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1 Statistical models for distribution assumptions

In this section the likelihood and the log-likelihood function for the different distribution assumptions are presented.
In addition, the corresponding gradients and Hessian matrices of the log-likelihoods are listed.

1.1 Normal distribution

Under the assumption of independent normally distributed measurement noise, the likelihood is

LD(θ) =

nt∏
k=1

ny∏
i=1

[
1√

2π σi(θ)
exp
(
− 1

2

(ȳik − yi(tk, θ))2

σ2
i (θ)

)]
.

Accordingly, the log-likelihood function is given by

logLD(θ) = −1

2

nt∑
k=1

ny∑
i=1

[
log(2πσ2

i (θ)) +
( ȳik − yi(tk, θ)

σi(θ)

)2
]
.

The gradient of the log-likelihood for l = 1, . . . nθ is given by

∂logLD(θ)

∂θl
= −1

2

nt∑
k=1

ny∑
i=1

[
1

σ2
i (θ)

(
1− (ȳik − yi(tk, θ))2

σ2
i (θ)

)∂σ2
i (θ)

∂θl
− 2

ȳik − yi(tk, θ)
σ2
i (θ)

∂yi(tk, θ)

∂θl

]
and the Hessian matrix for l,m = 1, . . . , nθ by

∂logLD(θ)

∂θl∂θm
= −1

2

nt∑
k=1

ny∑
i=1

[
− 1

σ4
i (θ)

(
1− 2

(ȳik − yi(tk, θ))2

σ2
i (θ)

)
∂σ2

i (θ)

∂θl

∂σ2
i (θ)

∂θm

+
1

σ2
i (θ)

(
1− (ȳik − yi(tk, θ))2

σ2
i (θ)

)
∂2σ2

i (θ)

∂θl∂θm

+ 2
(ȳik − yi(tk, θ))

σ4
i (θ)

(
∂σ2

i (θ)

∂θl

∂yi(tk, θ)

∂θm
+
∂σ2

i (θ)

∂θm

∂yi(tk, θ)

∂θl

)
+ 2

1

σ2
i (θ)

∂yi(tk, θ)

∂θl

∂yi(tk, θ)

∂θm

− 2
ȳik − yi(tk, θ)

σ2
i (θ)

∂2yi(tk, θ)

∂θl∂θm

]
.

For the optimization, we approximated the Hessian by neglecting the terms which depend on the second-order
derivative of the outputs with respect to the parameters, yielding the Fisher Information Matrix (FIM).

1.2 Laplace distribution

Under the assumption of independent Laplace distributed measurement noise, the likelihood is

LD(θ) =

nt∏
k=1

ny∏
i=1

[
1

2bi(θ)
exp
(−|ȳik − yi(tk, θ)|

bi(θ)

)]
.

Accordingly, the log-likelihood function is given by

logLD(θ) = −
nt∑
k=1

ny∑
i=1

[
log(2bi(θ)) +

|ȳik − yi(tk, θ)|
bi(θ)

]
.

The gradient of the log-likelihood for l = 1, . . . nθ is given by

∂logLD(θ)

∂θl
=

nt∑
k=1

ny∑
i=1

[(
− 1

bi(θ)
+
|ȳik − yi(tk, θ)|

b2i (θ)

)
∂bi(θ)

∂θl
+

sgn(ȳik − yi(tk, θ))
bi(θ)

∂yi(tk, θ)

∂θl

]
,
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and the Hessian matrix for l,m = 1, . . . , nθ by

∂2logLD(θ)

∂θlθm
=

nt∑
k=1

ny∑
i=1

[(
− 1

bi(θ)
+
|ȳik − yi(tk, θ)|

b2i (θ)

)
∂2bi(θ)

∂θl∂θm

+

(
1

b2i (θ)
− 2|ȳik − yi(tk, θ)|

b3i (θ)

)
∂bi(θ)

∂θl

∂bi(θ)

∂θm

− sgn(ȳik − yi(tk, θ))
b2i (θ)

(
∂bi(θ)

∂θl

∂yi(tk, θ)

∂θm
+
∂bi(θ)

∂θm

∂yi(tk, θ)

∂θl

)
+

sgn(ȳik − yi(tk, θ))
bi(θ)

∂2yi(tk, θ)

∂θl∂θm

]
,

Note that the term including the second-order sensitivities has an influence on the Hessian even for small deviations
of the measurement and observable. This required simulation of the second-order sensitivities slows down the
computation of the Hessian and we therefore used an algorithm that does not rely on a user-supplied Hessian e.g.
the interior-point algorithm.

1.3 Huber distribution

The Huber M-estimator exploits a combination of squared 2-norm and 1-norm for penalization. Residuals with
absolute value below κ are penalized quadratically while residuals with absolute values larger κ are penalized
linearly. For an individual data point, this can be expressed using the distribution

p(ȳ|y, σh, κ) = s ·

exp

(
− 1

2

(
ȳ−y
σh

)2
)
, | ȳ−yσh | ≤ κ

exp
(
− 1

2

(
2κ| ȳ−yσh | − κ

2
))

, | ȳ−yσh | > κ ,

with s =
(√

2πσherf
(
κ√
2

)
+ 2σh

κ exp
(
− 1

2κ
2
))−1

, which we denote in this manuscript as Huber distribution. The

constant s normalizes the distribution such that it possesses integral 1. Under the assumption of independent Huber
distributed measurement noise, the likelihood is

LD(θ) =

nt∏
k=1

ny∏
i=1

[
s ·

{
exp(− 1

2 (ri(tk, θ))
2) |ri(tk, θ)| ≤ κ(θ)

exp(− 1
2 (2κ|ri(tk, θ)| − κ2)) |ri(tk, θ)| > κ(θ)

]
,

with ri(tk, θ) = ȳik−yi(tk,θ)
σi(θ)

. Accordingly, the log-likelihood function is given by

logLD(θ) =

nt∑
k=1

ny∑
i=1

[
log(s)−

{
1
2 (ri(tk, θ))

2 |ri(tk, θ)| ≤ κ(θ)
1
2 (2κ|ri(tk, θ)| − κ2) |ri(tk, θ)| > κ(θ)

]
.

The gradient of the log-likelihood for l = 1, . . . nθ is given by

∂logLD(θ)

∂θl
=

nt∑
k=1

ny∑
i=1

[
∂yi(tk, θ)

∂θl
·

{
(ȳik−yi(tk,θ))

σ2
i (θ)

|ri(tk, θ)| ≤ κ(θ)

( κ(θ)
σi(θ)

sgn(ȳik − yi(tk, θ)) |ri(tk, θ)| > κ(θ)

+
∂σi(θ)

∂θl

(
− 1

σi(θ)
+

{
(ȳik−yi(tk,θ))2

σ3
i (θ)

|ri(tk, θ)| ≤ κ(θ)
κ(θ)
σ2
i (θ)
|(ȳik − yi(tk, θ))| |ri(tk, θ)| > κ(θ)

)

+
∂κ(θ)

∂θl

(
2

κ2(θ)exp(− 1
2κ

2(θ))
√

2πerf
(
κ(θ)√

2

)
+ 2

κ(θ)exp(− 1
2κ

2(θ))
−

{
0 |ri(tk, θ)| ≤ κ(θ)
|(ȳik−yi(tk,θ))|

σi(θ)
− κ(θ) |ri(tk, θ)| > κ(θ)

)]
,
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and the Hessian matrix for l,m = 1, . . . , nθ by

∂2logLD(θ)

∂θl∂θm
=

nt∑
k=1

ny∑
i=1

[
∂2yi(tk, θ)

∂θl∂θm
·

{
(ȳik−yi(tk,θ))

σ2
i (θ)

|ri(tk, θ)| ≤ κ(θ)

( κ(θ)
σi(θ)

sgn(ȳik − yi(tk, θ)) |ri(tk, θ)| > κ(θ)

+
∂2σi(θ)

∂θl∂θm

(
− 1

σi(θ)
+

{
(ȳik−yi(tk,θ))2

σ3
i (θ)

|ri(tk, θ)| ≤ κ(θ)
κ(θ)
σ2
i (θ)
|(ȳik − yi(tk, θ))| |ri(tk, θ)| > κ(θ)

)

+
∂2κ(θ)

∂θl∂θm

(
2

κ2(θ)exp(− 1
2κ

2(θ))
√

2πerf
(
κ(θ)√

2

)
+ 2

κ(θ)exp(− 1
2κ

2(θ))
−

{
0 |ri(tk, θ)| ≤ κ(θ)
|(ȳik−yi(tk,θ))|

σi(θ)
− κ(θ) |ri(tk, θ)| > κ(θ)

)

+
∂yi(tk, θ)

∂θl

∂yi(tk, θ)

∂θm
·

{
− 1
σ2
i (θ)

|ri(tk, θ)| ≤ κ(θ)

0 |ri(tk, θ)| > κ(θ)

+

(
∂yi(tk, θ)

∂θl

∂σi(θ)

∂θm
+
∂yi(tk, θ)

∂θm

∂σi(θ)

∂θl

)
·

{
−2 (ȳik−yi(tk,θ))

σ3
i (θ)

|ri(tk, θ)| ≤ κ(θ)

− sgn(ȳik−yi(tk,θ))κ(θ)
σ2
i (θ)

|ri(tk, θ)| > κ(θ)

+

(
∂κ(θ)

∂θl

∂yi(tk, θ)

∂θm
+
∂κ(θ)

∂θm

∂yi(tk, θ)

∂θl

)
·

{
0 |ri(tk, θ)| ≤ κ(θ)
sgn(ȳik−yi(tk,θ))

σi(θ)
|ri(tk, θ)| > κ(θ)

+
∂σi(tk, θ)

∂θl

∂σi(θ)

∂θm
·
(

1

σ2
i (θ)

−

{
3 (ȳik−yi(tk,θ))2

σ4
i (θ)

|ri(tk, θ)| ≤ κ(θ)

2 |ȳik−yi(tk,θ)|κ(θ)
σ3
i (θ)

|ri(tk, θ)| > κ(θ)

)

+

(
∂κ(θ)

∂θl

∂σi(θ)

∂θm
+
∂κ(θ)

∂θm

∂σi(θ)

∂θl

)
·

{
0 |ri(tk, θ)| ≤ κ(θ)
|ȳik−yi(tk,θ)|

σ2
i (θ)

|ri(tk, θ)| > κ(θ)

+
∂κ(θ)

∂θl

∂κ(θ)

∂θm
·
(

2σ2
i (θ)s2exp(− 1

2κ
2(θ))

κ(θ)

(2exp(− 1
2κ

2(θ))

κ3(θ)
−

(1 + 2
κ2(θ) )

σi(θ)s

)
−

{
0 |ri(tk, θ)| ≤ κ(θ)

1 |ri(tk, θ)| > κ(θ)

)]
.

Again the term including the second order sensitivities (line 1) cannot be neglected as it depends on the ratio of κ
and σ for large residuals.

1.4 Cauchy distribution

Under the assumption of independent Cauchy distributed measurement noise, the likelihood is

LD(θ) =

nt∏
k=1

ny∏
i=1

[
1

π

γi(θ)

(ȳik − yi(tk, θ))2 + γi(θ)2

]
.

Accordingly, the log-likelihood function is given by

logLD(θ) =

nt∑
k=1

ny∑
i=1

[
− log(π) + log(γi(θ))− log

((
ȳik − yi(tk, θ)

)2
+ γi(θ)

2
)]
.

The gradient of the log-likelihood for l = 1, . . . nθ is given by

∂logLD(θ)

∂θl
=

nt∑
k=1

ny∑
i=1

[(
1

γi(θ)
− 2

γi(θ)

(ȳik − yi(tk, θ))2 + γ2
i (θ)

)
∂γi
∂θl

+ 2
(ȳik − yi(tk, θ))

(ȳik − yi(tk, θ))2 + γi(θ)2

∂yi(tk, θ)

∂θl

]
,
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and the Hessian matrix for l,m = 1, . . . , nθ by

∂2logLD(θ)

∂θlθm
=

nt∑
k=1

ny∑
i=1

[(
1

γi(θ)
− 2

γi(θ)

(ȳik − yi(tk, θ))2 + γi(θ)2

)
∂2γi(θ)

∂θl∂θm

+

[
4γi(θ)

2

((ȳik − yi(tk, θ))2 + γi(θ)2)
2 −

1

γi(θ)2
− 2

(ȳik − yi(tk, θ))2 + γi(θ)2

]
∂γi(θ)

∂θl

∂γi(θ)

∂θm

− 4
γi(θ)(ȳik − yi(tk, θ))

((ȳik − yi(tk, θ))2 + γ2
i (θ))

2

(
∂γi(θ)

∂θl

∂yi(tk, θ)

∂θm
+
∂γi(θ)

∂θm

∂yi(tk, θ)

∂θl

)
+

2

(ȳik − yi(tk, θ))2 + γi(θ)2

(
2(ȳik − yi(tk, θ))2

(ȳik − yi(tk, θ))2 + γi(θ)2
− 1

)
∂yi(tk, θ)

∂θl

∂yi(tk, θ)

∂θm

+ 2
(ȳik − yi(tk, θ))

(ȳik − yi(tk, θ))2 + γi(θ)2

∂2yi(tk, θ)

∂θl∂θm

]
,

with l,m = 1, . . . nθ. Assuming that the deviation between measurement and observable is small, we can again
neglect the second-order sensitivities. This provides an approximation which only depends on the first-order sensi-
tivities.

1.5 Student’s t distribution

Under the assumption of independent Student’s t distributed measurement noise, the likelihood is

LD(θ) =

nt∏
k=1

ny∏
i=1

[
Γ
(νi(θ)+1

2

)√
νi(θ)π σi(θ) Γ

(νi(θ)
2

) (1 +
1

νi(θ)

(
ȳik − yi(tk, θ)

σi(θ)

)2
)− νi(θ)+1

2 ]
.

The log-likelihood function is given by

logLD(θ) =

nt∑
k=1

ny∑
i=1

[
log

(
Γ
(νi(θ)+1

2

)√
νi(θ)π σi(θ) Γ

(νi(θ)
2

))− νi(θ) + 1

2
log

(
1 +

1

νi(θ)

(
ȳik − yi(tk, θ)

σi(θ)

)2
)]

.

The gradient of the log-likelihood for l = 1, . . . nθ is given by

∂logLD(θ)

∂θl
=

nt∑
k=1

ny∑
i=1

[
1

2

[
ψ
(νi(θ) + 1

2

)
− ψ

(νi(θ)
2

)
− log

(
1 +

(ȳik − yi(tk, θ))2

νi(θ)σi(θ)2

)
− 1

νi(θ)
+

νi(θ) + 1

ν2
i (θ)σ2

i (θ)

(ȳik − yi(tk, θ))2

1 + 1
νi(θ)

(ȳik−yi(tk,θ))2
σi(θ)2

]
∂νi(θ)

∂θl

−
[

1

σi(θ)
− νi(θ) + 1

1 + 1
νi(θ)

(ȳik−yi(tk,θ))2
σi(θ)2

(ȳik − yi(tk, θ))2

νi(θ)σ3
i (θ)

]
∂σi(θ)

∂θl

+
νi(θ) + 1

1 + 1
νi(θ)

(ȳik−yi(tk,θ))2
σi(θ)2

1

νi(θ)

(ȳik − yi(tk, θ))
σ2
i (θ)

∂yi(tk, θ)

∂θl

]
,
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where ψ denotes the digamma function, which is the logarithmic derivative of the gamma function. The Hessian
matrix is consequently for l,m = 1, . . . , nθ

∂2logLD(θ)

∂θl∂θm
=

nt∑
k=1

ny∑
i=1

[
1

2

[
ψ
(νi(θ) + 1

2

)
− ψ

(νi(θ)
2

)
− log

(
1 +

(ȳik − yi(tk, θ))2

νi(θ)σi(θ)2

)
− 1

νi(θ)
+

νi(θ) + 1

ν2
i (θ)σ2

i (θ)

(ȳik − yi(tk, θ))2

1 + 1
νi(θ)

(ȳik−yi(tk,θ))2
σi(θ)2

]
∂2νi(θ)

∂θl∂θm

−
[

1

σi(θ)
− νi(θ) + 1

1 + 1
νi(θ)

(ȳik−yi(tk,θ))2
σi(θ)2

(ȳik − yi(tk, θ))2

νi(θ)σ3
i (θ)

]
∂2σi(θ)

∂θl∂θm

+
νi(θ) + 1

1 + 1
νi(θ)

(ȳik−yi(tk,θ))2
σi(θ)2

1

νi(θ)

(ȳik − yi(tk, θ))
σ2
i (θ)

∂2yi(tk, θ)

∂θl∂θm

+
1

2

[
1

2
ψ1

(νi(θ) + 1

2

)
− 1

2
ψ1

(νi(θ)
2

)
+

1

ν2
i (θ)

+
1

νi(θ) + (ȳik−yi(tk,θ))2
σi(θ)2

( (ȳik−yi(tk,θ))2
σi(θ)2

− 1

νi(θ) + (ȳik−yi(tk,θ))2
σi(θ)2

− 1

νi(θ)

)
(ȳik − yi(tk, θ))2

νi(θ)σ2
i (θ)

]
∂νi(θ)

∂θl

∂νi(θ)

∂θm

+

[
1

σ2
i (θ)

+
νi(θ) + 1

νi(θ) + (ȳik−yi(tk,θ))2
σ2
i (θ)

(ȳik − yi(tk, θ))2

σ4
i (θ)

(
2

(ȳik−yi(tk,θ))2
σ2
i (θ)

νi(θ) + (ȳik−yi(tk,θ))2
σ2
i (θ)

− 3

σi(θ)

)]
∂σi(θ)

∂θl

∂σi(θ)

∂θm

+
νi(θ) + 1

νi(θ) + (ȳik−yi(tk,θ))2
σ2
i (θ)

1

σ2
i (θ)

(
2

(ȳik−yi(tk,θ))2
σ2
i (θ)

νi(θ) + (ȳik−yi(tk,θ))2
σ2
i (θ)

− 1

)
∂yi(tk, θ)

∂θl

∂yi(tk, θ)

∂θm

+ 2
νi(θ) + 1

νi(θ) + (ȳik−yi(tk,θ))2
σ2
i (θ)

( (ȳik−yi(tk,θ))2
σ2
i (θ)

νi(θ) + (ȳik−yi(tk,θ))2
σ2
i (θ)

− 1

)
(ȳik − yi(tk, θ))

σ3
i (θ)

(
∂yi(tk, θ)

∂θl

∂σi(θ)

∂θm
+
∂yi(tk, θ)

∂θm

∂σi(θ)

∂θl

)

+

(ȳik−yi(tk,θ))2
σ2
i (θ)

− 1

(νi(θ) + (ȳik−yi(tk,θ))2
σ2
i (θ)

)2

(ȳik − yi(tk, θ))2

σ3
i (θ)

(
∂νi(θ)

∂θl

∂σi(θ)

∂θm
+
∂νi(θ)

∂θm

∂σi(θ)

∂θl

)

+

(ȳik−yi(tk,θ))2
σ2
i (θ)

− 1

(νi(θ) + (ȳik−yi(tk,θ))2
σ2
i (θ)

)2

(ȳik − yi(tk, θ))
σ2
i (θ)

(
∂νi(θ)

∂θl

∂yi(tk, θ)

∂θm
+
∂νi(θ)

∂θm

∂yi(tk, θ)

∂θl

)]
,

where ψ1 is the trigamma function, the derivative of the digamma function. Assuming that the deviation between
measurement and observable is small, we can again neglect the second-order sensitivities (line 4). This provides an
approximation which only depends on the first-order sensitivities.
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Supplement Table 1: Upper and lower parameter bounds used for the parameter estimation as well as the true
parameter values for which the data was generated.

parameter lower bound upper bound true value

k1 10−3.5 10 10−1.5

k2 10−3.5 10 10−1.5

σn 10−5 1 10−1.7

b 10−5 1 -
γ 10−5 1 -
σt 10−5 1 -
ν 1 105 -
σh 10−5 1 -
κ 10−1 105 -

A B

Supplement Figure 1: Distribution parameters for the conversion reaction (A) Mean ± standard deviation
for the maximum likelihood estimates of the scale parameters in the outlier scenarios. (B) Estimated ν for the
Student’s t distribution assumption and estimated κ for the Huber distribution assumption.

2 Conversion reaction

In this section, we provide the details for the parameter estimation and statistical evaluation for the simulation
study of a conversion process.

2.1 Parameter estimation

For solving the optimization problem we used a trust-region reflective algorithm for the normal, the Cauchy and
the Student’s t distribution employing the gradient and an approximation of the Hessian. As the second-order
derivative for the Laplace distribution requires computationally expensive simulations of second-order sensitivities
(see Suppl. Section 1.2), we used an interior-point algorithm without a user-supplied Hessian for the Laplace
and Huber distribution assumption. The parameter bounds used for parameter estimation are provided in Suppl.
Table S1. The bounds for the degrees of freedom for the Student’s t distribution are chosen such that the distribution
approaches the Cauchy distribution for the lower bound of ν and the normal distribution for the upper bound. The
initial parameter values for the optimization were obtained by Latin hypercube sampling in the allowed parameter
range. The estimates for the distribution parameters are visualized in Figure S1.

2.2 Confidence intervals

We used profile likelihoods to assess the uncertainty of the parameter estimates. The profile likelihoods were
computed with the toolbox PESTO1. Figure S2A and B show the normalized profile likelihoods for parameters
k1 and k2 for the cases displayed in Figure 2A,D and E. The true parameter value is indicated by a vertical grey
line. For the no outliers scenario all profiles overlap and are close to the true parameter values for k1 and k2. The
profiles for the Cauchy and Student’s t distribution assumption remain similarly narrow for the two scenarios with
outliers. The profiles for the Laplace distribution widen in the case of two data points interchanged, but the MLE
is still close to the true value, whereas the profile of the normal distribution assumption broadens and the MLEs

1available at https://github.com/ICB-DCM
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Supplement Table 2: Confidence Intervals that contain the true value log10(k1) = −1.5

no outliers
one data point at

zero
two data points

interchanged

(1− α)% CI (1− α)% CI (1− α)% CI

normal 80% [-1.5911,-1.4966] 80% [-1.6217,-0.8848] - -
Laplace 90% [-1.6059,-1.4966] 80% [-1.5715,-1.4574] 80% [-1.5297,-1.2549]
Huber 80% [-1.5911,-1.4966] 80% [-1.5716,-1.4572] 80% [-1.5301,-1.2565]
Cauchy 95% [-1.6159,-1.4874] 99% [-1.5749,-1.4870] 80% [-1.5150,-1.4298]

Student’s t 80% [-1.5911,-1.4966] 99% [-1.5749,-1.4870] 80% [-1.5150,-1.4298]

MLE Student's tMLE normal

MLE Laplace MLE Cauchy
MLE Huber

A

B

C

D

Supplement Figure 2: Uncertainty analysis for the conversion reaction. Profiles for k1 (A) and k2 (B).
(C) Confidence intervals (80%, 90%, 95%, 99%) for parameter k2 in all scenarios. (D) Coverage ratio for parameter
k2 compared to the confidence level.

move away from the true parameter values. The smallest CIs that contain the true value for k1 for each scenario
are given in Suppl. Table S2. In the case of two data points interchanged the true value of k1 is not located within
one of the computed intervals for the normal distribution. Figure S2C illustrates the confidence intervals for k2 and
Figure S2D shows the corresponding coverage ratios.

2.3 Bessel correction

Since the coverage ratios were too small we considered the Bessel correction. The Bessel correction yields an
unbiased estimate of the likelihood. The corresponding likelihood function is

LD(θ) =

nt∏
k=1

ny∏
i=1

[
1√

2π σi(θ)
exp
(
− nt

2(nt − 1)

(ȳik − yi(tk, θ))2

σ2
i (θ)

)]
.

We estimated the parameters using this modified likelihood function and computed the confidence intervals. The
correction did neither improve greatly the coverage ratios for the kinetic parameters nor for the distribution param-
eter σn (Figure S3). We note that the estimates for the standard deviation σn and the coverage of the corresponding
confidence intervals is off in the scenarios one data point at zero and two data points interchanged as explanation
of outliers requiring high noise levels. Therefore, we did not apply the Bessel correction.
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Supplement Figure 3: Coverage ratios using the normal distribution assumption with and without
Bessel correction. Coverage ratios for the kinetic parameters k1 and k2 and for the distribution parameter σn.

2.4 Sample size limitation of the Cauchy and the Student’s t distribution

In addition to the density plots provided in Figure 5, we evaluated sample size effects using a Q-Q plot (Figure S4).
In the Q-Q plot (quantile-quantile-plot) the empirical quantiles of the residuals are compared with the theoretical
quantiles, considering the quantiles (i − 0.5)/n, i = 1, . . . , n, where n is the sample size. If the distributions
correspond to each other the values are located at the diagonal line of the Q-Q plot. The theoretical quantiles
were computed by means of the inverse cumulative distribution function of the respective distribution using the
estimated mean value of the distribution parameters.

For 10 data points the empirical and theoretical quantiles coincide well for all distributions, except for the heavier-
tailed distributions in the tails. This indicates that the sample has shorter tails than the theoretical distribution.
In the cases of three and four data points the Q-Q plots for the Cauchy and the Student’s t distribution show that
the distributions do not reflect the spread in the residuals. In case of nt = 3 also problems for the normal, Laplace
and Huber distribution are visible. The sample size is apparently too small for reasonable parameter estimation.
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theoretical quantiles (using the mean scale parameters) for the normal, the Laplace, Huber, Cauchy and Student’s
t distribution for different numbers of data points in the no outliers datasets.
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3 JAK/STAT signaling

3.1 ODE model for JAK/STAT signaling

The ODE system is given by (Schelker et al., 2012)

d[STAT]

dt
=

1

Ωcyt
(Ωnuc [nSTAT5] p4 − Ωcyt [STAT] p1 u)

d[pSTAT]

dt
= − 1

[STAT0]
(2 p2 [pSTAT]2 − [STAT] p1 u)

d[pSTAT pSTAT]

=

1

[STAT]0
(p2 [pSTAT]2 − [STAT0] p3 [pSTAT pSTAT])

d[nSTAT1]

dt
= − p4

Ωnuc
(Ωcyt [STAT]− Ωcyt [STAT]0 + 2 Ωnuc [nSTAT1]

+ Ωnuc [nSTAT2] + Ωnuc [nSTAT3] + Ωnuc [nSTAT4]

+ Ωnuc [nSTAT5] + Ωcyt [pSTAT] + 2 Ωcyt [pSTAT pSTAT])

d[nSTAT2]

dt
= p4 ([nSTAT1]− [nSTAT2])

d[nSTAT3]

dt
= p4 ([nSTAT2]− [nSTAT3])

d[nSTAT4]

dt
= p4 ([nSTAT3]− [nSTAT4])

d[nSTAT5]

dt
= p4 ([nSTAT4]− [nSTAT5])

with initial conditions

x(t0) = ([STAT]0, [pSTAT]0, [pSTAT pSTAT]0, [nSTAT1]0, [nSTAT2]0, [nSTAT3]0, [nSTAT4]0, [nSTAT5]0)T ,

kinetic parameters p1, . . . , p4 and initial concentration [STAT]0. The delay reaction of STAT binding to the DNA in
the nucleus is modeled as linear chain approximation with intermediate steps nSTAT1, . . . ,nSTAT5. The volume of
the two compartments, cytoplasm and nucleus, are constants; Ωcyt = 1.4 pl and Ωnuc = 0.45 pl (Raue et al., 2009).
The observables are given by

y1 = opSTAT +
spSTAT

[STAT]0
([pSTAT] + 2[pSTAT pSTAT])

y2 = otSTAT +
stSTAT

[STAT]0
([STAT] + [pSTAT] + 2[pSTAT pSTAT])

y3 = u .

The observable y1 provides information about the total concentration of phosphorylated STAT in the cytoplasm
(pSTAT), y2 about the total concentration of STAT in the cytoplasm (tSTAT) and y3 about the concentration
of phosphorylated Epo receptors (pEpoR). The pEpoR concentration is modeled as time-dependent cubic spline
function u with five parameters sp1, . . . , sp5. The scale parameters spSTAT and stSTAT were introduced by (Swameye
et al., 2003) because only relative protein amounts could be measured by the experimental setup. The offset
parameters opSTAT and otSTAT account for the background noise. The initial concentration [STAT]0 was set to 1
as in (Schelker et al., 2012) in order to tackle structural identifiability problems shown in (Raue et al., 2009). This
leads to the structurally identifiable parameter vector

θ = (p1, p2, p3, p4, sp1, sp2, sp3, sp4, sp5, otSTAT, opSTAT, stSTAT, spSTAT)T .

3.2 Parameter estimation

The parameter space for the multi-start optimization is shown in Suppl. Table S3. The distribution parameters
were chosen separately for each observable except of the degrees of freedom for the Student’s t distribution and
the tuning parameter for the Huber distribution. For the Student’s t distribution the choice is based on model
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selection performed for the no outliers scenario using the BIC. The model with three ν parameters (with lower
bounds (1.3, 0.8, 0.8)T ) yields a BIC value of −87.95, whereas the model with one ν (with lower bound 2) gives a
BIC of −91.91. Hence, the model with one parameter for ν is more appropriate as it describes the data equally well
by employing less parameters. Only in four cases the lower bound of the degrees of freedom had to be increased
to 2.2 according to the criterion by (Fernández and Steel, 1999) in order to address the overfitting problem. 100
multi-starts were generated with Latin hypercube sampling using the toolbox PESTO. As local solver the interior-
point algorithm was used for the normal, Laplace and the Huber distribution and the trust-region algorithm for the
Student’s t distribution, which are included in the MATLAB function fmincon. If less than 5 starts have converged
to the same optimum, the number of start points was increased by 100. The estimation results for the no outliers
scenario are listed in Table S4. The estimated parameter values are similar for all used distribution assumptions.

Figure S6A-B displays the logarithm of the MSE for the spline parameters with errorbars indicating the 95%
percentile bootstrap intervals. For one data point at zero the normal distribution leads to a higher MSE for all
parameters. For two data points interchanged this is not true for all parameters. Note that not all cases of this
scenario lead to clear outliers and consequently, the normal distribution is able to adequately describe some of the
cases, which leads to a smaller overall error. The percentage of converged starts out of 100 start points of the
different estimators is shown in Figure S6C. For the analysis only converged results were used. If less than five
starts converged to the same optimum the number of starts was increased by 100. The number of start points never
needed to be increased higher than 400, which is still in a reasonable range.

4 Pom1p gradient formation in fission yeast

As further application example, we analyzed the different distribution assumptions for experimental data of Pom1
gradient formation. Pom1 plays an essential role in cell growth and cell cycle. The data comprises single-cell imaging
data, including a mean intensitiy curve and fluorescence recovery after photobleaching (FRAP) measurements
(Saunders et al., 2012). We consider the partial differential equation model as introduced by (Hersch et al., 2015)
and adapt the parameter estimation problem formulated by (Hross et al., 2016).

4.1 PDE model for Pom1p gradient formation

We used the multiple-site phosphorylation model from (Hersch et al., 2015) implemented in (Hross et al., 2016),
which is given by

∂u

∂t
= D

∂2u

∂d2
− αu2 +

J√
2πρ

e−d
2/sρ2 ,

with initial condition

u(0, d) =

{
0 for d ∈ Q
u∞(d; θ) otherwise

, (1)

where u∞(d; θ) is the steady state of the model and Q ⊆ Ω denotes the bleached region. Furthermore, no-flux
boundary conditions are assumed at the division axis of the cells. The model was simulated using the method of
lines, which yields systems of ODEs.

4.2 Experimental data

For our study we calibrated the PDE model based on the normalized intensity profile along the membrane in the
unperturbed system, modeled as

y1(θ, tk) = s1u
∞(dk; θ)

and the fluorescence recovery after photo bleaching (FRAP) of the full (Q2 = [−2.75, 2.75]µm) and the half tip
(Q3 = [0, 2.75]µm), modeled as

yi(θ, tk) = si

∫
Qi

u(d, tk; θ,Qi)dd, i ∈ 2, 3 ,

with u denoting the solution for u with (1) and Q = Qi.

We neglect the reported standard error of means and estimated the scale parameters for each distribution. This
yields the model parameters ξ = (D,α, J, ρ, s1, s2, s3) that are estimated from the data.
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A B

Supplement Figure 5: Distribution parameter values for the JAK/STAT signaling pathway. (A) Mean ±
standard deviation of the maximum likelihood estimates for the scale parameter for observable pSTAT. (B) Maxi-
mum likelihood estimates for ν of the Student’s t distribution for νLB = 1 and νLB = 2.

Supplement Table 3: Parameter bounds for the model of JAK/STAT signaling. Lower bounds (LB) and
upper bounds (UB) for the estimated parameters are provided.

LB UB LB UB LB UB

p1 10−5 103 sp4 10−5 103 σn1, b1, σh1, σt1 10−5 103

p2 10−3 106 sp5 10−6 103 σn2, b2, σh2, σt2 10−5 103

p3 10−5 103 otSTAT 10−5 103 σn3, b3, σh3, σt3 10−5 103

p4 10−3 106 opSTAT 10−5 103 ν 2 105

sp1 10−5 103 stSTAT 10−5 103 κ 10−1 105

sp2 10−5 103 spSTAT 10−5 103

sp3 10−5 103

Supplement Table 4: Estimation results for the model of JAK/STAT signaling. The individual columns
provide the results for the no outliers scenario on the log10-scale obtained using the normal (N), the Laplace (L),
the Huber (H) and the Student’s t (T) distribution.

N L H T N L H T

p1 0.6026 0.5996 0.5996 0.6444 sp4 -0.4073 -0.4217 -0.4217 -0.4445
p2 5.9997 4.2804 4.2804 6.0000 sp5 -5.4630 -4.3631 -4.3631 -4.9585
p3 -0.9549 -0.9773 -0.9773 -0.9728 otSTAT -0.7318 -1.1440 -1.1440 -0.8276
p4 -0.0111 0.0271 0.0271 -0.0243 opSTAT -0.6541 -0.6645 -0.6645 -0.6420
sp1 -2.8096 -2.6355 -2.6355 -2.8835 stSTAT -0.1086 -0.0324 -0.0324 -0.0782
sp2 -0.2557 -0.2654 -0.2654 -0.2755 spSTAT -0.0100 -0.0070 -0.0070 -0.0030
sp3 -0.0765 -0.0652 -0.0652 -0.0618

A

B

C

Supplement Figure 6: MSE of spline parameters and convergence for outlier scenarios of JAK/STAT
signaling. The bootstrap confidence intervals for logarithm of the MSE for the spline parameters are shown for
(A) one data point at zero and (B) two data points interchanged. Convergence for the different outlier scenarios is
displayed in (C).

13



10 20 30 40 50 60 70 80 90 100
optimizer start

190

192

194

196

198

200

202

204

206

208

210

lo
g-

lik
el

ih
oo

d

0

10

20

30

40

50

60

70

80

90

100

co
nv

er
ge

nc
e 

[%
]

no
rm

al

La
pla

ce
Hub

er

Cau
ch

y

Stud
en

t's 
t

-6 -4 -2 0 2 4 6

distance along membrane, d [7m]

0

0.2

0.4

0.6

0.8

1

1.2

in
te

ns
ity

 [u
.i.

]

mean intensity profile

0 50 100 150 200 250 300
time, t [s]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

in
te

ns
ity

 [u
.i.

]

full tip FRAP

0 10 20 30 40 50 60
time, t [s]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

in
te

ns
ity

 [u
.i.

]

half tip FRAP

data        normal        Laplace        Huber         Cauchy        Student's t        

A B

C

Supplement Figure 7: Optimization results for the model of Pom1p gradient formation. (A) Convergence
using the different distribution assumptions for 100 multi-starts. (B) Percentage of converged starts. (C) Mea-
surement data and fits: mean intensity profile, full and half tip FRAP.

4.3 Parameter estimation

We estimated the model parameters assuming the normal, the Laplace, the Huber, the Cauchy and the Student’s
t distribution. All distributions yield reasonable convergence (Figure S7A and B) and provide good fits to the
measurement data (Figure S7C). Model selection rejects the normal distribution, as the difference in BIC is larger
than 10 to all other statistical models, indicating that the normality assumption is not ideal for this dataset. This
shows the applicability of the heavier-tailed distributions to more complex models, also in the absence of outliers.

5 Illustrative example for model selection using heavier tailed distri-
butions

As we have observed in the case of the conversion reaction, heavier-tailed distributions are selected in presence
of outliers and thus, model selection can be used to detect outlier corrupted datasets. Statistical modeling with
heavier-tailed distributions tends to provide a fit to the majority of the data instead of trying to distribute the error
equally. Therefore, the suspicion arises that a wrong model could be chosen if the model structure is unknown by
treating data points as outliers. In this section we analyze this issue of model misspecification based on a simple
example. We artificially generate a dataset for a model (Model 1, Figure S8A). To this dataset we calibrate the true
model (Model 1) with three kinetic parameters as well as a simpler model (Model 2, Figure S8A) with two kinetic
parameters. Although Model 2 is able to fit all but one data point, model selection favors in both cases, normal
and Laplace, the more complex Model 1 (Figure S8B). For the Laplace distribution the difference in BIC is smaller
than 10, thus the typical rejection criterion is not met. Hence, it is difficult to discriminate between outliers and a
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A

Supplement Figure 8: Model Selection with heavier-tailed distributions. (A) Schematic representation of
the model pathways. (B) Trajectories for one example dataset (•) with true trjectory ( ) using the normal ( )
and the Laplace distribution ( ) for Model 1 (solid line) and Model 2 (dashed line). (C) The average difference in
BIC values for 10 datasets with different number of replicates using the Laplace distribution.

wrong model.

However, the data points regarded as outliers possess a larger residual for the Laplace fit than in the normal fit.
Consequently, it is more evident that the model does not account for these data points. These data points are good
starting points for further examination, e.g. experimental validation of the measured value. If more replicates are
available and used for model calibration, the average difference in BIC values increases and allows a more decisive
model selection (Figure S8C).
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