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Abstract
In today's information age, the necessary means exist for clinical risk prediction
to capitalize on a multitude of data sources, increasing the potential for greater
accuracy and improved patient care. Towards this objective, the Prostate
Cancer DREAM Challenge posted comprehensive information from three
clinical trials recording survival for patients with metastatic castration-resistant
prostate cancer treated with first-line docetaxel. A subset of an independent
clinical trial was used for interim evaluation of model submissions, providing
critical feedback to participating teams for tailoring their models to the desired
target. Final submitted models were evaluated and ranked on the independent
clinical trial. Our team, called "A Bavarian Dream", utilized many of the common
statistical methods for data dimension reduction and summarization during the
trial. Three general modeling principles emerged that were deemed helpful for
building accurate risk prediction tools and ending up among the winning teams
of both sub-challenges. These principles included: first, good data,
encompassing the collection of important variables and imputation of missing
data; second, wisdom of the crowd, extending beyond the usual model
ensemble notion to the inclusion of experts on specific risk ranges; and third,
recalibration, entailing transfer learning to the target source. In this study, we
illustrate the application and impact of these principles applied to data from the
Prostate Cancer DREAM Challenge.
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Introduction
Government funded clinical and research trials are currently 
experiencing increased pressure to publish comprehensive ano-
nymized data in order to maximize scientific output, ushering in 
new challenges and opportunities for data scientists1. In an era 
of personalized medicine, scientists analyzing the results of large  
population-based clinical and prevention trials are further encour-
aged to translate results to clinical practice. With patient as the 
consumer, this push has led to an explosion of easy-to-use online  
clinical risk prediction tools for nearly all types of clinical  
outcomes2,3. In the past, single-study prediction models dominated 
out of convenience. In the current climate, multiple studies are 
available that can be combined, increasing accuracy through the 
wisdom-of-the-crowd philosophy, and providing more realistic esti-
mates of variability for decision-making. Ensembles or collections 
of models have been shown to outperform top-nominated models4.

Following efforts by Project Data Sphere to coordinate the release  
of comparative arm data from multiple pharmaceutical companies 
and academic medical centers, and in cooperation with the Dialogue 
for Reverse Engineering Assessments and Methods (DREAM) ini-
tiative, the Prostate Cancer DREAM Challenge sought to facilitate 
the development of survival prediction models to assist patients with 
metastatic castration-resistant prostate cancer (mCRPC) treated 
with first-line docetaxel5,6. Baseline and follow-up data were availa-
ble from 1600 patients who had received first-line docetaxel as part 
of their participation on the comparator arms of three clinical trials, 
which formed the training set; see Guinney et al.7 and https://www.
synapse.org/ProstateCancerChallenge for a detailed description. 
This article focuses on the challenge of predicting overall patient  
survival (sub-challenge 1). Here, data from 157 patients from an 
independent trial were made available for calibration to the target, 
and the final model based on the training and calibration data was 
validated on 313 patients from the target. An open online compe-
tition format with multiple deadlines attracted researchers from 
around the world, encouraging efficiency and fast-paced targeted 
research towards a common goal of optimizing predictive accuracy 
of a tool on an external test set.

There is no uniform prescription for building a universally optimal 
risk prediction tool. In the past, researchers often focused on a small 
set of standard risk factors for data cleaning and inclusion in their 
models, either for statistical reasons or grounds content; see Kattan 
et al.8 for the American Joint Committee on Cancer (AJCC)’s cri-
teria for a prognostic model. The ever more commonly performed 
indiscriminate data-dumps from multiple clinical trials bring forth 
additional challenges of signal discovery, data cleaning, and miss-
ing data adjustment. Today’s data scientist has to decide which 
datasets to use for training the models versus which to hold out 
for testing, as well as how to use initial information from the target 
population to fine-tune the model. The Prostate Cancer DREAM 
Challenge provided participating teams with hands-on experience 
in these critical areas. Through our participation in the challenge, 
we experimented with hundreds of models, data inclusion and  
missing-value adjustment options. By the end of the process, three 
general principles stood out that proved crucial to success: good 
data, wisdom of the crowds, and recalibration. Herein, we illustrate 
these principles and quantify their impact.

Preliminaries
The goal of sub-challenge 1 was to develop a survival prediction 
model using data from three different clinical trials, which was 
to be validated on data from a fourth independent trial. Random 
subsets of data from the fourth validation trial were provided at 
multiple interim points to guide model construction. After trying 
several machine learning and statistical models, the combined Cox 
proportional hazards and lasso model was chosen as it performed 
optimally on the interim validation sets9. The Cox proportional haz-
ards model specifies the mortality hazard rate for an individual with 
covariate vector x as:  

λ(t | x) = λ
0
(t) exp(x'β),

where β is the vector of log hazard ratios for respective covariates 
comprising x, and λ

0
(t) is a baseline hazard function that is left 

unspecified, making the model semi-parametric and more flexible 
than fully-specified parametric survival models. The model fol-
lows proportional hazards since the ratio of hazards for an indi-
vidual with a unit increase in a single covariate relative to another 
individual, with all other covariates fixed, equals exp (β) , which is 
constant for all times t. The non-parametric Kaplan-Meier estima-
tor shows the empirical distribution of the observed failure times 
subject to censoring. Inspection of whether the curves stratified 
by different covariate values remain separated across the length of  
follow-up can be used to informally assess whether the proportional 
assumption holds.

The standard method for estimating β in the Cox model is based on 
the partial likelihood that specifies for each individual their relative 
probability of failure compared to other individuals at risk:

In this formulation, D is the group of distinct death times observed 
in the study, and R

j
 denotes the risk set of all individuals still alive 

and on-study. If multiple individuals have the same death time, 
modifications are needed for the likelihood, which are implemented 
using a choice of algorithms.

Instead of finding the β that maximizes the log likelihood  
ℓ(β) = log L(β) itself, the lasso (least absolute shrinkage and selec-
tion operator) maximizes it subject to the constraint that Σ

j
 |β

j
| < s,  

where s is a user-selected tuning parameter. This modification 
heuristically keeps model dimensionality low, with unnecessary  
parameters shrunk to zero as necessary.

Sub-challenge 1 was again divided into two tasks: In sub-challenge 
1a, participants were asked to predict risks of death. Sub-challenge 
1b asked for the prediction of exact times until death. For evaluating 
the proposed prediction models on the withheld test data, two crite-
ria were used, corresponding to sub-challenges 1a and 1b, respec-
tively. The evaluation criterion for 1a focused on discrimination, 
that is how well the risk prediction model differentiated a patient 
about to experience mortality versus not. This criterion only com-
pared the ranks of risk scores among groups of patients, with no 
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further regard to accuracy in terms of actual values of risk scores. 
The second criterion of calibration focused on accuracy in terms of 
how close the exact time to event (death) was to the predicted time 
to event.

Receiver-operator-characteristics (ROC) curves have their origin 
in radar technology and signal processing and remain the standard 
of choice for determining the discrimination capability of a diag-
nostic test10. They have been most widely used for evaluating pre-
diction models for binary disease outcomes based on retrospective 
case-control studies. In this context, the idea is that risk prediction  
tools return a probability between 0 and 1 of an individual having a 
disease, and any value, say c, could be used as a threshold for mak-
ing a yes/no decision concerning whether the person is diseased, 
warranting further diagnostic work-up. A person with predicted risk 
exceeding c is labeled as testing positive for disease and a person 
with risk less than or equal to c as negative. Given a set of diseased 
cases and non-diseased controls, each with a predicted risk p

r
, for 

every threshold c there exist two measures of correct prediction, 
one for the cases and one for the controls, respectively:

Sensitivity(c) = P(p
r 
> c|Diseased),

Specificity(c) = P(p
r 
≤ c|Not Diseased),

The ROC curve displays the sensitivity, also termed the true posi-
tive rate, against 1-specificity, also termed the false positive rate for 
all possible choices of c. The area under the ROC curve (AUC) can 
therefore be used as a metric for model evaluation and comparison. 
It may be interpreted as a concordance index, where a value of 1 
(100%) represents perfect accuracy (i.e. sensitivity and specificity 
of 1) and a value of 0.5 equals random guessing.

For extension to prediction of survival up until fixed time periods 
that accommodate censored observations, Heagerty et al.11 pro-
posed time-dependent ROC curves using time-specific versions of 
sensitivity and specificity that were based on whether individuals 
still on study were alive (controls) versus not (cases) at each time t,  
yielding as a result a plot of AUC values versus time t.  
Hung et al.12 provided non-parametric estimators for the time-
dependent AUC and Blanche et al.13 provided an R package  
timeROC that was used for evaluation in sub-challenge 1a. To 
arrive at a single measure, integrated AUCs from 6 to 30 months 
were calculated and referred to as iAUCs.

Calibration measures the accuracy of numerical predictions,  
answering the question of how close estimates are to the truth. 
For sub-challenge 1b, which aimed at predicting the time to event 
(actual day of mortality), the root mean squared error (RMSE) was 
used:

where y ̂  is a vector of n predictions for all patients in the test set, y 
is the vector of n observed values (which equals NA in case death 
is not observed), D

i
 is a binary variable equal to one if death is 

reported and zero otherwise, and subscripts denote individual  

predictions and observed values on the test set. Thus, the RMSE 
was only calculated on patients with observed death times on study, 
and Σn

i =1 Di referred to the number of death event times in the test 
set.

Methods
First concept: good data
Figure 1 gives an overview of the Prostate Cancer DREAM Chal-
lenge data after some cleaning (see low-cost strategy in paragraph 
below) but before inclusion of additional variables. There were six 
data tables available: one core table (the basis of Figure 1), contain-
ing baseline clinical covariates at patient level, and five longitu-
dinal data tables, containing additional information at event level. 
We refer to the four trials as ASCENT-2 (Novacea, provided by 
Memorial Sloan Kettering Cancer Center14), VENICE (Sanofi15),  
MAINSAIL (Celgene16), and ENTHUSE-33 (AstraZeneca17). The 
majority of the variables (73.95%) in the core table have been 
measured in all four studies. Eight variables (albumin, magnesium, 
sodium, total protein, phosphorus, region and presence of target and 
non-target lesions) were exclusive to MAINSAIL, ENTHUSE-33  
and VENICE while two (red blood cells and lymphocytes) were 
only assessed in ENTHUSE-33 and MAINSAIL. Lactate dehy-
drogenase was only measured in ASCENT-2, ENTHUSE-33 
and MAINSAIL but not in VENICE. The presence of neoplasms 
and creatinine clearance were only present in VENICE and  
ENTHUSE-33. Unfortunately, the interesting variable gleason  
score was only reported in the ASCENT-2 study. With a p-value  
of 0.0017 it proved to be highly significant in a univariate Cox 
model for those patients where the variable was available, but 
was removed by us due to its missingness in the test dataset  
ENTHUSE-33. The significance of other variables which were 
missing in at least one trial is presented in Table 1.

In this section we compare two strategies to secure as many data 
elements as possible: a relatively straightforward low-cost minimal 
adaptation approach versus a high-cost strategy that incorporates 

Figure 1. Variables available in the four trials ASCENT-2, 
MAINSAIL, VENICE, and ENTHUSE-33.
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subject-matter knowledge into the procedure. The minimal adap-
tation approach followed recommendations typically provided in  
statistical packages. We excluded variables with more than 10% 
missing values in either the training or test set, while for variables 
with less than 10% missing values, we used imputation, replac-
ing the missing values with the mean value among observations 
that were not missing. For the second more intensive strategy, we 
performed subject-matter informed data cleaning, such as includ-
ing additional information from the event tables, preprocessing the 
data, including new variables such as principal components, a tox-
icity score and interaction effects. The extra effort for the second 
approach paid off in terms of substantially increasing validation 
accuracy on the external test set as shown in Table 3. Details of the 
second approach are provided below.

High-cost data cleaning and preprocessing. An essential compo-
nent for developing the final predictions for both sub-challenges 1a 
and 1b was a comprehensive interdisciplinary exploration of the 
data. We built a cleaned and preprocessed dataset comprising infor-
mation from the provided covariate and event tables as described 
in this section.

Cleaning of core table. In a first data cleaning, we identified incom-
plete (e. g. more than 70% missing values in either the training data 
or the test data), inconsistent (e. g. different levels between trials 
for categorical data) or irrelevant (e. g. the same value for all or 

almost all patients) covariables in the core table and modified the 
datasets accordingly: We unified categories for height, weight, race 
and region and removed variables with either very large fractions of 
missing values, redundant information or hardly any variability.

Event tables. We derived baseline patient information from the 
event tables as follows: The PriorMed table contained information 
about the medication that patients received prior to their participa-
tion in the clinical trials. Categorical assignments for medications 
were often missing, sometimes erroneous, and categories differed 
between trials. Based on our clinical expertise, we assigned appro-
priate categories to each medication. We then introduced new vari-
ables counting for each patient the number of medications from 
each category. Studies substantially differed in distributions of 
numbers of prior medications. We suspected that this was due to 
reporting biases. We hence scaled the new variables such that they 
had identical mean and variance across studies. The MedHistory 
table contained information about medical diagnoses that patients 
got prior to their participation in the clinical trials. For each patient, 
we counted the number of diagnoses in the various categories. We 
excluded categories which we assumed not to be clinically relevant 
for death or treatment discontinuation. We also deleted categories 
where diagnoses were reported for less than 2% of the training or 
test patients. From the LesionMeasure table, we extracted informa-
tion such as the number of target and non-target lesions, counts per 
tissue and maximum target size. We noticed systematic differences 

Table 1. Significance in univariate Cox models for variables which were not available in at least 
one training study.

Variable p-value Significance in ASCENT-2 in MAINSAIL in VENICE

Albumin < 0.0001 *** no yes yes

Lactate dehydrogenase < 0.0001 *** (no) yes yes

Red blood cells < 0.0001 *** no yes no

Sodium < 0.001 ** no yes yes

Phosphorus < 0.05 . no yes yes

Region North America < 0.05 . no yes yes

Region Western Europe < 0.05 . no yes yes

Target lesions < 0.05 . no yes yes

Region Other 0.0651 no yes yes

Region South America 0.0882 no yes yes

Non-target lesions 0.2155 no yes yes

Blood urea nitrogen 0.2163 no yes yes

Lymphocytes 0.2223 no yes no

Neoplasms 0.3242 no no yes

Total protein 0.3832 no yes yes

Calculated creatinine 
clearance 0.5784 no yes yes

Magnesium 0.7174 no yes yes

Glucose 0.7910 no yes yes

Page 5 of 13

F1000Research 2016, 5:2671 Last updated: 16 NOV 2016



in numbers of reported lesions between studies. We suspected that 
these differences were due to different reporting behaviour rather 
than different patient properties. In compliance with the guidelines 
by Eisenhauer et al.18, we only used the five largest target lesions 
for covariable generation and limited the number of target lesions 
per tissue to two. From the VitalSign table, we used patient-specific 
information about pulse and blood pressure. From the LabValue 
table, we derived covariables with additional lab test results. Dif-
ficulties were different units and truncated lab values.

Preprocessing. There were a number of values that appeared to be 
outliers in the statistical sense. However, though being extreme, 
many of these values were clinically not impossible. In order to 
not throw away important information, we only removed values 
where hemoglobin was less than five or the prostate specific anti-
gen or platelet count were equal to zero. For ASCENT-2, there 
was no event data on lesions. Hence, we set the variables for the 
presence of target or non-target-lesions to NA (“no information”) 
rather than NO (“no lesions found”). We log-transformed the most 
skewed continuous variables (prostate specific antigen, alkaline 
phosphatase, aspartate aminotransferase, lactate dehydrogenase 
and testosterone). We included selected interactions of covariables 
in the model, based on the results of all pairwise Cox models with 
two main effects and an interaction. If the coefficient of the interac-
tion term was larger than 0.1 in its absolute value, and the p-value of 
the coefficient was less than 0.05 after multiple testing correction, 
the combination was included in the list. From the final dataset, we 
removed variables such that afterwards all pairwise Pearson cor-
relations were below 0.95 in absolute value.

Several covariables were generally observed in one or several of 
the studies but missing for single patients. We imputed these miss-
ing values with 5-fold multivariate imputations by chained equa-
tions (MICE) using the R package mice19 with default settings,  
R version 3.2.1. This imputation approach has proven to be success-
ful for a variety of cancer specific data20–23.

New variables. We introduced a number of additional newly-derived 
variables to the set already described above: First, we aimed to rep-
resent the information from the large number of newly derived cov-
ariables from the event data tables by a smaller number. To that 
end, we performed a principal component analysis (PCA) once on 
the new variables from MedHistory and once on the new variables 
from LesionMeasure. We included the most important principal 
components as additional covariables until 95% of the variance 
was explained. The original variables derived from the event tables 
remained in the dataset as well. As a second measure, we intro-
duced a toxicity score for each patient based on lab value informa-
tion. In this variable, we combined all toxicity grades which were 
either provided in the LabValue table or which we derived from 
literature research, using databases from the U.S. Department of 
Health and Human Services, Food and Drug Administration (http://
www.fda.gov/downloads/BiologicsBloodVaccines/GuidanceCom-
plianceRegulatoryInformation/Guidances/Vaccines/ucm091977.
pdf), The International Clinical Studies Support Center (ICSSC, 
http://www.icssc.org/Documents/Resources/AEManual2003Ap-
pendicesFebruary_06_2003 final.pdf), and HSeT - Health Teaching  
Portal (http://hset.bio-med.ch/cms/Default.aspx?Page=12173). 

Third, as the reference method by Halabi et al.24 was successful, we 
included their risk score as an additional covariable.

Second concept: wisdom of the crowd
Wisdom of the crowd philosophically asserts that a prediction 
gauged among a group of experts will be more accurate than any sin-
gle prediction; the readable book by Surowiecki provides tantaliz-
ing historical and contemporary examples25. Wisdom of the crowds 
underpins the Sage Bionetworks DREAM challenge efforts behind 
crowdsourcing and citizen science, the opening of challenges to 
mass numbers of competitive teams on the internet or active mem-
bers of the public, which has brought about improvements in breast 
cancer prognostic modeling among other efforts26,27. Wisdom of the 
crowds also underpins the accepted notion that ensembles of mod-
els confer better predictive accuracy than single models, are more 
robust than single methods, and have the added advantage of appro-
priately accounting for uncertainty28. The ability to test models on 
parts of the withheld test set influenced the choice of which models 
should be contained in the ensemble; one could term this super-
vised ensemble construction. We herein describe the approach.

Model averaging. In the first concept we described our multiple 
imputation approach for missing values. However, we noticed that 
distributions of variables differed between trials. Hence, we decided 
to only impute within the trials, not across. In other words, values 
were imputed based on covariable information only from patients 
within the same study.

Our question was then how to deal with variables that were (almost) 
completely missing in one entire training study but measured in 
other training studies. Our solution was to estimate seven different 
models, each taking into account a different subset of the three stud-
ies ASCENT-2, MAINSAIL and VENICE (see Figure 2). Depend-
ing on the set of studies, different covariables could be included 
in the model. For example, lactate dehydrogenase was completely 
missing in VENICE, but not in ASCENT-2 and MAINSAIL. It was 
hence excluded in every model based on VENICE but not otherwise. 
Table 2 contains two more examples. Once we had fixed the model 
and corresponding data, we jointly scaled the explanatory variables 
of all training and test studies to mean zero and variance one.

Third concept: recalibration
Recalibration of a model encompasses any manner of change to the 
model using data or information from the target model. In the Pros-
tate Cancer DREAM Challenge, patient-level data from the test set 
did not include the target variables. Recalibration was still possible 
as described in the following.

High-risk and low-risk recalibration (sub-challenge 1a). With the 
averaged Cox model described in the previous section, we expected 
to predict the risks for “average patients” satisfyingly well. For  
high-risk or low-risk patients, however, we aimed to further improve 
the predictions. Hence, we adapted the scores by estimating two 
more models: (i) a high-risk model, where we modified the target 
variable DEATH (indicating whether death had been observed) 
such that it only counted events that happened prior to 14 months, 
and (ii) a low-risk model, where we only considered events that 
occurred after 18 months. We then recalibrated the risk scores for the  
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Figure 2. Datasets contained in different models to be averaged.

Table 2. Datasets contained in different models to be averaged, exemplified on selected variables.

Model name 
 
Studies included

1 
ASCENT-2

2 
MAINSAIL

3 
VENICE

12 
ASCENT-2, 
MAINSAIL

13 
ASCENT-2, 

VENICE

23 
MAINSAIL, 

VENICE

123 
ASCENT-2, 
MAINSAIL, 

VENICE

Lactate 
dehydrogenase yes yes no yes no no no

Albumin no yes yes no no yes no

Prostate specific 
antigen yes yes yes yes yes yes yes

Table 3. Comparison of prediction performance 
for minimal-adaptation vs. high-cost data 
preprocessing.

Minimal-adaptation 
(standard) data

High-cost 
(improved) data

iAUC (1a) 0.7535 0.7642

RMSE (1b) 304.79 292.15

following patients: (i) For patients with risk score above the median, 
we calculated the average between the initial prediction and the 
high-risk score and considered this as the new risk score, and  
(ii) for those patients whose risk score was below the 25-percentile, 
we calculated the average between the initial model and the low-
risk model. In both cases, we made sure that the modifications only 
altered the ranks of patients within the defined ranges, i.e. above the 
median and below the 25-percentile with respect to the initial risk 
score. Figure 3 shows the former (x-axis) vs. the new rank (y-axis) 
for each patient, where a low rank means a low risk of dying.

Quantile recalibration (sub-challenge 1b). As described above, 
we estimated a Cox model with lasso regularization. Based on the 
estimated coefficients from the training datasets, we predicted a 

survival curve for each of the patients in the test data. From each 
survival curve we derived a point estimate for the time of death as 
follows: A typical estimate would have been the median. However, 
in the training data this estimate was not optimal with respect to 
RMSE. We hence determined from the training data the value of 
α such that

was minimized. In this formula, n is the number of patients in the 
training data, Qαi

 denotes the α · 100%-quantile in the survive 
curve for patient i, y

i
 is the observed time of death for patient i  

(can be any value if death is not observed), and D
i
 = 1 is the indi-

cator that death of patient i has been observed (otherwise D
i
 = 0).  

The resulting value of α was 0.69. We hence derived the  
69%-quantiles from the survival curves as final prediction as illus-
trated in Figure 4.

Validation by calibration (sub-challenge 1b). In addition to the 
above calibration of times to event, we also applied the validation-
by-calibration method by Van Houwelingen29 in sub-challenge 1b. 
This method adjusts the original predictions by rescaling them to 
the range of the observed outcomes using linear regression. The 
original method splits the training data into two subsets for model 

2

1

( )
n

i i i
i

D Q yα
=

−∑
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Figure 3. Recalibration for high and low risks: former (x-axis) vs. the new rank (y-axis) for each patient, where a low rank means a 
low risk of dying.

Figure 4. Time to event prediction via 69%-quantile vs. 50%-quantile for one selected patient.
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building and validation. For computational reasons, we omit this 
step. Adapted to the context here, validation-and-calibration works 
as follows:

1.  Estimate a Cox-lasso model based on the three training 
trials (ASCENT-2, MAINSAIL, VENICE) as described 
above. From this model, compute survival curves and esti-
mate the times to event for each patient in the training data. 
Let y ̂  be the predictions for those patients where death was 
observed, and y be the corresponding observed times of 
death. From the same model, estimate the times to event 
for all patients in the test set (ENTHUSE-33) and denote 
them by ẑ .

2.  Plot y versus y ̂  and decide whether a linear relationship of 
the two variables can be assumed. If so, proceed.

3.  Estimate a linear model 0 1 ˆ= + +y yβ β ε with ε ~ N(0, σ 2).  
Let ^

0β and ^
1β  be the estimated intercept and slope  

coefficient.

4.  Recalibrate the predictions for the test patients to 
^ ^

0 1ˆ ˆcz zβ β= + .

Figure 5 illustrates the procedure on our training data.

Results
We applied the three general concepts to the predic-
tion problems of sub-challenges 1a and 1b. The benefit of  
applying each of the principles on the iAUC and RMSE in the 

Prostate Cancer DREAM Challenge is quantified in Figure 7 and  
Figure 8, respectively. Details are given in the following.

Impact of good data
In order to assess the gain of the elaborate data preprocessing as 
compared to the low-cost minimal adaptation approach, we pre-
dicted the risk of death (sub-challenge 1a) and the time to death 
(sub-challenge 1b) for both data preparations. Table 3 shows the 
respective validation measures iAUC and RMSE when a Cox 
model with lasso regularization is applied as described above. For  
sub-challenge 1b, we used median survival times from the esti-
mated survival curves. Prediction improved substantially for the 
high-cost data preparation with respect to both measures: The iAUC  
(sub-challenge 1a) increased by more than 0.01 units from 0.7535 
to 0.7642. The RMSE (sub-challenge 1b) decreased by more than 
10 units from 304.79 to 292.15.

Impact of wisdom of the crowd
We estimated the seven models described in the model averaging 
section above (see also Figure 2) on the training data and got a 
risk prediction for the test data for each of these. We then took the  
average of the seven predictions (each of which was again an  
average over five imputed datasets) to arrive at a final risk score. 
Compared to the standard approach (no splitting into submodels), 
this model averaging approach yielded improvements in terms of 
iAUC and RMSE measures. This is shown in Table 4 where both 
the standard approach model and the averaging approach employ 
the improved data as described in the first concept. While the 
increase in iAUC is again around 0.1 units from 0.7642 to 0.7733, 
the improvement of the prediction of time to event is considerably 

Figure 5. Linear relationship between predicted and observed times to event for the training data, used as a basis for the  
validation-by-calibration method.
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more dramatic as it decreases the RMSE by almost 30 units from 
292.15 to 263.37.

Impact of recalibration
We applied the three proposed recalibration techniques to our 
predictions for risk of death (sub-challenge 1a) and time of death  
(sub-challenge 1b) and validated the effects of these measures on 
the test data (ENTHUSE-33).

Sub-challenge 1a. For the risks of dying, we once applied the  
low-risk calibration only, the high-risk calibration only, and both 
measures simultaneously. Table 5 summarizes the results. It shows 
that neither the low-risk nor the high-risk calibration had a substan-
tial effect on the prediction performance in terms of iAUC: The 
low-risk calibration led to a small increase of iAUC by approxi-
mately 0.003 units from 0.7642 to 0.7668. The high-risk calibration 
did not improve the prediction accuracy at all, although the ranks 
of patients changed.

Sub-challenge 1b. Recalibration of times to event caused a 
highly convincing improvement of prediction accuracy. Table 6  
shows RMSE values for the 69%-quantile recalibration only, for 
Van Houwelingen’s validation-by-calibration approach only, 

and for the two measures combined (i. e. first applying quantile  
recalibration and then the validation-by-calibration method). All 
recalibration approaches decreased the RMSE substantially by 
as much as around 100 days as compared to the non-calibrated  
predictions.

The choice of α = 0.69 for the α-quantile recalibration had resulted 
from the training data only. As a further post-challenge analy-
sis, we investigated whether this was also a good choice for the  
test dataset. Figure 6 shows RMSEs for the α-quantile recali-
bration as well as the combination of quantile recalibration and  
validation-by-calibration for a grid of α values between 0.6 and 0.8. 
On this grid, α = 0.72 was the optimal choice when applying the 
quantile recalibration only, but α = 0.69 was also reasonable. When 
followed by validation-by-calibration, the effect of α was hardly 
visible anymore. This makes validation-by-calibration an appealing 
approach for the prediction of times to event.

Conclusion
As data, computation, and statistical methods reach new horizons 
for the clinical risk prediction dreamers, this study reminds us of 
some timeless basics we should not forget: good data, wisdom  
of the crowds and recalibration. In this study we translated 

Table 4. Comparison of prediction performance for 
standard approach vs. model averaging.

Standard approach Model averaging

iAUC (1a) 0.7642 0.7733

RMSE (1b) 292.15 263.37

Table 5. Effect of low-risk and high-risk calibration on 
iAUC in sub-challenge 1a.

iAUC w/o low-risk 
calibration

w/ low-risk 
calibration

w/o high-risk calibration 0.7642 0.7668

w/ high-risk calibration 0.7642 0.7668

Figure 6. Effect of α-quantile recalibration (followed by validation-by-calibration or not) on RMSE for varying α.
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and enhanced these principles for use in developing survival 
risk prediction tools based on multiple heterogeneous clinical  
trials with large and non-overlapping sets of covariates. The 
impact of individual components of our proposed strategy can 
be quantified by their incremental influence on the assessment  
criteria.

The AUC is the most widely used endpoint for measuring the 
discrimination capability of a biomarker or risk prediction tool.  
However, it is limited by a lack of clinical relevance for the individual 
patient, defined as a comparative probability of ranks for pairs of 
patients, as well as a lack of statistical power being based on ranks, 
making it insensitive (it is invariant to monotonic changes) and 

notoriously difficult to budge30. Accordingly, Figure 7 shows small 
gains of 0.0105 points for improved data, 0.0091 additional points 
for model averaging, and 0.0004 additional points for recalibration, 
taking the best-performing option for each principle. The bottom 
line for implementing the three principles was to increase the iAUC 
from 0.7535 to 0.7768, a minor improvement, but comparable to 
laudable improvements in published risk prediction tools given the 
robust nature of the iAUC.

The RMSE measures accuracy of a risk prediction, in other words 
how close a projected risk is to what actually happened to the  
patient, and based on the continuous measures of risk, has greater 
statistical power to detect differences due to technical improve-
ments. Accordingly, more significant gains are more readily appar-
ent in the RMSE in Figure 8, with 12.64 points for improved 
data, 28.78 additional points for model averaging or 99.01 addi-
tional points for recalibration, resulting in a net reduction from  
111.57 points on the square root prediction scale after implemen-
tation of all three principles. Missing a large gain such as this by 
hastily fitting a single model without regard to the data, without 
averaging and without recalibration, would have cost us the chal-
lenge. But, most importantly, skipping these time-consuming basics 
would result in a less accurate prognosis for the individual patient.

Table 6. Effect of 69%-quantile recalibration and validation-
by-calibration on RMSE in sub-challenge 1b.

w/o quantile 
calibration

w/ quantile 
calibration

w/o validation-by-calibration 292.15 196.84

w/ validation-by-calibration 194.18 192.99

Figure 7. iAUC values resulting from different combinations of core principles to sub-challenge 1a.
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Figure 8. RMSE values resulting from different combinations of core principles to sub-challenge 1b.

Our data preparation included the generation of additional clini-
cal variables. Post-challenge analyses showed that the newly 
introduced toxicity score was especially beneficial for good pre-
dictions in all sub-challenges, and so were the variables derived 
from the event data tables on lesion measures. We thus propose to 
generally capture such information in any clinical trials on prostate 
cancer. As more data become publicly available as a resource for 
expanding clinical risk tools, it becomes tempting to think that the 
art of risk prediction can be automated, eliminating the need for  
interdisciplinary scientists to work together. This study concludes 
that interdisciplinary subject-matter knowledge remains essential 
and that building optimal risk prediction tools remains as much an 
art as a process.
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