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ABSTRACT

We extend the notion of complex B-splines to a multivariate setting by employing the relationship between
ordinary B-splines and multivariate B-splines by means of ridge functions. In order to obtain properties of
complex B-splines in R

s, 1 < s ∈ N, the Dirichlet average has to be generalized to include infinite dimensional
simplices. Based on this generalization several identities of multivariate complex B-splines are exhibited.
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1. INTRODUCTION

Recently, a complex variant Bz of B-splines was defined in Forster et al.1 For Re z ≥ 1, define

Bz(x) :=
1

Γ(z)

∑
k≥0

(−1)k
( z

k

)
(x− k)z−1

+ , (1)

where

xz
+ =

{
xz = ez ln x if x > 0,

0 if x ≤ 0.

The series (1) converges for all x ∈ R. It has been shown that, for fixed z with Re z > 1, the functions Bz are
elements of L1(R) ∩ L2(R), and that their Fourier transform is given by

F(Bz)(ω) =
∫

R

Bz(x)e−iωxdx =
(

1− e−iω

iω

)z

.

It thus follows that ∫
R

Bz(x) dx = F(Bz)(0) = 1. (2)

For z = n ∈ N, the complex B-spline Bz reduces to the classical Curry-Schoenberg B-spline Bn, n ∈ N. (Cf. Curry

& Schoenberg.2) For an interpretation of the complex B-spline in the Fourier domain, we set Ω(ω) :=
1− e−iω

iω
.

Then

F(Bz)(ω) = (Ω(ω))z = (Ω(ω))Re zei Im z ln |Ω(ω)|e− Im z arg Ω(ω) = F(BRe z)(ω)ei Im z ln |Ω(ω)|e− Im z arg Ω(ω),

i.e., a complex B-spline is a fractional B-spline of order Re z with a phase and modulation/scaling factor in
Fourier domain. Note that because of arg Ω(ω) ≥ 0, the frequency components on the negative and positive
axis are enhanced by the opposite sign. The fractional as well as the complex B-splines are scaling functions for
multiresolution analyses of L2(R). (See Unser & Blu3 and Forster et al.1)
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The following relations between complex B-splines and divided differences of order z ∈ C with Re z > 0
hold. (See also Forster & Massopust.4) Let N0 := {0, 1, 2, . . .} be a sequence of uniform knots. We define the
corresponding complex divided difference operator as

[z; N0]g :=
∑
k≥0

(−1)k g(k)
Γ(z − k + 1)Γ(k + 1)

(3)

for all functions g : R→ C with convergent series on the right hand side. Then

Bz(x) = z[z; N0](• − k)z−1
+ . (4)

For z = n ∈ N0, equations (3) and (up to a factor (−1)n) (4) reduce to the standard forms

[t0, . . . , tn]g =
n∑

j=0

g(tj)∏
l �=j(tj − tl)

.

for the finite sequence of knots {t0, . . . , tn} = {0, . . . , n} and

Bn(x) =
1

(n− 1)!

n∑
k=0

(−1)k
(n

k

)
(x− k)n−1

+ = (−1)nn[0, 1, . . . , n](• − k)n−1
+ . (5)

In this article, we will derive a multidimensional extension of the complex B-splines.

2. MULTIVARIATE COMPLEX B-SPLINES

For the n-th order B-spline Bn, n ∈ N, the following relation is well-known:

[0, 1, . . . , n]g =
1
n!

∫
R

Bn(t)g(n)(t) dt. (6)

An analogue for complex B-splines reads as follows. (Cf. Forster & Massopust.4)

Proposition 1. Let Re z > 1 and g ∈ S (R) belong to the Schwartz space. Then the complex B-splines Bz and
the complex divided differences (3) satisfy the following relation.

[z; N0]g =
1

Γ(z)

∫
R

Bz(t)g(z)(t) dt,

where g(z) := W zg denotes the Weyl fractional derivative (cf. Kilbas et al.5) of order z:

W zg(t) = (−1)n dn

dtn

[
1

Γ(ν)

∫ ∞

t

(x− t)ν−1g(x) dx

]
,

with n = �Re z�, and ν = n− z. Here � · � : R→ Z, x �→ min{n ∈ Z |n ≥ x}, denotes the ceiling function. As a
convention, W 0 := idS (R).

We can extend complex B-splines to include arbitrary weights b and arbitrary sequences of knots. To this
end, let	∞ be the infinite dimensional standard simplex	∞ :=

{
u := (uj)j ∈ (R+

0 )N0 |∑∞
j=0 uj = 1

}
, endowed

with the topology of pointwise convergence, i.e., the weak-*-topology. Let µb = lim←−µn
b denote the projective limit

of Dirichlet measures on the n-dimensional standard simplex 	n with density Γ(b0)···Γ(bn)
Γ(b0+···+bn) ub0−1

0 ub1−1
1 · · ·ubn−1

n .

Definition 2. Given a weight vector b ∈ R
∞
+ and an increasing knot sequence τ := {tk}k ∈ R

N0 with the
property that limk→∞ k

√
tk <∞. A complex B-spline Bz(• | b; τ) with weight vector b and knot sequence τ is a

function satisfying ∫
R

Bz(t | b; τ)g(z)(t) dt =
∫
�∞

g(z)(τ · u) dµb(u) (7)
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for all g ∈ S ω(R). (Here, S ω(R) := S (R)∩Cω(R), with Cω(R) denoting the real-analytic functions on R, and
τ · u =

∑
k∈N

tkuk for u = {uk}k∈N ∈ 	∞.)

Remark 3. For finite τ = τ(n) and b = b(n), (7) defines also the so-called Dirichlet splines if g is chosen in
Cn(R). For, Dirichlet splines D( · | b; τ) are defined as those functions for which∫

R

g(n)(t)D(t| b; τ) dt =
∫

∆n

g(n)(τ · u) dµb(u) = G(n)(b; τ), τ ∈ R
n+1,

holds true for all g ∈ Cn(R) and thus for g ∈ S ω(R). (Here G is the Dirichlet average of g.)

As an analog to (6) we define divided differences of g of order z for the sequence of knots τ as

[z; τ ]g :=
∫

R

Bz(t | b; τ)g(z)(t) dt, for all g ∈ S (R). (8)

We extend the notion of complex B-splines to a multivariate setting in R
s, s ≥ 1, via the notion of ridge

functions. (See, for instance, Pinkus.6) This approach has already led to an extension of the Curry–Schoenberg-
splines to a multivariate setting. (Cf. Micchelli7 and Neuman & Van Fleet.8) Let λ ∈ R

s\{0} be a direction, and
let g : R → C be some function. The corresponding ridge function is defined as gλ : R

s → C, gλ(x) = g(〈λ, x〉)
for all x ∈ R

s. (Here, 〈•, •〉 denotes the canonical inner product in Euclidean space.)

Definition 4. Let τ = {tn}n∈N0 ∈ (Rs)N0 be a sequence of knots in R
s satisfying lim sup

n→∞
n
√
‖tn‖ <∞. We define

the multivariate complex B-spline Bz(• | b, τ) : R
s → C for the weight vector b via∫

Rs

g(z)(〈λ, x〉)Bz(x | b, τ) dx =
∫

R

g(z)(t)Bz(t | b, λτ) dt (9)

for all g ∈ S (R), and where we defined λτ := {〈λ, tn〉}n∈N.

Convention. We will index the elements of a collection of vectors in R
s or C

s by superscripts and their
components by subscripts, i.e., if T := {t1, . . . , tn} is a collection of vectors in C

s then tkj will denote the j-th
component of the k-th vector in T .

As the knot set τ depends on z, we write τ = τ(z) and note that τ(z) = N0 for z ∈ C \ N0 and τ(z) = N
n
0 ,

for z ∈ N, where N
n
0 := {0, 1, . . . , n} denotes the initial segment of N0 of length n + 1. Setting z := n ∈ N

in (9), the infinite sequences b and τ collapse to b(n) := (b0, b1, . . . , bn, 0, 0, . . .) and τ(n) := (t1, . . . , tn, 0, 0, . . .)
and (9) becomes a well-known relation between univariate and multivariate B-splines. (Cf. Karlin et al.9 and
Micchelli.7)

For the special case b = e = (1, 1, 1, . . .), the multivariate divided differences of order z are defined on ridge
functions via

[z; τ ]gλ = [z; τ ]g(〈λ, •〉) =
1

Γ(z)

∫
Rs

g(z)(〈λ, x〉)Bz(x | e, τ) dx

=
1

Γ(z)

∫
R

g(z)(t)Bz(t | e, λτ) dt = [z; λτ ]g, ∀λ ∈ R
s; ∀g ∈ S (R∞).

Ridge functions form a dense subset of C(Rk), k ∈ N. (See also Króo.10) For n ∈ N and a finite sequence of
knots τ = {t0, t1, . . . , tn}, one obtains

[t0, . . . , tn]gλ = [n; τ ]g(〈λ, •〉) =
1

Γ(z)

∫
Rs

g(n)(〈λ, x〉)B(x | e, τ) dx

=
1

Γ(z)

∫
R

g(n)(t)Bn(t | e, λτ) dt = [n; λτ ]g =
n∑

j=0

g(〈λ, tj〉)∏
l �=j〈λ, tj − tl〉 .

In order to obtain some properties of multivariate complex B-splines, we need to introduce Dirichlet averages.
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3. DIRICHLET AVERAGES

Dirichlet averages are discussed in the book by Carlson11 and related to univariate and multivariate B-splines
in Carlson12 , and they have produced deep and interesting connections to special functions. In this section, we
extend the notion of Dirichlet average to the infinite-dimensional setting and show that under mild conditions
on the weights the results important for our interests do also hold on 	∞. In particular, we show that using a
geometric interpretation, the Weyl fractional derivative and integral can be applied to Dirichlet averages.

To this end, let Ω be a convex open subset of C
s, s ∈ N, let ζ ∈

n

X
i=0

Ω, and let b ∈ R
n+1
+ . Then the Dirichlet

average of a measurable function f : Ω→ C is defined as the integral

F (b; ζ) :=
∫
�n

f(ζ · u)dµn
b (u), (10)

where u · ζ :=
n∑

i=0

uiζ
i ∈ C

s. We note that it is customary to denote the Dirichlet average of a function f by

the corresponding upper-case letter, F . It can be shown that the Dirichlet average of a derivative equals the
derivative of the Dirichlet average. (For more details regarding the properties of Dirichlet averages and their
connection to the theory of special functions, we refer the interested reader to the work by Carlson.11)

Let C> := {ζ ∈ C | Re ζ > 0}. The following result is known. (Cf. Carlson.11)

Proposition 5. Suppose that f : Ω → C is holomorph. Then the Dirichlet average F ( · , ζ) is a holomorphic
function on C

n+1
> , for fixed ζ ∈ Ωn+1.

The extension of (10) to 	∞ consists of taking Ω to be an open convex set in C
s, b ∈ R

N0
+ , and choosing

a measurable function f ∈ S (Ω) := S (Ω, C). For ζ ∈ ΩN0 ⊂ (Cs)N0 and u ∈ 	∞, define u · ζ to be the

bilinear mapping (u, ζ) �→
∞∑

i=1

uiζ
i. The infinite sum exists whenever lim sup

n→∞
n
√
‖ζn‖ < ∞, where ‖ · ‖ denotes

the canonical Euclidean norm on C
s. (See also Forster & Massopust.4)

Definition 6. The Dirichlet average F : R
N0
+ × ΩN0 → C on 	∞ is defined by

F (b; ζ) :=
∫
�∞

f(u · ζ) dµb(u),

where µb = lim←−µn
b is the projective limit of Dirichlet measures on the n-dimensional standard simplex 	n.

Under the assumption that f : Ω → C is a holomorphic function and b satisfies the above condition, the
Dirichlet average on 	∞ exists and is holomorph on C

∞
> for fixed ζ ∈ ΩN0 . Using the fact that 	∞ is the

projective limit of its finite-dimensional projections 	n, n ∈ N, the following known properties of F extend
naturally to the infinite-dimensional setting:

• Let σ : N
∞
0 → N

∞
0 be a permutation. Then

F (bσ(0), bσ(1), . . . , ; ζσ(0), ζσ(1), . . .) = F (b0, b1, . . . ; ζ0, ζ1, . . .);

• F (b0, b1, b2, . . . ; ζ1, ζ1, ζ2, . . .) = F (b0 + b1, b2, . . . ; ζ1, ζ2, . . .);

• F (0, b1, b2, . . . ; ζ0, ζ1, ζ2, . . .) = F (b1, b2, . . . ; ζ1, ζ2, . . .);

• If ζ = (z, z, z, . . .) ∈ ΩN0 , then u · ζ = z

∞∑
i=0

ui = z ∈ C
s, and thus F (b; ζ) = f(z).
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Now suppose that the weight vector b ∈ �1(N0). Let c :=
∞∑

i=0

bi and wi := bi

c . Since for j = 1, . . . , n, the

equation ∫
�n

ujdµn
b (u) =

bj
n∑

i=0

bi

holds for all finite-dimensional projections 	n of 	∞ (Carlson11), we have∫
�∞

ujdµb(u) =
bj

c
= wj , ∀j ∈ N0.

In a similar fashion, using the fact that (Section 4.4 in Carlson11),

um1
1 · · ·umk

k dµk
b (u) =

(Γ(b1 + · · · bk))(Γ(b1 + m1) · · ·Γ(bk + mk))
(Γ(b1) · · ·Γ(bk))(Γ(b1 + m1 + · · ·+ bk + mk))

dµk
b+m(u),

for m ∈ N
k, one obtains the identity

ujdµb(u) = wjdµb+ej
(u), j ∈ N0, (11)

generalizing the corresponding finite-dimensional identity. (Cf. Carlson.11) (Here ej := {δi,j | i ∈ N0}.) From
(11) one obtains the identiy

∫
�∞

f(u · ζ)dµb(u) =
∞∑

j=0

wj

∫
�∞

f(u · ζ)dµb+ej (u),

or, equivalently,

F (b; ζ) =
∞∑

j=0

wjF (b + ej ; ζ).

In particular, for x ∈ R
s and g(x) := xf(x), this last equation gives

G(b; ζ) =
∞∑

j=0

wjζ
jF (b + ej ; ζ),

where ζj ∈ C
s is the jth component of ζ.

The results regarding the relations between Dirichlet averages found in Carlson,12 Section 5, or Neuman &
Van Fleet,8 Section 3, transfer to the infinite-dimensional setting using the definition of projective limit. We
omit further details.

Of particular interest are Weyl fractional derivatives of Dirichlet averages and their relation to the Dirichlet
averages of Weyl fractional derivatives. To this end, let Ω again be an open convex subset of R

s or C
s and

f ∈ S (Ω). Let z ∈ C> and let n := �Re z� and ν := n− z. Furthermore, let x := (x1, . . . , xs)� ∈ Ω. The Weyl
partial fractional derivative ∂z

i with respect to xi, i = 1, . . . , s, of order z is defined by

∂z
i f(x) :=

∂z

∂xz
i

f(x) :=
(−1)n

Γ(ν)
∂n

∂xn
i

∫
Rs

+

(t− x)ν−1f(t)dt.

Consider for a moment the case s := 1. Let ζ ∈
k

X
i=0

Ω and denote by ∂i := ∂
∂ζi

, i = 0, 1, . . . , k, the partial

derivative operator. Let f : Ω → R and consider the operator
k∑

i=0

∂i = 〈∇, e(k)〉, where ∇ is the k-dimensional
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gradient and e(k) = (1, . . . , 1) ∈ N
k. However, 〈∇, e(k)〉f is equal to the univariate derivative

d

dx
f(x, . . . , x),

where x := ζ1 = · · · = ζk. This suggests the following definition.

Definition 7. Let g ∈ S (Ω) and let z ∈ C> with �Re z� ≤ k. Then(
k∑

i=0

∂i

)z

g(ζ) :=
(−1)n

Γ(ν)
dn

dxn

∫
R+

tν−1g(x + t, . . . , x + t)dt =
(−1)n

Γ(ν)

∫
R+

tν−1g(n)(x + t, . . . , x + t) dt.

Now, set g(ζ) := F (b(k); ζ), with b(k) a finite weight vector. Then, by the properties of Dirichlet averages

and the fact that
k∑

i=1

ui = 1, one obtains with ∂(k)z :=

(
k∑

i=0

∂i

)z

,

(∂(k)zF )(b(k); ζ) =
(−1)n

Γ(ν)

∫
R+

tν−1F (n)(b(k); x + t, . . . , x + t)dt

=
(−1)n

Γ(ν)

∫
R+

tν−1 dn

dxn

∫
�k

f(u1(x + t) + · · ·+ uk(x + t))dµb(k)(u)

=
(−1)n

Γ(ν)

∫
R+

tν−1

∫
�k

f (n)(u1(x + t) + · · ·+ uk(x + t))(u1 + · · ·uk)kdµb(k)(u)

=
∫
�k

(∂(k)zf)(u · ζ)dµb(k)(u).

In quite similar fashion, one shows that

(∂z
i F )(b(k); ζ) =

∫
�k

uz
i f

(z)(u · ζ)dµb(k)(u),

and, if {i1, . . . , im} ⊆ {0, 1, . . . , k}, m = 0, 1, . . . , k,

(∂zi1
i1
· · · ∂zim

im
F )(b(k); ζ) =

∫
�k

u
zi1
i1
· · ·uzim

im
f (zi1+···+zim )(u · ζ)dµb(k)(u),

where zi�
∈ C>, � = 1, . . . , m, and �Re zi1�+ · · ·+ �Re zim

� ≤ k.

In order to extend the above results to 	∞, we need to consider the operator ∂ := ∂(∞) :=
∞∑

i=0

∂i, where ∂i

denotes again the partial derivative with respect to ζi, i ∈ N0.

Remark 8. Operators of this type naturally act on functions f : R
∞ → C for which, for instance, the semi-norm

|f |1,∞ :=
∑
i∈N0

‖∂if‖∞ <∞. In other words, the function f can be regarded as an element of the Sobolev space

W 1,∞(R∞), defined as the projective limit of the Sobolev spaces W 1,∞(Rn): W 1,∞(R∞) := lim←−W 1,∞(Rn). In
the current setting, however, these ideas will not be pursued further.

Instead, we consider the following scenario. Let f ∈ S (R∞) and let z ∈ C> with n := �Re z� and ν := n− z.

Define ∂z :=

( ∞∑
i=0

∂i

)z

to be an operator on S (R∞) given by the expression

(∂zf)(ζ) :=
(−1)n

Γ(ν)
dn

dxn

∫ ∞

0

tν−1f(x + t)dt =
(−1)n

Γ(ν)

∫ ∞

0

tν−1f (n)(x + t)dt,

where R � x := ζ1 = ζ2 = · · · = ζn = · · · . Replacing f by the Dirichlet average G(b; ζ) of some function
g ∈ S (R∞) and weight vector b ∈ �1(N0), one obtains by arguments similar to those given above that

(∂zG)(b; ζ) =
∫
�∞

g(z)(u · ζ)dµb(u),
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and
(∂zi

i G)(b; ζ) =
∫
�∞

uzi
i g(zi)(u · ζ)dµb(u),

and also
(∂zi1

i1
· · · ∂zim

im
G)(b; ζ) =

∫
�∞

u
zi1
i1
· · ·uzim

im
g(zi1+···+zim )(u · ζ)dµb(u),

for any {i1, . . . , im} ⊆ N0.

Returning to the general case s > 1, the results obtained above apply to ζ ∈ ΩN0 ⊂ (Cs)N0 by considering
partial derivatives with respect to the components ζj

i of ζj ∈ ζ. (See also Carlson12 for the finite-dimensional
vectorial setting.)

We will write again τ := {tn}n∈N0 for a knot sequence in R
s satisfying the condition that lim sup

n→∞
n
√
‖tn‖ <∞.

Furthermore we assume that the weight vector b ∈ �1(N0). Let λ ∈ R
s \ {0} be a direction and let z ∈ C>.

Employing Theorem 3 in Carlson12 or Theorem 3.1 in Neuman & Van Fleet,8 to the functions g(z) ∈ D(R∞) ⊂
S (R∞) and g

(1+z)
j := (〈λ, tj〉 − •)g(1+z), j ∈ N0, yields for their Dirichlet averages on the knot sequence

λτ = {〈λ, tn〉}n∈N

(c− 1)G(z)(b; λτ) = (c− 1)G(z)(b− ej ; λτ) + G
(1+z)
j (b; λτ), (12)

where Gj is the Dirichlet average of gj , and c =
∑
i∈N0

bi as above, for a weight vector b ∈ �1(N0). Employing (7)

to (12) we obtain

(c− 1)
∫

R

g(z)(t)Bz(t | b; λτ)dt = (c− 1)
∫

R

g(z)(t)Bz(t | b− ej ; λτ)dt +
∫

R

(〈λ, tj〉 − t)g(1+z)(t)Bz(t | b; λτ)dt.

This last equation, however, is by the defining equation of multivariate complex B-splines Bz equivalent to

(c− 1)
∫

Rs

g(z)(〈λ, x〉)Bz(x | b; τ)dx = (c− 1)
∫

Rs

g(z)(〈λ, x〉)Bz(x | b− ej ; τ)dx

+
∫

Rs

〈λ, tj − x〉 g(1+z)(〈λ, x〉)Bz(x | b; τ)dx, j ∈ N0.

(13)

We summarize these results in a theorem

Theorem 9. Let τ := {tn}n∈N0 ⊂ R
s be a knot sequence with lim sup

n→∞
n
√
‖tn‖ <∞ and b ∈ �1N0 a weight vector.

Assume that λ ∈ R
s \ {0} and z ∈ C>. Furthermore, assume that g(z) ∈ D(R∞) and let g

(1+z)
j := (tj − •)g(1+z),

j ∈ N0. Then

(c− 1)
∫

Rs

g
(z)
λ (x)Bz(x | b; τ)dx = (c− 1)

∫
Rs

g
(z)
λ (x)Bz(x | b− ej ; τ)dx

+
∫

Rs

〈λ, tj − x〉 g(1+z)
λ (x)Bz(x | b; τ)dx, j ∈ N0.

Now suppose that τ = {tk}k∈N0 is such that its convex hull [τ ] does not contain 0 ∈ R
s, and let n ∈ N. The

R-geometric function Ra(b; τ) : R
n+1
+ × Ωn+1 → C is defined by

Ra(b; τ) :=
∫
�n

(τ · u)adµn
b (u),

where Ω := H, H a half-plane in C \ {0}, if a ∈ C \ N, and Ω := C, if a ∈ N. It can be shown (see Carlson11)
that R−a, a ∈ C>, has a holomorphic continuation in τ to C0, where C0 := {ζ ∈ C | − π < arg ζ < π}.

Since this result holds for all n ∈ N, the definition and properties of R−a can be lifted to the infinite-
dimensional simplex 	∞ using the properties of the projective limit, provided that the above-given conditions
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on τ and the weight vector b are satisfied. Using (7), we can express R−a as follows. Firstly, we require a result
from Weyl fractional differentiation theory (see Section 2.2 in Kilbas et al.5), which states that for α ∈ C with
Re α ≥ 0, and β ∈ C

(W−αtβ−1)(x) =
Γ(1 + α− β)

Γ(1− β)
xβ−α−1, (14)

provided that Re(α + β − �Re α�) < 1. Here � · � : R→ Z, x �→ max{n ∈ Z |n ≤ x}, denotes the floor function.

Suppose now that z ∈ C is such that Re z > 1 and choose an a ∈ C>. Then, by virtue of (14), we can write

t−a =
Γ(a)

Γ(a− z)
[t−(a−z)](z),

provided Re a > 2 Re z − �Re z� > 1. Hence, with (7),

R−a(b; τ) =
∫
�∞

(τ · u)−adµb(u) =
Γ(a)

Γ(a− z)

∫
R

(t−(a−z))(z)Bz(t | b; τ)dt, (15)

for an a ∈ C satisfying Re a > 2 Re z − �Re z�.
Assume that λ ∈ R

s \ {0} is a direction and that the knot sequence τ = {tk}k∈N0 satsifies 〈λ, tk〉 < 1, for all
k ∈ N0. Then,

R−a(b; 1− λτ) =
Γ(a)

Γ(a− z)

∫
R

(t−(a−z))(z)Bz(t | b; 1− λτ)dt =
Γ(a)

Γ(a− z)

∫
R

[(1− t)−(a−z)](z)Bz(t | b; λτ)dt

=
Γ(a)

Γ(a− z)

∫
Rs

[(1− 〈λ, x〉)−(a−z)](z)Bz(x | b; τ)dx.

Hence, we proved the following theorem.

Theorem 10. Suppose that z ∈ C with Re z > 1 and a ∈ C are such that Re a > 2 Re z − �Re z�. Moreover, let
λ ∈ R

s \ {0} be such that 〈λ, tk〉 < 1, for all k ∈ N0. Then the R-geometric function R−a can be expressed as

R−a(b; 1− λτ) =
Γ(a)

Γ(a− z)

∫
Rs

[Ka−z,λ(x)](z)Bz(x | b; τ)dx, (16)

where Ka−z := (1− •)−(a−z).

Let us recall the following formula for the R-geometric function R−a which is an extension of the finite-
dimensional setting (see Theorem 6.8-3 in Carlson11) to the infinite-dimensional case under the usual assumptions
on the knots ζ := {ζn}n∈N0 , ζn > 0 for all n ∈ N0, and the weight vector b.

R−a(b; ζ) =
∞∏

n=0

ζ−bn
n Ra−c(b; ζ−1), (17)

where c =
∞∑

i=0

bi, with c /∈ −N0, and ζ−1 := {ζ−1
n }n∈N0 .

Now, choosing weights bn, n ∈ N0, so that setting a := c ∈ R still satisfies the condition a > 2 Re z − �Re z�,
and using the fact that R0 = 1, we obtain from (16) and (17),

∫
Rs

[Ka−z,λ(x)](z)Bz(x | b; τ)dx =
Γ(a− z)

Γ(a)

∞∏
n=0

(1− 〈λ, tn〉)−bn ,

which is a generalization of Watson’s Identity. (Cf. Watson13 and Neuman & Van Fleet.8)
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4. SUMMARY AND OUTLOOK

We extended the notion of complex B-spline to R
s, 1 < s ∈ N, using an identity between univariate ordinary

B-splines and multivariate ordinary B-splines involving ridge functions. In order to derive properties of these
multivariate complex B-splines Bz, we needed to employ Dirichlet averages generalized to infinite-dimensional
simplices	∞. These generalized Dirichlet averages seem to play the same important role in multivariate complex
B-spline theory as they do in the ordinary setting. We also derived an identity between multivariate complex
B-splines and an R-geometric function involving Weyl fractional derivatives.

There are still several open problems and numerous directions along which research into the theory of mul-
tivariate complex B-splines may proceed. Some of these are as follows.

• What is the Fourier transform of multivariate complex B-splines and is it related to Dirichlet averages? (See
Carlson12 for such a connection between the S-geometric function and the Fourier transform of ordinary
multivariate B-splines.)

• Is there an explicit representation of multivariate complex B-splines and if, are there connections to gen-
eralized complex difference and divided difference operators? (See also Forster & Massopust4 for s = 1.)

• How does one compute the moments of univariate and multivariate complex B-splines?

• Is it possible to construct scaling vectors and multi-scale representations from multivariate complex B-
splines?

• Exhibit relations to the Radon transform.

ACKNOWLEDGMENTS

This work was partially supported by the Marie Curie Excellence Team Grant MEXT-CT-2004-013477, Acronym
MAMEBIA, funded by the European Commission.

REFERENCES
1. B. Forster, T. Blu, and M. Unser, “Complex B-splines,” Appl. Comp. Harmon. Anal. 20, pp. 281–282, 2006.
2. H. B. Curry and I. J. Schoenberg, “On spline distributions and their limits: the Pólya distribution functions,”
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