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intake by modifying the reward and prefrontal circuitry of 
the human brain, thereby potentially decreasing the reward-
ing properties of food. Due to the alarming increase in obe-
sity worldwide, it is of great importance to identify neural 
mechanisms of interaction between the homeostatic and 
non-homeostatic system to generate new targets for obe-
sity therapy.  Copyright © 2012 S. Karger AG, Basel 

 Introduction 

 Obesity has extensive consequences due to the strong 
associations with numerous health conditions (e.g. diabe-
tes) and heightened mortality  [1, 2] . It has been proposed 
that the alarming increase in obesity is mostly caused by 
the ready availability of highly palatable food. Therefore, 
most conceptualizations of human eating behavior pro-
pose an interaction between brain areas controlling meta-
bolic homeostasis and those dealing with cognitive and 
emotional processing to influence food intake  [3, 4] . The 
brain homeostatic system (i.e. hypothalamus) perceives 
and integrates circulating metabolic and hormonal cues 
reflecting available fuel sources, such as ghrelin, leptin 
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 Abstract 

  Aim:  There is accumulating evidence that food consumption 
is controlled by a wide range of brain circuits outside of the 
homeostatic system. Activation in these brain circuits may 
override the homeostatic system and also contribute to the 
enormous increase of obesity. However, little is known about 
the influence of hormonal signals on the brain’s non-homeo-
static system. Thus, selective insulin action in the brain was 
investigated by using intranasal application.  Methods:  We 
performed ‘resting-state’ functional magnetic resonance 
imaging in 17 healthy lean female subjects to assess intrinsic 
brain activity by fractional amplitude of low-frequency fluc-
tuations (fALFF) before, 30 and 90 min after application of 
intranasal insulin.  Results:  Here, we showed that insulin 
modulates intrinsic brain activity in the hypothalamus and 
orbitofrontal cortex. Furthermore, we could show that the 
prefrontal and anterior cingulate cortex response to insulin 
is associated with body mass index.  Conclusion:  This dem-
onstrates that hormonal signals as insulin may reduce food 
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and insulin, to stimulate or inhibit feeding in order to 
maintain appropriate levels of energy balance. Nonethe-
less, recent research suggests that in addition to the ho-
meostatic system, higher cognitive functions also play an 
important role in energy regulation [for reviews, see  4, 5 ]. 
In fact, human brain imaging studies have revealed that 
food-related stimuli can activate brain circuits implicated 
in reward, particularly the orbitofrontal cortex (OFC), in-
sula, amygdala, hypothalamus, striatum and midbrain re-
gions  [4]  and prefrontal areas essential for executive func-
tion including inhibitory control of feeding behavior  [6, 
7] . Furthermore, the central nervous system (CNS) cir-
cuitry can be modified by hormonal signals, like insulin, 
which act in the CNS as regulators of whole-body energy 
homeostasis through their receptors expressed in the lim-
bic forebrain [see  8  for review,  9, 10 ]. Rodent studies sug-
gest that insulin acts on the homeostatic and non-homeo-
static system of the brain thereby accessing reward-related 
brain areas. For example, insulin modulates the excitabil-
ity of neurons not just in the hypothalamus but also in the 
hippocampus, influencing learning and memory process-
es  [11, 12]  and decreasing the rewarding value of food 
through the ‘reward circuitry’, such as by decreasing do-
pamine signaling  [13, 14] . Hence, it is possible, in addition 
to its role as a homeostatic signal, that insulin may influ-
ence the reward circuitry of the human brain, thereby 
modulating the hedonic aspects of eating behavior. To 
date, the central nervous effects of insulin in humans still 
remain mostly unclear. Since the effects of insulin and 
glucose in human studies are difficult to differentiate, we 
used the intranasal administration of insulin. This tech-
nique allowed us to study central insulin action by selec-
tive delivery of the hormone into the brain, without rele-
vant effects on peripheral glucose concentrations  [15] . Af-
ter intranasal insulin administration, insulin enters the 
cerebrospinal fluid compartment and influences brain 
function, demonstrating for example beneficial effects on 
memory functions and promoting weight loss  [16–19] . In 
a recent functional magnetic resonance imaging (fMRI) 
study, we found that intranasal insulin attenuates visual 
processing of food images  [20] . However, little is known 
about the effect of insulin on intrinsic brain activity. Re-
cent research has provided increasing evidence that in-
trinsic brain activity is important for healthy brain func-
tion, revealing changes during ‘resting state’ related to 
several different medical conditions such as Alzhei-
mer’s disease  [21]  and obesity  [22] . 

  In our study, we performed ‘resting-state’ fMRI in 
healthy lean female subjects to assess intrinsic brain activ-
ity before, 30 and 90 min after intranasal insulin applica-

tion. For this purpose, we used a voxel-wise frequency-
domain measure of BOLD signal dynamics called frac-
tional amplitude of low-frequency fluctuations (fALFF) 
 [23, 24] . fALFF is strongest in gray matter and has been 
shown to be a reliable and consistent index  [24] . Previous 
studies have observed that fALFF is associated with dif-
ferences in behavior  [25]  and emotional cognition  [26] .

  We present evidence that insulin influences intrinsic 
brain activity beyond the homeostatic systems of the 
brain modulating the OFC, anterior cingulate cortex 
(ACC), prefrontal cortex (PFC) and hypothalamus.

  Materials and Methods 

 Subjects and Study Design 
 Seventeen female subjects (body mass index (BMI) 21.16  8  

1.64 kg/m 2 , age 24.47  8  2.21 years) were recruited. All subjects 
were healthy as ascertained by a physician. Particularly, they did 
not suffer from psychiatric, neurological or metabolic diseases. 
Any volunteer treated for chronic disease or taking any kind of 
medication other than oral contraceptives was excluded at screen-
ing. Eating behavior of the subjects was assessed by the German 
Three-Factor Eating Questionnaire  [27] . All subjects were nor-
mal-sighted or had corrected-to-normal vision. Informed written 
consent was obtained from all subjects and the local ethics com-
mittee approved the protocol.

  All subjects participated in two conditions, insulin and pla-
cebo, on two different days in randomized order with a time lag 
of 7–28 days. The subjects were blinded to the order of the condi-
tions. Experiments were conducted after an overnight fast of at 
least 10 h and started at 07:   00 h with a ‘resting-state’ fMRI mea-
surement under basal conditions. After the basal measurement, 
an insulin/placebo spray was administered intranasally as de-
scribed below. After 30 and 90 min, the second and third ‘resting-
state’ fMRI measurements were performed. Before the experi-
ment, subjects confirmed their fasting state. Subjective feeling of 
hunger was rated on a visual analogue scale from 0 to 10 (0: not 
hungry at all; 10: very hungry) at time points 0, 30 and 90 min. 
However, we only have a complete hunger rating of both measure-
ment days for 11 subjects. Venous blood samples were obtained at 
0, 30, 60, 90, and 120 min and plasma glucose and plasma insulin 
concentrations were determined ( fig. 1 ).

  Intranasal Insulin and Placebo Spray and Analytical 
Procedures 
 The insulin and placebo spray were prepared in nasal sprays 

as previously described  [15] . Each puff consisted of 0.1 ml solution 
containing 40 IU insulin (400 IU/ml; Insulin Actrapid; Novo Nor-
disk, Mainz, Germany) or 0.1 ml vehicle for placebo. Each subject 
received four doses of 0.1 ml insulin or placebo spray within 
5 min. Two doses were applied in the left and two doses in the right 
nostril resulting in a total insulin dose of 160 IU insulin on the 
insulin condition day. Blood glucose was determined using the 
glucose-oxidase method (Yellow Springs Instruments, Yellow 
Springs, Ohio, USA). Plasma insulin was measured by commer-
cial chemiluminescence assays for ADVIA Centaur (Siemens 
Medical Solutions, Fernwald, Germany).
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  Data Acquisition 
 Whole-brain functional fMRI data was obtained by using a 3.0 

T scanner (Siemens Tim Trio, Erlangen, Germany). Functional 
data were collected by using echo-planar imaging sequence: TR = 
1.8 s, TE = 30 ms, FOV = 210 mm 2 , matrix 64  !  64, flip angle 90°, 
voxel size 3  !  3 x 4 mm 3 , slice thickness 3 mm, 1 mm gap and the 
images were acquired in ascending order (where TR is repetition 
time, TE is echo time, FOV is field of view). Each brain volume 
comprised 28 axial slices and each functional run contained 160 
image volumes, resulting in a total scan time of 4.52 min. In ad-
dition, high-resolution T 1 -weighted anatomical images (MPRage: 
176 slices, matrix: 256  !  224, 1  !  1  !  1 mm 3 ) of the brain were 
obtained. All subjects were instructed not to focus their thoughts 
on anything in particular and to keep their eyes closed during the 
resting-state MR acquisition.

  Data Preprocessing 
 Functional image preprocessing and statistical analysis were 

carried out by using SPM5 (Wellcome Trust Centre for Neuroim-
aging, London, UK). Images were realigned to the first image. 
Unwarping of geometrically distorted EPIs was performed using 
the FieldMap Toolbox available for SPM5 to account for suscepti-

bility by movement artifacts. A mean image was created and co-
registered to the T 1  structural image. The anatomical image was 
normalized to the Montreal Neurological Institute (MNI) tem-
plate, and the resulting parameter file was used to normalize the 
functional images (voxel size: 3  !  3  !  3 mm 3 ). Finally the nor-
malized images were smoothed with a three-dimensional isotro-
pic gaussian kernel (FWHM: 6 mm). FMRI data were high-pass 
(cut-off period 128 s) and low-pass filtered (autoregression model 
AR(1)).

  Fractional Amplitude of Low-Frequency Fluctuation 
 Low-frequency (0.01–0.08 Hz) fluctuations (LFF) of the blood 

oxygenation level dependent (BOLD) signal in resting-state fMRI 
data are thought to reflect intrinsic neural activity in non-hu-
mans  [28]  and humans  [29] . We carried out the fALFF analysis on 
the preprocessed functional data using REST (http://resting-fmri.
sourceforge.net), as recently described  [23, 30, 31] . fALFF is deter-
mined based on the analysis of the temporal data at each voxel. 
The regional intensity of spontaneous BOLD fluctuations is 
quantified by the power spectrum in the low-frequency range 
(0.009–0.08 Hz) and regularized by the power in the whole fre-
quency range (0–0.25 Hz)  [23] . The resulting activity maps are 
normalized and further analyzed by standard procedures. fALFF 
is a reliable and consistent index exhibiting moderate to high test-
retest reliability  [24] .

  Statistical Analysis 
 To control for daytime variations in cerebrocortical activity 

and fatigue or repetition effects, we performed a placebo experi-
ment in random order and interpreted the change after insulin 
application in relation to placebo-derived changes. For each sub-
ject, the fALFF maps of the basal fMRI measurement were sub-
tracted from the fALFF maps of the 30- and 90-min fMRI mea-
surement. The fALFF maps of each subject, corrected for basal 
fMRI measurement, were entered into a second-level analysis in 
SPM5 using a full-factorial model to determine the effect of insu-
lin versus placebo (factors: condition and time) 30 and 90 min 
after applying the spray. Age and BMI were used as confounding 
covariates, which means that the effect of age and BMI were re-
moved from the data. Only activations exceeding a whole-brain 
false discovery rate (FDR) of p  !  0.05 were considered as signifi-
cant. Furthermore, we used a region-of-interest approach by us-
ing the WFU PickAtlas tool (http://www.fmri.wfubmc.edu/
download.htm) for the hypothalamus, due to its fundamental role 
in energy homeostasis and expression of insulin receptors  [10, 32–
34] . SPM5’s small volume correction to correct for multiple com-
parisons was used. To evaluate BMI-associated activity, we per-
formed a multiple regression analyses in SPM5 using the baseline 
corrected fALFF maps for insulin and placebo day separately. 
Only activations exceeding a whole-brain FDR of p  !  0.05 were 
considered as significant.

  Hunger ratings were evaluated using a repeated measurement 
ANOVA in SPSS (version 19; SPSS Inc.). Results with values of 
p  !  0.05 were considered statistically significant. The statistical 
analysis of metabolic parameters was performed with JMP 7.0 
(SAS Institute, Cary, N.C., USA). All data are given as unadjusted 
mean  8  SD. The parameters were log transformed to approxi-
mate normal distribution prior to statistical analysis. Paired t tests 
were used to test for significant differences between insulin and 
placebo. Results with values of p  !  0.05 were considered statisti-
cally significant ( table 1 ).

Placebo
Baseline

fMRI

–30

Blood samples

Intranasal placebo
or insulin spray

Placebo
30 min

fMRI

Placebo
90 min

Insulin
Baseline

Insulin
30 min

Insulin
90 min

fMRI

0 6030 90 120

  Fig. 1.  Schema of test procedure. The order of placebo day and 
insulin day were balanced over subjects. 

Table 1. M etabolic parameters during fMRI experiment

Time
min

G lucose, mmol/l Insulin, pmol/l

placebo spray insulin spray placebo spray insulin spray

0 4.6080.26 4.7280.36 41820 43819
30 4.4580.49 4.4180.42 52824* 67828*
60 3.4281.97 3.5381.83 46819 47815
90 4.5380.54 4.3580.40 48822 41815

120 4.6180.41 4.4680.71 43823 27812

Al l data are given as mean 8 SD.
* Significant differences between groups (t test).
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  Results 

 Effect of Intranasal Insulin on Low-Frequency BOLD 
Fluctuations 
 We investigated the effect of intranasal insulin 30 and 

90 min after spray application on fALFF. As shown in 
 table 2 , we observed a significant main effect of condition 
in the left OFC and left hypothalamus (p FDR   !  0.05, cor-
rected for multiple comparison). There was no main ef-
fect of time or significant interaction. The OFC and hy-
pothalamus showed a decrease in fALFF 30 and 90 min 
after intranasal insulin application ( fig. 2 ).

  BMI-Associated Effect of Intranasal Insulin on
Low-Frequency BOLD Fluctuations 
 We investigated the effect of insulin and placebo after 

spray application on fALFF dependent on BMI. We found 
a positive correlation between BMI and fALFF 30 min 
after intranasal insulin application in the superior fron-
tal gyrus (BA10) (peak voxel x: 27, y: 42, z: 21; r = 0.61, 
p FDR  = 0.001, corrected for multiple comparison) ( fig. 3 ). 
Furthermore, we found a positive correlation between 
BMI and fALFF 90 min after intranasal insulin applica-
tion in the anterior cingulate gyrus bilaterally (peak vox-
el x:  8 3, y: 33, z: 15; r = 0.56, p FDR  = 0.02, corrected for 
multiple comparison) ( fig. 3 ). No significant correlation 
was observed after placebo spray administration.

  Hunger Rating 
 Hunger rating 30 and 90 min after spray application 

were corrected for hunger rating under basal conditions 
(mean hunger score ( 8 SE) under basal conditions 5.6  8  
0.73 on a 10-point VAS scale). The repeated measurement 
ANOVA revealed no significant main effect of time (30 
vs. 90 min) or condition (placebo vs. insulin) and no sig-
nificant interaction (p  1  0.05).

  Metabolic Parameters 
 Fasting plasma levels of glucose did not differ between 

insulin and placebo day (4.8  8  0.1 vs. 4.6  8  0.1 mmol/l). 
Fasting plasma insulin levels also did not differ between 
insulin and placebo day (45  8  6 vs. 46  8  6 pmol/l). Thir-
ty minutes after intranasal insulin application, plasma 

Table 2. E ffect of intranasal insulin on LFF

Region MNI coo rdinatesa z
valuesb

Cluster 
sizex y z

Main effect of condition: insulin < placebo
OFC left
Hypothalamus left

–39
–3

39
–9

–9
–9

4.04
3.47c

34
3

a M ontreal Neurological Institute (mm).
b pFDR < 0.05 corrected for multiple comparisons.
c Small volume corrected.

Hypothalamus

0 1 3 5

Orbitofrontal
cortex

  Fig. 2.  Main effect of condition: insulin  !  placebo.   Intranasal in-
sulin-induced fALFF decrease in the hypothalamus and OFC. 
Color-coded z-value map represents significant (p FDR   !  0.05, cor-
rected for multiple comparisons) voxels of  decreased  fALFF 30 
and 90 min after insulin application corrected for basal measure-
ment. 

  Fig. 3.  BMI-associated low-frequency BOLD fluctuations. The in-
tranasal insulin-induced fALFF increase in the PFC (r = 0.61; p = 
0.001) and ACC (r = 0.56; p = 0.02) showed a positive correlation 
with BMI 30 and 90 min after insulin application, respectively. 
Color-coded z-value map represents significant (p     FDR   !  0.05, cor-
rected for multiple comparisons) voxels showing a significant cor-
relation with BMI after insulin application corrected for basal 
measurement.   
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insulin levels showed a slight increase (p  !  0.05), but this 
was not accompanied by a decrease in plasma glucose lev-
els (p  1  0.05). For the other time points, no differences in 
insulin levels between insulin and placebo application 
were observed.

  Discussion 

 To date, effects of the important anorexic hormone in-
sulin on the human brain still remain mostly unclear. 
Therefore we investigated, in this present study, the effect 
of insulin on the brains’ homeostatic and non-homeo-
static system. Intranasal application of insulin allowed us 
to selectively monitor insulin action in the brain without 
relevant effects on peripheral glucose metabolism. We 
used a reliable and consistent index (fALFF), reflecting 
the temporal dynamics of the BOLD signal at each voxel, 
to study intrinsic neuronal activity  [24] . We were able to 
show that intrinsic brain activity is modulated by intra-
nasal insulin 30 and 90 min after application. Specifi-
cally, we found that insulin was associated with a de-
crease in fALFF in the left OFC and hypothalamus 30 and 
90 min after application compared to placebo. Further-
more, we observed BMI-associated activity in response to 
insulin in the PFC and ACC 30 and 90 min after applica-
tion, respectively. The above-mentioned brain areas, in-
cluding the striatum and amygdala, are central elements 
in the control of food intake acting in concert to regulate 
the learning of rewarding aspects of food  [35] . In a recent 
magnetoencephalography (MEG) study, we found that 
insulin modifies the dynamics of the global brain net-
work during resting state leading to increased global 
communication efficiency in lean adults  [36] . Since insu-
lin acts as an anorexic signal reducing food intake  [37] , 
we hypothesized that the increase in global efficiency 
could be connected to an augmented signaling in neural 
systems implicated in food intake.

  The insulin-induced decrease in intrinsic activity was 
observed in the OFC and hypothalamus. The latter be-
longs to the brain’s homeostatic system maintaining ap-
propriate levels of energy balance, which is fundamental 
in the control of peripheral homeostatic activity. In ac-
cordance with that, we found the LFF in the hypothala-
mus to decrease up to 90 min after intranasal insulin ap-
plication, which is probably related to decreases in neu-
ronal activity in the lateral hypothalamic area known as 
the hunger center  [33, 38] . The inhibition of hypothalam-
ic activity might lead to an increase in satiety and poten-
tially to an attenuated response to food stimuli. Hypotha-

lamic dysfunction could potentially compromise the in-
duction of satiety and indeed, altered hypothalamic 
processing after glucose ingestion was observed in obese 
adults and patients with diabetes type 2  [33, 39] .

  In this study, intranasal insulin modulated central el-
ements of the reward system by a decrease in LFF in the 
OFC. Several studies have illustrated that the OFC is in-
volved in the integration of different food modalities and 
in reward evaluation  [40–42] . Furthermore, in a recent 
study we showed that the OFC is sensitive to fasting in-
sulin levels  [22] , which is in accordance with the present 
study revealing that the OFC responds to cerebral chang-
es in insulin directly independent of meal related sensory 
experience. The hypothalamus is also linked to the ‘mo-
tivational circuitry’ of the CNS both anatomically and 
functionally  [8] . In particular, the hypothalamus orexin 
system drives midbrain neural activity modulating dopa-
mine release  [43] . Since insulin is known to impact orex-
in activity in the hypothalamus  [44] , it could be possible 
that intranasal insulin administration may decrease food 
intake and food reward through reduced overall orexin 
tone subsequently modulating dopamine release in the 
midbrain. Alterations in this circuitry could potentially 
lead to overeating; in fact, previous imaging studies have 
shown a hyperresponsiveness of the reward circuitry in 
obese  [45–48]  and diabetic subjects  [49] . However, fur-
ther studies with obese subjects and patients with diabe-
tes are needed to evaluate this hypothesis.

  The insulin-induced response in intrinsic ACC and 
prefrontal activity was associated with the subjects’ BMI. 
The ACC is involved in emotion and cognition. The af-
fective division of the ACC, as seen in this study, is pri-
marily linked to paralimbic and subcortical regions as-
sociated with affective and autonomic processes includ-
ing OFC, nucleus accumbens and hypothalamus. Hence 
the ACC is implicated in modulating, among other 
things, endocrine responses  [50] .

  Cognitive influences on appetite are mediated by the 
PFC. Particularly, the DLPFC plays a critical role in the 
deployment of self-control monitoring behavioral conse-
quences  [7] . Hence the PFC is an important component 
involved in the termination of feeding. Indeed altered 
PFC and ACC activity has been observed in obese indi-
viduals during baseline  [51]  and while viewing food pic-
tures  [52] . Concurrently, in this study insulin modulated 
neural activity in the ACC and PFC correlated with BMI. 
Taken together, we can speculate that the insulin-induced 
increase in intrinsic activity in the ACC modifies the re-
ward circuitry, which is important for the hedonic evalu-
ation of food stimuli, while the PFC exerts inhibiting ef-
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fects on eating by modulating the neural activity of the 
reward circuitry and the hypothalamus probably due to 
the efferent inhibitory projections. Our results further in-
dicate a possible effect of BMI on cerebral insulin sensi-
tivity. However, since all our subjects were of normal 
weight further studies are needed to evaluate the effect of 
BMI on insulin action in the brain in obese individuals.

  Finally, we want to acknowledge some limitations of 
this study. First, we only investigated lean female sub-
jects, therefore our results cannot be generalized to men 
or obese subjects based on this study alone. Similar stud-
ies in male subjects should be pursued as there may be 
gender differences in insulin action in the brain  [53] . In 
addition, it has to be investigated which brain areas show 
a central insulin resistance in obese subjects. Second, we 
did not analyze the effect of insulin action on food intake. 
However, the results of the hunger ratings showed no dif-
ferences between insulin and placebo administration, 
which concurs with a recent study showing that intrana-
sal insulin has no short-term effect on appetite and food 
intake in lean women during the fasting state, as in our 
study  [54] . Nevertheless, further studies are needed to 
evaluate the relationship between insulin action in the 
brain and behavioral correlates in order to generate new 
therapies for obesity and insulin resistance. Lastly, even 
though intranasal insulin did not induce changes in pe-
ripheral glucose metabolism, we did observe subtle rises 
in insulin levels. Since very high insulin levels are present 

in the brain after nasal delivery of the hormone  [15] , the 
small changes in plasma insulin are therefore very un-
likely to induce additional changes in brain activity.

  In conclusion, the intranasal application of insulin al-
lowed us to stimulate cerebral insulin signaling without 
affecting peripheral glucose levels; hence, we were able to 
observe selective insulin action in the brain. In previous 
studies, using MEG, we were able to show that insulin 
modifies the dynamics of the global brain network; here, 
we were able to localize insulin action in the brain. Our 
data suggest that the hypothalamus and most notably, the 
reward and prefrontal circuitry are involved in the inte-
gration of insulin action, an important anorexic hormon-
al signal, thereby potentially decreasing the rewarding 
properties of food and reducing food intake.
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