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Supplement to: Guinney J, Wang T, Laajala TD, et al. A prognostic model to predict 
overall survival for patients with metastatic castration-resistant prostate cancer: results 
from a crowdsourced challenge using retrospective, open clinical trial data. 
 
Clinical trial descriptions, curation, and splitting 
Challenge design, rules, and web-based resources 
Evaluation of the top-performing team 
Top-performing model description 
Data-driven network projection for the ePCR model 
 
Supplementary Tables 
Supplementary Table 1. Full results from all 50 teams plus the Reference model across several scoring metrics 
from the Challenge. Performance measures were evaluated using the ENTHUSE 33 trial. Teams are listed with the 
links to their predictions, methods write-up, and code.  
 
Supplementary Table 2. Comparison of risk stratification of patients in the ENTHUSE 33 trial by the ePCR and 
Reference models. Patients were dichotomized at median risk scores. All intervals reported are 95% confidence 
intervals. PPV = positive predictive value, NPV = negative predictive value. Values for Cases, Survivors, and 
Censored are cumulative. 
 
Supplementary Table 3. Top 15 single and interacting variables from the final ePCR model built from the 
MAINSAIL and VENICE trials. Comprehensive list of evaluated variables is available at: 
https://www.synapse.org/#!Synapse:syn7113819 
 
Supplementary Figures 
Supplementary Figure 1. Overview of the top-performing ePCR method in comparison to the Reference model 
(Halabi model). (A) The benchmarking Reference model explored the LASSO model (α = 1) in a training data 
cohort with respect to the regularization parameter (λ) using cross-validation (CV). (B) The top-performing ePCR 
approach is based on an ensemble of Penalized Cox Regression models (ePCR), which are optimized separately for 
each cohort or a combination of cohorts in terms of the regularization parameter (λ) as well as the full range of the 
L1/L2 regularization parameter (0 <= α <= 1). The optimal model was identified with low values of α, indicating 
that the Ridge Regression (α = 0)-like models performed better for modeling the complex interactions than the 
benchmarking Reference LASSO-model (α = 0). (C) Ensemble predictions were generated by averaging over the 
predicted risk ranks from each ensemble component. 
 
Supplementary Figure 2. (A) All data across ASCENT2, MAINSAIL, VENICE, and ENTHUSE 33– both binary 
and continuous data – were used in a PCA. (B) All data across the 4 studies – only binary variables – were used in 
PCA. 
 
Supplementary Figure 3. (A) Density plot of follow-up times per study for the ASCENT2, MAINSAIL, VENICE, 
and ENTHUSE 33 trials. (B) Survival profile for each of the trials. 
 
Supplementary Figure 4. Summary of Challenge results across all 50 teams plus the Reference model evaluated 
using the ENTHUSE 33 dataset. (A) Performance of submissions. Each submission underwent 1,000 paired 
bootstrap of final scoring patient set to calculate a Bayes factor against the top-performer a Bayes factor against the 
Reference model. A p value was calculated from randomization test of 1000 permutations. X-axis is iAUC and y-
axis is submissions ranked by iAUC from high to low. Each team’s bootstrapped iAUC scores are shown as 
horizontal boxplot with the black diamonds representing the point estimate of a team’s performance. The colored 
boxes show the inter-quartile ranges and the whiskers extend to 1.5 times the corresponding interquartile ranges. 
Top-performer is colored in orange, other teams within Bayes factor of 20 were labeled in blue, and the rest of the 
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teams were labeled in green. The Reference model is labeled in purple. (B) Bayes factors of all submissions against 
the top-performer are shown. Bayes factors greater than 20 were truncated to 20. (C) Bayes factors of all 
submissions against the Reference model. Bayes factors greater than 20 were truncated to 20. 
 
Supplementary Figure 5. Calibration plots for the ePCR model of predicted survival probability versus true 
survival proportion for the ENTHUSE 33 dataset at 18, 24, 30, and 36 months. 
 
Supplementary Figure 6. Timeline for the Challenge. Five submissions were allowed per round, and only a single 
submission for the final validation round. 
 
Supplementary Figure 7. Most frequently utilized variables by teams to build their final models using the 
ASCENT2, MAINSAIL, and VENICE trials. Results are self-reported from a post-Challenge survey over 40 teams. 
* variables are not used in the Reference model. 
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Clinical trial description, curation, data splitting  
Three datasets were used to create the training dataset for the Challenge (Novacea ASCENT21, Sanofi VENICE2, 
and Celgene MAINSAIL3), while one dataset (AstraZeneca ENTHUSE 334) was held back for leaderboard and 
blinded validation. The data represented 2,070 first line mCRPC patients in four cancer trials, where all patients 
received docetaxel treatment in the comparator arm.  
 
In order to perform further validation of the top-performing prognostic model algorithm, the organizing team 
identified a fifth trial dataset (AstraZeneca ENTHUSE M15) as an independent validation dataset post-Challenge.   
 
Due to the regulation and privacy environment of certain countries, not all patients in the comparator arm from 
ENTHUSE 33 and M1 were provided to PDS.  
 
ASCENT2 (Novacea, provided by Memorial Sloan Kettering Cancer Center): ASCENT21 is a randomized, open-
label study evaluating DN-101 in combination with docetaxel in mCRPC. Patients received docetaxel and calcitriol 
in comparator arm (N = 476; 138 events). Detailed inclusion/exclusion criteria is described on page 2192 from the 
published study.  
 
VENICE (Sanofi): VENICE2 is a randomized, double-blind study comparing efficacy and safety of aflibercept 
versus placebo in patients treated with docetaxel / prednisone for mCRPC. Patients received docetaxel, prednisone, 
and placebo in comparator arm (N = 598; 433 events). Detailed inclusion/exclusion criteria is described on pages 
761-762 from the published study.  
 
MAINSAIL (Celgene): MAINSAIL3 is a randomized, double-blind study to evaluate efficacy and safety of 
docetaxel and prednisone with or without lenalidomide in patients with mCRPC. Patients received docetaxel, 
prednisone, and placebo in comparator arm (N = 526; 92 events). Detailed inclusion/exclusion criteria is described 
on page 418 from the published study.  
 
ENTHUSE 33 (AstraZeneca): ENTHUSE 334 is a randomized, double-blind study to assess efficacy and safety of 
10 mg ZD4054 combined with docetaxel in comparison with docetaxel in patients with mCRPC. Patients received 
docetaxel and placebo in comparator arm (N = 470; 255 events). Detailed inclusion/exclusion criteria is described 
on page 1741 from the published study. 
 
ENTHUSE M1 (AstraZeneca): ENTHUSE M15 is a randomized, double-blind study to assess efficacy and safety of 
10 mg ZD4054 versus placebo in patients with CRPC and bone metastasis who are pain free or mildly symptomatic. 
Patients received only placebo in comparator arm (N = 266; 133 events).  
 
The original datasets from PDS contained patient level raw tables that conformed to either Study Data Tabulation 
Model (SDTM) standards or company-specific clinical database standards. In an effort to optimize the use of these 
data for the Challenge, four sets of raw trial data first needed to be consolidated into one set of standardized raw 
tables.  
 
During initial analysis scoping, key SDTM domains were identified as targets for standardization because they 
covered majority of necessary information for study subjects. These domains included demographics, trial design, 
follow-up including survival outcomes, treatment history, lab and lesion measurement, and vital sign. The curation 
team converted data from each study into a common structure that then can be combined into one dataset for each 
domain (SDTM). Major efforts were carried out to standardize reference date, capture, and validate survival 
information through careful evaluation of the data, protocol, and clinical report form (CRF). Lab test names and 
units could vary; the way information was presented in its original structure could be dramatically different as well. 
Some studies came with a single table for lab, others used 6-8 tables to capture the same level of information. 
However, this standardization phase was critical to ensure robustness of the Challenge data.  
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Once standardized raw tables were in place, clinically important baseline covariates and dependent variables 
relevant to the draft research questions were then created to form the “Core Table”. A list of prostate cancer related 
prognostic factors was pre-identified through literature review. The analysis expanded beyond the list to cover more 
than 150 variables including patient demographics, risk factors, functional status, prostate cancer treatment history, 
concomitant medicine, prevalent comorbidity, and condition by body system, major hematology/urology test, lesion 
measure/location, and vital sign. Variable creation was intended to be extensive yet not exhaustive to encourage 
independent thinking from the DREAM community.  
 
Six data tables were released for this Challenge. The Core Table was the main table that was summarized at the 
patient level with dependent variables and clinical covariates. The remaining five tables were standardized raw 
event-level tables (lab, lesion, prior medicine, medical history, vital sign) used to create the Core Table that was at 
the event level and could be used for additional variable creation and/or exploration.  
 
 
Challenge design, rules, and web-based resources 
The Challenge was hosted on Synapse (www.synapse.org), a cloud-based platform for collaborative scientific data 
analysis. Synapse was used to allow access to Challenge data and to track participant agreements to the appropriate 
data use agreements (https://www.synapse.org/#!Synapse:syn3348040) and the Challenge rules 
(https://www.synapse.org/#!Synapse:syn3348041). 
 
The Challenge was designed to have several rounds, including real-time leaderboard rounds and a final scoring 
round. A timeline for the Challenge can be found in Supplementary Figure 6. The leaderboard rounds provided 
teams the ability to build their models, make predictions, submit their predictions, and get real-time feedback on 
their performance. A total of three leaderboard rounds were run and teams were limited to five submissions per 
leaderboard round. For every submission made, an email was returned to the team with several performance metrics, 
including the iAUC, concordance index, and the AUC for 12, 18, and 24 months. At the end of a leaderboard round, 
a public leaderboard was updated with the best team score for that round.  
 
For final submissions to the final scoring round, Challenge participants created Synapse projects containing 
predictions from their best model together with the code used to derive them and wikis in which participants 
describe their methods in text and figures. Teams were only allowed one submission to the final scoring round. To 
ensure reproducibility of the Challenge results, the Challenge organizers ran the code of the best performing 
methods and reviewed team write-ups. Team scores were not released until the top performing models were verified 
to reproduce the predictions that the team submitted. After the final method vetting, final scores were posted 
publicly on the final scoring leaderboard (Supplementary Table 1).  

The ASCENT2, MAINSAIL, and VENICE datasets were used as training datasets, while the ENTHUSE 33 dataset 
was used as the validation dataset. The ENTHUSE 33 dataset was split in a non-overlapping manner into one 157-
patient leaderboard set and one 313-patient final scoring round set. To choose this separation, we generated 100 
random splits and manually chose one that yielded moderately different performance accuracy between the two sets. 
The 157-patient leaderboard set was further split into three overlapping smaller sets for the three leaderboard rounds. 
Each smaller set had 126 patients. We chose the three groups by generating 100 random splits and manually chose 
three that were dissimilar in patient membership and each yielded a moderate difference in performance accuracy 
between the chosen 126 patients and the other 31 patients. Together the three groups covered the whole set of 157 
patients in the leaderboard set.  
 
 
Evaluation of the top-performing team 
Teams were evaluated using several criteria to rank and determine the top-performing team(s). Principally, we were 
interested in the three following evaluations: a team’s prediction is meaningfully (a) better than random, (b) better 
than the existing Reference model, and (c) better than the next best performing team.  
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Both (b) and (c) were evaluated using the Bayes factor measurement6,7. To calculate the Bayes factor, we used 
paired bootstrap sampling of the final set of patients 1,000 times and scored each new sample using the designated 
scoring metrics to obtain a distribution for each submission. Using these distributions, we tested the hypothesis H1 
(defined as submission A is better than submission B) versus H0 (defined as submission A is no better than 
submission B). To be more specific, the Bayes factor of submission B versus submission A is calculating as the 
posterior probability of H1 as the fraction of bootstrap replications in which submission A is better than submission 
B divided by the posterior probability of H0 as the fraction of bootstrap replications in which submission A is no 
better than submission B. The Bayes factor will decide against H0 if the calculated posterior odds is larger than a 
pre-specified cutoff (three in this Challenge).  
 
Better than random. To assess whether team predictions were better than random (a), a team’s score was compared 
against an empirical null distribution from 1,000 resamplings of the dependent variable. One-sided p values were 
computed and corrected for multiple testing using the Benjamini-Hochberg procedure. 
 
Better than the Reference model. The prognostic model from Halabi, et al8 was used as the Reference model for 
predicting OS in mCRPC. The Reference model consists of 8 clinical variables: ECOG performance status, disease 
site, opioid analgesic use, LDH > 1 x ULN, albumin, hemoglobin, PSA, and alkaline phosphatase. Beta coefficients 
used in implementing this model were obtained from hazard ratios as reported in Table 2 from Halabi, et al.8 The 
Bayes factor was calculated from 1,000 resamplings to compare the Reference model against each submission.  
 
Better than next-best performer. We compared each submission against the top-performing submission using the 
Bayes factor, calculated using 1,000 resamplings. Submissions within Bayes factor < 3 from the top-performing 
team were declared indistinguishable from each other. In this Challenge, the top-performing team had a Bayes factor 
> 3 for when compared to all other teams. 
 
In addition to the above listed evaluation methods, we evaluated the top-performing (ePCR) method using Kaplan 
Meier curves with patients stratified on median risk score. For the ePCR model, the high risk group was defined as 
score > 0.487 and low risk group as score ≤ 0.487 for the ENTHUSE 33 dataset. For the Reference model, the high 
risk group was defined as score > 1.05 and low risk group as score ≤ 1.05 for the ENTHUSE 33 dataset. The log 
rank test was used to statistically compare the high and low risk groups. Further analysis between the ePCR and 
Reference model was done using the ENTHUSE M1 dataset in the same manner as was done with ENTHUSE 33. 
For the ePCR model, the high risk group was defined as score > 0.501 and low risk group as score ≤ 0.501 for the 
ENTHUSE M1 dataset. For the Reference model, the high risk group was defined as score > 0.80 and low risk 
group as score ≤ 0.80 for the ENTHUSE M1 dataset. The log rank test was used to statistically compare the high and 
low risk groups. 
 
 
Top-performing method description  
The key phases of the team FIMM-UTU method included: (i) processing of raw data input, imputation of missing 
values, filtering, and truncation; (ii) utilizing unsupervised learning to identify most relevant patterns in the training 
datasets; (iii) fitting study-wise optimized penalized Cox regression models; and (iv) constructing the ensemble 
collection of study-wise optimized components for performing the final predictions.  
 
(i) In addition to the refined Core Table provided by the Challenge organizers, a number of additional variables were 
manually extracted from the available additional data tables, namely the vital signs and lab values for markers such 
as blood pressure and hematocrit. After an initial data matrix was composed, imputation of missing data values was 
carried out using penalized regression model in two steps. In the first phase, missing at random (MAR) variables 
were imputed, and in the second phase, structural study-wise imputation was conducted for the study-specific 
variables. All the variables were then truncated where appropriate and log-transformed (Supplementary Fig. 1A). (ii) 
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Study-wise differences or redundancies were observed for some features, which were dealt with by omitting or 
further transforming the selected variables. Interactions were introduced between the extracted single markers to 
derive new covariates. Principal Component Analysis (PCA) revealed systematic differences between the four 
studies (Supplementary Fig. 2), which was later accounted for by modeling study-specific components through 
ensemble learning. Further, clinical expertise within the team was utilized by omitting non-relevant or confounding 
factors. Initial data matrix included 124 variables and after removing clinically irrelevant ones, redundant, or highly 
skewed variables, 101 variables were left for use in the predictive modeling. Modeling of non-linearity through 
pairwise interactions resulted in a final data matrix with 3,422 features. (iii) Based on the unsupervised explorative 
analyses, two of the most representative studies (MAINSAIL and VENICE) were utilized in the supervised model 
learning. Three separate ensemble components were composed: MAINSAIL-specific ensemble component, 
VENICE-specific ensemble component and a combined ensemble component, which simultaneously modeled the 
two selected studies (Supplementary Fig. 1B). To reduce the risk of overfitting and avoid randomness bias in the 
binning, the final ensemble models were optimized using 10-fold cross-validation as well as averaged over multiple 
cross-validation runs. The model estimation procedure identified an optimal penalization parameter (λ), which 
controlled for the number of non-zero coefficients in the model. Simultaneously, the L1/L2 norm regularization 
parameter (α) was explored throughout the full model spectrum, ranging from Ridge Regression (α = 0) to Elastic 
Net (0 < α < 1) and LASSO (α = 1) in penalized regression with respect to the objective function:  
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Here, x are the predictors (selected clinical variables or their pairwise interactions), β are the model coefficients 
subjected to the L1 and L2 norm penalization, p is the number of dimensions in the data, n is the number of 
observations, j(i) is the index of the observation event at time ti, and Ri is the set of indices j with yj ≥ ti (those 
patients at risk at time ti). Each ensemble component resulted in a different optimum in Eqn. 1, as investigated by 
10-fold cross-validated iAUC, although the resulting Elastic Net models closely resembled Ridge Regression. The 
penalized regression model was based on Cox proportional hazards (Eqn. 1). (iv) An ensemble prediction was 
performed by averaging the ranks over the component-wise predicted risk for the ENTHUSE 33 study 
(Supplementary Fig. 1C). Overall, the highest and lowest risk patients were concordantly predicted in each 
component. A few patient cases resulted in a moderate ensemble risk score, even if a particular ensemble component 
predicted a high or a low risk. Such challenging cases were controlled by not allowing any single study-specific 
effects to dominate the final predictions, through averaging over all the ensemble components. 
 
Data-driven network projection for the ePCR model 
The top-performing model’s ensemble dual-study component was summarized by network visualization to create a 
clinically relevant representation of the most important markers and interaction effects (Figure 3). Each model 
coefficient βi was given an importance score by computing the Elastic Net area under or above the regularization 
curve in the penalization and coefficient {λ, βi}-space. Absolute values of the areas were used to rank each 
coefficient, which yielded a simultaneous scoring of both the effect size of the covariate as well as the importance of 
the feature in relation to the penalization. Statistical significance of each coefficient was then assessed by re-fitting 
to 10,000 bootstrapped datasets, and empirical p values were computed as the proportion of bootstrapped 
coefficients where |βi,bootstrap| ≤ 10-10 or where βi,bootstrap flipped sign. A stringent threshold of P < 1e-3 was used to 
select the coefficients as network nodes (single marker) or edges (interaction effects). Ensemble p values were 
averaged over all the components. Variable and interaction weighting was computed according to the average rank 
of the integrated regularization area over all ensemble components. The automated network layout was performed 
using attracting and repelling forces among the vertices, and the physical system (graphopt) was simulated until it 
reached the equilibrium (Figure 3). Top variables and interactions presented in this graph are available in the 
Supplementary Table 3, with the full variable and interaction list available at 
(https://www.synapse.org/#!Synapse:syn7113819). 
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Supplementary Tables 
Supplementary Table 1. Full results from all 50 teams plus the Reference model across several scoring metrics 
from the Challenge. Performance measures were evaluated using the ENTHUSE 33 trial. Teams are listed with the 
links to their predictions, methods write-up, and code. 
 

Team Risk score 
predictions 

Method write-up 
& code iAUC c-index AUC12 AUC18 AUC24 

FIMM-UTU (ePCR) syn4732198 syn4227610 0.7915 0.7307 0.7918 0.7674 0.8388 
Team Cornfield syn4732339 syn4732274 0.7789 0.7263 0.7708 0.7663 0.8147 
TeamX syn4732955 syn4732218 0.7778 0.7157 0.7492 0.7645 0.8369 
jls syn4732934 syn4732827 0.7758 0.7212 0.7713 0.7553 0.8085 
PC LEARN syn4733119 syn3822697 0.7743 0.7205 0.7577 0.762 0.8258 
KUstat syn4741808 syn4260742 0.7732 0.7126 0.7436 0.7533 0.8376 
A Bavarian dream syn4732177 syn5592405 0.7725 0.7237 0.7721 0.7664 0.8019 
qiuyulian1994 syn4732213 syn4732205 0.7716 0.711 0.7423 0.7506 0.8297 
JayHawks syn4731663 syn4214500 0.7711 0.7193 0.7717 0.7607 0.8124 
Wind syn4731647 syn4731645 0.771 0.7181 0.7625 0.7688 0.8124 
Alvin syn4732814 syn4229406 0.7707 0.7136 0.7586 0.7568 0.7927 
brainstorm syn4730818 syn3821841 0.7706 0.718 0.7617 0.7614 0.8175 
uci-cbcl syn4731657 syn4227279 0.7704 0.717 0.76 0.7716 0.8206 
DreamOn syn4731710 syn4731708 0.7704 0.712 0.7559 0.7582 0.8245 
Clinical Persona syn4681602 syn4681529 0.7704 0.7149 0.7533 0.7545 0.8328 
Murat Dundar syn4595033 syn4595029 0.7701 0.7305 0.7763 0.7773 0.773 
Mistral syn4622079 syn4622016 0.7689 0.7073 0.7382 0.7624 0.8268 
UNC-BIAS syn4731768 syn4731674 0.7685 0.717 0.7559 0.7568 0.8293 
Team Marie syn4731882 syn4485029 0.7682 0.7142 0.7519 0.7705 0.8151 
A Elangovan syn4643159 syn4212102 0.7677 0.7135 0.7655 0.7461 0.7977 
M S syn4730601 syn4229266 0.7671 0.707 0.7372 0.7652 0.8256 
Jeevomics syn4733845 syn4074987 0.7651 0.719 0.7733 0.7526 0.7917 
CAMP syn4731373 syn3647478 0.7646 0.7077 0.7331 0.758 0.8143 
DAL_LAB syn4731755 syn4731746 0.7642 0.7103 0.7521 0.7486 0.8305 
Yuanfang Guan syn7152471 syn7152438 0.7618 0.7143 0.7545 0.7631 0.8005 
Bmore Dream Team syn4733165 syn3616830 0.761 0.7121 0.7464 0.766 0.7948 
Brigham Young University syn4733391 syn4382527 0.7578 0.7048 0.7381 0.7685 0.7599 
Team Simon syn4733651 syn4732901 0.7573 0.7033 0.7278 0.7611 0.827 
alan.saul syn4731492 syn4587469 0.7568 0.7078 0.7464 0.7606 0.7961 
BiSBII-UM syn4733056 syn4229636 0.7561 0.6992 0.7394 0.7397 0.8007 
RUBME6 syn4733262 syn4590933 0.7547 0.6994 0.7419 0.7198 0.7866 
Jing Zhou syn4646618 syn3685423 0.7507 0.6994 0.7361 0.7491 0.803 
TYTDreamChallenge syn4733257 syn4228911 0.748 0.7002 0.7343 0.7402 0.7657 
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UoB_Prostate syn4733441 syn4591879 0.7478 0.7057 0.7468 0.7367 0.7699 
Junmei Wang syn4732891 syn4225820 0.7475 0.694 0.7319 0.7332 0.7955 
Halabi Model syn4770841 syn3324780 0.7429 0.6985 0.7418 0.7375 0.7634 
Trishna syn4730580 syn4730570 0.742 0.6922 0.7285 0.7383 0.774 
CQB syn4732202 syn3566822 0.7412 0.6914 0.7185 0.7293 0.7686 
Ye Li syn4731357 syn4731355 0.74 0.6907 0.7258 0.7249 0.806 
Zhang Chihao syn4748861 syn4259433 0.7376 0.7063 0.7561 0.7426 0.745 
Guoping Feng syn4730823 syn4730561 0.7261 0.6781 0.7073 0.707 0.7504 
Y P syn4732913 syn4732909 0.7241 0.6799 0.732 0.7057 0.7594 
RainLab syn4730829 syn4238316 0.7232 0.6708 0.7141 0.7394 0.7821 
forPro syn4707761 syn4707464 0.7219 0.6839 0.7267 0.7249 0.739 
Marat Kazanov syn4731369 syn4730567 0.7215 0.6675 0.7089 0.7112 0.7524 
Jing Lu syn4732498 syn4556277 0.7035 0.6689 0.6931 0.7073 0.7154 
orion syn4733693 syn4732963 0.6837 0.6457 0.717 0.7359 0.7952 
limax syn4732094 syn4721051 0.6756 0.6484 0.7033 0.6685 0.689 
ECOP syn4647266 syn4647259 0.6746 0.6554 0.6774 0.6881 0.6949 
Massimiliano Zanin syn4732241 syn4732239 0.6171 0.6081 0.6206 0.432 0.3852 
The Data Wizard syn4229053 syn4228992 0.5945 0.5815 0.6039 0.5824 0.6085 
Compiled set of all predictions  syn7071669 
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Supplementary Table 2. Comparison of risk stratification of patients in the ENTHUSE 33 trial by the ePCR and 
Reference models. Patients were dichotomized at median risk scores. All intervals reported are 95% confidence 
intervals. PPV = positive predictive value, NPV = negative predictive value. Values for Cases, Survivors, and 
Censored are cumulative. 

 
ePCR model Patient count Event count Median survival 

time, month (CI) 
1 year survival 

rate (CI) 
2 year survival 

rate (CI) 

 

Low risk group 156 56 
27.6  

(23.4-NA) 
90.20%  

(85.5%-95.00%) 
58.60%  

(49.7%- 69.00%) 

High risk group 157 107 
15.1  

(13.0-17.2) 
59.90%  

(52.55%-68.20%) 
15.70%  

(9.28%- 26.70%) 

Reference model Patient count Event count Median survival 
time, month (CI) 

1 year survival 
rate (CI) 

2 year survival 
rate (CI) 

Low risk group 156 59 26.5 (22.5-NA) 
87.40% 

(82.30%-92.90%) 
52.80% 

(43.90%-63.50%) 

High risk group 157 104 15.6 (14.0-18.4) 
62.70% 

(55.50%-70.80%) 
22.20% 

(15.00%-32.90%) 

  

Time (months) t=6 t=12 t=18 t=24 t=30 
Cases 28 75 121 153 160 

Survivors 279 214 118 41 9 
Censored 6 24 74 119 144 

Sensitivity (%) 
ePCR 92.89 81.32 72.63 65.86 60.67 

Reference  85.73 75.94 67.43 61.19 61.21 

Specificity (%) 
ePCR 54.48 60.28 68.64 82.93 66.67 

Reference 53.76 57.94 64.41 73.17 44.44 

PPV (%) 
ePCR 16.96 40.15 64.2 86.31 82.41 

Reference 15.65 37.17 59.46 78.85 73.93 

NPV (%) 
ePCR 98.71 90.78 76.41 59.78 39.7 

Reference 97.41 88.02 71.86 53.57 30.8 
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Supplementary Table 3. Top 15 single and interacting variables from the final ePCR model built from the 
MAINSAIL and VENICE trials. Comprehensive list of evaluated variables is available at: 
https://www.synapse.org/#!Synapse:syn7113819 

Top 15 single variables in the ePCR model Ensemble p value Ensemble effect size 

Lactate dehydrogenase (LDH) < 0.0001 3405.667 

Aspartate aminotransferase (AST) < 0.0001 3376.667 

Hemoglobin (HB) < 0.0001 3369.667 

Hematocrit (HCT) < 0.0001 3354.333 

Albumin (ALB) 0.0004 3316.667 

Alkaline phosphatase (ALP) < 0.0001 3291.333 

Red blood cell count (RBC) < 0.0001 3237.333 

Systolic blood pressure (SYSTOLICBP) 0.0012 3192.000 

Lesions at liver (LIVER) < 0.0001 3184.000 

Sodium (NA) 0.0205 3032.000 

Lesions at target site (TARGET) 0.0118 3001.000 

ECOG performance status (ECOG_C) 0.0003 2923.000 

Medical history: cardiac disorders (MHCARD) 0.1100 2827.667 

Lymphocyte/Leukocyte ratio (LYMperLEU) 0.0143 2684.333 

Body mass index (BMI) 0.0214 2679.333 

Top 15 interactions in the ePCR model Ensemble p value Ensemble effect size 

AST LDH < 0.0001 3408.333 

ALP LDH < 0.0001 3406.667 

ALP AST < 0.0001 3404.333 

HB SYSTOLICBP < 0.0001 3402.333 

LDH Urine Specific Gravity < 0.0001 3400.667 

SYSTOLICBP HCT < 0.0001 3400.333 

Creatinine LDH < 0.0001 3397.333 

LDH LDH < 0.0001 3392.000 

HB ALB < 0.0001 3387.333 
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AST AST < 0.0001 3384.333 

HB NA < 0.0001 3382.667 

Height LDH < 0.0001 3381.667 

ALB SYSTOLICBP < 0.0001 3379.333 

HB Creatinine clearance < 0.0001 3378.000 

ALB HCT < 0.0001 3377.333 
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Supplementary Figures 
 

 
Supplementary Figure 1. Overview of the top-performing ePCR method in comparison to the Reference model 
(Halabi model). (A) The benchmarking Reference model explored the LASSO model (α = 1) in a training data 
cohort with respect to the regularization parameter (λ) using cross-validation (CV). (B) The top-performing ePCR 
approach is based on an ensemble of Penalized Cox Regression models (ePCR), which are optimized separately for 
each cohort or a combination of cohorts in terms of the regularization parameter (λ) as well as the full range of the 
L1/L2 regularization parameter (0 <= α <= 1). The optimal model was identified with low values of α, indicating 
that the Ridge Regression (α = 0)-like models performed better for modeling the complex interactions than the 
benchmarking Reference LASSO-model (α = 0). (C) Ensemble predictions were generated by averaging over the 
predicted risk ranks from each ensemble component. 
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Supplementary Figure 2. (A) All data across ASCENT2, MAINSAIL, VENICE, and ENTHUSE 33– both binary 
and continuous data – were used in a PCA. (B) All data across the 4 studies – only binary variables – were used in 
PCA. 
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Supplementary Figure 3. (A) Density plot of follow-up times per study for the ASCENT2, MAINSAIL, VENICE, 
and ENTHUSE 33 trials. (B) Survival profile for each of the trials. 
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Supplementary Figure 4. Summary of Challenge results across all 50 teams plus the Reference model evaluated 
using the ENTHUSE 33 dataset. (A) Performance of submissions. Each submission underwent 1,000 paired 
bootstrap of final scoring patient set to calculate a Bayes factor against the top-performer a Bayes factor against the 
Reference model. A p value was calculated from randomization test of 1000 permutations. X-axis is iAUC and y-
axis is submissions ranked by iAUC from high to low. Each team’s bootstrapped iAUC scores are shown as 
horizontal boxplot with the black diamonds representing the point estimate of a team’s performance. The colored 
boxes show the inter-quartile ranges and the whiskers extend to 1.5 times the corresponding interquartile ranges. 
Top-performer is colored in orange, other teams within Bayes factor of 20 were labeled in blue, and the rest of the 
teams were labeled in green. The Reference model is labeled in purple. (B) Bayes factors of all submissions against 
the top-performer are shown. Bayes factors greater than 20 were truncated to 20. (C) Bayes factors of all 
submissions against the Reference model. Bayes factors greater than 20 were truncated to 20. 
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Supplementary Figure 5. Calibration plots for the ePCR model of predicted survival probability versus true 
survival proportion for the ENTHUSE 33 dataset at 18, 24, 30, and 36 months.  
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Supplementary Figure 6. Timeline for the Challenge. Five submissions were allowed per round, and only a single 
submission for the final validation round. 
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Supplementary Figure 7. Most frequently utilized variables by teams to build their final models using the 
ASCENT2, MAINSAIL, and VENICE trials. Results are self-reported from a post-Challenge survey over 40 teams. 
* variables are not used in the Reference model.  
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