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Abstract

Identifying genetic variants with pleiotropic associations can
uncover common pathways influencing multiple cancers. We
took a two-stage approach to conduct genome-wide association
studies for lung, ovary, breast, prostate, and colorectal cancer from
the GAME-ON/GECCONetwork (61,851 cases, 61,820 controls)
to identify pleiotropic loci. Findings were replicated in indepen-
dent association studies (55,789 cases, 330,490 controls). We
identified a novel pleiotropic association at 1q22 involving breast
and lung squamous cell carcinoma, with eQTL analysis showing

an association with ADAM15/THBS3 gene expression in lung. We
also identified a known breast cancer locus CASP8/ALS2CR12
associatedwithprostate cancer, a known cancer locus atCDKN2B-
AS1 with different variants associated with lung adenocarcinoma
and prostate cancer, and confirmed the associations of a breast
BRCA2 locus with lung and serous ovarian cancer. This is the
largest study to date examining pleiotropy acrossmultiple cancer-
associated loci, identifying commonmechanisms of cancer devel-
opment and progression. Cancer Res; 76(17); 5103–14. �2016 AACR.
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Introduction
Genome-wide association studies (GWAS) have identified

hundreds of genetic variants that are associated with risk of
specific cancers (1). It has been observed that some chromosomal
regions showpleiotropic associations, where the same genetic loci
are associated with different cancers. One of the first identified
pleiotropic loci is at 8q24, where genetic variants are associated
with breast, prostate, colorectal, and ovarian cancer risk, with
some of the variants only associated with one cancer, while others
are associated with multiple cancers (2). Similarly, genetic var-
iants at the TERT-CLPTM1L region at 5p15.33 are associated with
risk of lung, bladder, prostate, and other cancers (3).

The identification of pleiotropic loci is an important step in
elucidating cancer etiology by understanding common pathways
that influence carcinogenesis across different tumors, and in
improving knowledge of cancer susceptibility. Furthermore, ana-
lyzing genomic data across multiple cancer sites might identify
novel susceptibility loci, as variants that do not meet the stringent
criteria for GWAS significance for any one cancer site might show
significant associations when multiple cancers are analyzed
together (4).

Our investigation used data from the Genetic Associations
and Mechanisms in Oncology (GAME-ON) Network and the
Genetic and Epidemiology of Colorectal Cancer Consortium

(GECCO; ref. 5). The GAME-ON Network was launched by the
NCI (Rockville, MD) to capitalize on the extensive investment
in GWAS, with the overarching goal to integrate post-GWAS
research and to facilitate analyses that address research ques-
tions that are common across multiple cancer sites. The GAME-
ON Network is focused on tumors that currently represent a
major public health burden and has assembled extensive
genomic data from consortia investigating the cancer sites
that constituted the basis of our cross-cancer analysis. We use
these data and independent replication studies to investigate
pleiotropic associations across lung, breast, colorectal, ovary,
and prostate cancer using GWAS results for 61,851 cases and
61,820 controls, the largest investigation of pleiotropic asso-
ciations to date.

Materials and Methods
Data and contributing consortia

This study used summary level data to perform cross-cancer
GWAS analysis of lung, colorectal, prostate, breast, and ovarian
cancers using a subset-based meta-analytical approach. Forty-six
studies from North America and Europe organized into cancer
site-specific consortia within the GAME-ON Network (http://epi.
grants.cancer.gov/gameon/) or GECCO, participated. Table 1
provides details for contributing consortia and studies. Analyses
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also included the following subtypes: adenocarcinoma and squa-
mous cell carcinoma (SqCC) of the lung; the aggressive form of
prostate cancer; estrogen receptor–negative breast cancer, and
serous and endometrioid cancers of the ovary (Table 1). All
studies frequency matched cases and controls on at least age and
gender. All subjects were of European descent.

Genotyping and imputation
Genotyping was performed on Affymetrix or Illumina plat-

forms (Table 1). Standard marker exclusion criteria were applied
in each cancer consortium (5–11), and we have previously
reported the summary of quality control details in the study by
Hung and colleagues (12). Genotype imputation was conducted
for each cancer site using IMPUTE, BEAGLE,MACH, andMinimac
(imputation threshold of R2 > 0.3) using the 1000 genome
reference panel.

Statistical analysis
Logistic regression analysis using a log additive model was

performed previously to test variant associations with cancer risk
for the 45 studies (5–11), providing per-allele ORs adjusted for
age, principal components, and gender where applicable. Study-
specific results were then combined for each cancer site using a
fixed effects model.

A subset-based meta-analysis approach developed by Bhat-
tacharjee and colleagues (ASSET) was used to investigate pleio-
tropic effects across cancer sites (4). The method generalizes
the standard fixed effect meta-analysis by examining the asso-
ciation between a genetic variant and multiple subsets of
cancers, allowing opposing direction of effects and null asso-
ciations. Associations are summarized with an overall two-
sided P value. A multiple testing adjustment procedure (based
on statistical theory for tail-probability approximation) main-
tains appropriate type I error rates. Analysis was performed
when at least three cancer sites had data.

Accounting for subsets of studies with no effects and/or
effects in opposing directions (i.e., both increased and reduced
risk subsets) is an advantage of the subset-based meta-analysis
approach. However, when a large majority of underlying
associations are in one direction, subset meta-analysis can
have lower power than standard fixed effects analysis. We
therefore explored results using standard fixed effects meta-
analysis (when data was present for all cancer sites), again
using ASSET.

Subjects appearing in several studies with different cancer
subtypes (e.g., overlapping controls for lung adenocarcinoma
and lung SqCC) and across cancer types (e.g., overlapping con-
trols from the Welcome Trust Case Control Consortium for UK
ovary and UK breast GWAS) were accounted for in the covariance
matrix when estimating SEs for subset-based and standard meta-
analyses.

To find robust pleiotropic associations, we first identified
variants that showed evidence for pleiotropy and then sought
to validate the individual variant cancer site associations in
replication datasets. To prioritize variants for replication, we
selected those with P < 5 � 10�7 based on the two-sided subset
analysis test, the positive and negative associations that con-
tributed to the two-sided subset-analysis test signal and the
fixed effect meta-analysis. We excluded variants where associa-
tions were obviously driven by a single cancer site. We also
selected variants associated with at least two cancers (including

subtypes) at P < 5 � 10�3. Among variants selected, we further
prioritized for validation those showing the strongest pleiotro-
pic association in a region (based on subset or standard cross-
cancer meta-analysis), as well as those representing association
peaks in site-specific analyses. We then sought to validate these
specific variant–cancer site associations using independent
study populations of European descent with all five cancers
from deCODE (10, 13), lung cancer from Harvard (14, 15),
breast (region 1q22 only) from iCOGS, ovarian from OCAC/
iCOGS, and prostate from PRACTICAL/iCOGS (7, 8, 16). For
cross-ethnicity generalizability, we examined results for the
selected variants in different race/ethnicities using data from
Japan [lung (17)], Nanjing [lung (18)], Shanghai [breast (19)],
MEC, African American Breast Cancer GWAS Consortium,
African Ancestry Prostate Cancer GWAS Consortium, and San
Francisco (breast for Latinas; refs. 20–23). An outline of anal-
ysis steps is presented in Supplementary Fig. S1.

Further investigation of pleiotropic effects
We further investigated pleiotropy between cancer sites

using conditional Q-Q plots to examine enrichment of asso-
ciation signals in one cancer when conditioning on the sig-
nificance of P values of a second cancer. Enrichment is
reflected in a leftward deflection of the Q-Q plot with decreas-
ing P value categories of the conditioning cancer (24), indi-
cating higher pleiotropy between cancer sites than expected
by chance.

Functional significance
eQTL analysis. We obtained nontumor lung eQTL data of 1,111
patients from three studies: Laval University (n ¼ 409), The
University of British Columbia (UBC; n ¼ 339), and the Univer-
sity of Groningen (n ¼ 363). Gene expression profiles were
obtained using an Affymetrix array (GEO platform GPL10379).
Genotyping was performed using the Illumina Human1M-Duo
genotyping BeadChip. Analyses were adjusted for age, sex, and
smoking status. eQTL data are deposited in the Gene Expression
Omnibus (GEO) database with accession numbers GSE23352,
GSE23529, and GSE23545 for the three studies, respectively.
Further details of this study are published elsewhere (25). We
investigated validated lung cancer–associated variants from our
study. A statistically significant eQTL for a variant was declared if 2
of 3 studies showed a significant P value after Bonferroni correc-
tion for multiple comparisons. We also evaluated eQTL data for
variants in linkage disequilibrium (LD; R2 > 0.7) with our vali-
dated variants. We also obtained TCGA eQTL data for 402 high-
grade serous ovarian cases and 145 prostate tumor samples, again
investigating variants with validated associations and those in
high LD (R2 > 0.7) with them. Gene expression values for high-
grade serous ovarian cases were assessed by P value. Gene expres-
sion values for prostate cancer were adjusted for somatic copy
number and CpG methylation as described previously (26).
Significant associations were defined as those having both P value
and FDR (Benjamini–Hochberg method) of less than 0.05.

Function/prediction. We used FuncPred from SNPinfo (http://
snpinfo.niehs.nih.gov/) to assist with variant function prediction.
The software evaluates a variant's potential function in splicing
regulation, TFBS prediction, miRNA-binding site prediction, and
regulatory potential using in-house algorithms and tools devel-
oped elsewhere. In addition, we used RegulomeDB to further
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assess regulatory potential for variants of interest (http://www.
regulomedb.org/). This tool includes high-throughput, experi-
mental datasets from ENCODE and other sources, as well as
computational predictions and manual annotations to identify
putative regulatory potential and functional variants. We further
examined ENCODE data using the UCSC genome browser
(https://genome.ucsc.edu/; see Supplementary Materials: Bioin-
formatics Tools).

Results
After applying quality control filters, 9,916,564 variants were

analyzed for pleiotropic associations using 61,851 cases and
61,820 controls of European ancestry across five common cancer
sites in the GAME-ON Network and GECCO (GAME-ON/
GECCO; Table 1). Supplementary Fig. S2 displays an overview
of the association test results for each of the five main cancer sites
investigated.

A total of 190 variants in 33 regions (13 to 22 for each cancer
site) were prioritized for follow-up for replication in Caucasian
populations (55,789 cases and 330,490 controls) and generaliz-
ability (18,152 cancer cases and 21,410 controls) after the initial
analysis (see Table 1 and Supplementary Table S1). An additional
46,785 cases and 42,892 controls from iCOGS breast cancer were
used for validation of the novel pleiotropic locus at 1q22 (see
below). We replicated associations at 4 of the 33 regions selected
for follow-up in Europeans. Variants with replicated pleiotropic
associations were not associated with cancer risk in other ethnic
populations, and therefore, these data are not presented. The
main findings in each region are described below (see Supple-
mentary Tables S1 and S2 for summary).

Novel region: 1q22 for lung SqCC and breast cancer
Standard meta-analysis of GAME-ON/GECCO discovery

data identified an association between rs1057941 located at
1q22 and overall risk of cancer (P ¼ 1.74 � 10�7; Fig. 1).
Overall lung, lung squamous cell carcinoma (lung SqCC) and
breast cancer were strongly associated with this variant in
GAME-ON/GECCO data [lung: OR ¼ 1.08; 95% confidence
interval (CI), 1.05–1.12; P ¼ 9.2 � 10�6; lung SqCC: OR ¼
1.10; 95% CI, 1.04–1.16; P¼ 0.001; breast: OR¼ 1.07; 95% CI,
1.04–1.11; P ¼ 6.08 � 10�5]. The association for lung SqCC
was replicated in deCODE and Harvard studies combined,
with OR of 1.12 (95% CI, 1.01–1.23; P¼ 0.03). The association
with breast cancer was replicated in deCODE and iCOGS
combined (OR ¼ 1.03; 95% CI, 1.01–1.05; P ¼ 0.004). The
overall P value for association from both stages for lung
SqCC and breast cancer approached genome-wide significance
(P ¼ 7.9 � 10�8; Fig. 1).

The aggressive form of prostate cancer was also selected by
ASSET as part of the subset of cancers associated with
rs1057941. We have no replication data for this subtype and
did not replicate the association with overall prostate cancer
(deCODE and PRACTICAL/iCOGS combined: OR ¼ 1.02; 95%
CI, 1.00–1.05; P ¼ 0.08).

Regional plots constructed from GAME-ON/GECCO results
show a distinct peak in P values represented by rs1057941 in a
40-kb region of LD at 1q22 that includes KRTCAP2, GBA, MTX1,
MUC1, TRIM46, THBS3, ADAM15, and ASH1L for the cross-
cancer analysis (Fig. 2A), while for individual sitesMUC1 variant
rs4072037 was most significant for lung SqCC (P¼ 3.21� 10�4)
and the TRIM46 variant, rs3814316, for breast cancer (P¼ 3.06�

10�6). These 3 variants are in high to complete LDwith each other
with pair-wise D0 of 0.86 (rs1057941-rs3814316) or 1.00
(rs1057941-rs4072037 and rs3814316-rs4072037).

eQTL analyses indicated that rs4072037 acted as a normal
lung tissue eQTL for two genes in this region, ADAM15 and
THBS3, with two studies showing significant associations after
adjustment for multiple comparisons and the third showing a
nominally significant association consistent in direction with
the other two (ADAM15: Laval P ¼ 2.39 � 10�7, UBC P ¼ 4.09
� 10�5, University of Groningen P ¼ 0.08; THBS3: Laval P ¼
1.71 � 10�5, UBC P ¼ 4.15 � 10�6, University of Groningen
P ¼ 0.004; Fig. 2B). ADAM15 is of primary interest as it was
shown to be overexpressed in lung and breast cancer (27). The
risk allele for rs4072037, A, was consistently associated with
increased ADAM15 gene expression in all three studies. In the
UBC discovery set, rs4072037 was the strongest eQTL among
33 variants.

Previously known cancer loci with pleiotropic associations
2q33.1(known breast andmelanoma locus) and prostate cancer.We
identified a pleiotropic association between rs13016963 locat-
ed in 2q33.1 and prostate (OR ¼ 1.08; 95% CI, 1.04–1.13; P ¼
3.05� 10�5) and breast cancer (OR¼ 0.93; 95% CI, 0.90–0.96;
P ¼ 5.75 � 10�5; Fig. 3A) in GAME-ON/GECCO. This variant is
in intron 5 of ALS2CR12, adjacent to CASP8 (Fig. 3B), and was
associated with melanoma in a previous GWAS (28). The
region was previously identified as harboring variants asso-
ciated with breast cancer risk (29–31), and the association
found with breast cancer can be explained through LD (R2 ¼
0.74) with one of these (rs1830298, P value for breast cancer
association ¼ 1.02 � 10�7). The association with prostate
cancer has not been previously reported, and we replicated
it in deCODE and iCOGS (OR ¼ 1.05; 95% CI, 1.03–1.08;
P ¼ 7.6 � 10�5; Fig. 3A). The combined GAME-ON/GECCO,
deCODE, and iCOGS P value was 1.9 � 10�8.

In Fig. 3C, we show eQTL analysis results for rs1035142,
which was in perfect LD with rs13016963 in the eQTL dataset
and was associated with BZW1 (P ¼ 0.001, FDR ¼ 0.04). This
variant had the strongest association signal among those inves-
tigated. We do note that there were variants with more signif-
icant associations with BZW1 expression that fell outside of
the LD range of R2 � 0.70 with rs13016963 (e.g., rs13113, P ¼
4.9 � 10�6, R2 ¼ 0.62). This suggests there are other potential
cis-eQTL candidates for BZW1 in the region.

9p21.3 (known lung SqCC and breast locus) and lung adenocarci-
noma. Similar to 8q24, the 9p21.3 region displays a complex
nature of associations with multiple cancer sites. It was previ-
ously known to be associated with lung SqCC and breast
cancer. In our analysis based on GAME-ON/GECCO discovery
data, we observed suggestive evidence of association between
the variant rs62560775 at CDKN2B-AS1 and lung adenocarci-
noma (OR ¼ 1.19; 95% CI, 1.08–1.31; P ¼ 2.77 � 10�4), as
well as breast cancer (OR ¼ 1.11; 95% CI, 1.05–1.17; P ¼ 5.30
� 10�4). Although this region was previously reported as a lung
SqCC susceptibility locus, this is the first time that we observed
an association with lung adenocarcinoma. The association was
replicated based on deCODE and Harvard data (OR ¼ 1.16;
95% CI, 1.03–1.30; P ¼ 0.01). The combined (both stages) P
value was 1.0 � 10�5 (Fig. 4A). The association of this variant
with lung adenocarcinoma was the most significant in the
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region (Fig. 4B). Our lung eQTL investigation of this variant
showed no significant association with gene expression in this
region.

Another variant in the same region, rs1011970, was shown to
be associated with prostate cancer (OR ¼ 1.10; 95% CI ¼ 1.05–
1.15;P¼7.3�10�5). This variantwas found tobe associatedwith
breast cancer in a previous GWAS (32). The association with
prostate cancer was replicated in deCODE and iCOGS combined
(P¼0.001). The combinedP value basedonboth stageswas 9.5�
10�7 (Fig. 4C). The regional plots shows that this variant had the
second most significant association with prostate cancer in the
region [the peak association for prostate cancer is represented by
rs72652411, a variant not associated with any cancer other than
prostate (Fig. 4D)].

13q13.1 (known breast and lung locus) confirmed for serous ovarian
cancer. We observed a significant pleiotropic association for the
BRCA2 variant rs11571833 (ASSET two-sided P¼ 6.14� 10�10).
This variant (Supplementary Fig. S3) is potentially functional, and
genome-wide significant associations between this variant and
breast and lung cancer (drivenbySqCC)were previously reported,
with the latter study using a subset of the lung cancer data used
here (7, 10). More recently, a study focusing specifically on
rs11571833 reported an association with serous ovarian cancer
using the iCOGS data, which formed our replication dataset (P¼
3 � 10�5). Our results from the GAME-ON dataset confirm the
association with serous ovarian cancer (GAME-ON OR ¼ 1.76;

95% CI, 1.30–2.39; P ¼ 2.49 � 10�4; with the rare allele asso-
ciated with increased risk) and reached genome-wide significance
when we combined the two datasets (P ¼ 3.95 � 10�8; Supple-
mentary Fig. S3). We did not replicate the association with breast
cancer; however, this might be due to a lack of power to detect an
association for this rare variant in our sample.

Other evidence for pleiotropic associations
As demonstrated by the leftward deflection of Q-Q plots with

decreasing P value category, there is evidence of pleiotropic
associations for breast and ovarian cancer (Supplementary Fig.
S4A), breast and prostate cancer (Supplementary Fig. S4B), and
prostate and colorectal cancer (Supplementary Fig. S4C). There
was no evidence of pleiotropic associations for prostate and ovary
cancer (Supplementary Fig. S4D), or lung cancer with any of the
other four cancer sites.

Discussion
Using data from the GAME-ON Network and GECCO, we

conducted a cross-cancer GWAS analysis investigating pleiotro-
pic associations for five cancer sites (lung, breast, colorectal,
ovary, and prostate), including histology and subtypes. We
identified three new pleiotropic associations that were sup-
ported by results in GAME-ON/GECCO data and our indepen-
dent replication datasets. We identified a novel pleiotropic
association at the 1q22 region involving breast cancer and lung

Figure 1.

Result for rs1057941. Forest plot
showing per allele ORs for risk allele A
(of A/G). Standard fixed effects meta-
analysis (also indicated by dashed line)
and subset meta-analysis results (two-
sided, one-sided, and positive and
negative subset associations) are
shown. CRC, colorectal; ERNEG,
estrogen receptor negative; endomet,
endometrioid; aggrsv, aggressive;
adeno, adenocarcinoma.
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Figure 2.

A, results for rs1057941. Regional plot showing P values from overall meta-analysis at region 1q22 using GAME-ON/GECCO discovery set data. The top
breast cancer hit (rs3814316) and top SqCC hit (rs4072037) are also highlighted. B, boxplots of gene expression levels in normal lung tissue for ADAM15
and THBS3 by study (Laval, UBC, Groningen). GRNG, Groningen.
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SqCC, neither of which was previously known to be associated
with genetic variation in this region. The association with lung
SqCC was further supported by its functional significance as
demonstrated by eQTL analysis. Further novel results include a
locus at CASP8/ALS2CR12, known to be associated with breast
cancer and melanoma, which was found to be associated with
prostate cancer, while genetic variation at the 9p21.3 region,
known to be associated with breast cancer and lung SqCC,
appears to be associated with lung adenocarcinoma and pros-
tate cancer. We also confirmed an association between a known
lung and breast cancer locus at BRCA2 with serous ovarian
cancer risk.

The locus at 1q22 represented by rs1057941, rs3814316, and
rs4072037 lies in a region of LD that includes KRTCAP2, MTX1,
TRIM46, MUC1, GBA, THBS3, ADAM15, and ASH1L. Of these
variants, rs4072037 at MUC1 might be functional as it was
shown to regulate alternative splicing of the second exon in
MUC1 and modifies the gene's transcriptional activity (33).
Aberrantly glycosylated MUC1 is overexpressed in most epi-
thelial cancers and is known to have an oncogenic effect. It
mediates the production of growth factors, such as connective

tissue growth factor (CTGF) and platelet-derived growth factor
A and B (PDGF-A and PDGF-B) that promote activation of the
MAPK and PI3k/Akt pathways potentiating proliferation and
survival of tumor cells (34). It also plays a critical role in EGFR
signaling, promoting survival of NSCLC cells (35).

Our lung eQTL investigation found no association with
MUC1 expression but the risk allele, A, of rs4072037 was
associated with increased expression of two other genes in the
region (ADAM15 and THBS3). This result suggests other
mechanisms by which this variant could influence cancer risk.
ADAM15 is of particular interest as it was shown to be over-
expressed in both lung and breast cancer (27), consistent with
our finding of pleiotropic associations of these two cancer
sites. Overexpression in breast cancer is associated with
Her/neu expression and evidence from breast cancer cell lines
indicates that ADAM15 catalyzes the cleavage of E-cadherin,
which in turn binds to and enhances ErbB receptor signaling
(36). A recent meta-analysis provided support for an associ-
ation of this variant with gastric cancer in Asian populations
(37), and a recent GWAS in the Icelandic population also
suggested an association between this region and gastric

Figure 3.

Results for rs13016963. A, forest plot showing per allele ORs for risk allele G (of A/G). Standard fixed effects meta-analysis (also indicated by dashed
line) and subset meta-analysis results (two-sided, one-sided, and positive and negative subset associations) are shown. B, regional plot showing
P values for GAME-ON prostate cancer GWAS at region 2q33.1 using GAME-ON/GECCO discovery set data. Peak is at ALS2CR12. C, boxplot of BZW1
gene expression levels in prostate tumor and normal tissue for rs1035142/rs13016963. rs1035142 is presented as a surrogate for rs13016963, with
which it shows perfect LD in eQTL data. CRC, colorectal; ERNEG, estrogen receptor negative; Prost, prostate; endomet, endometrioid; Aggrsv, aggressive;
Adeno, adenocarcinoma.
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cancer in European populations. These results lend further
support for the etiologic role of this region on cancer suscep-
tibility in general (38).

For 2q33.1, we found evidence for a pleiotropic effect for
rs13016963 (at ALS2CR12) on breast and prostate cancer. This
region is known to harbor breast cancer susceptibility loci:
rs1045485, encoding the missense alteration D302H in CASP8
(adjacent to ALS2CR12) (29), rs1830298 (mentioned above) at
ALS2CR12, and rs1045494 at CASP8 (30, 31). Of these three
variants, rs1830298 was found to have the most significant
association with breast cancer (P ¼ 1.02 � 10�7) in our study
and was associated with prostate cancer risk (P ¼ 5.2 � 10�4),
whereas rs1045485 and rs1045494 were not. For prostate
cancer, rs13016963 represented the peak association, although
we point out strong LD between rs13016963 and rs1830298
(R2 ¼ 0.74). Interestingly, rs13016963 was also found to be

associated with risk of melanoma in a previous GWAS in
subjects of European descent (28), indicating this variant may
be associated with both prostate cancer and melanoma in
Caucasian populations. It was also found to be associated with
esophageal SqCC in Han Chinese (39).

Previous research has examined associations between other
genetic variants in this region and prostate cancer risk. A pos-
sible association between the CASP8 histidine variant D302H
and the more aggressive form of prostate cancer in European
populations was reported (40). This variant was however not
associated with aggressive prostate cancer (P ¼ 0.11) or overall
prostate cancer (P ¼ 0.14) in GAME-ON/GECCO.

Our prostate eQTL analysis suggested that rs13016963 influ-
ences the expression of BZW1. Previous studies indicate a role for
BZW1 in carcinogenesis. BZW1 can activate histone H4 gene
transcription and serves as a coregulator of other transcription

Figure 4.

A, results for rs62560775. Forest plot showing per allele ORs for risk allele G (of A/G). Standard fixed effects meta-analysis (also indicated by dashed line)
and subset meta-analysis results (two-sided, one-sided, and positive and negative subset associations) are shown. B, regional plot showing P values
for GAME-ON lung adenocarcinoma GWAS at region 9p21.3, using GAME-ON/GECCO discovery set data. Peak is at CDKN2B-AS1. C, results for rs1011970.
Forest plot showing per allele ORs for risk allele T (of T/G). Standard fixed effects meta-analysis (also indicated by dashed line) and subset meta-
analysis results (two-sided, one-sided, and positive and negative subset associations) are shown. D, regional plot showing P values for GAME-ON
prostate cancer GWAS at region 9p21.3, using GAME-ON/GECCO discovery set data. Peak is at CDKN2B-AS1. CRC, colorectal; ERNEG, estrogen
receptor negative; Aggrsv, aggressive; endomet, endometrioid; Prost, prostate; Adeno, adenocarcinoma.
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factors involved in cell cycling. It has been implicated in pro-
moting mucoepidermoid carcinoma tumor growth (41). We
also found two potential functional variants in the region
(rs700636 and rs1035142). These variants are in strong LD with
rs13016963 (R2 � 0.93) and have associations with prostate
cancer similar to rs13016963 in strength and are predicted to sit
in miRNA-binding sites.

The 9q21.3 region encoding CDKN2B-AS1 has been much
studied in cancer research. We observed a pleiotropic associa-
tion of rs62560775 (located in the intronic region of CDKN2B-
AS1) involving lung adenocarcinoma and breast cancer. The
association with breast cancer might to be due to LD (R2 ¼
0.38) with a previously identified breast cancer susceptibility
variant, rs1011970. Interestingly, we did replicate an associa-
tion between rs1011970 and prostate cancer, suggesting this
specific variant or variants in LD with it contribute to risk for
both breast and prostate cancer. Timofeeva and colleagues
found an association between this region and lung SqCC,
represented by rs1333040 (42), but this variant was not asso-
ciated with adenocarcinoma in our dataset (P ¼ 0.62). Previous
GWASs also report associations between this region and risk of
glioma (43), melanoma (28), and basal cell carcinoma (44)
and a recent pleiotropy study indicated an association with
esophageal SqCC (45). LD between variants reported in these
studies and either rs62560775 or rs1011970 range from R2 ¼
0.21 to R2 ¼ 0.60, indicating that multiple variants in this
region contribute to cancer risk. Despite that associations for
different cancers were exerted from multiple variants, our
results represent an important pleiotropic finding, as all var-
iants are located in the same gene, CDKN2B-AS1.

Modification of CDKN2B-AS1 activity could be the mech-
anism through which this locus influences cancer risk.
CDKN2B-AS1, also known as ANRIL (antisense noncoding
RNA in the INK4 locus) is known to recruit a polycomb
repression complex (PRC2) that silences CDKN2B but not
CDKN2A (46). Although there is no known function for
rs62660775 or rs1011970, a variant with which rs62660775
is in strong LD, rs3217986 (at R2 ¼ 0.75), was identified to be
located in an miRNA-binding site (47) and classified as likely
to affect binding by regulome.

Our pleiotropy Q-Q plots (Supplementary Fig. S4A–S4C)
suggest pleiotropy between some sites: breast and ovarian cancer,
breast and prostate cancer, and prostate and lung cancer, with
some evidence provided for pleiotropic associations involving
prostate and lung and colorectal and ovarian cancer. There was
little evidence for pleiotropic associations involving other site
combinations using this approach.

Although we have built-in studies from non-European
descendants, including Asians, African Americans and Hispa-
nics, we did not observe an association with any of the loci in
other ethnic groups. It is likely that the smaller sample sizes
for the non-European descendants restricted our power to
detect associations. Variation in LD across ethnicities could
also have reduced our power to detect associations. More
research is needed to determine whether associations in these
regions can be generalized to different ethnic groups based on
larger sample size. These efforts could make meaningful
contributions to addressing disparities in health between
populations.

Power to detect associations is also relevant when consider-
ing our primary analyses involving subjects of European ances-

try. Our initial investigation using the GAME-ON and GECCO
dataset identified 33 regions and 190 variants that we further
examined in replication datasets. We were able to replicate the
associations for four of these regions. As our replication data-
sets' sample sizes were often smaller than those of our discovery
(GAME-ON/GECCO) set (depending on cancer site), we may
have insufficient power to replicate true associations particu-
larly for less common variants, underlining the importance of
sample size for investigations of pleiotropy.

In summary, using data from the GAME-ON initiative and
GECCO, we have found four regions that show associations
with multiple cancers, including a novel association between
genetic variation at 1q22 and breast cancer and lung SqCC.
This is the largest study to date examining pleiotropy across
multiple cancer sites. There are likely more loci that are
associated with multiple cancers, but these will require addi-
tional efforts with larger data series for detection. Our results
provide important insights into common carcinogenesis
across multiple major cancers and highlight the value of
pleiotropy analysis.
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