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Study Objectives: Low or excessive sleep duration has been associated with multiple outcomes, but the biology behind these associations remains elusive. 
Specifically, genetic studies in children are scarce. In this study, we aimed to: (1) estimate the proportion of genetic variance of sleep duration in children 
attributed to common single nucleotide polymorphisms (SNPs), (2) identify novel SNPs associated with sleep duration in children, and (3) investigate the 
genetic overlap of sleep duration in children and related metabolic and psychiatric traits.
Methods: We performed a population-based molecular genetic study, using data form the EArly Genetics and Life course Epidemiology (EAGLE) 
Consortium. 10,554 children of European ancestry were included in the discovery, and 1,250 children in the replication phase.
Results: We found evidence of significant but modest SNP heritability of sleep duration in children (SNP h2 0.14, 95% CI [0.05, 0.23]) using the LD score 
regression method. A novel region at chromosome 11q13.4 (top SNP: rs74506765, P = 2.27e-08) was associated with sleep duration in children, but this was 
not replicated in independent studies. Nominally significant genetic overlap was only found (rG = 0.23, P = 0.05) between sleep duration in children and type 2 
diabetes in adults, supporting the hypothesis of a common pathogenic mechanism.
Conclusions: The significant SNP heritability of sleep duration in children and the suggestive genetic overlap with type 2 diabetes support the search for 
genetic mechanisms linking sleep duration in children to multiple outcomes in health and disease.
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Significance
Sleep duration has been an alluring research topic, yet its genetic underpinnings in children remain mainly uncovered. The present study used novel 
population-based molecular genetic methods, in the largest sample of children available to date, to provide an unbiased estimate of SNP (single 
nucleotide polymorphism) heritability of sleep duration in children (measured by parent-rated questionnaires). Moreover, new chromosomal regions 
associated with sleep duration in children were identified and may serve as subject to further research. Finally, this study extended the epidemiological 
findings of association between sleep duration and impaired glucose metabolism, providing evidence of a common genetic infrastructure, beginning 
early in life.
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INTRODUCTION
Sleep duration, defined as the total amount of sleep obtained 
across a 24-hour period, is a general indicator of sleep need 
and overall well-being.1 The effects of insufficient or exces-
sive sleep duration have been extensively investigated in child 
and adult samples, and strong associations have been found 
with a variety of medical2–7 and psychosocial outcomes.8–14 
What is still unknown is whether common genetic variants 
explain part of the individual variation of sleep duration in 
children, and whether these genetic variants provide a mecha-
nism delineating the central role of sleep duration in health 
and disease.

Sleep duration is considered a complex phenomenon that 
can be influenced by several extrinsic factors, such as the use 
of medication and other substances,15,16 or a variety of environ-
mental and medical conditions,17 with substantial individual 
variability across all ages.18 This individual variability in sleep 
duration could be due to an underlying genetic component. 
Twin studies in adults provide evidence of low to moderate 
heritability of sleep duration (ranging from 0.00–0.55),19–22 and 
a genome-wide linkage study further supported this finding 
(0.17, 95% CI [0.01–0.33]).23 The few twin studies in children 
indicate moderate heritability of sleep duration (ranging from 
0.26–0.58).24–26 However, recent approaches have been devel-
oped (i.e., Genome-wide Complex Trait Analysis (GCTA)27 
and LD score regression28), which can estimate heritability 
based on single nucleotide polymorphisms (SNP heritability, 
SNP h2) and that can be used to verify these preliminary find-
ings in population-based samples.

A number of studies have tried to identify the specific ge-
netic variants associated with sleep duration, mainly in adults. 
Candidate gene studies provide evidence of association be-
tween sleep duration and genetic variants within DEC2,29 
CLOCK,30 ARNTL,31 and SORCS132 genes, among others. Ad-
ditionally, a small genome-wide linkage study (N = 749) indi-
cated a chromosomal region (chromosome 3, 71.3Mb) related 
to sleep duration,23 while a Finnish genome-wide association 
study (GWAS) of N = 8,554 individuals identified genetic vari-
ation near the KLF6 (i.e., rs2031573) and the PCDH7-CENTD1 
(i.e., rs1037079) genes associated with sleep duration, via dif-
ferential gene expression.33

Another GWAS including seven European samples (total 
N = 4,251) identified an intronic genetic variant within ABCC9 
(i.e., rs1104205) associated with sleep duration,34 but the re-
sult could not be replicated in an independent sample of young 
adults (N = 952).35 Recently, a large GWAS meta-analysis of 
47,180 individuals of European ancestry reported a genome-
wide significant association at rs1823125 with sleep duration 
(upstream PAX8, a transcription factor important for develop-
ment and maintenance of thyroid function), which was repli-
cated in an independent sample of 4,747 African-American 
individuals.36 However, little attention has been given to ge-
nome-wide approaches of sleep duration in children. Since 
young children’s sleep patterns are less influenced by external 
factors than adults (e.g., use of alarm clock, usage of caffeine/
sleeping pills, working shifts),16,37 genetic studies in children 
could provide us useful insights into the mechanisms of normal 
variation of sleep duration.

In this study, we analysed data from five population-
based cohorts assessing parent-reported sleep duration in 
Ndiscovery = 10,554 children of European ancestry. First, a GWAS 
meta-analysis was performed to identify novel SNPs asso-
ciated with sleep duration in children, and a replication of 
our top findings was attempted in two independent samples 
(Nreplication = 1,250). Second, we performed gene-set enrichment 
analyses to identify possible functional pathways associated 
with sleep duration in children. Third, we estimated SNP heri-
tability of sleep duration in children using approaches imple-
mented in the GCTA27 and LD score regression methods.28 
Finally, we formally compared the results of the GWAS meta-
analysis in children with the results of previously published ge-
netic studies of sleep duration in adults, and with other related 
metabolic, and psychiatric traits. To our knowledge, this is the 
largest study to date investigating the genetic component of 
sleep duration in children using multiple, partly novel methods.

METHODS

Subjects
This study was performed within the framework of the EArly 
Genetics and Lifecourse Epidemiology (EAGLE) Consor-
tium.38 The study was divided in two phases: discovery and 
replication. In the discovery phase, we combined data from 
five population-based cohorts (i.e., the Avon Longitudinal 
Study of Parents and Children [ALSPAC], the Brain develop-
ment and Air pollution ultrafine particles in school children 
[BREATHE], the Generation R Study [GEN-R], the Infancia 
y Medio Ambiente project [INMA], and the influence of Life-
style factors on the development of the Immune System and Al-
lergies in East and West Germany PLUS the influence of traffic 
emissions and genetics study and the German Infant study on 
the influence of Nutrition Intervention PLUS environmental 
and genetic influences on allergy development [LISA+GINI]). 
In the replication phase, data from two population-based co-
horts were used (i.e., Amsterdam Born Children and their De-
velopment [ABCD] and Glycyrrhizin in Licorice [GLAKU]). 
Information from the participating cohorts is summarized in 
Table 1, and a more detailed description can be found in the 
supplemental material. Cohorts could participate if they ful-
filled the following inclusion criteria: European descent, and 
age of the children between 2 to 14 years at the time of as-
sessment. This age range was selected to avoid developmental 
periods that influence sleep duration in children younger than 
2 years,38 and in adolescents (> 14 years).39 Each study was 
conducted with appropriate institutional ethics approval, and 
written informed consent was obtained from all participants.

Phenotype Definition
In all cohorts (except in GLAKU), child sleep duration was 
assessed by a single, parent-rated, open question, “How 
many hours does your child sleep per day including naps?” 
In GLAKU, parents were asked about the usual bed and rise 
times during school days, from which the total sleep duration 
could be estimated. A detailed description of all questions used 
to evaluate sleep duration in children can be found in supple-
mental material (under Individual study cohort descriptions).
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Genotyping, Quality Control, and Imputation
DNA was extracted from whole blood or buccal cells. Gen-
otype information within each cohort was collected using 
high-density SNP arrays on Illumina platforms for ALSPAC, 
ABCD, BREATHE, GEN-R, GLAKU, and INMA cohorts, 
while for LISA+GINI the Affymetrix platform was used. In all 
cohorts participating in this study, basic quality checks were 
performed (supplemental material, Table S1). Samples were 
also checked for excess heterozygosity, sex accuracy, related-
ness, and missing data. Following these quality control steps, 
phased genotype data were imputed to 1000 GENOME release 
March 2012 reference panel (http://mathgen.stats.ox.ac.uk/im-
pute/ALL_1000G_phase1integrated_v3_impute.tgz), resulting 
in up to ~30 million SNPs for GWAS analysis.

GWAS analyses, Quality Control (QC), and Meta-Analysis
GWAS analyses in unrelated individuals were performed 
within each of the five cohorts participating in the discovery 
phase. Association analyses were performed using two linear 
regression models. In the first model (basic model), sleep dura-
tion (in hours) was regressed on age, sex, and principal compo-
nents of the genetic data to account for population stratification, 
and allele dosage (obtained from the imputed data, for more 
details see supplemental material, Table S1). The second model 
(body mass index [BMI] adjusted model) was additionally ad-
justed for BMI, based on previous reports on genetic overlap of 
shorter sleep duration and increased BMI in adults.40

Prior to the GWAS meta-analysis, rigorous quality control 
(QC) was performed by two independent researchers, using 
the EasyQC software package41 or a custom code in R.42 SNPs 
with minor allele frequency (MAF) ≥ 0.01 and accurate impu-
tation (MACH r2 ≥ 0.4 or IMPUTE2 INFO ≥ 0.3) were con-
sidered for further analysis. Due to the limited sample size 
of some of the cohorts, additional filtering based on expected 
minor allele counts (EMAC) was done. This parameter is re-
lated to both the sample size (N) and the quality of imputation 
(2*N*MAF*quality of imputation). SNPs that did not reach an 
EMAC ≥ 100 were excluded. Genomic inflation as estimated 
by the lambda (λ) parameter was calculated in each study. 
After the QC filters were implemented, between 5 to 8 mil-
lion SNPs were kept for further analysis in each cohort. Before 

the meta-analysis, marker names and alleles were harmonized 
among cohorts and the effect allele frequencies were compared.

After quality control, a fixed-effect inverse variance 
weighted meta-analysis of sleep duration in the five dis-
covery cohorts was performed. This method is implemented 
in METAL (Meta-Analysis Helper).43 First we meta-analysed 
the data from our first model and then we proceeded to the 
second, BMI adjusted model. Only SNPs evaluated in at least 3 
cohorts were considered. A threshold of P ≤ 5.00e-08 was used 
to define genome-wide levels of significance. A threshold of 
P ≤ 1.00e-05 was used to indicate suggestive associations of a 
SNP with the outcome. Quantile-quantile (Q-Q) plots, estima-
tions of lambda (λ) and Manhattan plots were performed in R. 
A regional association plot of the top SNP was performed with 
Locus Zoom.44

Genetic Annotation and Enrichment Analysis
Genetic variants annotation (nearest gene, position in the gene, 
expression quantitative trait loci (eQTLs),and regulatory fea-
tures) was performed with the HaploRegv3 program.45 In ad-
dition, eQTLs were investigated using data from two available 
public databases: the Genotype-Tissue Expression (GTEx) 
project46 and through the web tool of the UK Brain Expression 
Consortium (BRAINEAC, http://www.braineac.org/).

For the enrichment analysis, we selected the loci that 
passed the suggestive level of genome-wide significance 
(P < 1.00e-05), resulting in 20 lead SNPs. The suggestive 
cutoff was selected because these SNPs may represent true 
positives that did not reach genome-wide significance due to 
power issues.33 Molecular and functional enrichment analyses 
were performed using several tools to allow comparison. First, 
the identification of tissues/cell types where genes from asso-
ciated loci are highly expressed was evaluated with DEPICT.47 
DEPICT was also used to identify enriched gene-sets. Second, 
the PANTHER pathway-classification tool was used to sort 
the annotated genes derived from our GWAS meta-analysis 
efforts into functional pathways.48 For the overrepresentation 
of these genes in specific pathways, the PANTHER Gene On-
tology (GO)-Slim Biological Process annotation dataset was 
used. Both approaches use the False Discovery Rate (FDR) to 
correct for multiple-testing.

Table 1—Characteristics of all cohorts participating in the GWAS meta-analysis (discovery and replication phase) of sleep duration in children.

Cohort Age (years)
Sleep Duration (in hours)

  N bMean Median Q1–Q3
 a

Discovery phase 10,554
ALSPAC 7 11.2 11.0 10.8–11.5 5,434
BREATHE 9–11 9.6 10.0 9.0–10.0 1,593
GEN-R 2 13.2 13.0 12.5–14.0 1,979
INMA 4–6 10.3 10.0 10.0–11.0 940
LISA+GINI 10 9.5 10.0 9.0–10.0 608

Replication phase 1,250
ABCD 7–8 10.7 11.0 10.3–11.0 929
GLAKU 7–13 9.4 9.5 9.0–10.0 321

a Interquartile range. b Sample size.
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SNP Heritability of Sleep Duration and Genetic Correlation 
Estimations
To estimate SNP heritability (SNP h2) of sleep duration in chil-
dren, we used two approaches: LD score regression based on 
GWAS meta-analysis summary statistics, and Genome-Wide 
Complex Trait Analysis (GCTA) on directly genotyped data, 
in single cohorts. The LD score regression method has been 
explained previously in detail,49 but the basic principle is to 
estimate SNP heritability from the correlation between the 
marginal effect size of a SNP and a measure of its linkage 
disequilibrium (LD) with other SNPs. For LD score regression, 
the summary statistics of our GWAS meta-analysis in children 
(basic and BMI adjusted models) were used. Since genomic 
control (GC) can bias the heritability estimates downwards,50 
we applied no GC for LD score regression in the meta-analysis.

In addition, GCTA was performed in the largest cohort par-
ticipating in the discovery phase of this study (i.e., ALSPAC), 
to quantify the variance tagged by common SNPs in each 
cohort. The GCTA method has been explained in detail else-
where.27 In summary, a genetic relatedness matrix (GRM) of 
unrelated individuals was estimated in the ALSAPC cohort. 
Related participants (pairwise genetic relatedness > 0.025) 
were excluded from further analysis. Finally, a restricted 
maximum likelihood method (REML) was used to partition 
the phenotypic similarity between unrelated individuals into a 
genetic and residual component. GCTA estimate was adjusted 
for age, sex and the principal components of the genotype data.

To estimate SNP h2 of sleep duration in adults, the LD score 
regression method was applied on the summary statistics of 
the largest GWAS meta-analysis of sleep duration in adults 
(Nadults = 47,180).36

Finally, LD score regression50 was performed to estimate 
the genetic correlation between sleep duration in children 
and related traits in adults and children. For these analyses, 
we first used the summary statistics from the largest GWAS 
meta-analysis on sleep duration in adults (Nadults = 47,180)36 
and compared these with the summary statistics of the GWAS 
meta-analysis in children (this study, Nchildren = 10,554). Second, 
we computed the genetic correlation between sleep duration 
in children and common metabolic traits (i.e., obesity in chil-
dren51 [available by the Early Growth Genetics Consortium, 
EGG; 5,530 cases and 8,318 controls], type 2 diabetes52 [avail-
able by the DIAGRAM consortium; 12,171 cases and 56,862 
controls], and 2-hour glucose levels53 [available by the Meta-
analyses of Glucose and Insulin-related traits Consortium, 
MAGIC; 46,186 non-diabetic subjects]). Third, we computed 
the genetic correlation between sleep duration in children and 
common psychiatric traits (i.e., bipolar disorder54 [7,481 cases 
and 9,250 controls], major depression55 [9,240 cases and 9,519 
controls], and schizophrenia56 [31,335 cases and 38,765 con-
trols] in adults, and attention deficit/hyperactivity disorder 
[ADHD] in children/family trios57 [896 cases and 2,455 con-
trols] using available GWAS summary statistics from the Psy-
chiatric Genomics Consortium [PGC]).

Replication of SNPs Previously Reported in the Literature
To compare the results of the current GWAS meta-analysis 
in children with previously reported associations of genetic 

variants with sleep duration, an extensive literature search was 
performed. We identified all the GWAS of sleep duration re-
ported in humans23,33,34,36,58,59 and selected the lead SNP in all 
reported loci, regardless of the genome-wide significance. We 
ended up with 16 SNPs and tested whether they could be rep-
licated in the summary statistics of our GWAS meta-analysis 
(basic model).

Finally, we selected SNPs associated with sleep duration in 
adults (P value < 1.00e-3 and at least 10,000) from the largest 
GWAS meta-analysis on sleep duration in adults,36 and com-
pared their association with results from this study in children.

RESULTS

GWAS Meta-Analysis
In the discovery phase, five cohorts contributed data yielding a 
total of N = 10,554 children from 2 to 11 years (Table 1). As ex-
pected, the mean sleep duration in young children (GEN-R, 2 
years old) was higher than in older children (BREATHE, 9–11 
years old). The distribution of sleep duration in children was 
approximately normal in all participating cohorts. No addi-
tional transformation was applied. Study-level and meta-level 
QC was implemented in all studies (supplemental material, 
Table S1, Figure S1, and Figure S2), and the summary statistics 
from the five cohorts were meta-analysed. For the basic model 
(adjusted for age, sex, and principal components), the meta-
analysis revealed a genome-wide significant locus at chromo-
some 11q13.4 (top SNP: rs74506765, P = 2.27e-08). There was 
no evidence of heterogeneity between studies (heterogeneity 
P = 0.30), and the direction of the effect was positive for all 
cohorts (i.e., the minor allele C was associated with increased 
sleep duration in children). The top SNP (rs74506765) is lo-
cated in an intronic region of the ARAP1 gene. The regional as-
sociation plot of this locus is presented in Figure 1, and shows 
a linkage disequilibrium block covering ARAP1 gene. All sug-
gestive SNPs (P < 1.00e-05) are summarized in Table 2. The 
Manhattan and Q-Q plots of the GWAS meta-analysis (basic 
model), are presented in Figure 2 and Figure 3, respectively.

The GWAS meta-analysis of the BMI adjusted model (i.e., 
additionally adjusted for body mass index), in N = 10,502 
children yielded similar results to the basic model (top SNP: 
rs7121351, chromosome 11q13.4, P = 2.29e-08). The sug-
gestive SNPs, as well as the Manhattan and Q-Q plot of the 
GWAS meta-analysis on sleep duration for the BMI adjusted 
model, are presented in the supplemental material (Table S2, 
Figure S3, and Figure S4, respectively).

Replication Analyses
Replication efforts were attempted for the significant top 
signal (rs74506765) derived from our GWAS meta-analysis 
in two independent, population-based cohorts (i.e., ABCD 
and GLAKU). The characteristics of these cohorts are sum-
marized in Table 1. The association analyses did not replicate 
our initial finding, indicating a non-significant association for 
the ABCD sample (beta = 0.01, SE = 0.08, P = 0.95, N = 929), 
and a nominally significant, but opposite direction association 
for the GLAKU sample (beta = −0.27, SE = 0.11, P = 0.015, 
N = 321).The results of the replication analysis are presented 
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Figure 1—Regional association plot of the chromosome 11 locus (top 
SNP: rs74506765) with sleep duration in children (N = 10,554). The 
top SNP is indicated with a diamond and the flanking SNPs in circles, 
colored according to their linkage disequilibrium (LD). The plot was 
constructed by 1000 Genomes, CEU population (Northern and Western 
European ancestry).

Table 2—Top signals that reached suggestive genome wide significance (P < 1.00e-05), sorted by ascending P, in the discovery phase (N = 10,554), for 
the basic model.

SNP
Chr:

Position
Allele

1/2
Frequency

1 Effect (SE) a Direction b # Hits Meta P
Heterogeneity 

P c
Nearest

Gene
rs74506765 11:72424012 C/G 0.10 8.11e-02 (0.01) +++++ 10 2.27e-08 0.30 ARAP1
rs7597314 2:116698176 A/G 0.19 7.47e-02 (0.01) +++++ 4 2.47e-07 0.01 DPP10
rs35630915 1:23506982 A/G 0.19 6.90e-02 (0.01) +++++ 86 3.02e-07 0.52 HTR1D
rs34855926 2:132532977 C/G 0.22 −0.01 (0.02) ??−−− 17 4.14e-07 0.36 C2orf27A
rs684231 1:114676391 A/G 0.68 −4.47e-02 (0.01) −−−−− 1 1.26e-06 0.83 SYT6
rs157274 3:137532381 T/C 0.48 −4.14e-02 (0.01) −−−−− 2 1.25e-06 0.20 SOX14

rs60198202 9:28374226 A/G 0.48 −4.51e-02 (0.01) −−−+− 22 1.30e-06 0.09 LINGO2
rs9819008 3:81255 T/C 0.88 −8.53e-02 (0.02) −−−−− 2 1.61e-06 0.25 CHL1
rs77543094 19:17754859 A/T 0.92 8.76e-02 (0.02) ++?−+ 1 1.80e-06 0.14 UNC13A

rs143415644 12:104785227 T/C 0.05 0.10 (0.02) ++??+ 3 3.09e-06 0.52 TXNRD1
rs1230545 7:52793270 A/C 0.21 0.05 (0.01) +++−+ 18 3.48e-06 0.55 POM121L12
rs4509077 5:133223994 A/C 0.34 −0.04 (0.01) −−−−− 1 3.84e-06 0.79 C5orf15

rs117460180 19:55145566 A/G 0.91 0.08 (0.02) +++−+ 2 4.16e-06 0.21 LILRB1
rs4791184 17:65737802 T/C 0.22 −0.07 (0.02) −−−−− 2 4.22e-06 0.17 NOL11

chr9:73043270:I 9:73043270 I/R 0.68 −0.04 (0.01) −−−−− 1 5.72e-06 0.96 KLF9
rs190524676 15:76009072 T/C 0.90 0.10 (0.02) ++??+ 1 7.44e-06 0.61 CSPG4

rs7824578 8:8736703 A/T 0.07 −0.09 (0.02) −−?−− 1 7.81e-06 0.38 MFHAS1
chr16:81379985:D 16:81379985 D/R 0.48 0.04 (0.01) +++++ 1 8.08e-06 0.37 GAN

rs77624162 9:37379970 A/G 0.06 0.10 (0.02) ++??+ 1 9.34e-06 0.58 ZCCHC7
rs7845819 8:129690209 T/C 0.15 0.05 (0.01) +++++ 1 9.69e-06 0.36 MIR1208

a Units for effect size are hours. b Order of participating cohorts: ALSPAC, GEN-R, LISA+GINI, INMA, BREATHE. c P value showing heterogeneity between 
the participating cohorts. SNPs in bold indicate GWAS significant results (P < 5.00e-08). Chr, chromosome; ? = not available; SE, standard error; Meta P, P 
value derived from the GWAS meta analysis. 

Figure 2—Manhattan plot of the GWAS meta-analysis of sleep duration 
in children, in the discovery phase, for the basic model (N = 10,554). 
The x-axis represents the autosomal chromosomes and the y-axis 
represents the –log10(p). The red line indicates genome-wide significance 
(P = 5.00e-08) and the blue line indicates suggestive genome-wide 
significance (P = 1.00e-05)
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in more detail in supplemental material (Table S3a). The 
combined P value of our meta-analysis (discovery and repli-
cation sample, N = 11,804) was 2.70e-06 (not genome-wide 
significant). Figure 4 shows the forest plot of the association 
ofrs74506765 with sleep duration across all participating co-
horts (i.e., in both discovery and replication phase).

We also investigated whether our genome-wide signifi-
cant locus would be replicated in adult samples, making use 
the available summary statistics of the largest GWAS meta-
analysis of sleep duration in adults (Nadults = 47,180).36 Since 
the top SNP (rs74506765) was not found in the GWAS meta-
analysis of sleep duration in adults, we searched for proxies (r2 
threshold ≥ 0.6) within 1 Mb, using the SNAP (SNP annotation 
and Proxy Search) tool.60 We found no association between the 
proxy SNPs and sleep duration in adults, although there was 
a trend of association for rs7121351 (beta = 0.02, SE = 0.01, 
P = 0.07, N = 38,398, r 2 = 0.93). These results are presented in 
more detail in supplemental material (Table S3b).

Annotation and Enrichment Analysis
The lead SNP from the genome-wide significant locus at chro-
mosome 11q13.4 (top SNP: rs74506765) was not in linkage dis-
equilibrium with any non-synonymous variant or genome-wide 
eQTLs, according to HaploReg v3, GTEX and BRAINEAC.DE-
PICT analyses did not show any relevant tissue/cell type enriched 
among the suggestive locus (supplemental material, Table S4). 
Several gene-sets were nominally enriched, but none of them 
passed multiple-testing. The top 10 pathways are presented in 
supplemental material (Table S5). Similarly, PANTHER pathway 
analysis did not indicate any significantly enriched pathways as-
sociated with sleep duration in children (data not shown).

SNP Heritability of Sleep Duration and Genetic Correlation 
Estimations
First, we used LD score regression on the summary statistics of 
our GWAS meta-analysis in N = 10,554 children (basic model) 
to estimate SNP heritability (SNP h2). Our results indicate a 

significant but modest SNP h2 (95% CI [0.05–0.23], P < 0.05) 
of sleep duration in children. The estimated SNP h2 using 
the GCTA method in the largest cohort participating in this 
study supported the evidence of low to modest SNP h2 (95% 
CI [0.01–0.25], Nunrelated = 5,315). The estimates of heritability, 
using both methods, are described in more detail in Table 3. Fi-
nally, we estimated SNP h2 of sleep duration in adults by using 
LD score regression in Nadults = 47,180, and found also modest 
heritability (95% CI [0.03–0.09], P < 0.05).

To estimate the genetic correlation between sleep duration 
in children and other relative traits, cross-trait LD score re-
gression was used. We found no significant genetic correlation 
between sleep duration in children and sleep duration in adults, 
nor between sleep duration in children and common psychi-
atric traits (i.e., bipolar disorder, major depression, and schizo-
phrenia). The genetic correlation of sleep duration in children 
and ADHD (rG = 0.43, SE = 0.28, P = 0.13) although nonsig-
nificant, was larger than the genetic correlation with other 
psychiatric traits, indicating potentially a substantial genetic 
overlap which we were unable to estimate precisely due to low 
statistical power. No significant genetic correlation was found 
between sleep duration in children and obesity in children. A 
nominally significant genetic correlation was however found 
between sleep duration in children and type 2 diabetes (T2D) 
in adults (rG = 0.23, SE = 0.12, P = 0.05), and a trend was found 
between sleep duration in children and 2-h glucose levels in 
adults (rG = 0.40, SE = 0.26, P = 0.11). The genetic correlation 
between sleep duration in children and T2D in adults remained 
unchanged (rG = 0.22, SE = 0.12, P = 0.05) after exclusion of 
our top loci (chromosome 11q13.4) and after correcting for 

Figure 3—Quantile-quantile (QQ) plot showing the probability values 
from GWAS meta-analysis of sleep duration, in the discovery phase, 
for the basic model (N = 10,554). The red line indicates the distribution 
under the null hypothesis and the shaded area indicates the 95% 
confidence band

Figure 4—Forest plot for the top hit of the GWAS meta-analysis on sleep 
duration in children. In the vertical panel, the studies participating in the 
discovery or replication phase are presented. In the horizontal lines, the 
boxes represent precision and the lines the confidence intervals. The 
diamond shapes represent the pooled effect estimates per allele, for both 
the fixed- and random-effect models. The horizontal axis shows the scale 
of the effect estimates. MD, mean difference; CI, confidence interval.
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BMI. The estimates of the genetic correlations based on our 
basic model are presented in more detail in Table 4. Similar 
genetic correlations of sleep duration in children and related 
traits were also obtained by the summary statistics of our BMI 
adjusted model. These results are presented in supplemental 
material (Table S6).

Replication of SNPs Previously Reported in the Literature
Our literature search identified 16 SNPs previously reported in 
the literature which are associated (with suggestive or genome-
wide significance) with individual differences in sleep dura-
tion mainly in adults. A comparison of these SNPs with the 
results of our GWAS meta-analysis on sleep duration in chil-
dren (basic model) is presented in Table 5. None of the SNPs 
tested was associated with sleep duration in children.

Furthermore, we selected top SNPs (P < 1.00e-03 and 
sample size > 10,000) from Gottlieb et al., the largest meta-
GWAS study of sleep duration performed in adults.36 Among 
the 3,436 shared SNPs among both studies, only 49 of them 
were nominally associated and in the same direction in chil-
dren. Figure S5 shows the Q-Q plot of the association in chil-
dren of the 3,436 top SNPs reported in adults.

DISCUSSION
In this study, we presented the first GWAS meta-analysis and 
SNP heritability estimates of sleep duration in N = 10,554 
children of European ancestry. We identified a genome wide 

significant locus at chromosome 11q13.4 covering several 
SNPs, without significant heterogeneity among the partici-
pating cohorts. The minor allele of the top SNP within this 
locus (rs74506765, beta = 8.11e-02, SE = 0.01, P = 2.27e-08) 
was associated with longer sleep duration in children. This 
polymorphism is located in an intronic region of ARAP1 
gene, a phosphatidylinositol 3,4,5-triphosphate-dependent 
GTPase-activating gene that has been previously associated 
type 2 diabetes (T2D), and other related metabolic traits,61–65 
and with rheumatoid arthritis in Japanese samples.66 However, 
the linkage disequilibrium between SNPs reported in the lit-
erature and the one detected in this study is limited (r 2 < 0.1). 
The rs74506765 variant was not replicated as a top hit in two 
independent samples of children, indicating either a false posi-
tive finding in the discovery phase, or lack of statistical power 
in the replication phase given the small size of the replication 
studies (13% estimated power using post hoc power analysis).

To further investigate the genetic architecture of sleep 
duration in children, we also performed gene-enrichment 
and pathway analyses, using the results of our GWAS meta-
analysis. Several epidemiological studies have reported ob-
servational correlations between sleep duration and adverse 
metabolic traits in children and/or adults (e.g., T2D, obesity).67 
In line with these studies, we identified nominally significant 
enrichment of the “attenuation of insulin receptor signalling 
cascade” gene-set, which however did not survive after mul-
tiple testing correction.

Table 3—Estimates of SNP heritability of sleep duration in children and adults, based on LD score regression and GCTA methods.

SNP Heritability (SE) 95% CI P N*
LD score regression

Children (current study) 0.14 (0.04) 0.05, 0.23 4.65e-04 10,554
Adults (based on Gottlieb et al.36) 0.06 (0.01) 0.03, 0.09 0.012 47,180

GCTA (in children)
ALSPAC 0.13 (0.06) 0.01, 0.25 0.02 5,315

 *For the GCTA method, N corresponds to the unrelated (3rd to 4th degree relatives) participating in each study. SE, standard error; CI, confidence interval.

Table 4—Genetic correlations among sleep duration in children (derived by the GWAS summary statistics of the current study, under the basic model, 
(N = 10,554) and common metabolic and psychiatric traits, using LD score regression and GWAS summary statistics data, available in the literature.

Traits N
Sleep Duration in Children

rG (SE) P
Sleep duration (adults)36 47,180 0.15 (0.18) 0.40
Metabolic

Obesity (children)51 13,848 0.02 (0.12) 0.86
Type 2 diabetes (adults)52 69,033 0.23 (0.12) 0.05
2 hours glucose (adults)53 46,186 0.40 (0.23) 0.11

Psychiatric
Bipolar disorder (adults)54 16,731 0.03 (0.15) 0.83
Major depression (adults)55 18,759 0.01 (0.18) 0.96
Schizophrenia (adults)56 70,100 −0.02 (0.11) 0.86
ADHD (children/family trios)57 3,351 0.43 (0.28) 0.13

None of the genetic correlations passes Bonferroni correction calculated considering three main groups of traits: sleep duration in adults, metabolic, and 
psychiatric (corrected P value < 0.017). The traits in bold highlight nominal genetic corrlations. N, sample size; rG, genetic correlation, SE, standard error. 
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So far, twin studies have been the only source of informa-
tion regarding the heritability of sleep duration in children, 
indicating moderate levels of heritability (ranging from 0.26–
0.58).24–26 In this study, we extended the previous findings by 
estimating SNP heritability (SNP h2) based both on GWAS 
meta-analysis results using the LD score regression method,28 
and on directly genotyped SNPs derived from the largest in-
dividual cohort participating in this study using the GCTA 
method.27 SNP h2 based on our GWAS meta-analysis summary 
statistics indicated low to moderate heritability of sleep dura-
tion in children (95% CI [0.05, 0.23]). SNP h2 based on indi-
vidual cohort data supported the finding of low to moderate 
heritability (95% CI [0.01- 0.25], Nunrelated = 5,315 for the largest 
ALSPAC sample). This SNP h2 estimation indicates that large 
sample sizes are needed to more accurately estimate the heri-
tability of sleep duration in children.

The estimations of SNP h2 presented in this study are lower 
than the estimations previously described in twin studies.24–26 
Since the previous twin studies have been performed in very 
young children (6 to 48 months age), a possible explanation is 
that over age, the influences of external factors (e.g., school 
schedule, parental behaviors) on sleep duration increases, 
while the relative contribution of genetic variants decreases. 
Indeed, SNP h2 estimations based on the summary statistics of 
the largest GWAS meta-analysis on sleep duration in adults36 
indicated modest heritability (95% CI [0.03, 0.09]). An alter-
native or additional explanation could be that the heritability 
estimates from twin studies are inflated because of the use of a 
single informant (i.e., parent) or because of the violation of the 
assumption of equal environments in monozygotic and dizy-
gotic twins.68 Finally, SNP h2 is an underestimation of the total 

heritability of any single trait, because it does not take into ac-
count rare polymorphic and structural variation, and epistatic 
effects.69

Previous epidemiological studies have identified associa-
tions between variation of sleep duration and metabolic traits, 
such as obesity in children,2 and T2D6 and glucose metabolism70 
in adults. Furthermore, differences in sleep duration have been 
associated with psychiatric traits, such as ADHD in children,13 
and bipolar disorder,10 major depression,71 and schizophrenia72 
in adults. These associations could signify the simple coex-
istence/comorbidity of metabolic and psychiatric traits with 
variation of sleep duration, or they could signify a common 
underlying pathogenic mechanism. In this study, we estimated 
the genetic correlations between sleep duration in children 
and the above-mentioned metabolic and psychiatric traits. We 
found one nominally significant genetic overlap between T2D 
and sleep duration in children (rG = 0.23, P = 0.05), implying 
that the same genetic variants influence longer sleep duration 
in children and increase the possibility of developing T2D later 
in life. Similar genetic overlap was also found between sleep 
duration in adults and T2D (rG = 0.24, P = 0.05), indicating 
stability of the genetic factors influencing both sleep duration 
and impaired glucose metabolism throughout life (data from 
personal communication, manuscript in preparation).

We estimated the genetic correlation between sleep dura-
tion in children and in adults, but we failed to find statistically 
significant overlap (rG = 0.15, P = 0.40). This finding may in-
dicate that different genetic variants influence sleep duration 
in children and in adults. Indeed, SNPs previously associated 
with sleep duration in adults were not replicated in our GWAS 
meta-analysis on sleep duration in children. In addition, no 

Table 5—Replication of SNPs previously associated with individual differences in sleep duration, with summary statistics reported in the current study 
(GWAS meta-analysis of sleep duration in children, basic model, N = 10,554).

Ref. SNP Allele 1/2
Discovery Phase (in literature) Replication Phase (current study)

GeneDirection P N Frequency 1 Effect (SE) a Meta P Direction b

34 rs11046205 A/G + 3.99e-08 4,251 0.19 −0.006 0.60 −−+++ ABCC9
58 rs10823607 T/C − 5.00e-06 2,278 0.14 0.009 0.47 −+−−+ ADAMTS14
58 rs4780805 A/G − 8.00e-07 2,278 0.15 −0.01 0.30 −−−+− CLEC19A
58 rs11640439 A/G + 3.00e-06 2,278 0.09 0.004 0.82 +−?−+ PLLP
58 rs2278331 T/G − 5.00e-06 2,278 0.71 −0.005 0.58 −−−+− MIR548AV
58 rs2042126 T/G + 3.00e-06 2,278 0.53 −0.005 0.55 −++−− NAALADL2
58 rs11987678 T/C + 4.00e-06 2,278 0.95 0.004 0.85 −−?++ RPS5P5
58 rs17737465 A/G + 2.00e-06 2,278 0.66 −0.01 0.23 −−+++ CPQ
23 rs10492604 T/C NA 4.20e-06 2,848 0.83 0.003 0.78 ++−−− RNA5SP30
23 rs6599077 A/G − 1.40e-07 2,848 0.28 0.02 0.04 ++−++ MYRIP
36 rs1191685 C/G + 1.06e-09 47,180 0.42 0.01 0.21 ++−++ PAX8
36 rs4587207 A/G + 2.02e-08 47,180 0.83 −0.04 0.27 +−−++ IER3,FLOT1
33 rs2031573 T/C − 1.49e-05 1,941 0.19 −0.001 0.89 ??+−? KLF6
33 rs10914351 T/G − 2.96e-05 1,941 0.02 −0.06 0.17 +−+−+ PTPRU
33 rs1037079 T/C − 4.45e-05 1,941 0.04 −0.04 0.05 −???? PCDH,CENTD1
59 rs8037818c T/C − 4.95e-08 815 0.762 0.00 0.98 +−−++ ARHGAP11A

a Units for effect size are hours. b Order of participating cohorts: ALSPAC, GEN-R, LISA+GINI, INMA, BREATHE. c This study was performed in children, 
while the others are in adults. Chr, chromosome; N, sample size in the discovery samples; NA, not available; ref, reference; SE, standard error; Meta P, P 
value derived from the GWAS meta-analysis.
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enrichment of significant associations was observed in chil-
dren among the top SNPs described by Gottlieb et al. in adults 
(P < 1.00e-03). However, we note that the nonsignificant ge-
netic correlation between sleep duration in children and other 
metabolic and psychiatric traits could be due to low power, and 
larger GWAS studies are needed to more accurately estimate 
the genetic overlap of related traits. In fact, the only nominally 
significant genetic correlation observed for sleep duration was 
with T2D, the phenotype with the largest GWAS dataset.

The current study is not without limitations. First, sleep du-
ration was assessed by parent-reported open question(s), and 
the responses were mostly whole number values. Although 
parent- and self-reported questionnaires have widely been 
used to assess sleep duration in children and adults,23,33,36 it is 
possible that these measurements lack the necessary accuracy 
to estimate the small effects of single genetic variants (e.g., 
each copy of the minor allele of rs1823125 is associated with 
an increase in sleep duration of 3.1 minutes36). More objec-
tive and accurate qualitative measurements, such as polysom-
nography, actigraphy, sleep electroencephalogram (EEG) and/
or multiple sleep latency tests could be used to estimate sleep 
duration.73,74 Indeed, substantial heritability has been reported 
for sleep EEG patterns.75 Second, both the discovery and the 
replication phase of our GWAS meta-analysis is likely under-
powered. Although it is evident that large samples are needed 
to identify replicable genetic associations in the general popu-
lation,76 studies on child populations are limited. For this study, 
we used all known available child cohorts with both genetic 
data and data on sleep duration. More and larger studies, with 
good quality data on sleep duration, could extend the findings 
of this first study in the future.

In summary, this is the first GWAS meta-analysis of sleep 
duration in children. We identified a novel region (i.e., chro-
mosome 11q13.4) associated with sleep duration in children, 
which was not replicated. More and larger studies should 
follow to verify our initial finding. Second, we rejected the null 
hypothesis of no SNP heritability of parent-or self-rated ques-
tionnaires on sleep duration, by showing evidence of modest 
but significant heritability of sleep duration in both children 
and adults, which may decrease by age. Finally, there was re-
curring evidence of an association between sleep duration in 
children and impaired glucose metabolism, as identified by 
both gene-enrichment analysis of our GWAS meta-analysis 
results and by the estimation of significant genetic correla-
tion between sleep duration in children and type 2 diabetes in 
adults. These results give input to new genetic studies of sleep 
duration, especially in child populations, to unravel the genetic 
mechanisms associating sleep duration with health and disease.
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