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Abstract

Motivation: Dynamics of cellular processes are often studied using mechanistic mathematical models.
These models possess unknown parameters which are generally estimated from experimental data assu-
ming normally distributed measurement noise. Outlier corruption of datasets often cannot be avoided.
These outliers may distort the parameter estimates, resulting in incorrect model predictions. Robust para-
meter estimation methods are required which provide reliable parameter estimates in the presence of
outliers.

Results: In this manuscript, we propose and evaluate methods for estimating the parameters of ordinary
differential equation (ODE) models from outlier-corrupted data. As alternatives to the normal distribution
as noise distribution, we consider the Laplace, the Huber, the Cauchy and the Student’s t distribution. We
assess accuracy, robustness and computational efficiency of estimators using these different distribution
assumptions. To this end, we consider artificial data of a conversion process, as well as published expe-
rimental data for Epo-induced JAK/STAT signaling. We study how well the methods can compensate and
discover artificially introduced outliers. Our evaluation reveals that using alternative distributions improves
the robustness of parameter estimates.

Availability: The MATLAB implementation of the likelihood functions using the distribution assumptions
is available at Bioinformatics online.

Contact: jan.hasenauer@helmholtz-muenchen.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction potential sources of measurement errors during data collection and data

Quantitative dynamic models are widely used to gain a mechanistic under- processing (Ghosh and Vogt, 2012). These include technical limitations

standing of biological processes (Ideker et al., 2001; Kitano, 2002). These
dynamic models facilitate the integration of multiple experimental datasets
and the analysis of system properties that are not within reach of biological
experiments (Aderem, 2005). For this, the models need to be calibrated

and human errors, such as pipetting errors or incorrect labeling, which
result in potentially large errors (Motulsky and Christopoulos, 2003). Indi-
vidual data points which are corrupted by large errors are usually denoted
as outliers and assumed to be generated from a different mechanism as
the remainder of the data points and might be misleading in the further

based on experimental data in order to determine the unknown parameters, . A )
analysis (Hawkins, 1980; Tarantola, 2005). Therefore, parameter estima-

e.g. initial values or kinetic rates (Tarantola, 2005). 3 ; . . ! ]
tion using outlier-corrupted data can result in large estimation errors and

limits the validity of models.
Since outlier-corrupted data distorts results in various fields, many

Experimental data used for parameter estimation are collected using a
broad spectrum of techniques. While measurement devices provide incre-

asingly precise quantitative data (Chen et al., 2013), there are numerous : ’
methods for the detection and subsequent removal of outliers have been

developed (Hodge and Austin, 2004; Ben-Gal, 2005; Niu et al., 2011).
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Most of the algorithms either assign a score for the degree of abnormality
or a binary label to a data point. This labeling is usually based on a fit to a
distribution or distance measure e.g. k-nearest neighbor distance (Rama-
swamy et al., 2000). Eventually, it however remains a subjective decision
on whether or not a data point is sufficiently abnormal to be removed
(Aggarwal, 2015). Noisy measurements complicate the distinction even
more and the increasing size and complexity of biological data make the
removal of outliers a challenging task. Furthermore, the elimination of
data points which are indeed no outliers, as well as the retention of outliers
in the data, will yield less reliable results in the further analysis (Motulsky
and Christopoulos, 2003).

In the fields of regression (Lange et al., 1989; Peel and McLachlan,
2000) and computer vision (Stewart, 1999) robust estimation methods
are used to circumvent the removal of data points. These robust approa-
ches exploit estimators that are less affected by outliers than the standard
approach, the least squares estimator. Well known maximum-likelihood
type estimators (M-estimators) (Press et al., 1988), which were found to
be robust to outliers are, for example, the least absolute deviation esti-
mator (Tarantola, 2005) and the Huber M-estimator (Huber et al., 1964).
These estimators essentially use lower weights for data points with large
residuals. In addition, Student’s t regression models were studied, which
assume Student’s t distributed errors (Fernandez and Steel, 1999).

The methods developed in the field of robust regression can in principle
be applied across scientific fields. Each field has, however, its particula-
rities regarding experimental data, e.g. noise levels, outlier generating
mechanisms, and mathematical models which influence the performance.
For dynamical models of biological systems, the Huber M-estimator was
already successfully applied, yielding more reliable parameter estimates
(Caoetal.,2011; Qiuetal.,2016). A comprehensive evaluation of different
methods in the field of quantitative biology is, however, missing. Further-
more, the standard formulation as regression problem does not allow in a
straightforward way to perform model selection using statistical methods
such as the likelihood ratio test (Wilks, 1938), the Akaike (Akaike, 1973)
or the Bayesian information criterion (Schwarz, 1978). To facilitate model
selection for the mechanistic as well as the statistical model, a formula-
tion of robust estimation in terms of (normalized) probability distributions
would be beneficial.

In this manuscript we consider a comprehensive selection of statistical
models for the residual distribution, assuming distributions with heavier
tails than the generally used normal distribution. These statistical models
correspond to a range of robust estimators. We derive the analytic gra-
dients and Hessian matrices of the resulting objective functions, which
are required for an efficient optimization (Raue et al., 2013; Hross and
Hasenauer, 2016). The formulation in terms of probability distributions
facilitates model selection and the estimation of tuning parameters, e.g. for
the Huber M-estimator. We systematically assess and evaluate the proper-
ties of the resulting estimation in the absence and presence of outliers. The
efficiency and robustness of the methods could statistically be evaluated
for generated artificial data of a conversion process as the true parameters
were known. Additionally, we applied our method to artificially perturbed
experimental data of the JAK/STAT signaling pathway.

2 Methods

In this section, we propose methods for the robust estimation of parame-
ters of biological processes from outlier-corrupted data. We introduce the
considered dynamical and statistical models along with optimization and
model selection methods. Additionally, we present three outlier scenarios.
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Fig. 1. Three scenarios used for the data generation. No outliers: the data is not outlier-
corrupted and any deviation is due to measurement noise. One data point at zero: the data has
one outlier, which is a zero-entry. Two data points interchanged: the data has two outliers,
which are two measurements that were interchanged. The arrows illustrate how the outliers
were introduced in the dataset.

2.1 Data-driven modeling of dynamic biological systems

We consider biological processes, for which the dynamics are modeled by
ODEgs, e.g. reaction rate equations (Klipp et al., 2005). ODEs describe the
temporal evolution of the concentration of molecular species and can be
written as

&= f(z,8), 2(0)=wo(f),

with time-dependent states z(t) € R"/®, vector field f, parameters
e RTE (e.g. reaction rates), and parameter-dependent initial conditions
z0(§) € ]R’_f_m. The states and parameters are mapped to the observables
y € R™v by an output function A,

y = h(z,§).

We consider data D = {(tx, Jx) } L., at n¢ time points with ny, observa-
bles, J = (Y1,k>-- - » Q,ka)T. The measurements 7, of the observables
y(t, £) are subject to measurement noise

Ti,k ~ P(Fi kv (tk, §), i) - M

The noise is usually assumed to be normally distributed. In the presence
of outliers, single observations are however drawn from an alternative
distribution with heavier tails, which is difficult to assess due to small
sample sizes.

2.2 Outlier scenarios

We studied three scenarios that differ in the outlier generating mechanism
which are — in our own experience — practically relevant (Figure 1). In the
first scenario (no outliers), no outliers are included in the data. In the second
scenario (one data point at zero), the measured concentration at a certain
time point ¢y, is zero, e.g. due to a missing label or entry. Consequently,
we measure ; , = 0. In practice this might not be easy to spot due to
background intensity and additional noise. In the third scenario (two data
points interchanged), two data points in the dataset were interchanged.
This might have occurred due to labeling or entry errors. In the case of
several observables (n, > 1) the modification was applied to all n,
observables.

2.3 Distribution assumptions

For parameter estimation from outlier-corrupted data we study the standard
assumption, the normal distribution, as well as distributions with heavier
tails than the normal distribution, the Laplace, the Huber, the Cauchy and
the Student’s t distribution. The distributions used for p in (1) are listed in
Table 1.

The considered distributions possess a range of properties regarding
their moments. The Laplace distribution has well defined moments (e.g.
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Table 1. Probability densities. The formulas for the normal, Laplace, Huber, Cauchy and Student’s t distribution are listed together with the parameters defining the

distributions. The error function is denoted by erf and the gamma function by I".

distribution parameters ¢

probability density
al @l ) = 1 _1(y=y 2
normal p(gly,on) = 5 exp s (45
_ 2
: exp (—% (%4) ) ’
Huber PGl ona) = s 3
exp (—% (2/{ y;hy|
with s = <\/27roherf(%) + 29n exp(— 3k
Laplace p(gly,b) = 55 exp <— 'g;y‘)
Cauch ] =1 ;
auchy Py ) = 25 Gy
T v+41
Student’s t ( 2 )

_ . 1 (g—y 2\ 2
P(ZA%%J’)—W 1+;(T¢)

standard deviation o, > 0

Th scale o, > 0, tuning parameter > 0

scaleb > 0

scaley > 0

scale o > 0, degrees of freedom v > 0

finite variance) for all parameter values. The Student’s t distribution pos-
sesses an infinite variance for large degrees of freedom and the variance of
the Cauchy distribution is always infinite. We refer to the Laplace, Huber,
Cauchy and Student’s t distribution in the following as heavier-tailed distri-
butions. Note that the case of a log-normal distribution assumption, as used
by Kreutz et al. (2007), is implicitly captured in the normal distribution
assumption since this corresponds to log-transformation of the output and
the use of a normal distribution assumption.

2.4 Parameter estimation

The kinetic parameters £ and distribution parameters ¢ are usually
unknown. To estimate the unknown parameters 6 = (&, () from the
data, we use maximum likelihood estimation. The likelihood L1 (9) is the
conditional probability of observing some data D given the parameters 6,

nt ny

Lp(0) = H HP (Tielyi (b, €) 5 04) ©)

k=1i=1

with distributions p as listed in Table 1. For numerical reasons, the maxi-
mum of the likelihood is usually determined by minimizing the negative
log likelihood,

ng Ny

ML — arg min {_ >0 logp (Tiklyi (tk, ) 7%)} )

k=11i=1

Substitution of p from Table 1 in (3) reveals the relation of this formula-
tion with least squares and M-estimators. For the normal distribution with
known variances, (3) is a least squares problem. For the Laplace and Huber
distribution with known parameters, we obtain the least absolute deviation
estimator and the Huber M-estimator, respectively. The formulation can
however also be employed if the parameters of the statistical models, e.g.
the tuning parameter of the Huber distribution, are unknown. For details
we refer to the Supplementary Information.

The optimization problem (3) is usually — independent of the distri-
bution assumption — nonlinear and non-convex. We performed the mini-
mization by multi-start local optimization (Raue et al., 2013) using the
MATLAB toolbox PESTO (Hross and Hasenauer, 2016). To improve per-
formance and convergence of the optimization an analytical description of
the gradient and higher-order derivatives was derived for all distribution

assumptions (see Supplementary Information, Section I). The reaction rate
equations and the sensitivities, needed for the calculation of the gradient,
were simulated using the MATLAB toolbox AMICI (Kazeroonian et al.,
2016). Moreover, we estimated the log; o-transformed parameters due to
better numerical properties.

The accuracy of the maximum likelihood estimate for different
distribution assumptions were evaluated using the Mean Squared Error
(MSE)

MSE [gML’gtrue] ) |:<£ML _ gtrue)2:| ]

A small MSE indicates a good agreement of the true and estimated parame-
ters. The expectation is computed over several datasets. We only calculated
the MSE for the kinetic parameters &, since the distribution parameters are
not comparable.

The uncertainty of an individual estimate can be assessed by compu-
ting the confidence interval (CI) for a confidence level « using profile
likelihoods (Raue et al., 2009). The CIs should cover the true parameter
with a frequency of 1 — . Accordingly, if the true parameter is known,
the appropriateness of the CIs can be evaluated by computing the cove-
rage ratio (CR), which should be close to the desired confidence level
(Schelker et al., 2012).

2.5 Model selection

We performed hypothesis testing for the statistical models including the
distribution assumptions using the Bayesian Information Criterion (BIC),

BIC = —21log (p (D|6ML)> + log(np)ng , @

with np denoting the number of data points and ng denoting the number
of parameters. Models with low BIC values are preferred and models with
differences in BIC values to the minimal BIC value above 10 are commonly
rejected (Raftery, 1999).

3 Results

To study the performance and robustness of parameter estimation using
the different distribution assumptions, we applied the methods to artificial
data of a conversion process as well as experimental data of the JAK/STAT
signaling pathway.
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3.1 Simulation study: Conversion reaction

For this simulation study, we considered a simple conversion process:
A = B.This process is described by a reversible reaction, which converts
a biochemical species A to a species B with rate k1, and B to A with rate
k2. The corresponding ODEs are

1 = —kiz1 + kex2,

kiz1 — koz2a,

T2
for which the state vector z = (z1, zz)T consists of the concentrations
of A and B, respectively. We assumed that z is measured yielding the
observation model y = h(x,0) = xo.

For the evaluation of the proposed method, we generated 103 artificial
datasets for each of the three outlier scenarios described in Section 2.2.
The datasets were generated with initial conditions zo = (1, 0)7, kinetic
parameters £ = (k1,k2)T = (1015, 10‘1‘5)T and normally distributed
measurement noise with standard deviation 0.02. Examples of datasets for
the scenarios are depicted in Figure 2.

Mean squared estimation error for different distribution assumptions
To evaluate the differences in parameter estimation using different distri-
bution assumptions, the kinetic parameters k; and kg together with
the distribution-specific parameters were estimated from the 103 data-
sets per scenario using maximum likelihood estimation (Supplementary
Information, Section 2). Parameter estimation using the assumption of
normally distributed measurement noise allowed for the reconstruction of
the systems trajectory in the absence of outliers (Figure 2). However, if
there are strong outliers, the fitted and the true trajectory differ, implying
estimation errors. In contrast, for the Laplace, Huber, Cauchy and Stu-
dent’s t distribution the fitting yielded systems trajectories close to the
trajectory used to simulate the data.

These findings are also reflected in the MSE for the parameter estimates
of the kinetic parameters k1 and kg (Figure 3A). If no outliers are present in
the data, all methods yield a comparable MSE for both kinetic parameters.
In the presence of outliers, the MSE achieved using the normal distribution
is however much higher. This implies that the parameter estimates differ
largely from the true parameters, which will result in wrong predictions.
The heavier-tailed distributions were able to provide reliable estimates
of the parameters in the presence of outliers. Indeed, the MSE hardly
increased, indicating that the influence of a small number of outliers can be
compensated. Consequently, robust estimation methods reduce the MSE
for outlier-corrupted data.

Unraveling the presence of outliers using model selection
As parameter estimation using heavier-tailed distributions is robust with
respect to outliers, we wondered if these methods can also be used to
reveal outliers in datasets. To analyze this, model selection was performed
regarding the statistical models using the BIC. Note that the models do not
differ in the model dynamics but only in the distribution assumption. Using
the 103 datasets per scenario the percentage was calculated how often a
distribution assumption achieved the lowest BIC. The model employing
the normal distribution assumption was chosen for most of the no outliers
datasets (Figure 3B). In the presence of outliers, heavier-tailed distributions
are preferred over the normal noise model. In particular for the one data
point at zero scenario we observe a large difference of the average BIC
values (Figure 3C). Accordingly, model selection detected the presence
of outliers. This shows that heavier-tailed distributions can be used as
diagnostic tools to test for the presence of outliers.

In addition to the distribution of the measurement noise and the outliers,
also the structure of the biochemical reaction network might be unknown.
In this case, the network structure has to be inferred from the experimental

data along with the model parameters. If probability distributions with hea-
vier tails are used, data points might (incorrectly) be considered as outliers
due to the model’s inability to describe them or because model selection
methods prefer lower model complexity. At least in a simple toy problem
this was, however, not observed. Furthermore, parameter estimation with
heavier-tailed distribution tends to provide a good fit to a large fraction of
the data instead of distributing the error equally (Figure 2B and C). Accor-
dingly, a few measurements are sufficient to verify or falsify whether a data
point is an outlier. For details we refer to the Supplementary Information,
Section 5.

Optimizer convergence and computation time

In parameter optimization, critical aspects are optimizer convergence and
computation time (Raue et al., 2013). We evaluated both properties by
determining for each scenario and distribution assumption how many runs
of the local optimizer converged by using a statistical approach (Hross
and Hasenauer, 2016). We found that for this simple example the conver-
gence is for most distributions comparable and above 75% (Figure 3D).
Merely the optimization using the Huber distribution yields a slightly lower
fraction of converged starts.

The mean time needed per start is similarly low for the normal, Cau-
chy and Student’s t distribution (Figure 3E). Only the Laplace and Huber
distribution have a higher computation time, since no approximation of the
Hessian based on first-order sensitivities could be found (see Supplemen-
tary Information, Section 1.2). This verifies that the use of robust methods
did not increase the computation time significantly.

Consistency of confidence intervals

To assess the influence of outliers on parameter Cls, we computed
profile likelihoods. Examples for profiles are shown in Supplement
Figure S2A and B. Based on these profile likelihoods, the CIs were
computed for different confidence levels (Figure 4A).

For the artificial data (Figure 2) we find that in the case of no outliers,
all distribution assumptions yield similar CIs for parameter k1. The confi-
dence intervals computed using the normal distribution widen in presence
of outliers, yet not ensuring that the true parameter is covered. Also for the
Laplace and Huber distribution the CIs become wider, the true parameter
however remains covered. For the Cauchy and the Student’s t distribution
we observe that the CIs become even tighter, which is counter-intuitive as
the information content in the data should be decreased. The presence of
outliers shifts the probability mass often closer to the mode. The results
for parameter k2 are similar (Supplement Figure S2C).

We evaluated the reliability of the confidence intervals by determining
the coverage ratio which states how often the true parameter £'7€ is cove-
red by the confidence intervals for all 103 generated datasets per scenario
(Figure 4B). Interestingly, the coverage ratio is lower than the confidence
level for most of the cases indicating that the size of the confidence inte-
rvals is too narrow and therefore the uncertainty in the parameter estimates
is underrated. For the normal distribution we tried to correct the coverage
by applying the Bessel correction. The improvement was, however, minor
(Supplementary Information 2). The Laplace and Huber distribution pro-
vide the best coverage ratio in the presence of outliers. It was shown that
outliers have a greater influence on the confidence intervals when using
the normal distribution assumption.

Sample size limitation of the Cauchy and the Student’s t distribution
The performance of estimators often depends strongly on the sample size.
Therefore, we analyzed how different distributions perform as the sam-
ple size is decreased. To this end, we varied the number of data points
(n¢ = 10,4, 3) for datasets of the conversion process without outliers.
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Fig. 2. Data and fits for different scenarios and distribution assumptions. The data points are generated by simulating the system with normally distributed noise and generating outliers

according to the defined scenarios. The fits corresponding to the different distribution assumptions, normal, Laplace, Huber, Cauchy and Student’s t distribution are plotted as lines.
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Fig. 3. Evaluation of optimization results for all three outlier scenarios. (A) MSE for the
log o-transformed parameters. The circles indicate the MSE over all 108 datasets per sce-
nario, while the error bars represent the 95% percentile bootstrap CIs. (B) Model selection
results using BIC. The percentage is given for how many times each statistical model is
chosen for the 103 datasets per scenario. (C) Difference of BIC value of a statistical model
compared to the best statistical model. The difference is averaged over all datasets with the
minimum computed for all datasets individually. (D) Average percentage of converged starts
over all datasets. (E) The mean computation time per optimizer start and the corresponding

standard error of mean.

For a lower number of data points, the model can fit an higher percen-
tage of the data points exactly (= up to numerical accuracy). For the full
datasets (ny = 10), the obtained residual distributions for all combined
datasets fit the corresponding distributions (Figure SA), visualized for the
median scale parameters obtained with parameter estimation (Figure 5B).
The scale parameters for the normal, Laplace and Huber distribution do
not become much smaller for lower number of data points. However, the
scale parameters of the Cauchy and Student’s t distribution are decreased
and thus the mass of the distribution is concentrated on the exactly fit-
ted data points, neglecting other residuals, i.e., the model overfits single

two data points
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interchanged
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Fig. 4. Confidence intervals and coverage ratios. (A) Example Cls for one dataset per
scenario (shown in Figure 2), indicated by different bars for 80%, 90%, 95% and 99%
from dark to light colors. The MLEs for the normal, Laplace, Huber, Cauchy and Student’s
t distribution are displayed as vertical lines. The true parameter value for k1 is displayed
as vertical grey line. (B) Coverage ratios for parameter k1 for different confidence levels
considering all 103 datasets per outlier scenario. Lines in the upper part of the panels

indicate that the CI is too wide, lines in the lower part that it is too narrow.

data points. For n; = 3 these scale parameters are even estimated at the
lower bound defined as 10710, Scale parameters close to zero yield resi-
dual distributions which do not reflect the variation in the data (see also
Figure S3).

For regression, Ferndndez and Steel (1999) suggest to provide a lower
bound for the degrees of freedom v calculated with respect to the ratio of
exactly fitted data points to other data points, thereby avoiding the regions
of likelihood for which the problem occurs (Jones and Faddy, 2003; Taylor
and Verbyla, 2004). However, such a restriction is not possible for the
Cauchy distribution, which should, according to the formula of (Fernandez
and Steel, 1999), only be used if less than half of the data points can be
fitted exactly. In general, the Cauchy and Student’s t distribution should
be applied carefully if the model is too flexible and overfitting is to be
expected.

3.2 Application study: JAK/STAT signaling pathway

To assess the performance of the robust estimation methods under reali-
stic conditions, we considered model and data from JAK/STAT signaling
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Fig. 5. Sample size limitation of Cauchy and Student’s t distribution. (A) Normalized histo-
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in response to Epo. The phosphorylated receptor (pEpoR) of the hor-
mone Erythropoietin leads to JAK-mediated phosphorylation of STAT,
which dimerizes and enters the nucleus to initiate the transcription of tar-
get genes (Figure 6A). We used the mathematical model introduced by
Swameye et al. (2003), which is provided in the Supplementary Infor-
mation, Section 3.1. It comprises kinetic parameters, spline parameters
for modeling the input pEpoR concentration as well as scale and offset
parameters.

Swameye et al. (2003) collected quantitative data of three observables
at 16 time points. The dataset has been analyzed in a variety of studies and
seems to be free of outliers. To evaluate the method, we introduced artifi-
cial outliers which led to 16 cases of one data point at zero and 120 cases
of two data points interchanged. Subsequently, we studied how well the
estimation results obtained for the original dataset are resembled. Exam-
ples of outlier realisations are visualized in Figure 6C and D along with

the corresponding fit achieved using different noise models. We exclu-
ded the Cauchy distribution from our analysis and restricted the degrees
of freedom for the Student’s t distribution to v > 2, since overfitting of
individual data points was an issue.

The fitting of the original dataset (no outliers) using the different
distribution assumptions yields very similar trajectories (Figure 6B). This
supports the hypothesis that the dataset is free of outliers. For the examples
of the outlier-corrupted scenarios shown in Figure 6C and D, the trajectory
obtained using the normal distribution is visibly influenced by the outliers,
while the other distributions yield a similar behavior of the trajectories as
in the original data without outliers.

The optimal parameter values found for no outliers were taken as refe-
rence for the MSE calculated for one data point at zero and two data
points interchanged (see Figure 7A and B for the biologically meaningful
parameters). For all parameters, the MSEs achieved using the Laplace, the
Huber and the Student’s t distribution are smaller than the MSE observed
using the normal distribution. This implies that these statistical models
yield more robust estimates in the presence of outliers even if the mea-
surement noise might be normally distributed. Considering the MSE for
the parameter vector instead of individual parameters, the normal distri-
bution yields the highest error in the estimates for both outlier scenarios
(Figure 7C). For the distribution parameters and the MSE of the biologi-
cally non-relevant parameters see Figure S5 and S6A-B. The convergence
for the three scenarios is comparable for the normal, Laplace and Stu-
dent’s t distribution, but lower for the Huber distribution (Figure S6C).
This application example demonstrates that the proposed approaches also
yield promising results in a more realistic example.

4 Conclusion

Outliers in biological data can arise through experimental errors or incor-
rect data processing and, by definition, deviate largely from the predicted
observable. Using objective functions which exploit the squared distance,
as the normal distribution, gives a great weight to outliers. Consequently,
these outliers have a relatively large contribution to the objective function
compared to other data points. We implemented efficient gradient-based
parameter estimation for ODE models using heavier-tailed distributions to
reduce the effect of outliers. These methods are well established in robust
regression and we demonstrated that they are also beneficial in the context
of dynamical systems.

We evaluated parameter estimation using heavier-tailed distributions
from artificial data for a conversion process and from artificially pertur-
bed experimental data for the JAK/STAT signaling pathway. The analysis
revealed that in the absence of outliers, parameter estimation for the dif-
ferent methods performed similarly. In the presence of outliers, however
the MSE is reduced by the use of heavier-tailed distributions. The heavier-
tailed distributions yielded a reasonable optimizer convergence, even for
a discretized PDE model of Pomlp gradient formation (Supplementary
Information 4). The suggested model-based approaches facilitate an auto-
matic, unbiased detection of outliers and can also be applied if no replicates
for individual measurements are available. They allow a joint estimation
of the kinetic and distribution parameters, which is in different formula-
tions rather time-consuming (Qiu et al., 2016). Furthermore, only in this
normalized description a thorough statistical evaluation is possible as it
enables the use of statistical criteria.

A manual exclusion of outliers is time consuming and suffers from
the lack of a universal definition of outliers, since extreme data points
that are truly generated from the underlying mechanisms should not be
removed as they carry important information. However, if the intention
still is to exclude outliers from the data, the detection of the outliers might
be more reliable when first fitting the full data with a robust method. Then
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Fig. 6. Modeling and parameter estimation of JAK/STAT signaling. (A) Illustration of the pathway, for which arrows represent biochemical reactions and circles the species of the system.
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data points that have a large distance from the corresponding simulated
trajectory can be removed according to e.g. the three-sigmarule (Aggarwal,
2015).

The evaluation of different statistical models revealed that sample size
limitations can result in problems, e.g. overfitting. Furthermore, the cove-
rage of confidence intervals might not be appropriate, as the distribution
does not capture the true outlier distribution. Even in the case in which

the true distribution is known, i.e. in the no outlier scenario, the cove-
rage might be incorrect as the threshold value of the profile likelihoods
holds only asymptotically or for linear problems. In other cases, the thre-
shold values can be computed numerically using Monte-Carlo sampling
(Kreutz et al., 2012). For the considered problem and threshold values
derived from the x2—distribution, the Laplace and Huber distribution were
found to provide the best balance as they lead to reliable fits by ensuring
a good coverage. If, however, the convergence is an issue, e.g. for large
models with many parameters and state variables, the Laplace distribution
might be advantageous. Consequently, our recommendation for outlier-
corrupted data is to employ the Laplace or Huber distribution as residual
distribution in the parameter estimation. As part of future work, other distri-
bution assumptions, e.g., the normal-Laplace distribution (Reed, 2006) ,
which also has an asymmetric version, could be examined for parameter
estimation in dynamical systems.

In summary, we provided a first comprehensive evaluation of the dif-
ferent properties of heavier-tailed distributions when calibrating dynamic
mathematical models to experimental data. Therefore, we derived the
necessary gradients and Hessian matrices of the objective function to
ensure an efficient optimization. The proposed approach has substantial
practical value, since it allows to use statistical tools, such as model sele-
ction, and it yields robust parameter estimates in the presence of outliers.
This facilitates more accurate and reliable predictions, which are important
to gain a better understanding of the biological processes of interest.
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