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Abstract 

Background 

Health-related quality of life (HRQL) has become an increasingly important outcome 

parameter in clinical trials and epidemiological research. HRQL scores are typically bounded 

at both ends of the scale and often highly skewed. Several regression techniques have been 

proposed to model such data in cross-sectional studies, however, methods applicable in 

longitudinal research are less well researched. This study examined the use of beta regression 

models for analyzing longitudinal HRQL data using two empirical examples with 

distributional features typically encountered in practice. 

Methods 

We used SF-6D utility data from a German older age cohort study and stroke-specific HRQL 

data from a randomized controlled trial. We described the conceptual differences between 

mixed and marginal beta regression models and compared both models to the commonly used 

linear mixed model in terms of overall fit and predictive accuracy. 

Results 

At any measurement time, the beta distribution fitted the SF-6D utility data and stroke-

specific HRQL data better than the normal distribution. The mixed beta model showed better 

likelihood-based fit statistics than the linear mixed model and respected the boundedness of 

the outcome variable. However, it tended to underestimate the true mean at the upper part of 



the distribution. Adjusted group means from marginal beta model and linear mixed model 

were nearly identical but differences could be observed with respect to standard errors. 

Conclusions 

Understanding the conceptual differences between mixed and marginal beta regression 

models is important for their proper use in the analysis of longitudinal HRQL data. Beta 

regression fits the typical distribution of HRQL data better than linear mixed models, 

however, if focus is on estimating group mean scores rather than making individual 

predictions, the two methods might not differ substantially. 

Keywords 

Health-related quality of life, Beta regression, Longitudinal study, Mixed model, Marginal 
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Background 

Health-related quality of life (HRQL) has become an increasingly important outcome 

parameter in clinical trials and epidemiological research to support clinical and policy 

decision making or to monitor population health [1,2]. Treatment effects on HRQL and 

population values are commonly estimated using regression techniques, however, HRQL 

scores typically exhibit specific properties that make the use of ordinary least square (OLS) 

regression at least doubtful for such kind of data [3,4]. In particular, they are continuous 

variables bounded at both ends of the distribution (e.g. at 0 and 1) and are often highly 

skewed. As a consequence, several alternative regression methods have been suggested such 

as censored least absolute deviation models [5], Tobit models [4,5] and median regression 

[5,6]. A regression technique that is gaining increasing attention in the analysis of doubly 

bounded outcome measures is the beta regression as introduced by Ferrari and Cribari-Neto 

[7]. Beta regression was first mainly used in economic and psychological applications [8,9], 

but has recently also been proposed to analyze generic HRQL [3,10]. In these contributions, 

it was shown that beta regression can have substantial advantages over OLS regression, 

especially in estimating covariate effects when the true incremental effect is large [3]. 

However, they also revealed that beta regression may perform poorly in handling 

observations on the boundary points [10]. 

While several regression models have been suggested to address the idiosyncrasies of HRQL 

data in a cross-sectional design, research on longitudinal regression models is less well 

developed. This is both surprising and unfortunate given that change in HRQL over time is 

often the primary interest in applied work. Currently, longitudinal quality of life data are 

mostly analyzed using change scores [11], repeated measures ANCOVA [12,13], and linear 

mixed models (LMM) [14,15]. 

Beta regression has recently been expanded to deal with longitudinal data by introducing a 

beta-distributed generalized linear mixed model (GLMM) [16,17]. However, a more-in-

depth-comparison with traditionally employed methods, especially the LMM, is still lacking. 

Also, to date no study has examined the applicability of longitudinal beta regression models 

to analyze HRQL scores over time. 



An elaborate comparison between beta regression and linear regression in a longitudinal 

design is not only important with respect to model fit and predictive ability. It is also 

important to realize that in longitudinal models with non-identity link such as beta regression, 

the interpretation of parameter coefficients depends on how the correlation between 

observations is accounted for [18]. Basically, two different approaches can be distinguished: 

A subject-specific approach as implemented by the GLMM, and a population-averaged 

approach using marginal models [19]. 

The purpose of this study was to examine the use of beta regression methods to analyze 

longitudinal HRQL data. We describe the conceptual differences between mixed effect 

models and marginal models researchers should be aware of when extending beta regression 

to the longitudinal case. Using two empirical datasets with both generic and disease-specific 

HRQL scores, we compare estimated effects and predictive accuracy of the beta regression 

methods to those of the commonly used LMM. 

Methods 

Empirical data sets 

We fitted longitudinal regression models to two empirical data sets representing different 

distributional features typically encountered when analyzing HRQL scores in practice. Data 

in the first example come from a cohort study, while data in the second example were 

collected alongside a randomized controlled trial (RCT). In both cases, we examined HRQL 

scores over time with respect to two groups of individuals. 

In the first application, we examined how the generic SF-6D health utility index changed 

over a 7-year period in an older general population sample. Data come from the population-

based KORA S4/F4 cohort study conducted in the region of Augsburg in Southern Germany. 

The sample used in our analyses involved 1225 subjects aged 60 years and above recruited 

for the S4 survey in 1999. In 2006–2008, 812 of these 1225 subjects took part in the follow-

up study F4. A detailed description of study design, sampling method and data collection can 

be found elsewhere [10,20]. Besides other questions, individuals were asked at both time 

points if they have diabetes mellitus. Also, subjects answered the 12-item Short-Form Health 

Survey (SF-12), from which the SF-6D utility index was derived [21]. Health utilities can be 

used to calculate quality-adjusted life-years (QALYs) and usually range between 0 (health 

state similar to death) and 1 (‘perfect health’). However, due to the specific health state 

classification behind the SF-6D, possible values only lie between 0.345 and 1 [21]. Focus in 

this analyses was on the question how diabetes mellitus is associated with HRQL over time. 

The second application investigated disease-specific HRQL in stroke patients over time, 

measured by the Stroke Impact Scale (SIS) [22]. Data were collected alongside an RCT 

evaluating a patient education programme for stroke survivors in neurological rehabilitation 

based on the conceptual framework of the International Classification of Functioning, 

Disability and Health (ICF). The study sample comprised 212 patients in the age range of 22 

to 83 years recruited between 2008 and 2009 in seven rehabilitation clinics in Germany. 

Details on clinical characteristics and data collection methods can be found elsewhere [23]. 

Patients answered self-report questionnaires before and after the education programme 

(median difference 10 days) as well as at a postal follow-up conducted 6 months later. At 

post-intervention and follow-up, questionnaire data were available for 183, and 171 patients, 



respectively. Patients in the sample were assigned to two different rehabilitation phases (C 

and D), following the six-phase model of the German Federal Rehabilitation Council. The 

distinction between phase C and D contrasts patients still dependent on a high degree of 

nursing and medical care to those having mostly gained independence in the activities of 

daily life [24]. Since regaining mobility is a major goal of post-stroke rehabilitation, the 

objective of the analyses was to analyze SIS mobility subscale (SIS-Mob) scores over time. 

SIS-Mob scores range from 0 to 100, with higher values indicating better HRQL. We divided 

scores by 100 in order to make them fit to the support of the beta distribution. In this analysis, 

we focused on the comparison of time trends between patients in phase D and those in phase 

C but ignored whether patients were assigned to the intervention or to the control group. 

Both studies were approved by the local ethic committee. 

Beta regression 

Beta regression for cross-sectional data 

The beta distribution is a continuous probability distribution defined over the unit interval 

with density function 

 
 

where  (.) denotes the gamma function [7]. The parameter μ denotes the expected value of 

Y, i.e. E(Y) = μ. The parameter φ fulfils the definition of a precision parameter since – for 

fixed μ – the greater the value of φ, the smaller the variance of the dependent variable. More 

specifically, 

 
 

The beta distribution is part of the exponential family, but not of canonical form [18,25]. In 

beta regression models, the mean parameter μ ∈ (0,1) of the beta distribution is expressed as a 

function of covariates, while the precision parameter φ ∈ ℝ+
 is treated as nuisance. To map 

the linear predictor into the space of observed values on the unit interval, the logit link 

 (1) 

is commonly used as the link of choice where  denotes a vector of covariates, and β refers 

to the vector of regression coefficients, i = 1,…,N [8,26]. The beta distribution is defined on 

the open unit interval only. If ones and zeros are observed, these values need to be 

transformed in order to fall into the open unit interval (0,1). This can be achieved by either 

minimally compressing the entire range of observed values, or by only transforming the 

boundary points to slightly smaller or greater values, respectively. The most frequently 

applied transformation is given by 

 (2) 



where Y
*
 is the transformed and Y is the untransformed dependent variable [8,17]. 

Alternatively, it has been suggested to add a small amount ε, e.g. 0.005 or 0.01 to the lower 

bound, and to subtract the same amount from the upper bound [8,16]. A reasonable choice 

involves the following trade-off: On the one hand, large values for ε shrink the data more 

toward 0.5 and may bias the estimates toward no effect; on the other hand, moving zero- and 

one-valued observations an insufficient distance away from the boundary may lead to instable 

estimates because this can cause the likelihood to have a local or even global mode in this 

area [16,27]. Hunger et al. also observed that when the resulting values are too close to the 

boundary points, precision of the estimates may appreciably decrease [10]. Therefore, it has 

been recommended to use sensitivity analyses in order to check whether different endpoint 

handling methods affect parameter estimates [8,16]. 

Beta GLMM for longitudinal data 

In longitudinal analyses or in the case that subjects are clustered within sampling units or 

geographical entities, measurements within the same person or unit are typically correlated, 

violating the assumption of conditionally independent observations in regression models [18]. 

One possibility to account for these dependencies is to add random cluster or subject effects 

into the linear predictor. Without loss of generalizability, consider the case of longitudinal 

designs where j = 1,…,ni observations are nested within i = 1,…,N subjects. Let bi denote a 

vector of subject-specific random effects for individual i. 

In the linear regression model, the inclusion of random effects leads to the LMM given by 

 (3) 

Similarly, adding random effects to the beta regression model in (1) yields the beta GLMM 

[16,17] given by 

 (4) 

In both cases,  is a vector of covariates, and G denotes the positive definite covariance 

matrix of the random effects. Note that although the assumption of normality for the random 

effects is common and statistically convenient, other distribution assumptions are possible in 

principle [17]. In a longitudinal design, bi typically is a scalar (for random intercept only 

models) or a bivariate vector (for models with random intercept and random slope). In the 

first case, zij = 1, while in the second case,  where tij is the time of measurement 

j for subject i. Models with random slope allow the linear effect of time to vary across 

subjects. Model parameters are estimated by maximizing the marginal likelihood which is 

obtained by integrating out the unobserved random effects bi from the likelihood function 

[16]. 

Although the inclusion of random effects in the beta GLMM is conceptually the same as in 

the LMM, there are important implications with regard to the interpretation of regression 

parameters: In the LMM, the fixed effects have both a subject-specific (together with the 

random effects bi) and a population-average interpretation. This follows directly from (3) 

because 



  
 

In the beta GLMM, however, the regression parameters only have a subject-specific 

interpretation and no longer describe the effect of the respective variable on the population in 

general [18]. This is due to the non-linear transformation of the mean response (i.e. the logit 

link) since it can be deduced from (4) that 

  
 

This individual-specific interpretation means, for example, that the parameter coefficient of 

the covariate ‘diabetes’ in the first empirical application refers to the difference in mean SF-

6D scores on the logit scale between an individual with diabetes and the same individual 

supposed not to have diabetes [28]. 

Beta GEE 

If a population-averaged interpretation of the regression coefficients is desired, for example 

the mean difference between the groups of individuals with and without diabetes, an 

alternative to the beta GLMM is the marginal model. The term ‘marginal’ means that the 

mean response modeled is conditional only on covariates and not on other responses or 

random effects [18]. 

Marginal models do not specify the full joint distribution of the data, but only specify a mean 

function, a variance function, and a correlation structure between observations within one 

individual. Mean and variance function (in some models together with an additional scaling 

factor φ) are often suggested by the canonical form of the exponential family [29]. For the 

beta distribution, it is convenient to specify  following (1), and using the 

variance function . 

Note that this specification of mean and variance structure is also commonly used in GEE 

models to analyze binary data. The only difference is the additional scaling parameter φ 

which is usually not used in a GEE for binary data. The inclusion of the scaling parameter in 

the beta GEE has no impact on the estimation of the mean model parameters, however, it has 

the advantage that large estimates for φ can indicate heterogeneity in the data that is not 

accounted for by the model [3]. Similarities also exist to the inclusion of an additional 

dispersion parameter in quasi-binomial models for cross-sectional data and such methods 

have already been used in literature to model HRQL scores [30-32]. For the working 

correlation matrix, several choices are possible. Among them, compound symmetry, 

autoregressive structure, and unstructured correlation are most commonly used in 

longitudinal analyses [18]. Variance function and correlation matrix can then be combined 

into a ‘working’ covariance matrix Vi. Parameter estimates in the marginal model are 

obtained by solving the Generalized Estimating Equations (GEE) introduced by Liang and 

Zeger [33,34]. 

  
 



where  and . 

In general, there are no closed-form solutions, so that iterative algorithms are used. Specific 

types of GEEs can further be distinguished according to how the covariance parameters are 

estimated. While the early contributions on GEEs mainly used the methods of moments, 

other approaches using pseudo-likelihood techniques and quadratic estimation equations 

methods have also been suggested [35]. The latter approach, for example, is implemented in 

the SAS GLIMMIX procedure. Parameter coefficients in the GEE are estimated consistently 

even if the covariance structure is mis-specified, however, a careful choice of the working 

correlation may improve efficiency of the estimates. Valid standard errors for  can be 

calculated by using the so called sandwich estimator [18]. Since the full likelihood of the data 

is not specified in GEE models, likelihood-based criteria to assess model fit are not available. 

Missing data 

Missing data are an important issue in many quality of life studies. Whether inference 

remains valid in the case of incomplete data depends on the underlying missing data 

mechanism and the statistical methods used. Estimates from the beta GLMM remain valid if 

the data are missing at random (MAR), i.e. that given the observed data, the probability of a 

missing observation does not depend on the unobserved data [36,37]. However, this requires 

maximum likelihood estimation based on adaptive Gaussian quadrature to be used; other 

estimation methods such as penalized quasi likelihood (PQL) can lead to biased estimates of 

the covariate effects [18]. In contrast, inferences with the beta GEE are only valid under the 

stronger assumption that data are missing completely at random (MCAR), i.e. that 

missingness is independent of both, unobserved and observed data [33,38]. Extensions of the 

GEE have been proposed to allow the data to be MAR, however, these methods either focus 

on monotone missing patterns or require the correct specification of the working correlation 

matrix [39,40]. 

Model comparison and residuals: current state of research 

Model comparison and model checking in the GLMM and GEE framework is not 

straightforward and suitable methods are sparse [41]. In general, if GLMMs are estimated 

using a full likelihood approach, models can be compared using information criteria such as 

Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC) [16]. AIC and 

BIC are measures of the likelihood, penalized for the complexity of the model. Zimprich 

suggested comparing beta GLMM and LMM on the basis of a pseudo-R
2
 which is motivated 

from the pseudo-R
2
 suggested by Cox and Snell for model comparison in logistic regression 

models [17,42]. It is defined as 

  

where LIntercept is the likelihood of a simple intercept-only linear model fit to the data, LFull is 

the likelihood of the considered beta GLMM or LMM, and N is the total number of 

observations. The pseudo-R
2
 compares the likelihood of the observed data in the beta GLMM 

and LMM with that of a simple intercept-only linear regression model. Thus, it reflects the 



improvement each model has over a model without explanatory variables and can be 

interpreted as the geometric mean squared improvement per observation [42]. 

There are two types of residuals in the GLMM. Depending on the level on which fitted values 

are produced, one can distinguish average Pearson residuals (related to the unconditional 

mean ) and individual-specific residuals (relating to the conditional means 

) where g denotes the link function of the regression model (i.e. the logit in 

the beta GLMM). Diagnostic plots typically use individual-specific residuals. Several 

different residuals have been proposed for use in beta regression with independent 

observations, namely standardized residuals, deviance residuals, weighted residuals, and 

standardized weighted residual [7,43]. However, none of these residuals has yet been 

extended to be applicable in the mixed regression context. 

Basu and Manca used a beta regression model to analyze QALY data and examined raw scale 

residuals to evaluate goodness of fit [3]. In particular, they calculated mean residuals across 

deciles of the linear predictor in order to identify systematic patterns of misfit in the 

predictions. 

Model specification 

In both empirical examples, we compared the performance of LMM, beta GLMM, and beta 

GEE model. Response variables were the SF-6D score and the SIS mobility subscale (SIS-

Mob) score, respectively. 

We transformed the zero- and one-valued responses in our empirical datasets to 0.005 and 

0.995, respectively [8,10,16]. This is because transformation (2) depends on the number of 

observations, and its use in the large KORA data would move the one-valued observations to 

0.9997 which is extremely close to the upper bound. However, to ensure that estimates are 

not affected by this choice, we also used other values for ε between 0.002 and 0.01 to move 

observations away from the boundary points. 

Covariates in the regression models were age at baseline, sex, and time point. In the KORA 

data, we additionally included diabetes and its interaction with time. Thus, the respective beta 

GLMM was given by 

 

where timeIIij is the dummy variable for the second measurement time. 

In the ICF stroke data, we additionally included rehabilitation phase and its interaction with 

time: 

  
 



where timeIIij and timeIIIij are the dummy variables for the second and third measurement 

times, respectively. The same (fixed effects) covariate structure was specified for the beta 

GEE models. 

Since we only had two to three time points, our mixed models only contained a random 

intercept but no random slope component. In accordance, we chose a compound symmetry 

correlation structure in the GEE models, assuming that all measurements on the same unit are 

equally correlated. In the case of two measurements only, this structure is identical to more 

complicated structures such as autoregressive correlation. 

Taking an individual-specific perspective, we compared model fit of LMM and beta GLMM 

using AIC, BIC, and pseudo-R
2
. However, in contrast to Zimprich, we did not calculate the 

pseudo-R
2
 by comparing the likelihood of the models specified above to that of an intercept-

only linear model, but to the likelihood of a simple LMM with random intercept only. This is 

because for longitudinal data, the correlation between observations within the same 

individual should also be accounted for in the basic model used for comparison. 

To further examine whether the two models provide a good fit to all parts of the data, we 

calculated mean raw residuals on the individual-specific level across deciles of the 

corresponding linear predictor [3]. If these means are not randomly scattered around 0, this 

indicates a systematic misfit of the model. 

Taking the population average perspective, we compared the unconditional predictions from 

the LMM with the corresponding predictions from the marginal beta GEE model. Fore each 

time point we calculated adjusted mean HRQL scores stratified by diabetes (in the KORA 

data) or rehabilitation phase (in the ICF stroke data). 

If an individual had a missing quality of life score or missing covariates at a certain time 

point, we deleted the respective observation but did not exclude the entire individual from the 

analysis. 

All models were estimated using the GLIMMIX procedure in SAS. We approximated the 

marginal likelihood in the beta GLMM through Gaussian quadrature which is implemented in 

the SAS GLIMMIX procedure (from version 9.2) by the method = quad option. The code 

used to fit LMM, beta GLMM and beta GEE to the KORA data is provided in Additional file 

1. 

Results 

In the KORA data, 91 observations were deleted due to missing values in the response 

variable. One additional observation was removed due to missing information on the diabetes 

status. This reduced the final sample size from 2037 to 1945. In the stroke data, the 

observations from 15 participants were deleted because they had no information on the 

rehabilitation phase. Nine further observations were removed due to missing values in the 

response variable. This reduced the final size from 566 to 517. In the KORA data, mean age 

at baseline was 66.2 years (SD 4.3), and 592 (50.9%) participants were male. The percentage 

of individuals with diabetes was 8.9% at baseline and 16.2% at follow-up. Mean age in the 

ICF stroke data was 57.2 years (SD 12.8), and 115 (54.3%) individuals were male. About two 



third (67.5%) of the participants were assigned to rehabilitation phase D, and one third to 

phase C. 

When single density curves were fitted to the univariate data, in both examples, the beta 

distribution reproduced the shape of the observed HRQL score (SF-6D and SIS-Mob) 

distributions clearly better than the normal distribution (Figure 1). It accommodated the left-

skew of the observed data and respected the boundary points while large parts of the fitted 

normal density function were lying outside the theoretically possible range of HRQL values, 

especially in the ICF stroke data. 

Figure 1 Distribution of SF-6D utility scores by time in the KORA data (upper part) 

and distribution of the SIS Mobility scores by time in the ICF stroke data (lower part). 

The curves represent estimated single density functions of the beta (solid) and the normal 

(dashed) distribution fitted to the univariate data 

The parameter estimates of the regression analyses fitted to the KORA data, are shown in 

Table 1. Comparing LMM and beta GLMM, one observes that age, sex and diabetes had a 

significant effect on the mean SF-6D utility score in both models, however, with an AIC of 

−2723 and a BIC of −2682, the beta GLMM fitted the observed data better than the LMM 

(AIC −2441; BIC −2401). This is also reflected by the pseudo-R
2
 statistics. (0.054 in the 

LMM, 0.181 in the beta GLMM). 



Table 1 Parameter estimates of LMM, beta GLMM and beta GEE in the KORA data 

(N = 1945) 

 LMM Beta GLMM Beta GEE 

Parameter coefficients Estimate p value Estimate p value Estimate p value 

Intercept 0.7808 <0.0001 1.3534 <0.0001 1.2816 <0.0001 

Age at baseline (centered) −0.0036 <0.0001 −0.0185 0.0007 −0.0209 <0.0001 

Male sex 0.0525 <0.0001 0.3483 <0.0001 0.3000 <0.0001 

Time −0.0140 0.0002 −0.0788 0.0004 −0.0815 0.0002 

Diabetes −0.0267 <0.0001 −0.1538 0.0002 −0.1586 <0.0001 

Diabetes*Time −0.0300 0.0544 −0.1837 0.0608 −0.1513 0.0813 

σ
2
 0.0091      

φ   14.45    

Variance of random effects Estimate SE Estimate SE Estimate SE 

Variance 0.0095 0.0007 0.3854 0.0309   

Covariance estimates       

Variance     0.0536 0.0028 

Compound symmetry     0.0564 0.0042 

Scale     0.0240  

Fit statistics       

−2LogL −2457  −2739  -  

AIC −2441  −2723  -  

BIC −2401  −2682  -  

Pseudo-R
2
† 0.0535  0.1812  -  

LMM Linear mixed model, GLMM Generalized linear mixed model, GEE Generalized estimating 

equations, SE Standard error, CS Compound Symmetry, AIC Akaike information criterion 

BIC Bayesian information criterion 

†Compared to linear random-intercept model with -2LogL = −2350 

Interpretation of parameter estimates in the beta regression model is similar to logistic 

regression where exponentiated coefficients can be interpreted in terms of odds ratios. For 

example, the parameter coefficient of male sex in the beta GLMM means that for a man, the 

ratio between the expected quality of life score μ and the difference to perfect health (1-μ) is 

about exp(0.3483) = 1.42 times higher than for a woman with the same set of covariates (and 

random effect). 

The interaction between diabetes and time suggests that the decline in HRQL over time was 

slightly larger in individuals with diabetes, however, the interaction term was only borderline 

significant. 



Figure 2 shows the mean residuals across deciles of the linear predictors for the KORA data. 

One observes a strong correlation between residuals and predicted means for both LMM and 

beta GLMM, suggesting that both models overestimated the mean at the lower, and 

underestimated the mean at the upper part of the distribution. Probably, this results from the 

fact that generic HRQL scores are usually highly dispersed and that we only included very 

few covariates in our model. 

Figure 2 Mean residuals across deciles of linear predictors for beta GLMM and LMM 

in the KORA data 

Parameter coefficients from beta GLMM and beta GEE are difficult to compare, however, 

one recognizes that parameters in the GEE are estimated with less precision. The adjusted 

mean SF-6D scores from LMM and beta GEE model together with their 95% confidence 

intervals are shown in Table 2. It shows that both models produce very similar estimates but 

that for individuals with diabetes, standard errors from the LMM were slightly smaller than 

those from the beta GEE. 

Table 2 Adjusted marginal mean SF-6D scores with 95% confidence intervals for time 

and diabetes in the KORA data (N = 1945) 

Time  T1 T2 

Diabetes LMM 0.757 (0.732 – 0.782) 0.713 (0.692 – 0.735) 

 Beta GEE 0.758 (0.729 – 0.784) 0.712 (0.689 – 0.735) 

No diabetes LMM 0.784 (0.776 – 0.792) 0.770 (0.760 – 0.780) 

 Beta GEE 0.786 (0.778 – 0.794) 0.772 (0.761 – 0.781) 

Effects of age and sex are set equal to their mean values 

LMM Linear mixed model, GEE Generalized estimating equations 

The regression models fitted to the ICF stroke data are shown in Table 3. Likewise, the table 

shows that the beta GLMM fitted the data better than the corresponding LMM. It achieved 

better AIC and BIC values and had a higher pseudo-R
2
. Furthermore, the beta GLMM 

respected the restricted range of the SIS-Mob scores, whereas 6 individual predictions based 

on the LMM estimates were lying outside the theoretically possible range. The significant 

interaction term between time and phase indicates that individuals in phase C showed greater 

improvement over time than individuals in phase D. 



Table 3 Parameter estimates of LMM, beta GLMM and beta GEE in the ICF stroke 

data (N = 517) 

 LMM Beta GLMM Beta GEE 

Parameter coefficients Estimate p value Estimate p value Estimate p value 

Intercept 0.4955 <0.0001 −0.0106 0.9569 −0.0766 0.6828 

Age (centered) −0.0031 0.0060 −0.0226 0.0015 −0.0162 0.0137 

Male sex 0.0528 0.0599 0.2931 0.0991 0.3200 0.0574 

Time 2 0.0801 0.0003 0.4637 0.0005 0.3343 0.0010 

Time 3 0.1597 <0.0001 0.9254 <0.0001 0.6792 <0.0001 

Phase D 0.2941 <0.0001 1.6160 <0.0001 1.4316 <0.0001 

Phase D*Time2 −0.0463 0.0807 −0.2005 0.2240 −0.0832 0.5154 

Phase D*Time 3 −0.1178 <0.0001 −0.5465 0.0017 −0.3573 0.0477 

σ
2
 0.0126      

φ   10.80    

Variance of random effects Estimate SE Estimate SE Estimate SE 

Variance 0.0325 0.0038 1.2782 0.1632   

Covariance estimates       

Variance     0.0764 0.0061 

Compound symmetry     0.1928 0.0230 

Scale     0.0514  

Fit statistics       

−2LogL −396.4  −924.1  -  

AIC −376.4  −904.1  -  

BIC −343.6  −871.3  -  

Pseudo-R
2
† 0.2277  0.7217  -  

LMM Linear mixed model, GLMM Generalized linear mixed model, GEE Generalized 

estimating equations, SE Standard error, CS Compound Symmetry, AIC Akaike information 

criterion, BIC Bayesian information criterion 

†Compared to linear random-intercept model with -2LogL = −262.8 

Looking at the mean residuals across deciles in Figure 3, one recognizes that, compared to 

the LMM, the beta GLMM underestimated the mean at the upper part of the distribution. 

Figure 3 Mean residuals across deciles of linear predictors for beta GLMM and LMM 

in the ICF stroke data 

The adjusted mean SIS-Mob scores from LMM and beta GEE are shown in Table 4, 

suggesting that, again, both methods lead to nearly identical mean estimates. For patients in 



phase C, standard errors from the LMM were smaller than those from the beta GEE model, 

however, the opposite was true for patients in phase D. 

Table 4 Adjusted marginal mean SIS-Mob scores with 95% confidence intervals for 

time and rehabilitation phase in the ICF stroke data (N = 517) 

Time  T1 T2 T3 

Phase C LMM 0.521 (0.468 – 0.574) 0.601 (0.545 – 0.657) 0.681 (0.624 – 0.737) 

 Beta GEE 0.520 (0.440 – 0.600) 0.602 (0.526 – 0.673) 0.681 (0.604 – 0.749) 

Phase D LMM 0.815 (0.779 – 0.852 0.849 (0.812 – 0.886) 0.857 (0.812 – 0.886) 

 Beta GEE 0.819 (0.787 – 0.847) 0.853 (0.824 – 0.878) 0.862 (0.829 – 0.889) 

Effects of age and sex are set equal to their mean values 

LMM Linear mixed model, GEE Generalized estimating equations 

The use of different values ε to move observations away from the boundary points in the beta 

GLMM did not appreciably affect parameter estimates; solely transformation (2) decreased 

the precision of estimates by about 20%. 

Discussion 

Beta regression is a promising method for modeling HRQL data in cross sectional research 

[3,10], and recent methodological work has extended the beta regression model to deal with 

dependent observations [8,16]. In this paper, we examined the potential of beta regression 

methods in the analysis of longitudinal HRQL data. We highlighted the need to distinguish 

between mixed and marginal models, namely beta GLMM and beta GEE, when beta 

regression is extended to the longitudinal case. Using two empirical applications with data 

distributions typically encountered in practice, we compared the performance of the beta 

regression methods to that of the commonly used LMM. 

Data collected in longitudinal designs typically have correlated observations, violating a basic 

assumption of ordinary regression methods. Longitudinal analyses require regression 

techniques that account for this dependence. In general, the correlation among repeated 

measures can be modeled implicitly, i.e. by including random effects as in the mixed model, 

or explicitly, i.e. by specifying a covariance structure between observations as in the marginal 

model. Through the inclusion of random effects, mixed models assume natural heterogeneity 

across individuals in some regression coefficients [18]. Random effects can also be motivated 

as an omitted subject-varying covariate, thus they give a potential explanation for the sources 

of correlation [19]. In contrast, marginal models treat the dependence between observations 

as nuisance and account for its effects by specifying a working correlation. 

For linear longitudinal models, regression coefficients have the same interpretation regardless 

of how the correlation is modeled. For regression models with non-identity link such as beta 

regression, however, interpretation depends on whether a mixed model (i.e. a GLMM) or a 

marginal model is fitted. In the GLMM, estimated effects are adjusted for individual 

difference and thus only refer to within-individual change. In the marginal model, in contrast, 

the mean response is conditional only on covariates and not on other responses or random 

effects [18]. 



The choice between the two depends mainly on the specific scientific question of interest. 

GLMMs are most useful for making inferences about individuals and tracking individual 

trajectories, while the marginal model is more useful for inferences about population or sub-

population averages. No model is a priori more suitable for the analysis of HRQL data than 

the other. It has been argued that mixed models may be more appropriate in epidemiological 

research as they allow a better understanding of the underlying mechanisms [28]. Also, they 

have a close relationship to matched-pair design methods often used in epidemiologic and 

public health research [19]. Due to the individual-specific interpretation of regression 

coefficients, the GLMM is also most meaningful for time-varying covariates. In contrast, the 

interpretation of time-invariant or between-subject covariates in the GLMM is less intuitive 

or even misleading since they also only allow a within-subject interpretation which is 

difficult to imagine. For example, if a beta GLMM is used to estimate treatment effects on 

HRQL in clinical trials, the respective treatment arm coefficient is interpreted as the 

difference in outcomes between two individuals with the same covariate values and the same 

random effects bi, differing only in their treatment arm. It does not describe the average 

treatment effect which is usually of major interest in intervention studies, especially if 

preference-based HRQL measures are used in economic evaluation studies [4]. Therefore, the 

marginal model may be more suitable in many applications in public health research. Also, it 

has been argued that many epidemiologic methods such as stratified methods are essentially 

population-averaged methods [19]. For our empirical applications this means that the change 

in SF-6D index scores associated with diabetes in the KORA data may be better described by 

a beta GLMM, while the difference in mean SIS scores between rehabilitation phases in the 

ICF stroke data may be better assessed using a beta GEE. Differences between beta GLMM 

and beta GEE also exist with respect to the handling of missing data: In practice, the beta 

GLMM may be more convenient since it remains valid under the MAR assumption which is 

usually more plausible in quality of life studies than the MCAR assumption made by the beta 

GEE. 

A common approach to compare regression models and assess goodness-of-fit is to consider 

likelihood-based statistics which evaluate the probability of the observed data under the 

model. In both of our empirical examples, beta GLMM had better fit statistics (such as AIC, 

BIC or pseudo-R
2
) than the commonly used LMM, indicating that the beta distribution better 

accounted for the bounded support of the observed HRQL scores and their highly skewed 

distributions. However, an important question is whether better likelihood statistics make the 

beta GLMM more suitable than the LMM in practice. A similar issue has also been addressed 

previously: Zimprich used a beta GLMM to analyze longitudinal data on complex choice 

reaction time and concluded from better likelihood-based fit statistics that beta GLMM fitted 

the data much better than a LMM did [17]. However, given a fairly close similarity between 

parameter estimates, he also raised the question whether apart from these statistical 

considerations, beta GLMM is worth the effort to apply in practical data analyses. We even 

go one step further arguing that the likelihood may not be the most relevant criterion when 

comparing models to analyze HRQL data. Distributional fit and predicted densities may be 

important in applications with focus on individual density forecasts, such as in the reaction 

time example. However, when analyzing HRQL data in RCTs or cohort studies, conditional 

means rather than predictive densities are commonly of major interest [4]. Against this 

background, more attention should be attached to the question whether the mean structure is 

appropriately reproduced by the model. Figure 2 showed that the beta GLMM reproduced the 

observed values at the upper end of the distribution less satisfactorily than the LMM. This 

may be explained by the fact that beta regression fits both means and variances to the data. 

Since in the beta distribution the variance is a function of the mean, the estimated mean 



function may be biased. This phenomenon has already been observed in a cross-sectional 

design and suggests that full likelihood-based beta regression methods should be used with 

care when analyzing HRQL [3]. 

In the marginal perspective, beta GEE produced nearly identical estimates to the LMM, 

however, differences could be observed with respect to standard errors, especially in the ICF 

stroke data (Table 4). The larger standard errors of the beta GEE for patients in phase C are 

probably due to the fact that beta GEE provides robust standard errors using the sandwich 

formula. The smaller standard errors for patients in phase D, however, indicate that beta 

regression accounts for heteroscedasticity related to the bounded nature of the response 

variable [8]. This is because the predicted means of individuals in phase D were rather high, 

and for outcomes bounded on the unit interval, the variability of scores declines as the mean 

approaches one. 

An important limitation of the beta regression is that it does not contain the boundary points 0 

and 1 so that quite arbitrary transformation methods need to be applied. However, our 

sensitivity analyses support previous research in that parameter estimates are robust to the 

choice of transformation, provided that the values are moved far enough away from the 

boundaries. 

The two empirical data sets used in this study were chosen to cover different types of studies 

commonly encountered in HRQL research. In particular, we addressed both disease-specific 

and generic HRQL scores and used data both from a cohort study and from a clinical setting. 

The two illustrative examples tackle clinically relevant research questions that have also been 

addressed in other studies [44-46]. However, since this paper focused on the comparison 

between different methodological approaches, we did not deal in detail with interpreting 

results in the healthcare context. For the purpose of this paper we have also made some 

simplifications, e.g. we did not consider model building but preferred using a rather lean 

model with only a few covariates. Also, we treated the precision parameter in the beta 

GLMM as constant instead of modeling it in terms of covariates, although such an approach 

may have improved model fit [10,17,26]. 

Another limitation of our study is that our empirical data only provided up to three 

measurements per individual. Further research is needed to examine the use of beta 

regression in more complex study designs. Also, we did not consider random slopes which 

are commonly used to model heterogeneity in the effect of time on the response variable [15]. 

However, for reasons of model convergence, it is not recommended to fit anything more 

complex than a single random intercept model to non-normal data with only a few time 

points per person. Similarly, we did not consider working correlation structures other than 

compound symmetry in the beta GEE. However, compound symmetry assumes the same 

correlation for all observations within a person which we think is reasonable in the case of 

only a few time points per person. Furthermore, it corresponds to the correlation structure 

implicitly modeled by the mixed model with single random intercept. 

Conclusions 

In conclusion, longitudinal beta regression models are a natural candidate to analyze HRQL 

over time since they account for the bounded range and the skewed distribution of the 

response variable. However, depending on whether a population-averaged or a subject-



specific approach is preferred, researchers should distinguish between a mixed (beta GLMM) 

and a marginal (beta GEE) model. The mixed model may be more appropriate in cohort 

studies in order to track individual HRQL trajectories, while the marginal model is more 

suitable to estimate average treatment effects in intervention studies. Although beta 

regression addresses the specific idiosyncrasies of bounded HRQL data, empirical estimates 

only slightly differed from those of the commonly applied linear mixed model. 
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