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ABSTRACT

We extend the notion of complex B-splines to a multivariate setting by employing the relationship between
ordinary B-splines and multivariate B-splines by means of ridge functions. In order to obtain properties of
complex B-splines in R*; 1 < s € N, the Dirichlet average has to be generalized to include infinite dimensional
simplices. Based on this generalization several identities of multivariate complex B-splines are exhibited.
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1. INTRODUCTION

Recently, a complex variant B, of B-splines was defined in Forster et al.! For Rez > 1, define

B.(w) = 3 LD () @ =R (1)

k>0

where
2 = z¥ =e*"T if £ >0,
+ 0 if z <0.

The series (1) converges for all z € R. It has been shown that, for fixed z with Rez > 1, the functions B, are
elements of L'(R) N L2(R), and that their Fourier transform is given by

) 1 — e~ tw z
F(B.)(w) = / B, (x)e"“"dx = (76) .
R w
It thus follows that )
/ B.(x) dr = F(B.)(0) = 1. @)
R
For z = n € N, the complex B-spline B, reduces to the classical Curry-Schoenberg B-spline B,,, n € N. (Cf. Curry
1— —iw
& Schoenberg.?) For an interpretation of the complex B-spline in the Fourier domain, we set Q(w) := ,76.
w

Then
f(BZ)(w) — (Q(w))z _ (Q(w))RezeiImzln|Q(w)\6—lmzargﬂ(w) _ ]_-(BREZ)(w)eiImzln\Q(w)|e— Imzarg(l(w)’

i.e., a complex B-spline is a fractional B-spline of order Rez with a phase and modulation/scaling factor in
Fourier domain. Note that because of arg Q(w) > 0, the frequency components on the negative and positive
axis are enhanced by the opposite sign. The fractional as well as the complex B-splines are scaling functions for
multiresolution analyses of L2(R). (See Unser & Blu® and Forster et al.!)
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The following relations between complex B-splines and divided differences of order z € C with Rez > 0
hold. (See also Forster & Massopust.?) Let Ny := {0,1,2,...} be a sequence of uniform knots. We define the
corresponding complex divided difference operator as

. B . g(k)
23 NoJg := g(_l)kf(z —k+1I'(k+1) Y

for all functions g : R — C with convergent series on the right hand side. Then
B.(z) = z[2; NoJ(e — k)37 (4)

For z = n € Ny, equations (3) and (up to a factor (—1)") (4) reduce to the standard forms

n

9(t;)

[tm...,tn}g:;m.

for the finite sequence of knots {tg,...,t,} = {0,...,n} and

1 s n n— n—
By (z) = - (—1)k( )(w—k)+ L= (=1)"n[0,1,...,n](e — k)2, (5)
(n—1)! P k
In this article, we will derive a multidimensional extension of the complex B-splines.

2. MULTIVARIATE COMPLEX B-SPLINES

For the n-th order B-spline B,,, n € N, the following relation is well-known:
1
0.1,y = o [ Bult)g™ (o). (6)
n: Jr

An analogue for complex B-splines reads as follows. (Cf. Forster & Massopust.?)

Proposition 1. Let Rez > 1 and g € . (R) belong to the Schwartz space. Then the complex B-splines B, and
the complex divided differences (3) satisfy the following relation.

[ NoJg = % / B. ()9 (t) dt,

where g(*) := W#g denotes the Weyl fractional derivative (cf. Kilbas et al.?) of order z:

Wralt) = (1" G |57 | @ 0" et

with n = [Rez]|, and v =n — z. Here [-] : R — Z, 2 — min{n € Z|n > z}, denotes the ceiling function. As a
convention, W9 := id o (R)-

We can extend complex B-splines to include arbitrary weights b and arbitrary sequences of knots. To this
end, let A® be the infinite dimensional standard simplex A* := {u = (uj); € (R)No | Z;io uj = 1} , endowed

with the topology of pointwise convergence, i.e., the weak-*-topology. Let u; = @1 iy denote the projective limit

of Dirichlet measures on the n-dimensional standard simplex A™ with density % ug"*l u’ilfl coeybe =l
Definition 2. Given a weight vector b € R and an increasing knot sequence 7 := {tx}y € RNo with the

property that limy_, . /tx < co. A complex B-spline B, (e | b;7) with weight vector b and knot sequence 7 is a
function satisfying

/ B.(t | bim)g)(t) dt = / ¢ (r - ) dun(u) (7)
R oo
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for all g € #“(R). (Here, #“(R) := (R)NC¥(R), with C*(R) denoting the real-analytic functions on R, and

Tou= Ztkuk for u = {ur}tren € A%))
keN

Remark 3. For finite 7 = 7(n) and b = b(n), (7) defines also the so-called Dirichlet splines if g is chosen in
C™(R). For, Dirichlet splines D(-|b;T) are defined as those functions for which

/g“”(t)D(tl b;7) dt:/ g™ (- w) dpy(u) = G (bi7), T ER™
A .

holds true for all g € C™(R) and thus for g € #“(R). (Here G is the Dirichlet average of g.)

As an analog to (6) we define divided differences of g of order z for the sequence of knots 7 as
[2;7]g := / B.(t| b;7)g®) (t)dt, for all g € .#(R). (8)
R

We extend the notion of complex B-splines to a multivariate setting in R®, s > 1, via the notion of ridge
functions. (See, for instance, Pinkus.®) This approach has already led to an extension of the Curry-Schoenberg-
splines to a multivariate setting. (Cf. Micchelli” and Neuman & Van Fleet.8) Let A € R*\ {0} be a direction, and
let g : R — C be some function. The corresponding ridge function is defined as gy : R® — C, gx(z) = g({)\, x))
for all z € R®. (Here, (o, ) denotes the canonical inner product in Euclidean space.)

Definition 4. Let 7 = {t"},en, € (R*)M° be a sequence of knots in R* satisfying lim sup {/|/t"|| < co. We define
n—oo

the multivariate complex B-spline B, (e | b,7) : R® — C for the weight vector b via

/ ¢ (@) B.(z | b, 1) dz = / GO D B.(t | b, A7) dt )
s R

for all g € (R), and where we defined At := {(\,t") }nen.

Convention. We will index the elements of a collection of vectors in R® or C*® by superscripts and their
components by subscripts, i.e., if T := {t!,...,t"} is a collection of vectors in C* then t? will denote the j-th
component of the k-th vector in T

As the knot set 7 depends on z, we write 7 = 7(z) and note that 7(2) = Ny for z € C\ Ny and 7(z) = N§,
for z € N, where N} := {0,1,...,n} denotes the initial segment of Ny of length n + 1. Setting z :=n € N
in (9), the infinite sequences b and 7 collapse to b(n) := (bg, b1, ...,b,,0,0,...) and 7(n) := (t',...,t%,0,0,...)
and (9) becomes a well-known relation between univariate and multivariate B-splines. (Cf. Karlin et al.® and
Micchelli.”)

For the special case b = e = (1,1,1,...), the multivariate divided differences of order z are defined on ridge
functions via

(5o = Lsla((he) = 55 [ 0 () Bte | o) do
1

= /g<z)(t)BZ(t | e, AT)dt = [z; AT]g, VA €R®; Vge S (R™).
I'(z) Jr

Ridge functions form a dense subset of C(R¥), k € N. (See also Kréo.'®) For n € N and a finite sequence of
knots 7 = {t°,t,...,t"}, one obtains

1 () x x|eT)dr
w5 |0 Ble ey

[t ... t"gn = [n57]g((N, ) =

= — [ ¢MWOBu(t | e, A dt = [ Arlg = S =TT
1) Jy ¥ OBalt]eAn) ZHZ#W—M

In order to obtain some properties of multivariate complex B-splines, we need to introduce Dirichlet averages.
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3. DIRICHLET AVERAGES

Dirichlet averages are discussed in the book by Carlson'! and related to univariate and multivariate B-splines
in Carlson'? , and they have produced deep and interesting connections to special functions. In this section, we
extend the notion of Dirichlet average to the infinite-dimensional setting and show that under mild conditions
on the weights the results important for our interests do also hold on A*°. In particular, we show that using a
geometric interpretation, the Weyl fractional derivative and integral can be applied to Dirichlet averages.

To this end, let Q be a convex open subset of C*, s € N, let ¢ € ‘XOQ, and let b € R’ffl. Then the Dirichlet
=

average of a measurable function f : Q — C is defined as the integral

Fx0) = [ ¢ )i (), (10)

n
where u - ¢ := Zuigi € C®. We note that it is customary to denote the Dirichlet average of a function f by
i=0
the corresponding upper-case letter, F'. It can be shown that the Dirichlet average of a derivative equals the
derivative of the Dirichlet average. (For more details regarding the properties of Dirichlet averages and their
connection to the theory of special functions, we refer the interested reader to the work by Carlson.!!)

Let Cs := {¢ € C| Re¢ > 0}. The following result is known. (Cf. Carlson.'!)

Proposition 5. Suppose that f : @ — C is holomorph. Then the Dirichlet average F(-,() is a holomorphic
function on CZ™, for fixed ¢ € Q" +1.

The extension of (10) to A consists of taking 2 to be an open convex set in C*, b € IRT_U, and choosing
a measurable function f € . (Q) := .#(,C). For ¢ € QN C (C*)No and u € A>, define u - ¢ to be the
oo

bilinear mapping (u, () +— Zuzgl The infinite sum exists whenever limsup {/||¢"|| < oo, where || - || denotes
n—oo

i=1
the canonical Euclidean norm on C*. (See also Forster & Massopust.*)

Definition 6. The Dirichlet average F' : ]Rio x QMo — C on A is defined by
F(b;¢) = (u- Q) dpp(u),
ADO
where 1, = lim g3’ is the projective limit of Dirichlet measures on the n-dimensional standard simplex A™.

Under the assumption that f : @ — C is a holomorphic function and b satisfies the above condition, the
Dirichlet average on A exists and is holomorph on C for fixed ¢ € QY. Using the fact that A is the
projective limit of its finite-dimensional projections A™, n € N, the following known properties of F' extend
naturally to the infinite-dimensional setting:

o Let 0 : N® — N§° be a permutation. Then

F(ba(())a ba(l)a EERPE) ga‘(O)’ CG(1)7 .. ) = F(b07 b17 cees CO7 (17 o )a

° F(b07b17b27"';4174-174-27"') = F(bO+b17b27"';<—17€27"');

° F(Ovbhb?w"5(074174-27"') :F(bl,b27"';cl7<—27"');

o If (=(z,272,...) EQN(‘,thonu-C:zZui:zGCS, and thus F(b;¢) = f(2).
=0
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Now suppose that the weight vector b € ¢1(Np). Let ¢ := Z b; and w; := %. Since for j = 1,...,n, the

c
i=0

b,

[ i) = 2
>
=0

holds for all finite-dimensional projections A™ of A% (Carlson!!), we have

equation

b; .
/ widpy(u) = 2 =w;, Vj € Ny.
Ao c

In a similar fashion, using the fact that (Section 4.4 in Carlson'!),

(P(bl +bk))(r(bl+nll)F(bk+mk)) dﬂk (u)
(T(by) - T(bp)) T (b1 +m1 + -+ by +my,)) 0T

() =

for m € N*, one obtains the identity
ugdup(u) = widpipre;(u), j € No, (11)

generalizing the corresponding finite-dimensional identity. (Cf. Carlson.'!) (Here e; := {&;;|i € No}.) From
(11) one obtains the identiy

A\

(u- Q)dpp(u) =Y w; | F@ Odubye (),
j=0

or, equivalently,

F(b;0) =Y w;F(b+e;;0).
7=0

In particular, for z € R* and g(x) := = f(x), this last equation gives

G(b;0) = > wiF(b+e;50),

J=0

where ¢/ € C* is the jth component of (.

The results regarding the relations between Dirichlet averages found in Carlson,'? Section 5, or Neuman &
Van Fleet,® Section 3, transfer to the infinite-dimensional setting using the definition of projective limit. We
omit further details.

Of particular interest are Weyl fractional derivatives of Dirichlet averages and their relation to the Dirichlet
averages of Weyl fractional derivatives. To this end, let {2 again be an open convex subset of R® or C* and
fe7(9). Let z € Cs and let n := [Rez] and v :=n — z. Furthermore, let z := (21,...,2,)" € Q. The Weyl

partial fractional derivative 07 with respect to x;, i = 1,...,s, of order z is defined by
o? (_1)n on .
o7 = = t—x) t)dt.
)= @) = o | (=2
k

Consider for a moment the case s := 1. Let { € )_(OQ and denote by 0; := a%’ 1 =0,1,...,k, the partial
k

derivative operator. Let f :  — R and consider the operator Z 0; = (V,e(k)), where V is the k-dimensional
i=0
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d

gradient and e(k) = (1,...,1) € N¥. However, (V,e(k))f is equal to the univariate derivative d—f(:n, ce ),
x

where x := (3 = - -+ = (. This suggests the following definition.

Definition 7. Let g € #(Q) and let z € Cs with [Rez] < k. Then

k z
; = (71)”4 " v— _ (71)71 v—1_(n)
(;&) 9(¢) = T o /]Rth Yg(x +t,...,x+t)dt = X0 /ﬂht g™ (x+t,...,x+t)dt

Now, set ¢g(¢) := F(b(k); (), with b(k) a finite weight vector. Then, by the properties of Dirichlet averages

k
and the fact that Zul =1, one obtains with 9(k (Z@) ,
=1
O F) (k) ¢) = =" / O (b(k)s e+, + ) dE
L(v) Ry
(="

i dan
T T() /Rf @/M flur(z+1) + -+ up(z + ) duygy (u)

= (1:(1]/); /ﬂh t”—l/M FO (g (@ +t) + - A up(z 4+ 1) (ur + - ug) P dpp g (u)
= [0 Pty ).
In quite similar fashion, one shows that
OFF)O:C) = [ w1 - i (v
and, if {i1,...,4n} C{0,1,... )k}, m=0,1,... k,
(05 -+ 0L F) (b(k); €) = /Ak wi e fEEEE) (w0 Q)dpy gy (u),
where z;, € C5, £ =1,...,m, and [Rez, |+ - -+ [Rez,, | <k
In order to extend the above results to A, we need to consider the operator 9 := 9(o0 Z 0;, where 0;

=0
denotes again the partial derivative with respect to (;, ¢ € Np.

Remark 8. Operators of this type naturally act on functions f : R>® — C for which, for instance, the semi-norm

[f]1,00 == Z |0: flloo < 0. In other words, the function f can be regarded as an element of the Sobolev space
1€Ng

Woe(R>), defined as the projective limit of the Sobolev spaces W (R™): W (R*®) := lim W">*(R"). In

the current setting, however, these ideas will not be pursued further.

Instead, we consider the following scenario. Let f € (R*) and let z € Cs with n := [Rez] and v :=n — 2.

Define 9% := (Z 6,») to be an operator on .%(R°) given by the expression

z o (_1)1’1 di /OO v—1 _ (_1)n /OO v—1 pg(n)
(& F)(C) = ORI (x4 t)dt = o/, ) (1 4 t)dt,
where Rz :=( =G = -+ = (, Replacing f by the Dirichlet average G(b;() of some function

g € Z(R*) and weight vector b € El Np), one obtains by arguments similar to those given above that

@6)W:0) = [ 9P Qdm(w),
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and

(97 G)(b:Q) = /M u;g®) (u- Oy (w),

and also

Tm Tm

@+ O bsC) = [ il g (- Q)
Aoc

for any {i1,...,4m} € No.

Returning to the general case s > 1, the results obtained above apply to ¢ € ONo  (C*)Mo by considering
partial derivatives with respect to the components ¢} of ¢/ € . (See also Carlson'? for the finite-dimensional
vectorial setting.)

We will write again 7 := {t" },en, for a knot sequence in R® satisfying the condition that lim sup {/]|¢"| < oc.
n—oo

Furthermore we assume that the weight vector b € ¢1(Ny). Let A € R®\ {0} be a direction and let z € Cs.
Employing Theorem 3 in Carlson'? or Theorem 3.1 in Neuman & Van Fleet,® to the functions g(*) € 2(R>)

7 (R*°) and g§1+2) = ((\t9) — @)g(t+2)  j € Ny, yields for their Dirichlet averages on the knot sequence
AT = {(\, ") bnen
(= DG (b; A1) = (e — )G (b — ej3 A7) + G (b3 A7), (12)

where G is the Dirichlet average of g;, and ¢ = Z b; as above, for a weight vector b € £1(Ng). Employing (7)

1€Np
to (12) we obtain

= 1) [ OBt At = (e~ 1) [ gD OBt b= eiande+ [ (A0) =09 D OBt | A
R R R
This last equation, however, is by the defining equation of multivariate complex B-splines B, equivalent to

= 1) [ g OBl [binde == 1) [ P () Bule] b esir)da

s

(13)
+ /S N\t — ) g(1+z)(<)\,x>)BZ(x | b;T)dx, j € Np.

We summarize these results in a theorem

Theorem 9. Let 7 := {t"},en, C R® be a knot sequence with limsup {/[[t"|| < co and b € (! Ng a weight vector.
n—oo

Assume that A € R*\ {0} and z € C-. Furthermore, assume that g(*) € 2(R>) and let gJ(-H_Z) = (7 — o)g1+2),
j € Ng. Then

(c—1) /RS gg\z)(x)Bz(;r | b;7)dx = (¢ —1) /]R gg\z)(w)Bz(x |b—ej;7)dx

+/ Nt — ) g&Hz)(x)Bz(x | b;7)dz, j € No.

Now suppose that 7 = {t*},cn, is such that its convex hull [r] does not contain 0 € R, and let n € N. The
R-geometric function Ry (b;7) : RN x Q"1 — C is defined by

Ro(tir) = [ (7 wldug(w)

where ) := H, H a half-plane in C \ {0}, if a € C\ N, and Q := C, if @ € N. Tt can be shown (see Carlson!!)
that R_,, a € Cs, has a holomorphic continuation in 7 to Cy, where Cy := {( € C| — 7 < arg( < 7}.

Since this result holds for all n € N, the definition and properties of R_, can be lifted to the infinite-
dimensional simplex A using the properties of the projective limit, provided that the above-given conditions
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on 7 and the weight vector b are satisfied. Using (7), we can express R_, as follows. Firstly, we require a result
from Weyl fractional differentiation theory (see Section 2.2 in Kilbas et al.?), which states that for o € C with
Rea>0,and g€ C

—afB-1y (. :Majﬁ*a*1
e »

provided that Re(aw+ 3 — [Rea]) < 1. Here |- | : R — Z,  — max{n € Z|n < z}, denotes the floor function.

(14)

Suppose now that z € C is such that Rez > 1 and choose an a € C~. Then, by virtue of (14), we can write

['(a)

tr = I(a—2)

[f(afz)]ﬂz)?

provided Rea > 2Rez — |Rez] > 1. Hence, with (7),

['(a)

Reolbir) = [ () dmt) = s

/(t_(a_z))(z)Bz(t | b; 7)dt, (15)
R

for an a € C satisfying Rea > 2Rez — |Re z].
Assume that A € R®\ {0} is a direction and that the knot sequence 7 = {t¥}1cn, satsifies (\,t¥) < 1, for all

k € Ng. Then,
) — ['(a) —(a—2)\(2) NV — I'(a)  n—(a=2)1(2) N\
Realbil = A7) = o /R(t VBt | b1 = Aryt = s /R[u £~ B, (¢ | b; Ar)dt
_ T(a) 1 O OB (2 | b da
- s [ 100 OB | e

Hence, we proved the following theorem.

Theorem 10. Suppose that z € C with Rez > 1 and a € C are such that Rea > 2Rez — [Re z]. Moreover, let
A € R®\ {0} be such that (\,t*) < 1, for all k € Ny. Then the R-geometric function R_, can be expressed as

I'(a)

R_.(b;1—X1) = Ta—2

/ [Ka—z,/\(l')](z)Bz(l' | b, 7')d$7 (16)
where K,_, := (1 — ¢)~(a=2),

Let us recall the following formula for the R-geometric function R_, which is an extension of the finite-
dimensional setting (see Theorem 6.8-3 in Carlson'!) to the infinite-dimensional case under the usual assumptions
on the knots ¢ := {(n}nengs ¢n > 0 for all n € Ny, and the weight vector b.

Roa(b:0) =[] ¢"" Rae(b:¢7Y), (17)

n=0

where ¢ = Z b;, with ¢ ¢ —No, and ¢! := {¢;  }nen, -
i=0
Now, choosing weights b,,, n € Ny, so that setting a := ¢ € R still satisfies the condition a > 2Re z — |Re z],
and using the fact that Ry = 1, we obtain from (16) and (17),

[ aeaol B e = "2 T - ),

n=0

which is a generalization of Watson’s Identity. (Cf. Watson!'® and Neuman & Van Fleet.®)
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4. SUMMARY AND OUTLOOK

We extended the notion of complex B-spline to R®, 1 < s € N, using an identity between univariate ordinary
B-splines and multivariate ordinary B-splines involving ridge functions. In order to derive properties of these
multivariate complex B-splines B, we needed to employ Dirichlet averages generalized to infinite-dimensional
simplices A°°. These generalized Dirichlet averages seem to play the same important role in multivariate complex
B-spline theory as they do in the ordinary setting. We also derived an identity between multivariate complex
B-splines and an R-geometric function involving Weyl fractional derivatives.

There are still several open problems and numerous directions along which research into the theory of mul-

tivariate complex B-splines may proceed. Some of these are as follows.

e What is the Fourier transform of multivariate complex B-splines and is it related to Dirichlet averages? (See
Carlson'? for such a connection between the S-geometric function and the Fourier transform of ordinary
multivariate B-splines.)

e [s there an explicit representation of multivariate complex B-splines and if, are there connections to gen-
eralized complex difference and divided difference operators? (See also Forster & Massopust? for s = 1.)

e How does one compute the moments of univariate and multivariate complex B-splines?

e Is it possible to construct scaling vectors and multi-scale representations from multivariate complex B-
splines?

e Exhibit relations to the Radon transform.
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