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In our mouse model, gastric acid-suppression is associated with antigen-specific IgE and anaphylaxis develop-
ment. We repeatedly observed non-responder animals protected from food allergy. Here, we aimed to analyse
reasons for this protection. Ten out of 64 mice, subjected to oral ovalbumin (OVA) immunizations under gastric
acid-suppression, were non-responders without OVA-specific IgE or IgG1 elevation, indicating protection
from allergy. In these non-responders, allergen challenges confirmed reduced antigen uptake and lack of anaphy-
lactic symptoms, while in allergicmice high levels of mousemast-cell protease-1 and a body temperature reduc-
tion, indicative for anaphylaxis, were determined. Upon OVA stimulation, significantly lower IL-4, IL-5, IL-10 and
IL-13 levels were detected in non-responders, while IL-22 was significantly higher. Comparison of fecal microbi-
ota revealed differences of bacterial communities on single bacterial Operational-Taxonomic-Unit level between
the groups, indicating protection from food allergy being associated with a distinct microbiota composition in a
non-responding phenotype in this mouse model.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
Keywords:
Food allergy
Allergen uptake
Intestinal barrier function
Cytokines
Microbiota
Bacterial community composition
1. Introduction

Severity and unpredictability of clinical reactions in context with
food allergy are major challenges for patients, caretakers and health
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care personnel. The observed clinical response might differ between
food allergic patients ranging frommild local symptoms like the oral al-
lergy syndrome to severe systemic reactions such as anaphylaxis [1,2].
Actually, food allergy is among the main causes for potentially life-
threatening anaphylaxis accounting for 41% of fatal reactions as re-
ported to an European anaphylaxis registry [3]. For an efficient defini-
tion of allergy prevention measures, a profound mechanistic
knowledge on sensitizing events is fundamental.

During the past years, we have investigated the association between
anti-ulcer drug intake and food allergy development [4–10]. In first
human studies in adult patients, a 3 months treatment with anti-ulcer
drugs led to an increase of pre-existing food-specific IgE titers in 10%
of patients, and to de novo sensitization against common dietary com-
pounds in 15% of patients [8]. Among them, in 60% of patients with
hazelnut-specific IgE clinically relevant food allergy was diagnosed by
double-blind placebo controlled food challenges [10]. Further studies
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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indicated an influence of either maternal gastric acid-suppression
during pregnancy or anti-ulcer drug treatment of pediatric patients on
the development of food allergy also in children [7,11–14].

Based on these murine and human data, a mouse model of oral
sensitization under concomitant acid-suppression was developed
being associated with induction of allergen-specific IgE, elevated Th2
cytokines and positive skin tests [5]. This immunization protocol
induced severe clinical responses evidenced by positive mucosal
testing, a drop of body temperature after provocations and a sustained
mediator release [5,6,9].

However, in both, human and experimental studies, a certain
percentage of individuals is protected from food allergy development
during intake of anti-ulcer medication. This heterogeneity of reactivity
especially in experimental studies with inbred mouse strains has been
a matter of debate. To gain novel mechanistic insights, the overall aim
of the current study was to phenotype those mice being protected
from food allergy development (non-responders) in comparison with
animals revealingmarked systemic food allergic symptoms after immu-
nizations based on our experimental food allergy protocol.

2. Material and methods

2.1. Animals and immunization regimen

Sixty-four female BALB/cAnNCrl mice (aged 6–8 weeks, 15–20 g)
were purchased from Charles River Laboratory (Charles River Labora-
tory, Sulzfeld, Germany). Mice were kept in polycarbonate Makrolon
cages (Ehret GmbH, Emmendingen, Germany) with filter tops and
espen wood bedding (Ehret GmbH, Emmendingen, Germany) and
housed under conventional conditions (12 h light/dark cycle at 22 °C).
The animals were kept on an ovalbumin (OVA) free diet (Ssniff, Soest,
Germany) with ad libitum access to food and water. Treatment of the
animals was performed by trained staff in the morning in an animal
experimentation room. Animals were treated according to European
Union guidelines of animal care and with permission of the ethical
board of the Medical University of Vienna and the Austrian Federal
Ministry of Science and Research (permission number GZ BMWF-
66.009/0051-II/10b/2008). All animalswere subjected to our previously
established food allergy protocol [5] with modification. On days 1 to 3,
animals were treated intravenously (i.v.) with the proton pump inhibi-
tor (PPI; Losec® Astra Zeneca GmbH,Wedel, Germany; 116 μg omepra-
zole in 100 μL sterile sodium chloride) 2 timeswithin 1 h. On days 2 and
3, mice were fed 0.2 mg OVA (Sigma Aldrich, Vienna, Austria, #A5503)
in combination with sucralfate (2 mg; Ulcogant®, Merck, Vienna,
Austria) 15 min after the second PPI i.v. injection. This immunization
Fig. 1. Immunization scheme and selection of animals. Sixty-four BALB/c mice were immunized
OVA-specific IgE and IgG1 antibodies, 10 animals were selected as the group of interest (non-re
characterized as being anaphylactic during the study evaluations (group A). IMM, immunizatio
cycle was repeated for 7 times (Fig. 1A). Out of the total of 64 animals
undergoing the immunization protocol, we defined 10 animals of inter-
est based on their IgE and IgG1 antibody titers after the last immuniza-
tion step. These ten mice revealed antibody levels below the detection
limit and were classified as antibody non-responder group (group N,
n = 10/64; Fig. 1B). They were compared to 10 control animals with
an OVA-specific IgE antibody response above 15 ng/mL classified as
highly sensitized (allergic) group (group A; n = 10/64). This cut-off
level was chosen based on our numerous previous immunization
studies investigating clinical response upon oral immunizations under
gastric acid suppression [5,6,9] and own unpublished data. All other
sensitized animals with IgE responses below 15 ng/mL and above back-
ground values aswell asOVA-specific IgG1 responses (n=44)were ex-
cluded from this study. Four weeks after the last immunization, mice
were subjected to an oral PBS challenge for control purposes to exclude
unspecific changes during provocation and 10 days later to an oral OVA
provocation (50 mg per mouse; oral challenge 1 (OC1)). Mice were
fasted overnight before oral challenges with access to water only. One
hour after each challenge, blood was collected for measurements of
mouse mast cell protease-1 (mMCP-1) as well as OVA uptake. Four
days thereafter, animals were re-challenged with OVA i.g. (OC2) to
induce a strong local intestinal allergic response. One hour later, mice
were challenged i.v. (50 μgOVA in 50 μL 0.9% sodiumchloride) to trigger
a systemic anaphylactic response. Mice were sacrificed 15 min
thereafter.

Blood samples were taken prior to the first immunization step and
2 weeks after the last immunization, 1 h after the PBS challenge as
well as after the first OVA challenge (OC1).

2.2. Antibody measurements

Mouse sera were collected before the first and 2 weeks after the last
immunization step and screened for OVA-specific IgE, IgG1, IgG2a and
IgA in ELISA, as described recently [5] using rat anti-mouse IgG1,
IgG2a, IgA and IgE (0.1 μg per well, BD Biosciences, Heidelberg,
Germany) and peroxidase-labeled goat anti-rat IgG (1:1000,
Amersham, Buckinghamshire, UK). After sacrifice, mouse intestines
were removed and flushed with 2 mL extraction buffer (Complete
Mini, Roche) for detection of mucosal total and OVA-specific IgA levels.
For total IgA determination, microtiter plates were coated with a rat
anti-mouse IgA (0.1 μg per well; BD Biosciences) overnight at 4 °C.
After washing, wells were blocked with 1% bovine serum albumin in
TBS containing 0.05% Tween for 2 h. Thereafter, standard dilution series
or mucosal lavage fluid (diluted 1:1000) were added for 30 min. After
repeated washing, a biotin-labeled anti-mouse IgA antibody (0.1 μg
(panel A) according to the protocol described in themethods section. Based on the lack of
sponder, group N; panel B). They were compared to highly sensitized animals, whichwere
n; MIS, mouse immune serum; OC, oral OVA challenge; i.v. C., intravenous challenge.



Fig. 2. OVA-specific antibody profile in murine sera. OVA-specific IgE (A), IgG1 (B), IgG2a (C) and IgA (D) levels were determined by ELISA. According to the serological status, animals of
interest were selected as antibody non-responders (group N) and compared to highly sensitized control animals (group A). Data represent mean + standard error of the mean (SEM);
****p b 0.0001, ***p b 0.001, **p b 0.01.
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per well; BD Biosciences) was added for 30 min. After washing, wells
were incubated with horseradish peroxidase-labeled streptavidin
(1:5000, Pierce, Rockford, USA) and the color reaction was developed
using tetramethylbenzidine (TMB) substrate and measured at 450 nm
with reference 630 nm.

OVA-specific IgA was determined in intestinal lavage fluid as
described above for serumOVA-specific IgA, except thatmucosal lavage
samples were applied undiluted. Antibody titers were calculated
according to standard dilution series using mouse IgA, IgE, IgG1 and
IgG2a antibodies (BD Biosciences) after subtraction of antibody levels
before the first immunization as described before [5].

2.3. Systemic OVA uptake

For measurements of OVA levels in serum samples collected after
OC1, microtiter plates were coated with a mouse anti-OVA capture anti-
body (0.1 μg per well; AbD Serotec) overnight at 4 °C. After washing,
Fig. 3.Differences in antigen uptake and clinical responses. After OVA gavage, higher OVA conce
significantly elevated in group A after the first oral OVA challenge (OC 1). Rectal temperature
responders (triangle) and highly sensitized animals (circles). Data represent mean + SEM; *p
wells were blocked with 1% dry milk powder in TBS containing
0.05% Tween for 2 h. Thereafter, serum samples (diluted 1:4) were
added overnight at 4 °C. After repeated washing, a rabbit anti-OVA anti-
body (0.025 μg per well; Thermo Scientific) was added for 2 h. After
washing, wells were incubated with horseradish peroxidase-labeled
anti-rabbit antibody (1:6000, Thermo Scientific) and the color reaction
was developed using TMB substrate andmeasured at 450 nmwith refer-
ence 630 nm.
2.4. Gastric pH measurements

The efficacy of PPI injections to elevate the gastric pH was evaluated
1 h after i.v. PPI application, as described previously [5]. The pH was
measured on a pH-meter after diluting 150 μL gastric fluids in 1.3 mL
distilled water. As controls, 150 μL 0.9% sodium chloride or 150 μL pH
calibrating solution in distilled water were used.
ntrations in serum (A)were found in allergicmice (groupA).MouseMCP-1 levels (B)were
(C) was measured before and 5 and 10 min after i.v. OVA provocation of antibody non-
b 0.05.
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2.5. Anaphylaxis read-out

To evaluate allergen-specific severe clinical responses after OVA
challenges, mouse sera were screened for the mast cell degranulation
marker mMCP-1 using the mouse mMCP-1 ELISA kit (eBioscience,
Vienna, Austria, #88-7503), as described recently [8]. Serum samples
were taken 1 h after PBS challenge (as negative control) and after the
first oral OVA challenge (OC1). Hypothermia as a consequence of
systemic anaphylaxis was assessed by measurements of rectal body
temperature before and 5 and 10 min after i.v. OVA challenge.

2.6. Spleen cell stimulation and cytokine measurement

After sacrifice, spleens were removed under sterile conditions and
spleen cells were prepared as described [5]. Spleen cells were stained
for CD4+CD25+Foxp3+ T-regulatory cells with the mouse regulatory
T-cell staining kit (eBioscience, #88-8111), according to the manufac-
turer's instructions. Absolute numbers of CD4+T-cells and CD4+CD25+

Foxp3+ T-cells were calculated per spleen.
For cytokine measurements, spleen cells were stimulated with OVA

(0.2 μg per well), medium for 72 h. Undiluted spleen cell supernatants
were screened for cytokine production using the mouse Th1/Th2/Th17/
Th22 13plex FlowCytomix Multiplex kit (eBiosciences, #BMS822FF), fol-
lowingmanufacturer's instructions. Acquisitionwas performedon a FACS
Calibur flow cytometer (BD Biosciences) and data were analyzed using
the eBioscience FlowCytomix Pro Software.

2.7. Histological evaluations of gastro-intestinal tissue sections

Stomach and intestinewere removed under sterile conditions and put
into 4% paraformaldehyde overnight and then transferred into PBS. The
stomach was cut open along the sagittal plane. The intestine was
transversally cut using a randomstart and a cutting interval of 2 cm to ob-
tain systematic uniform random samples. Sections of paraffin embedded
samples (3–4 μm thickness) were stained with haematoxylin/eosin (HE)
for inflammatory infiltrates, periodic acid-Schiff reagent (PAS) for goblet
cells, and chloracetate-esterase (CAE) for detection ofmyeloid cells in the
mucosa as previously described [15].

2.8. Bacterial community composition in feces samples

Ten days before sacrifice, feces samples were collected from individ-
ual animals by placing the mouse into a restrainer to avoid cross-
contamination. Feces samples were immediately shock-frozen in liquid
nitrogen and stored at−80 °C until further processing.

About 35 mg of fecal samples per mouse were used for microbiome
analyses. Total bacterial genomic DNA was extracted using NucleoSpin
Kit for Soil (Macherey-Nagel, Dueren, Germany) following themanufac-
turer's instructions. Amplification of the V6–V9 region of 16S rRNA gene
was performed with primer 926F (5′-AAACTYAAAKGAATTGACGG-3′)
[16] and 630R (5′-CAKAAAGGAGGTGATCC-3′) [17] with the attached
Roche 454 sequencing adaptors. For multiplexing purposes the forward
primer included a 10-nt barcode sequence. Three independent PCRs
were performed for each sample with Fast Start High Fidelity PCR Sys-
tem (Roche, Mannheim, Germany) containing 20 ng of template DNA
with an optimal annealing temperature of 50 °C and 22 cycles. PCR reac-
tions were pooled and purified using QiaQuick PCR Purification Kit
(Qiagen, Hilden, Germany). After quantification using a Quant-iT™
PicoGreen dsDNA quantification kit (Invitrogen, Paisley, UK), samples
were equally pooled. The sequencing of this amplicon library was per-
formed on a Roche 454 GS FLX Pyrosequencer (Roche, Mannheim,
Germany) using Titanium chemistry. Ampliconswere sequenced unidi-
rectionally as recommended in the manufacturer's instruction for
amplicon Lib-L libraries. Sequences were processed and data were ana-
lyzed according to the 454 Schloss standard operating procedure (SOP;
http://www.mothur.org/wiki/Schloss_SOP) [18] with the software
Mothur v.1.29.0 [19]. Reads were denoised, quality filtered and
trimmed. For taxonomic analysis, sequences were aligned against Silva
SEED alignment database [20], chimeras were removed using UCHIME
implementation [21] in Mothur, and taxonomic assignment was per-
formed using RDP trainset with a cut-off of 80% [22]. To compare
equal numbers of sequences of each fecal sample, subsamples with
10,429 sequences were generated. Sequences with similarity N97%
were combined to one OTU. Prior to the statistical analysis, all OTUs
with b0.01% of the total abundance were excluded from the analysis.

2.9. Statistical analysis

Data evaluationwas doneusing GraphPadPrism5 software. First, re-
sults were tested for normal distribution followed by unpaired t-test.
Cytokine levels results were analyzed using two-way ANOVA and
Bonferroni multiple comparison test. A p-value b 0.05 was considered
statistically significant.

Statistical analysis of gut microbiome data was performed using R
platform (R version 2.15.1) with the packages VEGAN [23] and ade4
[24] and custom R scripts. Hellinger transformed OTU abundances
were used to compare community patterns between the two groups
by Principal Component Analysis (PCA). In addition, amultivariate anal-
ysis of variance (npMANOVA), based on Bray-Curtis distance on relative
OTU abundances was performed. Wilcoxon-Mann Whitney tests were
performed on OTU levels to compare groups N and A. Differences with
an p-value b 0.01 were considered to be statistically significant.

3. Theory

Using an inbred mouse strain with all animals housed under identi-
cal conditions and immunized following a standardized protocol, a uni-
form immune response would be expected. Due to different responses
in previous experiments we aimed to retrospectively phenotype ani-
mals, which were protected from food allergy development, and com-
pare them to allergic control animals. This work should establish a
sound basis for further studies to prospectively induce a phenotype
protected from food allergy development, with thefinal aim of develop-
ing allergy prevention strategies.

4. Results

4.1. Determination of specific antibody levels allows classification ofmice as
non-responders versus highly sensitized animals

Sixty-four mice were subjected to our protocol of oral food allergy
induction (Fig. 1A). After the last immunization step, 10 out of 64 ani-
mals of interestwere identified based on lack of OVA-specific antibodies
(Fig. 1B), i.e. non-responder animals, group N (Fig. 2A–D). They were
compared to 10 control mice (10/64), which mounted high levels of
OVA-specific IgE (Fig. 2A), IgG1 (Fig. 2B), IgG2a (Fig. 2C) and IgA
(Fig. 2D) responses. These animals were classified as the highly sensi-
tized, allergic group A. Mice with OVA-specific IgE below 15 ng/mL
but above background levels, as well as with specific IgG1 responses
were excluded from further analysis (n = 44).

For read-out of clinical symptoms animals were orally challenged
with OVA twice to induce a strong mucosal response. Systemic OVA
uptake was evaluated in serum samples after oral challenges (Fig. 3A).
We observed higher levels of circulating OVA in the highly sensitized
animals (group A), which might point towards an enhanced intestinal
uptake compared to non-responder animals (group N). Additionally,
mice were subjected to an i.v. OVA provocation to investigate their
potential for a systemic anaphylactic response. Mouse mast cell
protease-1 (mMCP-1) levels, which indicate amast cell-dependent ana-
phylactic response, were measured in serum taken 1 h after PBS and
first oral OVA challenge (OC1) (Fig. 3B). We detected only baseline
mMCP-1 levels in challenged non-responders (group N), which were

http://www.mothur.org/wiki/Schloss_SOP


Fig. 5. Gastric pH measurement after anti-ulcer medication. Acid-suppressive medication
induces comparable elevated intragastric pH levels in all animals. Gastric pH was
measured one hour after i.v. PPI injection on day of sacrifice. Data represent mean + SEM.
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significantly lower as compared to the allergic mice. To ensure the
antigen-specificity of the anaphylactic response, mice were also chal-
lenged with PBS 10 days before the first OVA challenge. Mouse MCP-1
titers were below 10 ng/mL and did not differ between the 2 groups
after oral PBS challenges (data not shown). Additionally, 8/10 mice of
the allergic animals developed a reduction of body temperature, being
defined as a decrease of at least 0.5 °C, measured after oral OVA provo-
cation (data not shown). The temperature drop 5 and 10 min after i.v.
OVA challenge was significantly more pronounced in the allergic ani-
mals of group A (Fig. 3C).

4.2. Serological differences are associated with distinct intestinal IgA levels

As a surrogate marker for mucosal humoral defense and potential
protective factor in food allergic responses, total IgA and OVA-specific
IgA in intestinal lavage fluids of the immunized animalsweremeasured.
Intestinal total (Fig. 4A) and OVA-specific IgA (Fig. 4B) levels were
significantly lower in the non-responders (N) compared to allergic
animals (A).

To rule out thepossibility that thedifferences in antibodyproduction
might be caused by variable responsiveness of mice to the gastric acid-
suppressive effect of PPIs, we performed gastric pH measurements 1 h
after PPI injection. Comparable elevated gastric pH levels were deter-
mined in both groups (Fig. 5).

Sagittal sections of the stomach and transverse, uniform system-
atic random sections of the intestine stained with HE and CAE
for inflammatory infiltrates, and myeloid mucosal cells, respectively,
showed comparable gastrointestinal morphology between the
groups (Fig. 6).

4.3. IgE responders have stronger Th2 responses, but also higher T-
regulatory cell numbers

To assess whether differences on the antibody level were accompa-
nied by differences in T-regulatory cell subsets, spleen cells were
stained for CD4, CD25 and Foxp3 and analyzed by flow cytometry. No
significant differences in total spleen cell numbers were found between
the two groups. The absolute numbers of CD4+ T-cells (Fig. 7A) and
CD4+CD25+Foxp3+ T-regulatory cells (Fig. 7B) were significantly
lower in the non-responder animals (N) compared to allergic mice
(A). Cytokine levels were measured in supernatants of spleen cells,
which were stimulated with medium, to investigate the background
levels of cytokine production, or with OVA, to induce an allergen-
specific cytokine response. In a FlowCytomix multiplex approach, 13
different cytokines were measured (Table 1). In line with the increased
IgE response the Th2 type cytokines IL-4, IL-5 and IL-13 were signifi-
cantly higher after OVA stimulation in the allergic mice than in group
N. No group differences were observed for IL-22, however, this cytokine
was significantly elevated within group N when antigen-specific
splenocyte stimulation was compared to stimulation with medium
Fig. 4. IgA levels in intestinal lavage fluid. Total (A) and OVA-specific IgA (B) were measured
control. Interestingly, the T-regulatory cell associated cytokines IL-10
and IL-27 were higher in the allergic animals (group A) being in line
with the higher numbers of T-reg cells, indicating a counter-
regulatorymechanisms in this group. IL-2 as cytokine for T-cell prolifer-
ation and differentiation was significantly elevated in the OVA-
stimulated spleen cells of allergic mice (Table 1).
4.4. Bacterial OTU differences in feces samples of non-responder mice and
anaphylactic animals

Feces samples of individual mice were analyzed to identify gut
bacterial community composition. 454-pyrosequencing of the V6-V9
region of the 16S rRNA gene was performed. After quality check and
subsampling, an output of 10,429 sequences per fecal sample was ob-
tained. All sequences with at least 97% similarity were considered as 1
OTU resulting in the detection of 409 OTUs. Principal component analy-
sis (PCA) demonstrated only very limited clustering of OTUs identified
in the fecal samples of animals within the same group (PCA; Fig. 8A).
npMANOVA analysis was used to compare the group of interest with
the allergic control animals for differences in the bacterial community
composition on OTU level. No significant differences could be shown
(p = 0.349). After taxonomic classification of sequence data, we did
not detect OTUs of the Porphyromonadaceae family assigned to
Barnesiella (OTU 185) and Tannerella (OTU 213) genus (Fig. 8B
and C) in the non-responders. Therefore, these two OTUs belonging
to the Porphyromonadaceae family were not present in animals
being protected from food allergy. Higher abundances of sequences
showing high similarities to Synthrophaceae (Deltaproteobacteria) and
Ruminococcaceae (Firmicutes, Clostridia) were found in the antibody
non-responder animals (group N) compared to the allergic animals
(group A), where Smithella (OTU 233, Fig. 8D) and Faecalibacterium
(OTU 102, Fig. 8F) were not found and the abundance of Acetivibrio
(OTU 289, Fig. 8E) was significantly lower.
in intestinal lavage fluid by ELISA. Data represent means + SEM; **p b 0.01, *p b 0.05.



Fig. 6.Histology ofmouse intestines. Representativemicrographs of paraffin sections of jejunum stainedwithHE (upper row: apical portion of villi,middle row: basal portion of villi; 1:40)
and CAS staining (bottom row, 1:40) are shown. Left panels for group N and right panels for group A. No significant differences were found with respect to epithelium, infiltrating
eosinophils and myeloid / mast cells .
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5. Discussion

Food allergy does affect patients' quality of life and represents
an enormous economic burden [25] with major efforts for patients,
their caretakers and regulatory authorities. Therefore, researchers
have focused on identifying underlying mechanisms of food allergy
Fig. 7. T-regulatory cell subset staining of splenocytes. Significantly lower numbers of T-cells ar
(A) and T-reg cells (CD4 + CD25 + Foxp3+) (B) were evaluated by flow cytometry. Data are
development using animal models. Although substantial differences
are known between human and mouse allergic responses, food allergy
mouse models provide important and useful information on disease
mechanisms [26,27]. However, a number of different routes and
protocols of sensitizations has been published so far, rendering direct
comparison of results from studies highly complex [28].
e found in spleens of antibody non-responder animals. Absolute numbers of CD4+ T-cells
mean + SEM; *p b 0.05.
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The advantage of our oral food allergy model in BALB/c mice is the
physiological sensitization route applying the allergen intragastrically
under acid suppressive medication without further adjuvants [5]. Even
though in our animal experiments inbred mice were housed and sensi-
tized under identical conditions, immune responses were not uniform
[4–7,9,10,29–32] (and own unpublished data). Thus, in the present
study we aimed to phenotype mice being protected from food allergy
in comparison to mice being highly sensitized and anaphylactic after
immunizations.

Based on this retrospective approach, we identified 3 distinct fea-
tures of animals protected from food allergy development: 1) a tight in-
testinal epithelium, 2) elevated levels of IL-22 and3) a distinctmicrobial
composition.

The integrity of the intestinal epithelium is one of the first major
regulatory mechanisms against the development of food allergy. A
“leaky gut”, meaning the damage of the epithelial barrier function and
an increased uptake of food antigens and allergens into the system,
can facilitate allergic responses if other local pro-inflammatory signals
are present. In our model we observed significantly lower serum con-
centrations of orally applied OVA only in the animals protected from
food allergy, which might indirectly point towards a lower uptake of
the allergen via the mucosa. Functional intestinal epithelial integrity
has been linked to secretory immunity as mice deficient for sIgA and
IgM have increased mucosal leakiness [33,34]. In general, mucosal IgA
is important for the immunological defense against exogenous antigens
and pathogens by exclusion, and thus, might be protective and lead to
mucosal tolerance [35]. Some studies revealed tolerant mice to have
more secretory IgA than sensitized animals [36]. However, also in
mice deficient for the polymeric immunoglobulin receptor, and thus
lacking secretory IgA, oral tolerance can be induced. This observation
led to the conclusion that IgA is probably not the only control mecha-
nism of oral tolerance [37,38]. In contrast, a recent study using a cholera
toxin-basedmousemodel of cow's milk allergy revealed high IgA levels
in plasma and colon homogenates upon a 6weeks immunization proto-
col [39]. Itmight behypothesized that in food allergy increased amounts
of allergen-specific IgA are secreted into the intestine as counter
mechanism to avoid intestinal allergen uptake or as a result of the
overall enhanced immune response, which might be the explanation
for the observed higher local and systemic IgA levels in allergic mice
in our food allergy model.

In addition to the local secretory immune differences we observed
changes in intestinal bacterial colonization patterns between the groups.
Although inbred animals were housed and treated identically, non-
allergic animals (group N) revealed significantly higher abundances of
sequences belonging to Synthrophaceae (Deltaproteobacteria) and
Ruminococcaceae (Firmicutes, Clostridia), whereas two OTUs of the
Porphyromonadaceae family were more abundantly present only in aller-
gic animals (groupA). Variations in gutmicrobiota are associatedwith the
induction of several diseases, including diabetes, obesity and cancer [40]
and were strongly linked to the development of atopic disorders [41], in-
cluding food allergy [42]. In line with the hygiene hypothesis [43], a
reduced or altered microbial load may insufficiently counterbalance a
Th2 response thus favouring the occurrence of food allergy [44]. In
mice, it appears that even minor differences in the gut microbiome can
have substantial effects on experimental models of disease. Inbred mice
with the same genetic background obtained from two different suppliers
featured different dominant microbial communities [45]. Changes in mi-
crobial compositionwere further induced by variations of diet, bymoving
young mice from one room to another or by stress [40,46]. Therefore, in-
consistencies within animal experiments may be related to the observed
differences in the bacterial composition. In our mouse model, animals
were obtained from the same supplier. Offspring of different mothers
were randomly grouped and were all fed the same OVA-free diet.
Interestingly, Tannerella forsythensis and Porphyromonas gingivalis, both
belonging to the Porphyromonadaceae family,whichwaspresent at signif-
icantly higher levels in allergicmice in our study,were shown to stimulate



Fig. 8.Analysis of bacterial community composition ofmurine feces samples of non-responder (N) and allergic (A)mouse groups. Hellinger transformed sequence abundance data onOTU
levelswere analyzed by principal component analysis (A). Relative abundances of Barnesiella (OTU 185; B), Tannerella (OTU 213; C), Smithella (OTU 233; D), Acetivibrium (OTU289, E) and
Faecalibacterium (OTU 102; F) are shown in boxplot analyses for each group N and A. The boxes represent the inner quartile value range with the median indicated as black line.
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a strong pro-inflammatory epithelial immune response under anaerobic
conditions [47]. With regard to food allergy, the Porphyromonadaceae
family was also found in OVA sensitized Il4raF709 mice together with
Rikenellaceae species, to discriminate between OVA sensitized and PBS
sensitized mice [48].

Moreover, Ruminococcaceae, belonging to the system of Clostridiales,
might be linked to IL-22, as Clostridia-containing microbiota protected
against sensitization to food allergens and induced IL-22 [49], which
has been characterized for its protective and inflammatory functions
and its regulatory role on intestinal epithelial integrity [50,51]. In line
with these results we observed higher levels of IL22 after OVA stimula-
tion of spleen cells in tolerant mice, which had higher abundances of
Ruminococcaceae, compared to allergic animals. However, at this point
it can only be speculated whether the OTUs more abundantly present
in the tolerant group can explain the non-responsiveness of these ani-
mals. As we collected feces samples only shortly before sacrifice, it is
not possible to draw conclusions on bacterial composition before and
during food allergy development. We do not know at this point whether
the significantly more abundant OTUs were found in the respective ani-
mals already before sensitization and, therefore, had a direct influence on
thedevelopment of the immune response, orwhether the suppression of
these OTUs occurred as a result of the immunization process and had an
indirect effect on the sensitization.

In conclusion, our food allergy animal model likely reflects the situ-
ation in human patients. By phenotyping animals being protected from
food allergy we determined a reduced uptake of OVA, presumably due
to a tighter epithelium, elevated allergen-specific IL-22 levels and ab-
sence or higher abundance of distinct bacterial strains to be associated
with allergy protection.Without any doubt, it will be essential for future
studies to evaluate whether changes of microbiota composition as
observed in this retrospective evaluation can prospectively achieve
induction of a phenotype protected from food allergy development.
Conflict of interest

The authors declare that they have no conflict of interest.
Funding

This work was supported by the Austrian Science Fund projects
WKP039, KLI284 and P21884. DK and PS were supported by FWF
grant DK W1205, EJJ by SFB F4606-B28, IPS by FFG (Nano Health
819721), ZS by SFB F4615-B19 and TE by the Medical Scientific Fund
of the Mayor of the City of Vienna #11013. HF was supported by the
Deutsche Forschungsgemeinschaft (Cluster of Excellence ‘Inflammation
at Interfaces’ EXC 306) and the German Federal Ministry of Education
and Research (German Center for Lung Research, DZL).

Acknowledgements

We acknowledge the excellent technical assistance of Franziska
Beyersdorf in histopathological investigations, Maria Walker in pyrose-
quencing analysis and the support of Kristina Kreiner and Marlene
Weichselbaumer during animal read-out experiments.

References

[1] S.A. Bock, A. Munoz-Furlong, H.A. Sampson, Further fatalities caused by anaphylactic
reactions to food, 2001–2006, J. Allergy Clin. Immunol. 119 (2007) 1016–1018.

[2] S.R. Boden, A. Wesley Burks, Anaphylaxis: a history with emphasis on food allergy,
Immunol. Rev. 242 (2011) 247–257.

[3] M. Worm, J. Grunhagen, S. Dolle, Food-induced anaphylaxis - data from the anaphy-
laxis registry, Bundesgesundheitsbl. Gesundheitsforsch. Gesundheitsschutz 59
(2016) 836–840.

[4] R. Brunner, J. Wallmann, K. Szalai, P. Karagiannis, H. Altmeppen, A.B. Riemer, E.
Jensen-Jarolim, I. Pali-Scholl, Aluminium per se and in the anti-acid drug sucralfate
promotes sensitization via the oral route, Allergy 64 (2009) 890–897.

[5] S.C. Diesner, R. Knittelfelder, D. Krishnamurthy, I. Pali-Scholl, L. Gajdzik, E. Jensen-
Jarolim, E. Untersmayr, Dose-dependent food allergy induction against ovalbumin
under acid-suppression: a murine food allergy model, Immunol. Lett. 121 (2008)
45–51.

[6] S.C. Diesner, A. Olivera, S. Dillahunt, C. Schultz, T. Watzlawek, E. Förster-Waldl, A.
Pollak, E. Jensen-Jarolim, E. Untersmayr, J. Rivera, Sphingosine-kinase 1 and 2 con-
tribute to oral sensitization and effector phase in a mouse model of food allergy,
Immunol. Lett. 141 (2012) 210–219.

[7] I. Schöll, U. Ackermann, C. Ozdemir, N. Blumer, T. Dicke, S. Sel, M. Wegmann, K.
Szalai, R. Knittelfelder, E. Untersmayr, O. Scheiner, H. Garn, E. Jensen-Jarolim, H.
Renz, Anti-ulcer treatment during pregnancy induces food allergy in mouse
mothers and a Th2-bias in their offspring, FASEB J. 21 (2007) 1264–1270.

http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0005
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0005
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0010
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0010
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0015
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0015
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0015
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0020
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0020
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0020
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0025
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0025
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0025
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0025
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0030
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0030
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0030
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0030
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0035
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0035
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0035
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0035


18 S.C. Diesner et al. / Clinical Immunology 173 (2016) 10–18
[8] E. Untersmayr, N. Bakos, I. Schöll, M. Kundi, F. Roth-Walter, K. Szalai, A.B. Riemer, H.J.
Ankersmit, O. Scheiner, G. Boltz-Nitulescu, E. Jensen-Jarolim, Anti-ulcer drugs pro-
mote IgE formation toward dietary antigens in adult patients, FASEB J. 19 (2005)
656–658.

[9] E. Untersmayr, I. Schöll, I. Swoboda, W.J. Beil, E. Förster-Waldl, F. Walter, A. Riemer,
G. Kraml, T. Kinaciyan, S. Spitzauer, G. Boltz-Nitulescu, O. Scheiner, E. Jensen-Jarolim,
Antacid medication inhibits digestion of dietary proteins and causes food allergy: a
fish allergy model in Balb/c mice, J. Allergy Clin. Immunol. 112 (2003) 616–623.

[10] I. Schöll, E. Untersmayr, N. Bakos, F. Roth-Walter, A. Gleiss, G. Boltz-Nitulescu, O.
Scheiner, E. Jensen-Jarolim, Antiulcer drugs promote oral sensitization and hyper-
sensitivity to hazelnut allergens in BALB/c mice and humans, Am. J. Clin. Nutr. 81
(2005) 154–160.

[11] E. Dehlink, E. Yen, A.M. Leichtner, E.J. Hait, E. Fiebiger, First evidence of a
possible association between gastric acid suppression during pregnancy and child-
hood asthma: a population-based register study, Clin. Exp. Allergy 39 (2009)
246–253.

[12] K. DeMuth, A. Stecenko, K. Sullivan, A. Fitzpatrick, Relationship between treatment
with antacid medication and the prevalence of food allergy in children, Allergy
Asthma Proc. 34 (2013) 227–232.

[13] E. Ramirez, R. Cabanas, L.S. Laserna, A. Fiandor, H. Tong, N. Prior, O. Calderon, N.
Medrano, I. Bobolea, J. Frias, S. Quirce, Proton pump inhibitors are associated with
hypersensitivity reactions to drugs in hospitalized patients: a nested case-control
in a retrospective cohort study, Clin. Exp. Allergy 43 (2013) 344–352.

[14] A. Trikha, J.G. Baillargeon, Y.F. Kuo, A. Tan, K. Pierson, G. Sharma, G. Wilkinson, R.S.
Bonds, Development of food allergies in patients with gastroesophageal reflux dis-
ease treated with gastric acid suppressive medications, Pediatr. Allergy Immunol.
24 (2013) 582–588.

[15] I. Pali-Schöll, A.O. Yildirim, U. Ackermann, T. Knauer, C. Becker, H. Garn, H. Renz, E.
Jensen-Jarolim, H. Fehrenbach, Anti-acids lead to immunological and morphological
changes in the intestine of BALB/c mice similar to human food allergy, Exp. Toxicol.
Pathol. 60 (2008) 337–345.

[16] D.J. Lane, 16S/23S rRNA sequencing, in: E. Stackebrandt, M. Goodfellow (Eds.),
Nucleic Acid Techniques in Bacterial Systematics, Wiley, New York 1991,
pp. 115–175.

[17] S. Juretschko, G. Timmermann, M. Schmid, K.-H. Schleifer, A. Pommerening-Röser,
H.-P. Koops, M. Wagner, Combined molecular and conventional analyses of nitrify-
ing bacterium diversity in activated sludge: Nitrosococcus mobilis and nitrospira-
like bacteria as dominant populations, Appl. Environ. Microbiol. 64 (1998)
3042–3051.

[18] P.D. Schloss, D. Gevers, S.L. Westcott, Reducing the effects of PCR amplification and
sequencing artifacts on 16S rRNA-based studies, PLoS One 6 (2011), e27310.

[19] P.D. Schloss, S.L. Westcott, T. Ryabin, J.R. Hall, M. Hartmann, E.B. Hollister, R.A.
Lesniewski, B.B. Oakley, D.H. Parks, C.J. Robinson, J.W. Sahl, B. Stres, G.G.
Thallinger, D.J. Van Horn, C.F. Weber, Introducing mothur: open-source, platform-
independent, community-supported software for describing and comparing micro-
bial communities, Appl. Environ. Microbiol. 75 (2009) 7537–7541.

[20] C. Quast, E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer, P. Yarza, J. Peplies, F.O. Glockner,
The SILVA ribosomal RNA gene database project: improved data processing and
web-based tools, Nucleic Acids Res. 41 (2013) D590–D596.

[21] R.C. Edgar, B.J. Haas, J.C. Clemente, C. Quince, R. Knight, UCHIME improves sensitivity
and speed of chimera detection, Bioinformatics 27 (2011) 2194–2200.

[22] J.R. Cole, Q. Wang, E. Cardenas, J. Fish, B. Chai, R.J. Farris, A.S. Kulam-Syed-Mohideen,
D.M. McGarrell, T. Marsh, G.M. Garrity, J.M. Tiedje, The ribosomal database project:
improved alignments and new tools for rRNA analysis, Nucleic Acids Res. 37 (2009)
D141–D145.

[23] P. Dixon, VEGAN, a package of R functions for community ecology, J. Veg. Sci. 14
(2003) 927–930.

[24] S. Dray, A.B. Doufour, The ade4 package: implementing the duality diagram for ecol-
ogists, J. Stat. Softw. 22 (2007) 1–20.

[25] R. Gupta, D. Holdford, L. Bilaver, A. Dyer, J.L. Holl, D. Meltzer, The economic
impact of childhood food allergy in the United States, JAMA Pediatr. 167 (2013)
1026–1031.

[26] M.T. Graham, K.C. Nadeau, Lessons learned from mice and man: mimicking human
allergy through mouse models, Clin. Immunol. 155 (2014) 1–16.

[27] M.K. Oyoshi, H.C. Oettgen, T.A. Chatila, R.S. Geha, P.J. Bryce, Food allergy: insights
into etiology, prevention, and treatment provided by murine models, J. Allergy
Clin. Immunol. 133 (2014) 309–317.

[28] K.L. Bogh, J. van Bilsen, R. Glogowski, I. Lopez-Exposito, G. Bouchaud, C. Blanchard,
M. Bodinier, J. Smit, R. Pieters, S. Bastiaan-Net, N. de Wit, E. Untersmayr, K. Adel-
Patient, L. Knippels, M.M. Epstein, M. Noti, U.C. Nygaard, I. Kimber, K. Verhoeckx,
L. O'Mahony, Current challenges facing the assessment of the allergenic capacity
of food allergens in animal models, Clin. Transl. Allergy 6 (2016) 21.
[29] R. Brunner, J. Wallmann, K. Szalai, P. Karagiannis, T. Kopp, O. Scheiner, E. Jensen-
Jarolim, I. Pali-Scholl, The impact of aluminium in acid-suppressing drugs on the im-
mune response of BALB/c mice, Clin. Exp. Allergy 37 (2007) 1566–1573.

[30] E. Untersmayr, S.C. Diesner, K.H. Bramswig, R. Knittelfelder, N. Bakos, C. Gundacker,
A. Lukschal, J. Wallmann, K. Szalai, I. Pali-Scholl, G. Boltz-Nitulescu, O. Scheiner, A.
Duschl, E. Jensen-Jarolim, Characterization of intrinsic and extrinsic risk factors for
celery allergy in immunosenescence, Mech. Ageing Dev. 129 (2008) 120–128.

[31] I. Pali-Schöll, R. Herzog, J. Wallmann, K. Szalai, R. Brunner, A. Lukschal, P.
Karagiannis, S.C. Diesner, E. Jensen-Jarolim, Antacids and dietary supplements
with an influence on the gastric pH increase the risk for food sensitization, Clin.
Exp. Allergy 40 (2010) 1091–1098.

[32] E. Untersmayr, S.C. Diesner, G.J. Oostingh, K. Selzle, T. Pfaller, C. Schultz, Y. Zhang, D.
Krishnamurthy, P. Starkl, R. Knittelfelder, E. Forster-Waldl, A. Pollak, O. Scheiner, U.
Poschl, E. Jensen-Jarolim, A. Duschl, Nitration of the egg-allergen ovalbumin en-
hances protein allergenicity but reduces the risk for oral sensitization in a murine
model of food allergy, PLoS One 5 (2010), e14210.

[33] P. Brandtzaeg, Update on mucosal immunoglobulin A in gastrointestinal disease,
Curr. Opin. Gastroenterol. 26 (2010) 554–563.

[34] F.E. Johansen, M. Pekna, I.N. Norderhaug, B. Haneberg, M.A. Hietala, P. Krajci, C.
Betsholtz, P. Brandtzaeg, Absence of epithelial immunoglobulin A transport, with in-
creased mucosal leakiness, in polymeric immunoglobulin receptor/secretory
component-deficient mice, J. Exp. Med. 190 (1999) 915–922.

[35] F.D. Finkelman, M.E. Rothenberg, E.B. Brandt, S.C. Morris, R.T. Strait, Molecular
mechanisms of anaphylaxis: lessons from studies with murine models, J. Allergy
Clin. Immunol. 115 (2005) 449–457 (quiz 458).

[36] C.P. Frossard, C. Hauser, P.A. Eigenmann, Antigen-specific secretory IgA antibodies in
the gut are decreased in a mouse model of food allergy, J. Allergy Clin. Immunol. 114
(2004) 377–382.

[37] N. Corazza, T. Kaufmann, Novel insights into mechanisms of food allergy and allergic
airway inflammation using experimental mouse models, Allergy 67 (2012)
1483–1490.

[38] M.R. Karlsson, F.E. Johansen, H. Kahu, A. Macpherson, P. Brandtzaeg, Hypersensitiv-
ity and oral tolerance in the absence of a secretory immune system, Allergy 65
(2010) 561–570.

[39] E. Bailon, M. Cueto-Sola, P. Utrilla, J. Rodriguez-Ruiz, N. Garrido-Mesa, A. Zarzuelo, J.
Xaus, J. Galvez, M. Comalada, A shorter and more specific oral sensitization-based
experimental model of food allergy inmice, J. Immunol. Methods 381 (2012) 41–49.

[40] N. Gill, B.B. Finlay, The gut microbiota: challenging immunology, Nature 11 (2011)
636–637.

[41] J. Penders, C. Thijs, P.A. van den Brandt, I. Kummeling, B. Snijders, F. Stelma, H. Adams,
R. van Ree, E.E. Stobberingh, Gut microbiota composition and development of atopic
manifestations in infancy: the KOALA Birth Cohort Study, Gut 56 (2007) 661–667.

[42] B. Rodriguez, G. Prioult, R. Bibiloni, I. Nicolis, A. Mercenier, M.J. Butel, A.J. Waligora-
Dupriet, Germ-free status and altered caecal subdominant microbiota are associated
with a high susceptibility to cow's milk allergy in mice, FEMS Microbiol. Ecol. 76
(2011) 133–144.

[43] D.P. Strachan, Hay fever, hygiene, and household size, BMJ 299 (1989) 1259–1260.
[44] B. Bjorksten, The hygiene hypothesis: do we still believe in it? Nestle Nutr. Work-

shop Ser. Pediatr. Program 64 (2009) 11–18 (discussion 18–22, 251–257).
[45] I.I. Ivanov, L.F. Rde, N. Manel, K. Yoshinaga, D.B. Rifkin, R.B. Sartor, B.B. Finlay, D.R.

Littman, Specific microbiota direct the differentiation of IL-17-producing T-helper
cells in the mucosa of the small intestine, Cell Host Microbe 4 (2008) 337–349.

[46] M.K. Friswell, H. Gika, I.J. Stratford, G. Theodoridis, B. Telfer, I.D. Wilson, A.J. McBain,
Site and strain-specific variation in gut microbiota profiles and metabolism in ex-
perimental mice, PLoS One 5 (2010), e8584.

[47] M.M. Grant, R.T. Kolamunne, F.E. Lock, J.B. Matthews, I.L. Chapple, H.R. Griffiths, Ox-
ygen tension modulates the cytokine response of oral epithelium to periodontal
bacteria, J. Clin. Periodontol. 37 (2010) 1039–1048.

[48] M. Noval Rivas, O.T. Burton, P. Wise, Y.Q. Zhang, S.A. Hobson, M. Garcia Lloret, C.
Chehoud, J. Kuczynski, T. DeSantis, J. Warrington, E.R. Hyde, J.F. Petrosino, G.K.
Gerber, L. Bry, H.C. Oettgen, S.K. Mazmanian, T.A. Chatila, A microbiota signature as-
sociatedwith experimental food allergy promotes allergic sensitization and anaphy-
laxis, J. Allergy Clin. Immunol. 131 (2013) 201–212.

[49] A.T. Stefka, T. Feehley, P. Tripathi, J. Qiu, K. McCoy, S.K. Mazmanian, M.Y. Tjota, G.Y.
Seo, S. Cao, B.R. Theriault, D.A. Antonopoulos, L. Zhou, E.B. Chang, Y.X. Fu, C.R. Nagler,
Commensal bacteria protect against food allergen sensitization, Proc. Natl. Acad. Sci.
U. S. A. 111 (2014) 13145–13150.

[50] G.F. Sonnenberg, L.A. Fouser, D. Artis, Border patrol: regulation of immunity, inflamma-
tion and tissue homeostasis at barrier surfaces by IL-22, Nat. Immunol. 12 (2011)
383–390.

[51] K. Honda, D.R. Littman, The microbiota in adaptive immune homeostasis and
disease, Nature 535 (2016) 75–84.

http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0040
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0040
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0040
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0040
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0045
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0045
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0045
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0045
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0050
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0050
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0050
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0050
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0055
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0055
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0055
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0055
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0060
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0060
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0060
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0065
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0065
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0065
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0065
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0070
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0070
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0070
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0070
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0075
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0075
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0075
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0075
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0080
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0080
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0080
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0085
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0085
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0085
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0085
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0085
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0090
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0090
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0095
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0095
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0095
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0095
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0095
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0100
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0100
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0100
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0105
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0105
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0110
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0110
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0110
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0110
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0115
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0115
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0120
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0120
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0125
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0125
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0125
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0130
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0130
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0135
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0135
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0135
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0140
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0140
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0140
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0140
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0140
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0145
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0145
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0145
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0150
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0150
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0150
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0150
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0155
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0155
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0155
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0155
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0160
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0160
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0160
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0160
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0160
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0165
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0165
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0170
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0170
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0170
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0170
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0175
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0175
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0175
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0180
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0180
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0180
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0185
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0185
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0185
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0190
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0190
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0190
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0195
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0195
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0195
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0200
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0200
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0205
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0205
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0205
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0210
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0210
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0210
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0210
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0215
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0220
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0220
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0225
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0225
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0225
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0230
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0230
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0230
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0235
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0235
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0235
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0240
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0240
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0240
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0240
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0240
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0245
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0245
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0245
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0245
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0250
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0250
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0250
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0255
http://refhub.elsevier.com/S1521-6616(16)30300-X/rf0255

	A distinct microbiota composition is associated with protection from food allergy in an oral mouse immunization model
	1. Introduction
	2. Material and methods
	2.1. Animals and immunization regimen
	2.2. Antibody measurements
	2.3. Systemic OVA uptake
	2.4. Gastric pH measurements
	2.5. Anaphylaxis read-out
	2.6. Spleen cell stimulation and cytokine measurement
	2.7. Histological evaluations of gastro-intestinal tissue sections
	2.8. Bacterial community composition in feces samples
	2.9. Statistical analysis

	3. Theory
	4. Results
	4.1. Determination of specific antibody levels allows classification of mice as non-responders versus highly sensitized animals
	4.2. Serological differences are associated with distinct intestinal IgA levels
	4.3. IgE responders have stronger Th2 responses, but also higher T-regulatory cell numbers
	4.4. Bacterial OTU differences in feces samples of non-responder mice and anaphylactic animals

	5. Discussion
	Conflict of interest
	Funding
	Acknowledgements
	References


