7 

a 5-day average (lag 0-4) assuming that three degrees of freedom should suffice.  8 

In the last step of the analysis, air pollutants were added separately to the model and associations 9 

estimated linearly. We analyzed single-day lags from 0 to 4 days and the average of lags 0–4 (5-day 10 

average). Effect estimates from our models and their 95% confidence intervals (95% CI) were 11 

transformed into percent changes of geometric mean outcome levels and reported per interquartile 12 

range (IQR) increase of pollutants. 13 

Interaction terms for age (≤ 60 vs. > 60 years), gender (male vs. female), race (European-14 

Americans vs. African-Americans vs. other race/ethnicity), history of hypertension (yes vs. no) and 15 

diabetes (yes vs. no), and smoking status (current vs. never/former smoker) were used to investigate 16 

effect modification of the association between the air pollution and metabolite levels. 17 

 18 

Sensitivity analyses 19 

We performed a number of sensitivity analyses to assess the robustness of the main findings. We 20 

adjusted the degrees of freedom for the trend spline to control for seasonal effects; we also varied the 21 

lag pattern and the degrees of freedom for air temperature and relative humidity. We estimated 22 

models without adjusting for counties, season or subject-related covariates. Two-pollutant models 23 

examined the independent effects of PM2.5 and ozone. Finally, we checked the exposure–response 24 

functions for deviations from linearity by replacing the linear term of the particle metrics with a fixed 25 

4-degrees of freedom regression spline. We used a likelihood ratio test with three degrees of freedom 26 

comparing the original main model with the smoothed model and visual inspection to assess whether 27 

the smoothed exposure–response curve resembled a straight line.  28 

All the analyses were performed with R project for statistical computing (V.2.14.2; http://www.r-29 

project.org/) using the ‘mcgv’ package. 30 

 31 

 32 

RESULTS 33 

Participant characteristics 34 

Table 1 describes the study population. On average, participants were 59 years old with a mean BMI 35 

of 30 kg/m². About 58% of the participants were men; approximately half were current smokers. The 36 
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prevalence of CAD and hypertension was 50.4% and 67.9%, respectively; this reflects a population 1 

with increased risk for CAD.  2 

 3 

Cluster analysis 4 

Twenty-three of the 61 metabolites met all the inclusion criteria. Results of the cluster analysis are 5 

shown in Figure 1. Most of the indices used to determine the relevant number of clusters identified 6 

five clusters as optimal to group the metabolites. These five clusters represent long neutral amino  7 

 8 

 9 

Table 1. Descriptive statistics of the study population (n=2,869). 10 

  Mean (SD) 

Age (years)  59.4 (12.1) 

BMI (kg/m²)  30.3 (7.4) 

SBP (mmHg)  149.9 (25.1) 

DBP (mmHg)  79.8 (14.7) 

  N(%) 

Gender Male 

Female 

1,671 (58.2) 

1,198 (41.8) 

Race European-American 

African-American 

Other 

1,991 (69.4) 

639 (22.3) 

239 (8.3) 

Smoking Current 

Never/former 

1,464 (51.0) 

1,405 (49.0) 

History of Coronary artery disease 

Myocardial infarction 

Diabetes 

Hypertension 

1,445 (50.4) 

854 (29.8) 

854 (29.8) 

1,948 (67.9) 

Family history of  Coronary disease 1,160 (40.4) 

SD: standard deviation; BMI: body mass index; SBP: systolic blood pressure; DBP: diastolic blood 11 

pressure 12 

 13 
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Figure 1 
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acids, their metabolites and alanine (Cluster 1), urea cycle- related amino acids and glycine (Cluster 1 

2), acylcarnitines-adducts of ß-oxidation of fatty acid metabolism (Clusters 3 and 5) and ketone 2 

metabolites (Cluster 4). Based on our described selection approach, we chose to represent the clusters: 3 

alanine and leucine/isoleucine (Cluster 1); arginine, aspartic acid/asparagine, ornithine and glycine 4 

(Cluster 2); decenoyl carnitine (C10:1) and 3-hydroxy-hexadecanoyl carnitine/tetradecanedioyl 5 

carnitine (C16-OH:C14-DC) (Cluster 3); total ketones (Cluster 4); and palmitoleyl carnitine (C16:1), 6 

(Cluster 5) as our outcomes of interest.  7 

 8 

Metabolites and air pollution 9 

Descriptive statistics of metabolites, modeled air pollutants and meteorology are presented in 10 

Table 2. The daily mean values of PM2.5 and ozone derived from the downscaler fusion model were 11 

13.3 µg/m
3
 and 43.3 ppb, respectively. The daily mean value of PM2.5 based on a combination of 12 

satellite-based aerosol optical depth (AOD) retrievals and PM2.5 concentrations from ground monitors 13 

(AOD + GM) was 12.6 µg/m
3
. Correlations between the metabolites can be found in Supplemental 14 

Material, Table 2. There was little or no correlation among PM2.5, ozone and the meteorological 15 

parameters (Supplemental Material, Table 3).  As expected, the PM2.5 values predicted by the two 16 

different models were highly correlated (Spearman correlation coefficient = 0.857).  17 

 18 

Table 2. Summary statistics of metabolite concentrations, air pollution concentrations and 19 
meteorological variables for the period 2001-2007. Metabolites selected first are marked in bold. 20 

Metabolites  N Mean SD Min 25% Med 75% Max 

Cluster 1         

Alanine (µM) 2,869 316.7 94.4 104.4 250.6 302.9 369.2 944.4 

Leucine/Isoleucine (µM) 2,869 67.0 14.2 21.6 57.8 65.4 73.8 217.7 

Cluster 2         

Arginine (µM) 2,869 65.5 19.6 12.7 52.3 64.2 77.0 178.3 

Aspartic acid/asparagine (µM) 2,869 87.3 21.1 13.8 73.5 84.0 98.4 223.0 

Ornithine (µM) 2,869 76.6 21.9 24.4 61.5 74.0 88.1 230.8 

Glycine (µM) 2,869 309.0 83.0 115.2 251.1 302.0 354.6 739.2 

Cluster 3         

C10:1 (µM) 2,864 0.15 0.08 0.02 0.10 0.13 0.18 0.67 

C16-OH:C14-DC (µM) 2,796 0.0047 0.0045 0.0001 0.0026 0.0039 0.0057 0.1007 

Cluster 4         

Total Ketones (µM) 2,868 303.3 291.4 9.5 101.2 202.6 415.0 3220.9 

Cluster 5         

C16:1 (µM) 2,856 0.027 0.016 0.005 0.018 0.024 0.033 0.332 
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Meteorology and air pollution 
        

Air temperature (°C) 2,869 16.1 8.6 -8.1 9.2 16.8 23.5 33.0 

Relative humidity (%) 2,869 73.8 10.8 38.5 66.5 75.3 82.2 95.3 

PM2.5 (daily mean; µg/m
3
) - BDFM 2,869 13.3 6.1 0.6 8.7 12.3 16.8 49.4 

Ozone (8-hour max; ppb) – BDFM 2,869 43.3 15.9 3.8 31.2 41.2 53.9 99.7 

PM2.5 (daily mean; µg/m
3
) – AOD 

+ GM 

2,587 12.6 5.9 2.0 8.1 11.7 15.6 52.1 

SD: standard deviation; Min: minimum; 25%: 25
th
 percentile; Med: median; 75%: 75

th
 percentile; Max: maximum, 

PM2.5: particulate matter with an aerodynamic diameter<2.5µm; BDFM: Bayesian space-time “downscaler” fusion 

modeling approach; AOD + GM: combination of satellite-based aerosol optical depth retrievals and ground monitoring 

data. 

 1 

Figure 2 and Supplemental Material, Table 4 show the associations between air pollutants and the 2 

selected amino acids. For alanine and leucine/isoleucine (Cluster 1), no associations with air pollution 3 

were found; whereas arginine (Cluster 2) was negatively associated with PM2.5 and ozone. The 4 

strongest effects were found for lag 1 exposures with a -2.6% decrease (95% CI: -4.4%; -0.8%) per 5 

IQR increase (8.1 µg/m
3
) in PM2.5 and -2.8% decrease (95% CI: -5.5%; -0.1%) per IQR increase (22.7 6 

ppb) in ozone. An IQR increase in PM2.5 also resulted in decreased glycine levels with a lag of one 7 

day. Lag 1 ozone exposure showed an effect in the same direction; however, the association was not 8 

significant (on a significance level of 0.05). Both pollutants were consistently associated with 9 

increases in ornithine levels across several lags. For example, ornithine (Cluster 2) levels increased by 10 

2.3% (95% CI: 0.8%; 3.9%) and 6.8% (95% CI: 3.1%; 10.7%) per IQR increase in 5-day average 11 

PM2.5 and ozone, respectively. 12 

Results further suggest an association between ozone at lag 1 and C10:1 (Cluster 3), total ketones 13 

(Cluster 4) and C16:1 (Cluster 5), (Figure 3). Moreover, increases in PM2.5 were associated with 14 

delayed increases in C16:1 levels; the strongest effect was a 3-day lagged 2.8% increase (95% CI: 15 

0.3%; 5.4%). 16 



13 
 

 

Figure 2.  Associations between PM2.5, ozone (based on the Bayesian space-time “downscaler” fusion modeling approach) and amino acid levels per 

interquartile range increase of air pollutants
a
. 
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a
 Models were adjusted for time trend, air temperature, relative humidity, age, gender, body mass index, race and smoking status. 
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Figure 3. Associations between PM2.5, ozone (based on the Bayesian space-time “downscaler” fusion modeling approach) and acylcarnitine and total ketone 

levels per interquartile range increase of air pollutants
a
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Statistically significant effect modifications were only observed for arginine and C16:1.  1 

Modifications of both PM2.5 and ozone effects on arginine levels were observed for diabetes status; 2 

stronger associations were with those without diabetes (Figure 4). As further shown in Figure 4, both 3 

PM2.5 and ozone effects on C16:1 were modified by race; the strongest increases were for those in the 4 

Other race/ethnicity category (for each IQR increase in PM2.5, lag 3 or ozone, lag 1 C16:1 levels 5 

increased by 14.3% [95% CI: 4.9%; 24.4%] or 13.6% [95% CI: 3.7%; 24.4%], respectively). This 6 

category is composed mainly by self-declared Native Americans living in Southeastern North 7 

Carolina, with some minor composition from Asian, Hispanic, and unknown/undeclared individuals. 8 

Results also suggest that PM2.5 and ozone effects on ornithine were more pronounced in African-9 

Americans and individuals in the Other race/ethnicity category (Supplemental Material, Figure 2); 10 

moreover, effects of PM2.5 on C16:1 were only observed in individuals younger than 60 years. Sex, 11 

smoking status, and history of hypertension did not have any modifying effects on the association 12 

between air pollution and metabolite levels (data not shown). 13 

Using PM2.5 data based on a combination of satellite-based aerosol optical depth retrievals and 14 

ground monitoring data (AOD + GM) gave similar results for the three amino acids arginine, glycine 15 

and ornithine compared with data from the Bayesian space-time “downscaler” fusion modeling 16 

approach (Table 3). 17 
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Figure 4. Air pollution and Arginine (left panel) or C16:1 (right panel) - effect modification. 
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Table 3. Percent change (95% confidence intervals) of the geometric mean of Cluster 2 amino acid 

levels per interquartile range increase in PM2.5 based on the Bayesian space-time “downscaler” fusion 

modeling approach (BDFM) and based on a combination of satellite-based aerosol optical depth 

retrievals and ground monitoring data (AOD + GM). 

Amino 

acids 

 
PM2.5 (BDFM) PM2.5 (AOD + GM) 

 Lag % change (95% CI) % change (95% CI) 

      

Arginine 0 -1.05 (-2.76;0.68) -1.36 (-3.11;0.42) 

 1 -2.61 (-4.35;-0.84)** -3.19 (-4.92;-1.43)† 

 2 -1.71 (-3.46;0.08) -2.10 (-3.92;-0.25)* 

 3 -0.14 (-1.90;1.65) -1.13 (-2.94;0.71) 

 4 0.41 (-1.31;2.17) 0.94 (-0.86;2.78) 

 5-day -1.65 (-3.41;0.14) -1.36 (-2.98;0.27) 

      

Glycine 0 -0.44 (-1.70;0.84) -0.64 (-1.93;0.67) 

 1 -2.46 (-3.75;-1.16)† -1.63 (-2.91;-0.33)* 

 2 -1.31 (-2.61;0.01) -0.87 (-2.22;0.49) 

 3 0.90 (-0.41;2.23) 0.17 (-1.17;1.53) 

 4 0.92 (-0.36;2.22) 0.42 (-0.89;1.75) 

 5-day -0.75 (-2.07;0.58) -0.94 (-2.13;0.26) 

      

Ornithine 0 0.92 (-0.52;2.39) 0.78 (-0.69;2.27) 

 1 0.96 (-0.54;2.49) 1.20 (-0.28;2.70) 

 2 0.93 (-0.57;2.46) 1.17 (-0.37;2.74) 

 3 1.84 (0.35;3.36)* 1.31 (-0.21;2.86) 

 4 2.23 (0.77;3.72)** 1.64 (0.16;3.15)* 

 5-day 2.31 (0.79;3.85)** 2.10 (0.55;3.67)** 

      

% change: Percent change of geometric mean 95% CI: 95% confidence interval; 5-day: 5-day average 

concentration; 

Interquartile ranges for PM2.5 (BDFM): Lags 0-4 8.1 µg/m
3
, 5-day average 5.1 µg/m

3
; Interquartile 

ranges for PM2.5 (AOD + GM):  Lags 0-4 7.5 µg/m
3
, 5-day average 4.6 µg/m

3 

*   p-value < 0.05 

** p-value < 0.01 

†   p-value < 0.001 
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Sensitivity analyses 1 

As mentioned, we performed several sensitivity analyses: among them we tested increasing the 2 

degrees of freedom for the trend spline or excluding some of the confounders. None of the sensitivity 3 

analyses changed the significant associations between air pollution and metabolites (Supplemental 4 

Material, Table 5). 5 

PM2.5 showed independent effects on arginine and glycine, whereas ozone effects were attenuated 6 

in the two-pollutant models (Supplemental Material, Figure 3 and Table 6). Both pollutants exhibited 7 

slightly weaker associations with ornithine while ozone showed stronger effects on acylcarnitine 8 

C10:1 in the two-pollutant model. For all other metabolites except C16:1, the two-pollutant models 9 

did not change the effect estimates (Supplemental Material, Table 6). For C16:1, ozone effects 10 

exhibited stronger effects in the two-pollutant model. 11 

Finally, we checked the exposure–response functions of metabolites and PM2.5 or ozone for 12 

selected lags; as shown for arginine, glycine or ornithine, there was no indication for a deviation from 13 

linearity (Supplemental Material, Figures 4-6). 14 

 15 

DISCUSSION 16 

Summary 17 

Prior day (1-day lag) increases in PM2.5 were associated with decreases in the concentrations of the 18 

amino acids arginine and glycine; PM2.5 was also associated with delayed increases in ornithine and 19 

C16:1. Increases in short-term exposures to ozone resulted in immediate and delayed increases of the 20 

amino acids aspartic acid/asparagine and ornithine; delayed increases were found for the 21 

acylcarnitines C10:1 and C16:1 as well as for total ketones. Results also suggested that there was 22 

effect modification by race on the associations of PM2.5 and ozone with C16:1, C10:1 and ornithine.  23 

 24 

Air pollution and metabolites 25 

To our knowledge, there has been only one epidemiological study exploring the association between 26 

air pollution and small molecular blood-borne metabolites levels (Menni et al. 2015). Using a subset 27 

of the TwinsUK cohort, long-term exposure to PM10 and PM2.5 were associated with metabolites 28 

related to reduced lung function. Eight metabolites were significantly negatively associated with PM, 29 

including asparagine and glycine. We also observed significant negative associations between glycine 30 

levels and prior day (1-day lag) increases in PM2.5; however we did not observe significant relations 31 

between PM2.5 and aspartic acid/asparagine. A small number of animal or toxicological studies have 32 

investigated the associations between welding fumes or ozone and metabolite levels (Miller et al. 33 

2016; Miller et al. 2015; Wang et al. 2012; Wang et al. 2015; Wei et al. 2013). However, results of 34 

these studies are not directly comparable to our study because of differences in the study design, 35 

pollutants (e.g., welding fumes), time points of collection and fluid sampled. 36 

 37 
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 1 

Metabolites and cardiovascular disease  2 

Metabolic profiling has the potential to identify novel biological mediators of cardiovascular disease 3 

(Shah et al. 2012a). Metabolic profiles are associated with CAD, atherosclerosis and with major 4 

adverse cardiovascular events including: myocardial infarction, stroke, heart failure and death 5 

(Kordalewska and Markuszewski 2015; Shah et al. 2012a; Würtz et al. 2015). Tang  et al. 6 

(2009)(Tang et al. 2009) reported a strong association of arginine - and its downstream metabolites 7 

ornithine and citrulline - with CAD and incident major adverse cardiovascular events: death, 8 

myocardial infarction, and stroke. Individuals with CAD have significantly lower arginine, but greater 9 

ornithine and citrulline concentrations compared to CAD free individuals; this may be an indication of 10 

lower arginine bioavailability (Tang et al. 2009). Arginine is necessary for production of nitric oxide 11 

(NO); and NO is important for maintaining vascular health and homeostasis. Ornithine is produced by 12 

the cleavage of urea from arginine; this results in less arginine bioavailability. Low arginine 13 

bioavailability ratios (arginine:ornithine) are inversely associated with markers of endothelial function 14 

(Sourij et al. 2011).  15 

In a recent study, plasma glycine was inversely associated with risk of subsequent myocardial 16 

infarction in individuals with suspected stable angina pectoris (Ding et al. 2016). Several metabolomic 17 

investigations have recorded an association of decreased glycine concentrations with diabetes 18 

(Ferrannini et al. 2013; Floegel et al. 2013) and obesity (Newgard et al. 2009). Further, lower glycine 19 

concentrations are a predictor of individuals who develop glucose intolerance and diabetes (Wang-20 

Sattler et al. 2012). The mechanisms linking blood plasma glycine and diabetes are related but remain 21 

unexplained. However, it has been speculated that insulin resistance might result in increased 22 

expression of δ-aminolevulinic acid synthase 1 (ALAS1) and production of 5-aminolevulinic acid 23 

from glycine; alternatively, oxidative stress associated with diabetes leads to increased demand for 24 

glutathione and depletion of circulating glycine (Roberts et al. 2014). Further, glycine is the end 25 

product of a series of reactions from choline, through sarcosine whereby single carbon units are 26 

donated to the one-carbon folate pool — important for defense against oxidative stress. Finally, 27 

glycine, ornithine and arginine are involved in the condensation reaction producing creatine.  The 28 

intriguing inverse associations among glycine and arginine with ornithine and air pollutants in this 29 

study should be noted.  This observation may provide an important clue to the involvement of the 30 

creatine condensation reaction as a mediator of short-term air quality effects on cardiometabolic 31 

diseases. 32 

Medium-chain acylcarnitines and long-chain dicarboxylacylcarnitines were positively associated 33 

with an increased risk for all-cause mortality in participants from the CATHGEN cohort (Shah et al. 34 

2012b).  Moreover, a metabolic factor related to medium- and long-chain acylcarnitines was 35 

associated with an increased risk for cardiovascular events in elderly individuals (Rizza et al. 2014). 36 

Higher levels of acylcarnitines indicate inefficient ß-oxidation and mitochondrial dysfunction; and 37 
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medium- and long-chained acylcarnitines are assumed to be an indicator of the defect in 1 

mitochondrial oxidative capacity associated with insulin resistance (Schooneman et al. 2013).  2 

Incomplete fatty acid oxidation in bodily tissues would be expected to yield a higher plasma ketone 3 

concentration (total ketone and beta-hydroxybuterate)—as observed in our study.  4 

The observed short-term associations between air pollution and metabolite levels in our study are 5 

currently of unknown clinical significance; however, they provide evidence of air pollution-related 6 

physiologic changes and offer further insights into the pathophysiologic mechanisms by which air 7 

pollution may increase the risk of acute cardiovascular events. 8 

 9 

Air pollution effects in potentially susceptible subgroups 10 

Infants, the elderly, the obese, and those with underlying disease - particularly cardiovascular disease 11 

or type-2 diabetes - are particularly susceptible to the health effects of PM2.5 and ozone (Lanzinger et 12 

al. 2014; Rückerl et al. 2011; Shumake et al. 2013; Stafoggia et al. 2010). Effect modifications were 13 

mostly non-significant in our study and confined to single metabolites. We observed stronger PM2.5 14 

effects on C16:1 levels in individuals younger than 60 years. Interestingly, air pollution effects on 15 

arginine were stronger in those without diabetes. This is contrary to many other studies that found 16 

individuals with diabetes to be more susceptible to the effects from air pollution (Dubowsky et al. 17 

2006; O'Neill et al. 2007; Schneider et al. 2010); we are at a loss to explain this inconsistency. We 18 

observed stronger associations between short-term PM2.5 or ozone exposure and C16:1, C10:1 and 19 

ornithine in the Other race/ethnicity category; a substantial number of these participants reside in 20 

Robeson County, where many people of Native American descent reside. Although these data suggest 21 

this population might be more susceptible to air pollution, additional research to better identify Native 22 

American participants in the CATHGEN cohort will be needed before definitive conclusions can be 23 

reached.  24 

 25 

There is additional evidence for environmental effects on some of our selected metabolites.  In a 26 

previous genetic study including 100 individuals in 10 families with early onset cardiovascular 27 

disease, we examined the heritability of metabolites as indicated by the correlation structures 28 

observed among parent-offspring, siblings and spouses (Shah et al. 2009). Spouses are generally 29 

genetically unrelated and thus, highly correlated metabolites between spouses could be attributed to 30 

the environments they share. We re-examined the correlations and found moderate to high spouse 31 

correlations (r>0.5) for arginine, glycine, ornithine, and C18:1. The latter showed an environmental 32 

influence on C16:1 (r=0.73). 33 

 34 

Strengths and limitations  35 

A strength of CATHGEN is the availability of detailed information on demographics and 36 

cardiometabolic risk factors; this enables appropriate adjustment for potential confounders (Kraus et 37 
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al. 2015). Moreover, all variables were assessed prospectively prior to catheterization in a fasting 1 

state.  2 

A further strength is the confirmation of observations using alternative methods for determining 3 

air quality exposures. We obtained daily PM2.5 concentrations from two different sources; using data 4 

based on a combination of satellite-based aerosol optical depth retrievals and ground monitoring data 5 

(AOD + GM) led to similar effects compared to results obtained from the Bayesian space-time 6 

“downscaler” fusion modeling approach. 7 

One potential weakness is the risk for false discovery; in an exploratory analytic approach, we 8 

performed a large number of analyses in ten metabolites. We sought to minimize the risk of false 9 

discovery by reducing the number of metabolites through cluster analysis.  We selected for analysis 10 

only metabolites having high measurement accuracy, a low percentage of values below the detection 11 

limit, and/or which were uncorrelated with other metabolites within the same cluster. By conducting 12 

appropriate sensitivity analyses we are confident of our findings. Irrespective of the risk of multiple 13 

comparisons, and given the limited knowledge concerning the effects of air pollution on metabolite 14 

exposures, these exploratory analyses hold substantial value; they may be useful for generating 15 

hypotheses regarding the biological mechanisms of cardiovascular disease.  16 

No repeated measurements of metabolite levels for each participant are available; therefore, 17 

potential variation of metabolite levels within one individual could not be taken into account. In 18 

contrast, a large number of individuals were included in the analyses; this made possible the 19 

investigation of potential air pollution effect modifications by intrinsic individual characteristics. We 20 

were not able to adjust for medication, as this information was only available for a few hundred 21 

participants; however, medication use has not influenced previous studies in this population (Shah et 22 

al. 2010; Shah et al. 2012a; Shah et al. 2012b). A more detailed adjustment for smoking was not 23 

possible: only current smoking status was obtained in the study. Finally, one should be cautious in 24 

generalizing our observations to a community sample; only patients undergoing cardiac 25 

catheterization and with a high risk of CAD were included. Nevertheless, these studies may provide 26 

useful mechanistic clues to the metabolic underpinnings of cardiovascular disease. 27 

 28 

Conclusions 29 

Short-term ambient PM2.5 and ozone exposures were associated with plasma concentrations of 30 

metabolites in a cohort of cardiac catheterization patients. Our findings suggest that environmental 31 

stressors — such as air pollution — are important factors to consider when examining the metabolic 32 

mechanisms of cardiovascular disease. The glycine-ornithine-arginine metabolic axis and incomplete 33 

fatty acid oxidation associated with mitochondrial dysfunction as mediators of cardiometabolic risk 34 

are of particular interest for further investigation. 35 

 36 

 37 
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Disclaimer 1 

Research described in this article was conducted under contract to the Health Effects Institute (HEI), 2 

and organization jointly funded by the United States Environmental Protection Agency (EPA) 3 

(Assistance Award No. R-82811201), and certain motor vehicle and engine manufacturers.  The 4 

contents of this article do not necessarily reflect the views of HEI, or its sponsors, nor do they 5 

necessarily reflect the view and policies of the EPA or motor vehicle and engine manufacturers. 6 

This work was partially supported by Health Effects Institute 4946-RFPA10-3/14-7 to WEK. 7 
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