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Abstract

Pulmonary fibrosis, particularly idiopathic pulmonary fibrosis,
represents a chronic and progressive disease with high mortality and
limited therapeutic options. Excessive depositionof extracellularmatrix
proteins results in fibrotic remodeling, alveolar destruction, and
irreversible loss of lung function. Both innate and adaptive immune
mechanisms contribute to fibrogenesis at several cellular and
noncellular levels. Here, we summarize and discuss the role of immune
cells (T cells, neutrophils, macrophages, and fibrocytes) and soluble
mediators (cytokines and chemokines) involved in pulmonary fibrosis,
pointing towardnovel immune-based therapeutic strategies in thefield.
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Clinical Relevance

In this review, we discuss the emerging role of
immune cells (T cells, neutrophils, macrophages, and
fibrocytes) and soluble mediators (cytokines and
chemokines) involved in pulmonary fibrosis, pointing
toward novel immune-based therapeutic strategies in
the field.

Pulmonary Fibrosis

Pulmonary fibrosis represents a chronic
and progressive tissue repair response,
which leads to irreversible scarring and
remodeling of the lung. The fibrogenic
triggers that initiate and maintain fibrotic
pulmonary remodeling remain
controversial, but probably include
infections (1), cigarette smoke (2),
radiotherapy (3), chemotherapy (4),
environmental and occupational
pollutants (5, 6), obesity (7), diabetes
mellitus (8), gastroesophageal reflux (8),
pulmonary hypertension (9), obstructive
sleep apnea (10), chronic graft-versus-host
disease (11), and connective tissue
diseases/autoimmune disorders (12), such

as rheumatoid arthritis (13), scleroderma
(14), and Sjögren’s syndrome (15).
However, pulmonary fibrosis can also
manifest without any known etiology.
Idiopathic pulmonary fibrosis (IPF) is the
prototypic age-related and irreversible
fibrotic disease, with a median survival of
2–6 years after diagnosis, and is largely
refractory to current pharmacological
treatments (16). To date, the highest
genetic risk factor for developing IPF is a
polymorphism in the MUC5B gene
(17–19). Lung transplantation is the only
effective treatment approach for patients
with IPF (20).

Fibrogenesis is thought to represent
dysregulated and perpetuated wound
healing/connective tissue repair in response

to recurring alveolar microinjuries. A
hallmark of this fibrotic repair process is the
excessive deposition of extracellular matrix
(ECM) components, such as hyaluronan,
fibronectin, and interstitial collagens, which
irreversibly remodel the lung tissue
structure, leading to thickening of the
alveolar and peribronchial walls, thus
impairing gas exchange (21, 22). During
wound healing, fibroblasts are key cells
responsible for the synthesis and deposition
of ECM in that they provide an initial
scaffold for tissue regeneration (21, 22).
When aberrant wound healing and fibrosis
develops, fibroblasts respond by
hyperproliferating at sites of injury, acquire
a “profibrotic” phenotype resistant to
apoptosis, and differentiate into contractile
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Am J Respir Cell Mol Biol Vol 55, Iss 3, pp 309–322, Sep 2016

Copyright © 2016 by the American Thoracic Society

Originally Published in Press as DOI: 10.1165/rcmb.2016-0121TR on May 5, 2016

Internet address: www.atsjournals.org

Translational Review 309

mailto:dominik.hartl@med.uni-tuebingen.de
http://dx.doi.org/10.1165/rcmb.2016-0121TR
http://www.atsjournals.org


myofibroblasts that perpetuate the fibrotic
process (21, 22). This activated
fibroblast/myofibroblast is highly
responsive to growth factors/cytokines,
such as connective tissue growth factor
(CTGF), platelet-derived growth
factor (PDGF), transforming growth factor
(TGF)-b1, IL-1b, IL-6, IL-13, and IL-33
(23), as well as aberrantly activated
profibrotic pathways, including TGF-b
(24), wingless-type MMTV integration site
family member (Wnt/WNT) (25), Sonic
Hedgehog (26, 27), or Notch (28), that
maintain fibrotic tissue transformation.
Furthermore, recent work showed that the
interplay between perivascular fibroblasts,
epithelial cells, endothelial cells, and
perivascular macrophages regulates the fine
tuning between alveolar repair and fibrosis
through Wnt and Notch signaling
interaction (29). Concisely, endothelial
expression of CXC chemokine receptor
(CXCR) 7 prevents epithelial damage by
Jagged1 inhibition, whereas recruitment of
vascular endothelial growth factor (VEGF)
receptor 1–expressing macrophages
stimulates Wnt/b-catenin–dependent
up-regulation of Jagged1, thereby
stimulating Notch signaling in fibroblasts
and enhancing fibrosis (29).

Recently, subtypes of skin fibroblasts
with intrinsic fibrogenic potential that
express engrailed-1 (En1) were identified.
These fibroblasts trigger increased ECM
deposition during development and repair,
and contribute to tissue fibrosis in multiple
mouse models (30). CD26/dipeptidyl
peptidase-4 was identified as a surface marker
of En1-positive fibroblasts. Depletion of En1-
positive fibroblasts or small molecule–based
inhibition of CD26/dipeptidyl peptidase-4
leads to decreased connective tissue
deposition and fibrosis (30).

Proteases play a key role in ECM
remodeling (31). In particular, matrix
metalloproteinases (MMPs) and their
inhibitor, tissue inhibitors of metalloproteinase
(TIMP)-1 have been involved in the
pathogenesis of IPF and sarcoidosis (32).
MMPs and TIMPs, mainly derived from
macrophages, can either act in a pro- or
antifibrotic manner, depending on the
protease/antiprotease net balance and the
microenvironmental tissue context
(33–35). MMP-3 was found to initiate
epithelial–mesenchymal transition (EMT)
in IPF by activation of the b-catenin
signaling pathway through cleavage of
E-cadherin (36). Gene expression studies

further provided evidence of an up-
regulation and potential role of MMP-1,
MMP-2, MMP-7, and MMP-9 in IPF (37,
38). Lung epithelial cells are critically
involved in fibrogenesis through a
sequence ranging from early epithelial
damage to fibrogenic EMT (39). EMT
causes epithelial cells to lose their
canonical features, particularly cell-to-cell
adherence, and to acquire migratory and
mesenchymal properties, increasing their
capability to convert to fibroblasts and
to finally undergo transdifferentiation
into myofibroblasts that synthesize ECM
(40). During EMT, epithelial cells also
lose their distinct marker expression
profile, including E-cadherin, thyroid
transcription factor-1, aquaporin-5, zonula
occludens-1, and cytokeratins, and acquire
a mesenchymal morphology associated
with expression of fibroblastic markers,
particularly fibronectin extra domain A,
a-smooth muscle actin (a-SMA), type I
and III collagen, CTGF, vimentin, and
desmin (39–41).

Among the cytokines studied so far,
primarily the profibrotic cytokine TGF-b1
has been described to play a central role in
promoting EMT (22, 24). TGF-b1 drives
EMT via SMAD2/3-dependent downstream
mechanisms (42, 43) and promotes the
transition of epithelial cells to fibroblasts
through the transcription factors, zinc
finger protein SNAI1 (SNAI) and TWIST
(44, 45). Inflammation has a modulatory
effect on TGF-b1–mediated pathways, as
the proinflammatory cytokines, IL-1b,
TNF-a, and IFN-g, were found to enhance
TGF-b1–induced EMT via up-regulation of
TGF-b receptor type I (46). Furthermore,
the damage/danger-associated molecular
pattern/alarmin high-mobility group
box 1, released upon tissue injury by
necrotic cells, enhanced EMT through
the TGF-b1/SMAD2/3 pathway (47). The
integrin-a3b1, expressed on epithelial cells,
phosphorylates b-catenin and activates
pb-catenin to form a complex with SMAD2
to initiate EMT (48). Li and colleagues
(49) further showed that prostaglandin E2
could modulate cell migration after EMT
through activation of E prostanoid (EP) 2
and EP4 as well as inhibition of EP1 and
EP3 receptors. Recently, it has been
shown that p63-positive lung epithelial basal
cells overlying fibroblastic foci could act as
EMT progenitors (50). Other EMT inducers
include cigarette smoke (51), radiation (52),
oxidative stress (53), mechanical stretch

(54), and IL-17A (55). In contrast, other
studies, including lineage-tracing
approaches, found no evidence of EMT in
fibrotic settings (56–60). Additional
translational research studies are warranted
to solve these discrepancies.

Besides TGF-b, dysregulated activation
of the WNT-1–inducible signaling protein
plays a key role in IPF (25), promoting lung
fibrogenesis by increasing the release of
profibrotic cytokines and proteases,
including secreted phosphoprotein 1,
MMP-7, MMP-9, and plasminogen
activator inhibitor 1, from the alveolar
epithelium, as well as by inducing EMT and
increasing collagen production by
fibroblasts (25). Wnt1/b-catenin signaling
further promoted human embryonic
pulmonary fibroblast to convert into
myofibroblasts and enhanced ECM
deposition upon tissue injury (61). Low-
density lipoprotein receptor-related protein
5, a WNT coreceptor, was identified
as a driver of lung fibrosis in mice and a
marker of pulmonary fibrosis disease
severity in humans with IPF (62).
Therapeutically, WNT/b-catenin pathway
inhibitors reversed established fibrosis
and significantly improved survival in
bleomycin-induced pulmonary fibrosis
(63, 64). Recently, Wang and colleagues (65)
showed that inhibition of WNT/b-catenin
signaling promoted the differentiation of
bone marrow–derived mesenchymal stem
cells into alveolar type II epithelial cells
and inhibited fibroblast-to-myofibroblast
transdifferentiation, as well as ECM
accumulation in bleomycin-induced
pulmonary fibrosis.

Immune Cells in Pulmonary
Fibrosis

Both innate and adaptive immune cell
responses have been linked to (myo)
fibroblast biology and fibrogenesis. Figure 1
and Table 1 summarize the main effects
reported for key adaptive (T cell subsets)
and innate (macrophages, neutrophils)
immune cell types. The immune cell
skewing in pulmonary fibrosis probably
affects antimicrobial host defense functions
and infection susceptibilities, a topic that is
beyond the scope of this review and is
discussed in reviews dedicated to fibrosis
and infections (1). In the chapters
presented subsequently here, we discuss the
main studies published to date on distinct
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immune cell subsets and their potential
involvement in pulmonary fibrosis.

T Cells
There is emerging evidence that a skewed
Th1/Th2 balance plays a modulatory role
during the inflammatory phase of pulmonary
fibrosis (22, 66). Systemic depletion of T cells
using anti-CD3 monoclonal antibodies
dampened ECM accumulation and fibrosis
in a murine model of bleomycin-induced
pulmonary fibrosis (67). The Th1 cytokines,
IFN-g and IL-12, attenuated fibrosis (68),
whereas the prototypical Th2 cytokines, IL-
4, IL-5, and IL-13, have been linked to
fibrogenesis (69, 70), leading to the view that
Th1 responses are protective, whereas Th2
responses are harmful (22, 70). At the
transcriptional level, overexpression of the
Th2 transcription factor, GATA binding
protein 3, or inhibiting the Th1 transcription

factor, T-bet, modulated pulmonary fibrosis
(71, 72). Whereas, in one study, Th17 cells
(T cells characterized by production of
IL-17) showed no direct impact on fibrosis
(73), other studies supported a role for IL-17
and Th17 cells by demonstrating that
blocking/neutralization of IL-17A delayed
the progression and promoted the resolution
of pulmonary fibrosis in different murine
fibrosis models (55, 74, 75). The potential
role of regulatory T cells (Tregs;
CD41CD25highFOXP31) in IPF remains
controversial. Whereas, on the one hand,
increased Tregs were reported (76), others
demonstrated a reduction in Tregs in
peripheral blood and bronchoalveolar lavage
(BAL) fluid of patients with IPF (77). Other
findings support a profibrotic role of Tregs
in early stages of pulmonary fibrosis by
increasing TGF-b1 release and collagen
deposition (78), whereas, at late stages, Tregs

were found to dampen lung fibrosis (78).
Xiong and colleagues (79) showed that Treg
depletion provided protection from
radiation-induced lung fibrosis by increasing
Th17 responses and shifting the Th1/Th2
balance toward Th1. Other studies, however,
showed that Tregs attenuated fibrocyte
recruitment and pulmonary fibrosis via
suppression of fibroblast growth factor
(FGF)-9 and CXC chemokine ligand
(CXCL) 12 (80, 81). Viewing these studies in
combination, the potential role of Tregs in
pulmonary fibrosis remains incompletely
defined. Tregs can probably exert both anti-
and profibrotic roles, depending on the stage
of pulmonary fibrosis and mutual
interactions with other T cell subtypes, an
issue requiring further investigations. Th9
and Th22 cells, T cell subsets producing IL-9
or IL-22, were also involved in fibrosis, with
dual pro- and antifibrotic effects described
for Th9 (82–84) and protective effects
for Th22 (85). In particular, IL-9
overexpression in vivo yielded profibrotic
effects associated with high collagen and
fibronectin deposition in bronchial areas
(82), whereas other studies provided
evidence for an antifibrotic role of IL-9 by
showing that IL-9 mitigated silica-induced
lung fibrosis and type-2 immunity (83), and
was protective in a bleomycin-induced lung
fibrosis model through a prostaglandin
E2–dependent mechanism (84). gd T cells
were found to attenuate fibrotic responses
via production of CXCL10 (86). Collectively,
the role of T cells in pulmonary fibrosis
seems to be complex and substantially
dependent on the subtype of T cells.

Macrophages
Aside from their role as antimicrobial
phagocytes, alveolar macrophages have been
involved in the pathogenesis of fibrotic lung
diseases. Alveolar macrophages represent a
potent source of profibrotic cytokines (such as
TGF-b1 and PDGF), chemokines, and
proteases (MMPs) (87). However, conditional
depletion of TGF-b1 from macrophages did
not affect fibrosis (88). Depending on their
polarization, the local micromilieu, and the
stage of fibrotic disease, alveolar macrophages
have been reported to exert both pro- and
antifibrotic effects (22, 87, 89). Particularly,
the two contrasting macrophage phenotypes,
M1 (classically activated) and M2
(alternatively activated), are keys to
understanding the beneficial versus harmful
roles of alveolar macrophages in fibrotic
diseases (90, 91). The prototypical Th2
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Figure 1. Effect of immune cells on myofibroblasts and fibrogenesis. Airway epithelial cell
injury/epithelial–mesenchymal transition and fibroblast transdifferentiation and/or chemokine (CC
chemokine ligand [CCL] 2, CXC chemokine ligand [CXCL] 12)–mediated fibrocyte recruitment
contribute to the generation of myofibroblasts, which represent the major producers of extracellular
matrix (ECM) components. Both adaptive (T cells, left box) and innate (macrophages and neutrophils,
right box) immune cells modulate fibrogenesis through various mechanisms. Adaptive immunity:
Th2 and Th17 cells promote pulmonary fibrosis, whereas Th1, Th22, and gd-T cells inhibit
fibrogenesis. Regulatory T cells (Tregs) and Th9 cells have been associated with both anti- and
profibrotic effects. Innate immunity: macrophages might enhance pulmonary fibrosis through
production of transforming growth factor (TGF)-b and platelet-derived growth factor (PDGF), or
ameliorate pulmonary fibrosis by enhancing ECM degradation through matrix metalloproteinase
(MMP) activities. Macrophages further represent a source of tissue inhibitors of metalloproteinases
(TIMPs) that can antagonize MMP-mediated ECM degradation. Neutrophils produce various
proteases, particularly serine proteases (neutrophil elastase [NE]) and MMPs, which degrade matrix
components but can also activate TGF-b through NE and produce TIMPs, thereby promoting ECM
accumulation. Dashed lines represent effects/interactions that are complex/multifaceted or not
firmly established.

TRANSLATIONAL REVIEW

Translational Review 311



cytokines, IL-4 and IL-13, induce M2
macrophage polarization, characterized by
production of IL-10, arginase-1, found in
inflammatory zone 1, and distinct
chemokines, particularly CC chemokine
ligand (CCL) 17 and CCL18 (92). Although
M2 macrophages accumulate in fibrotic lungs
and have been broadly associated with
profibrotic activities (91), their precise
functional role in fibrotic environments
remains uncertain and poorly understood.
M2 macrophages were also linked to
antifibrotic activities, as they were found to
break down ECM by employing MMP-10
(93). Furthermore, M1 macrophages have
been associated with profibrotic roles, as
supported by in vivo depletion studies (94).
Collagen was found to induce M2
macrophages via the profibrotic chemokine,
CCL18, thereby feeding a positive loop
between fibroblasts and alveolar macrophages
(95, 96). Macrophage receptor with
collagenous structure has been further

involved in polarization of macrophages
toward a profibrotic M2 phenotype and
promoting fibrotic responses to lung injury
(97). Src homology phosphotyrosyl
phosphatase 2, a cytoplasmic tyrosine
phosphatase associated with IL-4Ra,
inhibited Janus kinase 1/signal transducer and
activator of transcription signaling through its
phosphatase activity, inhibited macrophage
skewing toward M2 phenotype, and
prevented pulmonary fibrosis (98). A central
pathway for macrophage infiltration, MMP
production, and promotion of pulmonary
fibrosis is CCL2 and its receptor, CCR2 (see
subsection CCL2 in section IV. CHEMOKINES IN

PULMONARY FIBROSIS for details) (99). TNF-a
has been reported to exert antifibrotic effects
and to accelerate resolution of established
pulmonary fibrosis by decreasing M2
macrophages, potentially due to CCR2 down-
regulation and/or increased susceptibility
of M2 macrophages to TNF-a–induced
apoptosis (100). On the other hand, arginase-1,

expressed by M2 macrophages, showed
potent antifibrotic activity during Th2-driven
inflammatory responses through depleting
L-arginine, an amino acid essential for CD41

T cell and myofibroblast proliferation (101).
In other models, conditional depletion of the
M2-associated arginase-1 from macrophages
did not affect Th2-mediated lung
inflammation (102). Depletion of
macrophages/monocytes in an animal model
of pulmonary fibrosis reduced ECM
deposition and, conversely, adoptive transfer
exacerbated fibrosis (103). The profibrotic
roles of macrophages are mainly associated
with recruitment and activation of fibroblasts
through TGF-b1 and PDGF secretion (87,
89, 104). Depending on the cellular and
environmental context, macrophages are also
able to produce TIMPs, thereby inhibiting
degradation of ECM (89, 104). Antifibrotic
roles of macrophages are believed to be
mediated by a variety of mechanisms,
including scavenging proinflammatory

Table 1. Immune Cells and Mediators Involved in Pulmonary Fibrosis

Cells and Mediators Description

Immune cells
T cells Th1 cytokines (IFN-g and IL-12) attenuate PF, Th2 cytokines (IL-4, IL-5 and IL-13) enhance PF, Th17 cells

enhance PF, Tregs and Th9 (IL-9) have both pro- and antifibrotic roles in PF; Th22 (IL-22) and gd-T cells
have an antifibrotic role in PF.

Macrophages M1 macrophages induce myofibroblast apoptosis and digest ECM by activation of MMPs. M2
macrophages recruit and activate fibroblasts through TGF-b1 and PDGF secretion. M2 macrophages
further produce TIMPs and inhibit degradation of ECM. Both macrophage phenotypes (M1/M2) can
exert pro- and antifibrotic effects.

Neutrophils Neutrophils produce elastase, MMPs, and TIMPs. Neutrophil elastase activates TGF-b and recruits
inflammatory cells to the lung, thereby promoting PF.

Fibrocytes Fibrocytes produce ECM, cross-linking enzymes, chemokines, growth factors, and MMPs, and promote
PF. Fibrocytes secrete paracrine mediators, which activate resident fibroblasts to promote PF.
Fibrocytes can differentiate into fibroblasts and myofibroblasts.

Cytokines
IL-1b Profibrotic effects of IL-1b, mediated through IL-1R1/MyD88 signaling pathway.
IL-13 IL-13 differentiates human lung fibroblast to myofibroblast through a JNK-dependent pathway.
IL-17 IL-17 interacts/cooperates with TGF-b signaling to promote PF.
TGF-b1 TGF-b promotes EMT through SMAD-2/3 signaling pathways. TGF-b1 induces PF through ERK, MAPK,

PI3K/Akt, and Rho-like GTPase pathways. TGF-b1 differentiates fibroblasts into myofibroblasts and
increases ECM accumulation.

PDGF PDGF stimulates fibroblasts and increases ECM gene expression in fibroblasts.
Chemokines
CCL2 CCL2 increases fibrocyte recruitment and differentiation into fibroblasts, resulting in excessive collagen

deposition. CCL2 activates M2 macrophage activation and promotes PF.
CCL17 CCL17 promotes PF through the recruitment of CCR41 Th2 cells and alveolar macrophages.
CCL18 CCL18 increases collagen production in lung fibroblasts through ERK1/2, PKCa, and Sp1/Smad3

signaling pathways.
CXCL12 CXCL12 recruits fibrocytes and activates the Rac1/ERK and JNK signaling pathways to induce AP-1

activation and CTGF expression in fibroblasts.

Definition of abbreviations: AP-1, activator protein 1; CCL, CC chemokine ligand; CTGF, connective tissue growth factor; CXCL, CXC chemokine ligand;
ECM, extracellular matrix; EMT, epithelial–mesenchymal transition; ERK, extracellular signal–regulated kinase; IL-1R1, IL-1 receptor 1; JNK, c-Jun
N-terminal kinases; MAPK, mitogen-activated protein kinase; MMP, matrix metalloproteinase; MyD88, myeloid differentiation primary response gene 88;
PDGF, platelet-derived growth factor; PF, pulmonary fibrosis; PI3K, phosphatidyl inositol 3-kinase; PKC, protein kinase C; Rac1, Ras-related C3 botulinum
toxin substrate 1; SMAD, SMA/MAD homology; Sp1, specificity protein 1; TGF, transforming growth factor; TIMP, tissue inhibitors of metalloproteinase;
Tregs, regulatory T cells.
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cellular debris, digesting ECM components by
activation of collagen-degrading MMPs, and
by secreting mediators that induce
myofibroblast apoptosis (89, 105–107). In
summary, several in vitro and in vivo studies
have involved macrophages and their
products in pulmonary fibrosis, yet the
distinct beneficial versus harmful roles of
specific M1/M2 phenotypes remain unclear
and controversial.

Neutrophils
Like macrophages, neutrophils are not just
antibacterial effectors, but also shape their
tissue environment by releasing proteases,
oxidants, cytokines, and chemokines (108).
Neutrophils were found to be increased in
BAL fluid from patients with IPF, and were
associated with early mortality (109).
Consistently, levels of IL-8/CXCL8, a key
chemotactic factor for neutrophils, were
increased in human IPF (110), and
neutrophil counts in IPF BAL fluid
correlated with levels of granulocyte
colony–stimulating factor (G-CSF), a key
growth factor for neutrophils (111).
Cytokeratin 19, a potential marker for
alveolar epithelial injury, correlated with
the number of neutrophils in BAL fluid of
patients with IPF (112). Airway neutrophils
in IPF seem to be activated, as reflected by
their main proteolytic product, neutrophil
elastase (NE), which was increased in
airway fluids from patients with IPF (113).
NE breaks down a variety of ECM proteins,
including collagens (types I–IV), laminin,
entactin, fibronectin, and elastin, and
thereby orchestrates the outcome of
pulmonary fibrosis (114, 115). NE-deficient
mice showed attenuation of pulmonary
fibrosis through impaired TGF-b activation
(115). Likewise, Sivelestat, an NE inhibitor,
ameliorated pulmonary fibrosis through
abrogation of TGF-b activation and
inflammatory cell recruitment to the lung
(116). Recently, Gregory and colleagues
(117) extended these findings by
demonstrating a significant reduction of
fibroblast and myofibroblast accumulation
in NE2/2 mice, which were protected from
asbestos-induced pulmonary fibrosis.
Further studies showed that NE promoted
fibroblast proliferation and enhanced
myofibroblast differentiation (117). Besides
serine proteases, neutrophils are also a
substantial source of MMPs, such as MMP-
2, MMP-8 (collagenase 2), and MMP-9
(gelatinase B), which are involved in
pulmonary fibrosis (32, 118). The balance

between MMPs and their antiproteases
(TIMPs) plays a critical role in accumulation
or degradation of ECM in pulmonary
fibrosis (32, 119). The depletion of
neutrophils has been associated with an
MMP-9/TIMP-1 imbalance, but did not
alter the susceptibility to bleomycin-induced
pulmonary fibrosis (120).

Fibrocytes
Traditionally, fibroblasts are regarded as
mesenchymal tissue originating/resident
cells, but recent studies have established the
concept that circulating myeloid-derived
cells, termed fibrocytes, can migrate into
tissues and differentiate into fibroblasts and
myofibroblasts (121). Furthermore,
fibrocytes secrete paracrine factors, which
activate resident fibroblasts to promote
lung fibrosis (122). Fibrocytes express
myeloid markers, such as CD45 and CD34,
the chemokine receptor, CXCR4, and
collagen-1 (123). Fibrocytes produce ECM
components (collagen I, collagen III,
fibronectin, and vimentin), cross-linking
enzymes (lysyl oxidase family), cytokines
(TNF-a, IL-6, IL-8, and IL-10), chemokines
(macrophage inflammatory protein 1-1a/b,
monocyte chemoattractant protein-1,
and GROa), growth factors (VEGF,
PDGF, granulocyte-macrophage
colony–stimulating factor [GM-CSF], and
others), and various MMPs, such as MMP-9
(124–126). Moeller and colleagues (127)
demonstrated that circulating fibrocytes
were elevated in patients with IPF and
represented a prognostic marker and an
independent predictor of early mortality.
CCL12 and CXCL12 were found to be
involved in attracting circulatory fibrocytes
to the site of pulmonary injury (128, 129).
The neuronal guidance protein, slit guidance
ligand 2, secreted by fibroblasts, was found
to inhibit fibrocyte differentiation and
reduce bleomycin-induced pulmonary
fibrosis in mice (130). Recently, novel
immunoregulatory properties of fibrocytes
have been established by demonstrating that
fibrocytes with myeloid-derived suppressor
cell (MDSC) characteristics accumulate in
patients with metastatic cancer (131).
MDSCs are basically referred to as
monocytic or granulocytic/neutrophilic
innate immune cells, characterized by their
potential to suppress T cells (132). The novel
proposed subtype of MDSCs, fibrocytic
MDSC, was found to differentiate from
umbilical cord blood precursors upon
culture with GM-CSF/G-CSF (133). Further

studies demonstrated that distinct factors,
including CD41 T cells, IL-2, IL-4, IFN-g,
TNF-a, GM-CSF/G-CSF, Kruppel-like
factor 4, and fibroblast-specific protein 1,
transdifferentiated Gr11 MDSC-like cells
into ECM (collagen type I)–producing
fibrocytes (133–135). Fibrocytic MDSCs
were also found to expand Tregs (133).

Cytokines in Pulmonary
Fibrosis

TGF-b
TGF-b is probably the best-studied
cytokine in fibrosis, and is regarded as a
prototypical “profibrotic” mediator (24).
Among three isoforms, TGF-b1 has
been described to be mainly involved in
pulmonary fibrosis (136). After dissociation
from latency-associated protein, TGF-b1
increases the transcription of downstream
target genes, including procollagen I
and III, via transmembrane receptor
serine/threonine kinases and the cytoplasmic
SMAD-2/3 signaling pathways (137). In
particular, SMAD-3 deficiency has been
shown to ameliorate bleomycin-induced
pulmonary fibrosis (138). Moreover,
extracellular signal–regulated kinase
(ERK), mitogen-activated protein kinase,
the phosphatidyl inositol 3-kinase/Akt
pathway, and Rho-like GTPase pathways
have also been shown to be involved in
TGF-b1–induced fibrosis (139–141).
Mechanistically, TGF-b1 promotes
ECM accumulation, especially collagen
and fibronectin, and drives phenotypic
changes of fibroblasts (43, 142). TGF-b1
differentiates fibroblasts into myofibroblasts
by inducing expression of a-SMA (143).
However, it has recently been shown that
a-SMA–expressing myofibroblasts may not
represent the only source of pathologic
collagen deposition in fibrotic settings (144).
Recently, another study showed that
TGF-b1 increases vascular cell adhesion
molecule 1 and promotes fibroblast
proliferation in patients with IPF (145).
Furthermore, TGF-b1 enhances fibroblast
proliferation and promotes pulmonary
fibrosis via breast cancer susceptibility gene
1-associated really interesting new gene
domain 1 pathway (146). Galectin-3 is also
involved in TGF-b1–induced pulmonary
fibrosis by increasing EMT, myofibroblast
activation, and collagen production (147).
Glycogen synthase kinase-3 regulates
TGF-b1–induced fibroblast-to-myofibroblast
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differentiation via a cAMP response
element–binding protein–dependent
mechanism (148). Furthermore, chitinase-1
has been observed to be involved in
TGF-b1–induced pulmonary fibrosis by
increasing TGF-b1 receptor expression (149).
Recently, Oruqaj and colleagues (150)
showed that peroxisomes are involved in
TGF-b–induced myofibroblast differentiation
and collagen production in IPF.

PDGF
Aside from TGF-b, PDGF represents
another potent fibrogenic cytokine/growth
factor that promotes pulmonary fibrosis
through fibroblast activation (151). PDGF
expression was found to be increased in
epithelial cells and macrophages in the lungs
of patients with IPF (152). In vivo,
pulmonary PDGF overexpression induced
severe pulmonary fibrosis (153). PDGF acts
through inositol triphosphate-gated
channels and increases Ca21 release to
modulate ECM gene expression in human
pulmonary fibroblasts (154). PDGF is a
potent mitogen and chemoattractant for
lung fibroblasts, and acts through the PDGF
receptor a (151). IL-13 was found to
increase PDGF gene expression in lung
fibroblast through STAT1 and STAT6 (155).
Tregs promote pulmonary fibrotic responses
by stimulating fibroblasts through the
secretion of PDGF in silica-induced
pulmonary fibrosis (156). Imatinib, a PDGF
tyrosine kinase inhibitor, showed strong
antifibrotic effects in bleomycin-induced
pulmonary fibrosis via inhibiting
mesenchymal cell proliferation (157).

IL-1b
IL-1b, the primary cytokine product of the
inflammasome, is mainly produced by
activated macrophages, dendritic cells,
neutrophils, and epithelial cells, and
has been shown to contribute to the
progression of pulmonary fibrosis (158).
Expression of IL-1b mRNA was found to
be up-regulated in bleomycin-induced
pulmonary fibrosis (159), and overexpression
of IL-1b in rat lungs promoted lung
fibrosis characterized by the presence of
myofibroblasts, fibroblast foci, and ECM
accumulation (158). Bleomycin-induced
pulmonary fibrosis was attenuated in IL-1
receptor (IL-1R)– or myeloid
differentiation primary response gene
88–deficient mice, and exogenous
recombinant IL-1b protein resembled
bleomycin-induced lung pathology,

corroborating a key role for IL-1 b in
fibrogenesis in vivo (160). In BAL fluid and
serum of patients with IPF, the ratio of
IL-1R antagonist (IL-1Ra) and IL-1b was
decreased (161). Several studies further
involved the NACHT, LRR and PYD
domains-containing protein 3
inflammasome in silica- and asbestos-
induced pulmonary fibrosis (162, 163).
Extracellular ATP, an activator of the
NACHT, LRR and PYD domains-
containing protein 3 inflammasome, was
increased in BAL fluid of patients with IPF
and in bleomycin-induced pulmonary
fibrosis (164). Like ATP, the NACHT, LRR
and PYD domains-containing protein 3
inflammasome activator, uric acid, has
been involved in bleomycin-induced
pulmonary fibrosis (165). Wilson and
colleagues (166) further showed that
IL-1b–induced pulmonary fibrosis is IL-17
dependent. The WNT/b-catenin signaling
pathway was found to induce IL-1b
expression by alveolar epithelial cells in
pulmonary fibrosis (167).

IL-13
The Th2 cytokine, IL-13, was found to be
increased in the blood and BAL fluid of
patients with IPF and correlated with disease
severity (168). IL-13 promoted pulmonary
fibrosis in fluorescein isothiocyanate– and
radiation-induced lung fibrosis models
(169, 170), whereas IL-13 inhibition
decreased fibrotic changes in pulmonary
fibrosis model in vivo (171). IL-13–induced
pulmonary fibrosis was reported as either
TGF-b dependent or independent (172,
173). Mechanistically, IL-13 differentiates
human lung fibroblast to myofibroblast
through a c-Jun N-terminal kinases-
dependent pathway (174). Downstream
IL-13 effects were mediated through a
complex receptor system that includes
IL-4Ra, IL-13Ra1, and/or the IL-13Ra2
(175). IL-13–induced fibrosis was
exaggerated when IL-13Ra2 was low or
absent in target cells, such as fibroblasts
(176). The transcription factor, Yin Yang 1,
has been shown to directly regulate collagen
and a-SMA expression in fibroblasts (177).
IL-13, in turn, was found to stimulate
fibroblasts and increase a-SMA through
AKT-mediated Yin Yang 1 activation (178).

IL-17
Previous studies linked IL-17 to profibrotic
effects, such as EMT and collagen
production, through interactions with

TGF-b signaling (55, 166). IL-17 inhibition
attenuated pulmonary fibrosis via autophagic
degradation of collagen and increased
survival in bleomycin-induced lung
fibrosis (55). Neutralizing IL-17
ameliorated progression of silica-induced
lung fibrosis associated with delayed
neutrophil recruitment, decreased Th17
cells, decreased IL-6/IL-1b production,
and increased Tregs (75). Neutrophils and
monocytes/macrophages, rather than
Th17 lymphocytes, were identified as the
cellular source of IL-17, and promoted
pulmonary fibrosis in experimental
hypersensitivity pneumonitis (179). It has
been recently shown that B cell activating
factor was increased in BAL fluid of
patients with IPF, enhanced IL-17 release
from Th17 cells, and was involved in
IL-17–induced pulmonary fibrosis (180).
IL-27 attenuated pulmonary fibrosis by
suppressing the secretion of IL-17 and the
Janus kinase/signal transducer and
activator of transcription and TGF-
b1/SMA/MAD homology signaling
pathways (181). IL-17 production by gd
T cells in response to epithelial cell injury
was mediated via IL-23 in pulmonary
fibrosis (182).

Chemokines in Pulmonary
Fibrosis

CCL2
CCL2 (monocyte chemoattractant protein-1),
is produced by monocytes/macrophages,
fibroblasts, and epithelial cells, and acts
via CCR2 (183). CCL2 was found to be
increased in BAL fluid and serum of patients
with IPF (184), and murine pulmonary
fibrosis studies showed that ECM deposition
is attenuated in CCR2 knockout mice
(183), and that this effect is linked to a
reduction in macrophage infiltration
and macrophage-derived MMP-2 and
MMP-9 production (99). Moreover, CCL2
increased fibrocyte recruitment to the
alveolar space and promoted differentiation
into fibroblasts, resulting in excessive
collagen deposition (185). Proteinase-
activated receptor-1 increased CCL2 release
(186). The CCL2/CCR2 axis was further
found to be involved in IL-10–induced
macrophage and fibrocyte recruitment,
as well as M2 activation in pulmonary
fibrosis (90). CCL2 stimulated IL-6
production by human lung fibroblasts
through ERK1/2 signaling pathway and
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enhanced fibroblast survival by inhibiting
apoptosis through IL-6/STAT3 in
pulmonary fibrosis (187).

CCL17
Thymus and activation-regulated
chemokine (CCL17) is constitutively
expressed in the thymus, and is inducible in
peripheral blood mononuclear cells,
macrophages, bronchial epithelial cells,
endothelial cells, and dendritic cells. CCL17
binds to CCR4 for its biological effects (188).
CCL17 was found to be increased in both
animal models of pulmonary fibrosis and
human patients with IPF, and promoted
fibrosis through the recruitment of CCR41

Th2 cells and alveolar macrophages
(189–191). Neutralizing CCL17 could
significantly ameliorate fibrosis progression
in vivo (191). CCR4 was found to be highly
expressed on T lymphocytes in the BAL
fluid of patients with IPF (192).

CCL18
The profibrotic chemokine, CCL18,
previously known as pulmonary and
activation-regulated chemokine, is
produced by macrophages, dendritic cells,
peripheral blood monocytes, eosinophils,
and neutrophils. CCL18 levels have been
observed to be increased in serum, BAL
fluid, and sputum of patients with IPF (96,
193, 194). Patients with IPF with a CCL18
serum cutoff level higher than 150 ng/ml
showed an increased risk of mortality
(193). Mechanistically, CCL18 increased
collagen production in lung fibroblasts
through different pathways, including
ERK1/2, protein kinase Ca, and specificity
protein 1/SMAD3 (195–197). After
adenoviral gene transfer, CCL18 promoted
T cell infiltration and collagen
accumulation in a mouse model of
pulmonary fibrosis in vivo (198).

CXCL12
The CXCL12/CXCR4 axis has been reported
to be involved in bleomycin-induced
pulmonary fibrosis, as neutralizing CXCL12
dampened fibrocyte recruitment and
pulmonary collagen deposition (129).
Likewise, pharmacological CXCR4
antagonists alleviated bleomycin- and
radiation-induced pulmonary fibrosis (199,
200). Bone marrow–derived lung CXCR41

cells were found to migrate in response to
CXCL12 and differentiated to collagen-
producing lung fibroblasts (201). In both
familial and sporadic pulmonary fibrosis,

gene expression of CXCL12 was increased
(202). Recently, Lin and colleagues (203)
showed that the CXCL12/CXCR4 axis
activated the Ras-related C3 botulinum
toxin substrate 1/ERK and c-Jun
N-terminal kinases signaling pathways to
induce activator protein-1 activation and
CTGF expression in human lung
fibroblasts. CTGF, in turn, mediated
CXCL12-induced a-SMA expression and
fibroblast differentiation to myofibroblasts
(203).

Therapeutic Consequences

Anti–TGF-b1
TGF-b1 is potentially one of the main
targets for treatment of pulmonary fibrosis
(24, 204), as TGF-b1 inhibition showed
antioxidant, antiinflammatory, and
antifibrotic properties both in in vitro and
in vivo models of pulmonary fibrosis
(205, 206). Studies have demonstrated
that targeting TGF-b1 by monoclonal
antibodies reduced pulmonary fibrosis in
a murine model of bleomycin-induced
pulmonary fibrosis (207). Targeting avb6-
integrin, a key activator of TGF-b, also
attenuated pulmonary fibrosis (208).
Paclitaxel, an antitumor drug that stabilizes
cellular microtubules, decreased TGF-
b1/SMAD3 via up-regulating microRNA-
140 and ameliorated pulmonary fibrosis
(209). Targeting the activin receptor–like
kinase 5, a type I receptor of TGF-b that
phosphorylates and activates SMADs, was
further shown to inhibit pulmonary
fibrosis (210). A TGF-b1 peptide inhibitor
was found to alleviate pulmonary fibrosis
in a murine model of bleomycin-induced
pulmonary fibrosis through inhibition
of fibroblast differentiation into
myofibroblasts (211).

Anti–IL-13
Immunoneutralization of IL-13 attenuated
pulmonary fibrosis in bleomycin-induced
pulmonary fibrosis (212). Jakubzick and
colleagues (213) further demonstrated
that an IL-13 immunotoxin chimeric
molecule attenuated bleomycin-induced
pulmonary fibrosis by reducing the number
of IL-13– and IL-4–responsive cells.
Recently, it has been further demonstrated
that tralokinumab, a human IL-
13–neutralizing monoclonal antibody,
dampened pulmonary fibrosis and
promoted lung repair in a humanized

severe combined immunodeficiency IPF
model (214).

New Approaches

Pirfenidone. Pirfenidone (5-methyl-1-
phenyl-2-[1H]-pyridone) was approved for
the treatment of IPF in Japan in 2008, and
later in Europe, India, Canada, and, recently,
in the United States (215). Although, to
date, the exact mechanism of action of
pirfenidone is poorly understood,
pirfenidone shows evidence to attenuate
lung fibrosis via inhibition of collagen
synthesis and heat shock protein 47
expression in lung fibroblasts (216), inhibition
of profibrotic and proinflammatory cytokines,
including TGF-b1, IL-1b, IL-6, and FGF
(217), and inhibition of fibrocyte
migration via the attenuation of CCL2
and CCL12 production (218). Moreover,
pirfenidone decreased human lung
fibroblast proliferation and differentiation
into myofibroblasts by inhibiting TGF-b–
induced phosphorylation of SMAD3
(219), whereas it has been shown to be
ineffective in reducing collagen secretion
in primary human lung fibroblasts in
another study (220). Clinical Studies
Assessing Pirfenidone in Idiopathic
Pulmonary Fibrosis: Research of Efficacy
and Safety Outcomes (CAPACITY)-2,
Assessment of Pirfenidone to Confirm
Efficacy and Safety in Idiopathic
Pulmonary Fibrosis (ASCEND), and a
clinical trial performed in Japan
demonstrated that pirfenidone slowed
lung function decline and improved
patient survival (221, 222). In those
trials, pirfenidone was more effective in
patients with mild-to-moderate IPF,
highlighting the importance of early
diagnosis and treatment in pulmonary
fibrosis.

Nintedanib. Nintedanib (BIBF 1120), a
triple-tyrosine kinase inhibitor, was
approved by the U.S. Food and Drug
Administration on the same day as
pirfenidone for IPF (223, 224). Nintedanib
ameliorated progression of pulmonary
fibrosis in murine models of silica- or
bleomycin-induced pulmonary fibrosis
(225, 226). Mechanistically, it has been
shown that nintedanib inhibits FGF-,
PDGF-, and VEGF-induced profibrotic
effects, attenuates TGF-b–induced collagen
deposition, reduces infiltration of
inflammatory cells into the lungs, and
prevents TGF-b–induced human lung
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fibroblast differentiation to myofibroblast
(220, 225–227). Furthermore, nintedanib
potently blocked FGF receptors 1–3,
PDGFR as well as VEGF receptor kinase
activity (223) and modulated the
protease/antiprotease balance (pro–MMP-2
and TIMP-2) (226). The To Improve
Pulmonary Fibrosis with BIBF 1120
(TOMORROW) and INPULSIS studies
showed that nintedanib slows lung function
decline, decreases the frequency of short-
term exacerbations and mortality, and
retains quality of life of patients with mild-to-
moderate IPF (224, 228).

Conclusions

Pulmonary fibrosis is a progressive,
irreversible, and usually lethal lung disease.
Alveolar epithelial cell microinjuries are
thought to initiate the disease, followed by
expansion of myofibroblasts and excessive
deposition of ECM components that finally
remodel and destroy the lung architecture.
Immune mechanisms contribute to

fibrogenesis at several cellular and
noncellular levels. In adaptive immunity,
most published evidence exists for T cells,
the role of which seems to be complex and
subset dependent. Although Th1, Th22,
and gd-T cells have been proposed to
attenuate pulmonary fibrosis, Th2 and
Th17 cells were found to promote fibrotic
disease. Tregs and Th9 subsets have been
shown to exert both anti- and profibrotic
effects. Among innate immune cells, M2
macrophages and neutrophils were
particularly suggested to enhance
pulmonary fibrosis, whereas M1
macrophages were assigned a protective
role, but contradictory effects have also
been described, and future studies are
required to clearly define their roles
in vivo. Fibrocytes represent bone
marrow–derived immune cells that
migrate to the lung and promote fibrosis.
TGF-b, PDGF, IL-13, IL-17, and IL-1b
are the major cytokines and CCL2,
CCL17, CCL18, and CXCL12 the
main chemokines involved in the

immunopathogenesis of pulmonary
fibrosis. Targeting specific profibrotic
immune cell subsets (such as Th2/M2
cells) or profibrotic cytokines/chemokines
(such as TGF-b, IL-13, CCL2, or CCL18)
by monoclonal antibodies or small
molecules, or by expanding/activating
antifibrotic cell types (such as Th1/M1
cells) may pave the way for novel
immunopharmacological interventions for
treating pulmonary fibrosis. Despite these
intriguing insights, further studies are
warranted to better understand the
functional role of immune cell subtypes
and their microenvironmental and
contextual interactions with epithelial
cells, (myo)fibroblasts, and ECM
components in the pathogenesis of
pulmonary fibrosis. n
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