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SUMMARY

Many cellular effectors of pluripotency are dynami-
cally regulated. In principle, regulatory mechanisms
can be inferred from single-cell observations of
effector activity across time. However, rigorous infer-
ence techniques suitable for noisy, incomplete, and
heterogeneous data are lacking. Here, we introduce
stochastic inference on lineage trees (STILT), an algo-
rithm capable of identifying stochastic models that
accurately describe the quantitative behavior of cell
fate markers observed using time-lapse microscopy
data collected from proliferating cell populations.
STILT performs exact Bayesian parameter inference
and stochastic model selection using a particle-fil-
ter-based algorithm. We use STILT to investigate
the autoregulation of Nanog, a heterogeneously
expressed core pluripotency factor, in mouse embry-
onic stem cells. STILT rejects the possibility of posi-
tive Nanog autoregulation with high confidence;
instead, model predictions indicate weak negative
feedback. We use STILT for rational experimental
design and validate model predictions using novel
experimental data. STILT is available for download
as an open source framework from http://www.imsb.
ethz.ch/research/claassen/Software/stilt---stochastic-
inference-on-lineage-trees.html.

INTRODUCTION

Time-lapse fluorescence microscopy provides a means to

unambiguously label, track, and quantify transcriptional and

translational expression dynamics of individual cells, providing

insight into the dynamics of gene expression (Coutu and

Schroeder, 2013; Elowitz et al., 2002; Larson et al., 2011;Muzzey

and van Oudenaarden, 2009; Raj et al., 2006). Using time-lapse

fluorescence microscopy, it is possible to quantitatively monitor
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expression dynamics, such as the onset of lineage-determining

markers in progenitor cells over the course of days (Eilken

et al., 2009; Hoppe et al., 2016; Rieger et al., 2009) or heteroge-

neous response to external perturbation (Spencer et al., 2009;

Tay et al., 2010) at the transcript and protein level over the course

of minutes to hours. Movies obtained from time-lapse micro-

scopy provide valuable dynamic intra- and intercellular correla-

tions, which are informative of the underlying regulatory mecha-

nisms (Muzzey and vanOudenaarden, 2009) and thus well suited

for the investigation of causal relationships between genes

(Dunlop et al., 2008; Locke and Elowitz, 2009). Moreover,

specialized tools, such as TtT/QTFy (Hilsenbeck et al., 2016),

for tracking, segmenting, and quantifying time-lapse fluores-

cence microscopy movies facilitate the wide adoption of such

a strategy.

Despite its power, however, time-lapse fluorescence micro-

scopy presents a number of obstacles that must be overcome

in order to fully exploit the available data. Measurements are

often noisy and incomplete, with only one or a few of the poten-

tially interesting species interrogable via fluorescence imaging

due to challenges in the construction of reporter systems. They

may also be obtained infrequently, yielding uncertainty about

transitions between observations. Besides measurement error,

the studied systems also typically contain significant biological

noise arising from biological variation and inherent stochasticity

(Raj and van Oudenaarden, 2008). For example, many tran-

scripts are present with low copy number, which can give rise

to substantial intercellular variation in expression (Becskei

et al., 2005; Schwanh€ausser et al., 2011).

One approach to address such challenges is to employ sto-

chastic models of gene regulation (Wilkinson, 2009). Stochastic

models capture cellular variability arising from intrinsic noise and

are thus superior to deterministic methods, e.g., ordinary differ-

ential equations, for modeling such data. In particular, stochastic

‘‘chemical reaction network’’ models (see Box 1, top, for glos-

sary of italicized terms) reflect the probabilistic evolution of a

set of chemical species via reactions with probabilities that

vary according to ‘‘mass action kinetics’’. Such models can be

fit to time-lapse data using ‘‘Bayesian inference’’ approaches,

in particular ‘‘particle filters’’ (Doucet and Johansen, 2009),
rs. Published by Elsevier Inc.
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Box 1. Glossary Terms and STILT

GLOSSARY OF TERMS

Chemical reaction network: a system of chemical species that interact via a collection of defined reactions and associated

kinetic constants

Mass action kinetics: a kinetic model where the reaction rate is proportional to the quantity of each educt exponentiated to its

stoichiometric coefficient

Bayesian inference: an inference procedure incorporating both likelihood of observation and prior knowledge of the probability of

parameter values

Particle: a sample of model parameters and/or stochastic trajectories

Particle filter: an inference method to approximate the true posterior distribution of model parameters and/or trajectories using a

mixture of sampled particles

Latent species: a species in the chemical reaction network that is not directly observed

Latent history: the unobserved trajectories of a set of latent species on a lineage tree

Evidence: the total probability of a model integrated over all possible parameter values and stochastic trajectories

Prior distribution: the probability distribution of a parameter based on prior experimental or literature knowledge

Bayes factor: the ratio of evidences between two models

Posterior distribution: the probability distribution of a parameter based on both the prior distribution and the likelihood of new

experimental observations

Goodness-of-fit test: a test to decide whether a model (and parameters) is compatible with observed data

Subtree: a lineage tree formed by extracting a group of cells from a larger lineage tree

STILT

The aim of STILT is to recover the latent history of species X (here, DNA, mRNA, and protein time series) in the chemical reaction

network, for all cells, and the set of model parameters q (here, the reaction constants specifying the chemical reaction network).

The latent history X depends on the reaction constants q, and the observations of the latent history, Y, depend on X.

The STILT algorithm consists of the following steps:

1. Specify a chemical reaction network of interest (species and reaction stoichiometries)

2. Specify prior distributions for the initial state X and model parameters q

3. Sample a collection of P particles. Each particle consists of a set of parameters qk and state Xk ; drawn independently from

their prior distributions, k = 1; :::;P

4. For each measurement time point ti
4.1. Stochastically simulate each particle k according to the assumed chemical reaction network, conditional on ðXk ; qkÞ; to

obtain a new state X 0k

4.2. Evaluate the likelihood of each particle wk
i =PðY ti jX 0kÞ

4.3. Generate a new set of particles Xk by sampling (with replacement) from the collection X 0k proportionally to the likeli-

hoods wk
i

4.4. Sample new parameters qk � Pðq jXkÞ

The result of each iteration of the algorithm is a set of particles sampled from the posterior distribution PðX; q j YÞ using the ob-

servations until that time point. STILT also estimates the marginal evidence of the model P(Y), which is useful for model selection.

STILT extends the basic bootstrap particle filter algorithm by incorporating cell division events in the forward simulation. When

cells divide, the contents of the mother cell are allocated randomly to the daughter cells. After ‘‘birth,’’ each cell is simulated inde-

pendently in step 4.1, and the likelihoods of the composite simulated trajectory are multiplied to achieve the total likelihood of that

particle in step 4.2. Particles are then resampled according to the composite likelihood in step 4.3.
which attempt to learn the unknown state of the system (e.g., of

unobserved species) and biochemical reaction constants. Infer-

ence results take the form of posterior probability distributions

over the parameters and trajectories or ‘‘latent histories’’ of

all modeled chemical species. Although particle-filter-based
approaches have been successfully applied to the inference of

single-cell trajectories (Zechner et al., 2011), inference for popu-

lations of proliferating cells presents a formidable challenge as

the number of ‘‘latent species’’ and thus the problem size grows

at each cellular division event.
Cell Systems 3, 480–490, November 23, 2016 481



Ideally, one could exploit the cellular genealogy once it is

known in order to take advantage of the additional constraints

that it imposes upon the allowable state of the system. For

example, upon division, mass is conserved such that the

daughter cells’ inheritedcellular contents equal that of themother

cell. Additionally, any proposed parameters must be likely in the

context of all cells simultaneously and not just each cell individu-

ally, which constrains the set of plausible model parameters.

However, so far, no computational algorithm has been provided

for Bayesian inference of latent histories and parameter values

on tree-structured data. In this work, we extend the recursive

particle filter (Pitt and Shephard, 1999) to explicitly model cell

division, thus enabling inference of stochastic gene-regulatory

models using data obtained from long-term fluorescent time-

lapse microscopy of cellular lineage trees. The proposed algo-

rithm, stochastic inference on lineage trees (STILT) (Box 1, bot-

tom), is suitable for proliferating single-cell data that are noisy,

partially and discretely observed, heterogeneous, and with small

molecule numbers and intrinsic stochasticity. STILT is available

for download as an open source framework for gene-regulation

models specified using SBML (Hucka et al., 2003) from http://

www.imsb.ethz.ch/research/claassen/Software/stilt---stochastic-

inference-on-lineage-trees.html.

Using STILT, we study the stochastic expression dynamics

of Nanog in mouse embryonic stem cells (mESCs). Nanog is a

key regulator of pluripotency, whose expression is fundamen-

tally stochastic, involving the chance synthesis, degradation,

and interaction of biochemical species. It is heterogeneously

expressed (Chambers et al., 2007; Filipczyk et al., 2015; Singer

et al., 2014) and exhibits strong fluctuations in expression

(Abranches et al., 2014; Filipczyk et al., 2015), which may serve

to prime mESCs for differentiation (Abranches et al., 2014;

Torres-Padilla and Chambers, 2014). Nanog forms homodimers

(Mullin et al., 2008;Wang et al., 2008) and binds its own enhancer

(Saunders et al., 2013), and Nanog-dependent feedback loops

are thought to be critical to mESC regulation (MacArthur et al.,

2012). However, Nanog’s mode of autoregulation has been

debated. Whereas Nanog has long been thought to exhibit pos-

itive autoregulation (Boyer et al., 2005; Jaenisch and Young,

2008), recent studies have provided evidence for both negative

feedback (Fidalgo et al., 2012; Navarro et al., 2012) and no direct

feedback (Ochiai et al., 2014). To ultimately discriminate be-

tween such mechanisms, quantitative model selection based

on single-cell data is required.

Several recent investigations have provided a view of expres-

sion dynamics of Nanog in mESCs at the single cell level

(Abranches et al., 2013; Filipczyk et al., 2015; Ochiai et al.,

2014; Singer et al., 2014). However, to our knowledge, no

attempt has been made until now to directly infer stochastic dy-

namic models from Nanog time-lapse data, infer parameters, or

perform model selection for competing regulatory motifs, owing

in part to the computational challenges presented by such sto-

chastic, tree-structured data. We use STILT to investigate candi-

date models for Nanog autoregulation directly from time-lapse

fluorescence data. We assess the models’ overall likelihood

using a collection of previously published fluorescence lineage

trees (Filipczyk et al., 2015), infer model parameters, and deter-

mine the compatibility of each model with the inferred parame-

ters for the data analyzed. By computing model ‘‘evidences,’’
482 Cell Systems 3, 480–490, November 23, 2016
we determine positive feedback to be an unlikely mode of Nanog

autoregulation. To resolve between no feedback and negative

feedback, we utilize STILT to rationally design an informative

perturbation experiment and predict and subsequently verify

its response, finally identifying weak negative feedback as

Nanog’s most probable autoregulatory motif.

RESULTS

STILT: A Stochastic Inference Algorithm Using Tree-
Structured Time-Lapse Fluorescence Microscopy Data
We introduce STILT for performing parameter inference and

model comparison for stochastic chemical reaction networks

from fluorescence microscopy movies of proliferating cells (see

STAR Methods for details). STILT requires as input quantitative

single-cell time series data derived from time-lapse fluorescence

microscopy along with the corresponding cellular lineage trees

(Figure 1A). STILT iteratively proposes new ‘‘particles,’’ i.e., sam-

ples, which approximate the probability distribution of both the

unknown latent history of the system (including potentially unob-

served species) and model parameters given the observed data.

Unlike previous approaches, it couples the bootstrap particle

filter (Pitt and Shephard, 1999) to a model of cell division to facil-

itate inference of stochastic gene regulation models, compute

evidences, perform model comparison, and infer parameters.

STILT requires the specification of one or more candidate

models in the form of chemical reaction networks (Figure 1B),

which relate chemical species via their reactions’ stoichiometry

and chemical kinetic constants. Because the true values of

parameters are generally not known, a ‘‘prior distribution’’

(e.g., from literature) is required for each parameter (Figure 1B).

STILT (Figure 1C) then combines the experimental data, prior

distributions, and candidate mechanistic models to estimate pa-

rameters and latent histories and approximate model evidences

(Figure 1D). By comparing the evidence for each model, one can

compute ‘‘Bayes factors’’ to assess the relative probability of

each model and potentially reject unlikely models.

Autoregulatory Motifs for Nanog
We considered three motifs for Nanog autoregulation: no feed-

back (Figure 2A); negative feedback (Figure 2B); and positive

feedback (Figure 2C). In the case of feedback, protein affects

theDNAactivation/inactivation rate. Eachmodel comprises a sin-

gle gene in either an inactive conformation (D) with no transcrip-

tion or an active conformation (D*) with stochastic transcription,

mRNA (M), andprotein (P). Thesemolecular species aregoverned

bysix reactions for theactivation/inactivationofDNAandproduc-

tion anddegradationofmRNA/protein (TableS1). In the following,

we first validatedmodel selectionwith STILT using synthetic data

and subsequently applied STILT to real Nanog time-lapse data.

In Silico Validation
We evaluated STILT on synthetic datasets generated from the

above-described autoregulatory motifs (Figures 2A–2C). We

simulated each model to yield lineage trees consisting of three

generations and seven cells (Figures 2D–2F, solid lines). Param-

eters were chosen such that cells have similar protein levels

(103–104 molecules) in each model (Table S2). We assume that

only protein abundance was measured, thus mRNA and DNA

http://www.imsb.ethz.ch/research/claassen/Software/stilt---stochastic-inference-on-lineage-trees.html
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Figure 1. Exact Bayesian Inference of Stochastic Gene Regulation Models Using Single-Cell Time-Lapse Fluorescence Lineage Trees

(A) Quantified fluorescence lineage trees are extracted from time-lapse fluorescence microscopy movies.

(B and C) The trees are combined with (B) candidate models and their respective parameter prior distributions and serve as input to the particle-filter-based

inference algorithm STILT (C).

(D) STILT generates estimates for the posterior distribution of each model parameter, latent histories, and evidence of each model. The latter is used for model

comparison using Bayes factor, which is the ratio of the marginal likelihoods of two models.
are unobserved. Gaussian noise (s = 200 proteins) was added to

simulate measurement error.

We applied STILT to each lineage tree using suitable prior dis-

tributions (Figure S5; Table S3), with three runs per dataset to

assess robustness. Notably, we find that STILT proposes trajec-

tories that completely contain the observed time series for each

simulated dataset (Figures 2D–2F, shaded areas); if sampled tra-

jectories would not contain the observed data, this would

strongly suggest that the model and/or prior distributions cannot

accurately capture the behavior present in the synthetic data-

sets. The latent mRNA trajectories are also well inferred by the

particle filter (Figure S6). Using fractional errors of each param-

eter, ðqi � qtruei Þ=qtruei , where qtruei is the true value of parameter

i, we find general improvement compared to prior distributions

(Figures 2G–2I). Whereas many parameters are estimated accu-

rately and well contained in the ‘‘posterior distributions,’’ some

parameters are poorly identifiable, probably due to insufficient

information content of the simulated datasets. For example, pa-

rameters km and gm are poorly identified for the no feedback

model (Figure 2G). Most parameters are robustly estimated

when the model is correct (Figure S1). However, inference with

an incorrect model may result in local optima of inferred model

parameters, i.e., a non-robust estimate, if the observed transi-

tions are very unlikely to occur for the assumed model.
We evaluated the ability to correctly select the true model from

a set of candidate models by computing the model evidence

(defined as the marginal log likelihood of the model) of each

model/dataset combination. For each dataset, there is one true

model that was used to generate the data (e.g., no feedback);

the remaining two models (e.g., negative feedback and positive

feedback) are, by definition, incorrect.We then computed the log

Bayes factors, i.e., differences in the evidence (Figure 2J) for all

three models, and found that the known true model is preferred

in each case. Typically, a log Bayes factor larger than 3 is consid-

ered strong evidence (Kass and Raftery, 1995). For example, the

difference in evidence of the (correct) no feedback and (incor-

rect) negative feedback model (Figure 2J, top row) is �43.48 ±

1.54 (mean ± SD; n = 3 runs), indicating strong preference for

the no feedbackmodel over the negative feedbackmodel. More-

over, the log Bayes factor between the true model and the incor-

rect models is strong (R3) and robust for the true model in each

scenario. To illustrate the utility of incorporating cell lineages into

our analysis, we compared STILT to a conventional particle-fil-

ter-based algorithm that ignores cellular genealogy, instead

inferring parameters for each cell independently. In several in-

stances, the truemodel was not identified, and the Bayes factors

were generally smaller when neglecting genealogy (Figure S7;

Table S4).
Cell Systems 3, 480–490, November 23, 2016 483
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Figure 2. STILT Correctly Identifies Autoregulatory Models in Synthetic Data

(A–C) We consider three simple models of transcriptional control: (A) no feedback; (B) negative feedback; and (C) positive feedback. Models differ in the pro-

pensity of DNA (D/D*) activation and inactivation. Further components of the system comprise mRNA (M) and protein (P) (see Table S1 for details on system

reactions).

(D–F) We simulate each model to generate quantified lineage trees of measured protein numbers, and subsequently perform inference using STILT. The median

(dashed line) and 50%, 95% confidence intervals of the trajectories sampled by the particle filter (band plots) show excellent agreement with the simulated data

(squares). Results shown for the (D) no feedback, (E) negative feedback and (F) positive feedback models.

(G–I) STILT also estimates posterior distributions of model parameters (red, 99% confidence interval). For many parameters the posterior distribution shows

improved estimates compared to the prior distribution (gray, 99% confidence interval) in terms of the fractional error, defined as the error of each parameter

sample divided by the true value of that parameter; a fractional error of zero indicates a perfect inference result. Parameter inference results shown for the (G) no

feedback, (H) negative feedback and (I) positive feedback models.

(J) Log Bayes factors (mean, SD; n = 3 inference runs), i.e., the difference in the marginal log likelihood of eachmodel from that of the true model for each dataset,

indicate that the correct model is always strongly preferred (white; diagonal).

(K) The goodness-of-fit test (see STARMethods) approximates the distribution of average log likelihood per transition for simulations generated using the inferred

parameters for each model (solid line). If the average log likelihood of the actual dataset (dashed line) falls within this distribution, it indicates good agreement of

the dataset with that simulated model.
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Although Bayes factors facilitate model selection, it is not in

general possible to determine whether a preferred model is

‘‘compatible’’ with a particular, experimentally generated data-

set, i.e., whether the data could have realistically been generated

by that model with the inferred parameters. Thus, we developed

a simple test to assess the correctness of the inferred model

and parameters. Specifically, we compared the likelihood of

observing the real data (computed using the inferred model

and parameters) with the likelihood of observing synthetic data-

sets generated using the same model and parameters. We cate-

gorized each model as either reject (test statistic outside 98%

confidence interval), marginal (outside 95% confidence interval),

or accept (within 95% confidence interval). Our ‘‘goodness-of-fit

test’’ accepts the true model for each dataset (Figure 2K; diago-

nal). By contrast, the goodness-of-fit test rejects the negative

feedbackmodel fit to the positive feedback and no feedback da-

tasets and the positive feedback model fit to the negative feed-

back and no feedback datasets, from which we can deduce that

the model is unlikely to be true for that dataset. However, the no

feedback model shows agreement with simulated datasets from

both the negative and positive feedback models. This level of

agreement is likely due to the less constrained expression dy-

namics of the no feedbackmodel compared to the other models.

Inference of Nanog Autoregulatory Motifs Using STILT
Rejects Positive Autoregulation
We next applied STILT to study the debated autoregulation

mechanism of Nanog, using time-lapse data from a recent sin-

gle-cell study (Filipczyk et al., 2015). In these experiments, the

fluorescence intensity of NanogVENUS, a reporter for the protein

expression of the pluripotency factor Nanog, was quantified for

single cells over several generations, thus providing cellular ge-

nealogies. To facilitate computation, we then extracted smaller

non-overlapping ‘‘subtrees’’ of three generations (seven cells)

each for analysis with STILT (Figure 3A). We converted fluores-

cence intensities in 15 subtrees to absolute protein numbers

(see STARMethods) and performed minimal data cleaning to re-

move incorrectly segmented or quantified measurements (Fig-

ure S8). Finally, we used STILT to perform inference with the

three autoregulatory motifs introduced above. Prior distributions

for each model parameter were estimated from available knowl-

edge (Table S5).

STILT produced sampled trajectories that agree well with the

measured time series (Figures 3B and 3C show one subtree fit

with the no feedback model; see Mendeley data archive [STAR

Methods] for all models and subtrees), indicating that all models

are capable of reproducing the observations with the assumed

parameter distributions, albeit with varying likelihoods. The esti-

mated latent mRNA abundances (Figure 3C) agree well with

recent estimates of approximately 100–300 copies per cell

(Nair et al., 2015; Singer et al., 2014). We found that the subtrees

are informative in the sense that they influence the estimated

probability distributions for model parameters, i.e., parameter

posterior distributions are shifted relative to their prior distribu-

tions (Figures 3D and S3; Table S6). Moreover, parameters are

robustly estimated (i.e., the posterior distributions are consis-

tent) over three technical replicates (Figure S3). Next, we esti-

mated the evidence of each model for each subtree (Table S7).

We found that the no feedback model is preferred in most cases
(11/15) and is significantly greater than the next best model in ten

of these instances (Figure 3E). For four subtrees, the negative

feedback model is preferred, and the evidence is significantly

greater in two of these. By contrast, it is consistently much lower

for the positive feedback model.

Finally, we used the goodness-of-fit test to assess the ability

of each model to explain the data. We found that both the no

feedback and negative feedback models agree well with the

observed datasets when using the median of the estimated pos-

terior distributions (Figure 3F; Nanog goodness-of-fit plots in

Mendeley data archive [STARMethods]; Table S8). The negative

feedback model is compatible with the most subtrees (13/15

accepted); in contrast, only 8/15 subtrees were compatible

with the no feedback model (five were marginally accepted).

However, the positive feedback model is accepted for only

5/15 subtrees and marginally for one additional subtree. For

two subtrees, no model could be rejected, and all models are

rejected in terms of the goodness of fits for subtree number 14

(Table S8).

Model-Based Experimental Design for Selection of
Nanog Autoregulation Motif
Based on the goodness-of-fit test and Bayes factors analysis,

we can reject positive feedback as a putative motif for Nanog

autoregulation for the analyzed datasets. Note that this rejec-

tion is based on statistical reasoning—positive feedback with

the specific structure and parameter priors assumed does not

explain the data well. To discriminate between the remaining

two alternatives, we used STILT to devise an experiment whose

outcome would differ significantly for the no/negative feedback

models. We consider the inclusion of exogenous expression of

transgenic Nanog, which would increase the effective rate of

DNA inactivation in the negative feedback model (Figure 4A).

To quantify the predicted effect of this perturbation, we simu-

lated negative feedback using the previously inferred parame-

ters, while introducing varying levels of exogenous Nanog

(Pex). We found a strong shift in endogenous Nanog dynamics

at only a few hundred thousand molecules of exogenous

Nanog and complete downregulation for Pex > 106 (Figure 4B).

Thus, by introducing exogenous Nanog into the experimental

system, we would expect decreased levels of endogenous

Nanog if the negative feedback model and inferred model pa-

rameters accurately capture the observed biological behavior;

by contrast, if the no feedback model is correct, we would

expect constant levels of endogenous Nanog (evaluated at

46 hr; Figure 4C).

We tested our model prediction using an mESC line with

fluorescent reporters for both endogenous and exogenous

Nanog (Figure S4A). We quantified exogenous Nanog and

defined five compartments of expression: no exogenous; 13,

23, and 33 overexpression (OE); and ‘‘very high’’ (i.e., >33

OE), relative to endogenous expression in untransfected cells

(Figures S4B andS4C). In agreement with recent reports (Fidalgo

et al., 2012; Navarro et al., 2012), expression of transgenic exog-

enous Nanogwas found to induce a dose-dependent downregu-

lation of endogenous Nanog production (Figure 4D). We then

replicated the experimental perturbation using STILT. Using

the estimated parameters, we simulated exogenous Nanog

corresponding to the quantity of exogenous Nanog of each
Cell Systems 3, 480–490, November 23, 2016 485
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Figure 3. Model Comparison Suggests that NanogVENUS Expression Dynamics in ESCs Are Best Explained by the No Feedback or Negative

Feedback Model

(A) Fluorescence lineage trees are partitioned to obtain disjoint subtrees of seven cells each.

(B) STILT yields samples for the latent trajectories of proteins that reproduce and contain the observed NanogVENUS data (shown for the no feedback model).

Colony images are shown at the first time point of each generation.

(C) The latent history of mRNA is inferred and agrees with previous estimates of the mRNA copy number of Nanog in ESCs (shown for the no feedback model).

(D) We compare the estimated posterior distributions of model parameters for the same subtree fit with each of the models. Each dataset is fit three times (red;

99% confidence interval), and the resulting posterior distributions comparedwith the prior distributions (gray; 99% confidence interval). We find that estimates for

mRNA and protein parameters are robust between technical replicates and across models.

(E) We compute the evidence of each model, shown relative to the average over all models for that subtree (mean, SEM; n = 3), scaled by evidence range for that

subtree (see Table S7 for absolute values). We find that the no feedback model provides the largest evidence in most cases (*, significant with p < 0.01), whereas

the negative feedback model is preferred for four subtrees. The evidence for the positive feedback model is generally lower than the other models. The frequency

for which the evidence for each model is significantly greater than the remaining models is shown with a pie chart.

(F) The goodness-of-fit test indicates that the negative feedback model is accepted for most subtrees (13/15) compared to 8/15 for no feedback and 5/15 for

positive feedback. Each model is rated as accept, marginal, or reject based on the result of the goodness-of-fit test.
overexpression compartment. We found agreement between

the predicted and measured decrease in endogenous Nanog

expression levels upon perturbation (Figure 4E). Note that the

prediction uses only parameters inferred from the time-lapse
486 Cell Systems 3, 480–490, November 23, 2016
data and the estimated quantities of exogenous Nanog. The

agreement suggests that the data are well explained by negative

feedbackwith the assumedmechanisticmodel and not by the no

feedback model.
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Figure 4. We Experimentally Verify the Predicted Response of the Negative Feedback Model to Nanog Overexpression

(A) We modify the negative feedback model to incorporate exogenous Nanog (Pex), which acts with endogenous Nanog (Pen) to increase the propensity of DNA

inactivation.

(B) Using the previously inferred model parameters, we generate synthetic trees for various levels of exogenous Nanog, illustrated for 0 molecules, 2 3 105

molecules (100% increase), and 106 molecules (500% increase).

(C) We predict strong downregulation (fold-change relative to median expression of unperturbed cells) of endogenous Nanog (mean, ±2 SEM; n = 30 simulations)

for the negative feedback model; the no feedback model is unperturbed by exogenous Nanog.

(D) Endogenous Nanog levels decrease as the amount of exogenous Nanog increases. Detection threshold is shown as a dashed line (see Figure S4B).

(E) Using the negative feedback model with exogenous Nanog, we compare the predicted fold-change (box and whiskers) in endogenous Nanog in response to

exogenous Nanog overexpression with the experimentally determined median fold-change (mean, SEM of three replicates; line). Fold-change is relative to

median expression level of endogenous Nanog in the unperturbed (no exogenous) compartment.
Comparative Validation of Estimated Parameters for the
Negative Feedback Model
STILT yields estimates of parameters, including the rate of

switching between active and inactive DNA conformations, tran-

scription and translation rates, and degradation rates of mRNA

and protein. These estimates agree well with previous estimates.

The inferred median mRNA degradation rate for each subtree

ranges from 0.11 to 0.43 (mean 0.23; n = 15) per molecule per

hour, which agrees well with the previous estimate of 0.15

(Ochiai et al., 2014). Estimated protein degradation rates range

from 0.03 to 0.44 (mean 0.22) per molecule per hour. This esti-

mate is consistent with the previous estimates of 0.14–0.35 (Fig-

ure 3D), which correspond to estimated half-lives of 5 hr and 2 hr,

respectively (Abranches et al., 2013; Filipczyk et al., 2015). Thus,

both Nanog protein and mRNA have comparable half-lives of

�3 hr. Transcription rates range from 67.2 to 181.8 (mean

110.3) per hour, consistent with the estimate of 126.6 per hour

(Ochiai et al., 2014). Translation rates range from 215.9 to

1,142.0 per mRNA per hour. This quantity is not well character-

ized in literature but agrees roughly with the estimate of up to

1,000 estimated for mouse fibroblasts (Schwanh€ausser et al.,

2011, 2013). The mean value of these estimates across subtrees
is similar between the no feedback and negative feedback

models: 115.0 versus 110.3 for translation; 0.26 versus 0.23

for mRNA degradation; 637.8 versus 619.5 for translation; and

0.24 versus 0.22 for protein degradation for the no feedback

and negative models, respectively.

DNA activation and inactivation rates cannot be easily as-

sessed because they represent an abstraction of a more compli-

cated biochemical process. For example, activation might

correspond to changes in the DNA and histone modification

state of the promoter, which permit greater transcriptional activ-

ity (Singer et al., 2014). Nonetheless, the estimated rate of acti-

vation ranges from 0.27 to 1.74 (mean 0.68) per hour, which is

consistent with the estimate of 1.69 per hour in the simple unreg-

ulated telegraph model of Ochiai et al. (2014). The inactivation

rate ranges from 0.13 3 10�11 to 1.12 3 10�10 (mean 5.69 3

10�11) per hour. In the negative feedback model, this rate scales

quadratically with the number of proteins to give a total rate of

approximately 2.5–5.0 per hour (assuming 2–43 105 Nanog pro-

tein molecules per cell). This estimate is substantially smaller

than the estimate of 36.54 per hour in the telegraph model

(Ochiai et al., 2014). However, there the model assumes DNA

to be inactive whenever active transcription is not detected. In
Cell Systems 3, 480–490, November 23, 2016 487



contrast, the stochastic nature of our model allows DNA to

remain in the active state even between transcription events,

which may contribute to a reduced overall rate of DNA inactiva-

tion. We also note that the estimated number of mRNAs inferred

by STILT, which ranges from approximately 0 to 300, agrees well

with previous estimates of �100 ± 100 (Hansen and van Oude-

naarden, 2013; Nair et al., 2015; Singer et al., 2014; see Nanog

Bandplots in Mendeley data archive [STAR Methods]). In sum-

mary, STILT achieves comprehensive rate constant estimates

of the different processes governing Nanog dynamics solely

from a time-lapse study. These are in good agreement with the

results from various dedicated studies, each independently

focusing on selected aspects, such as DNA (in-) activation or

mRNA/protein synthesis and degradation.

DISCUSSION

As our analysis of real and simulated data with STILT demon-

strates, fitting mechanistic models to time-lapse data facilitates

the analysis of latent variables and enables the design of infor-

mative experiments. The sampled trajectories may also provide

valuable insight into the dynamics of latent variables, including

DNA activity and mRNA copy number. The inferred trajectories

can also be analyzed to provide information about gene activity,

such as inferring continuous versus burst transcription, possible

oscillations, refractory periods, etc. (Suter et al., 2011). For

example, examining the mRNA trajectories (see Nanog Band-

plots in Mendeley data archive), we observe both burst-like

and sustained transcriptional modes.

In thiswork,weuse this approach to investigate regulatorymo-

tifs. A variety of hypothetical motifs for Nanog regulation have

previously beenproposed that aim to recapitulateNanog’s prom-

inently heterogeneous expression (Chambers et al., 2007; Fili-

pczyk et al., 2013). Such motifs can produce phenomena, such

as bistability or oscillations (Glauche et al., 2010), and excitatory

excursions from a stable state (Kalmar et al., 2009), which may

give rise to broad or bimodal Nanog distributions resembling

those observed in static snapshot experiments. On the other

hand, Nanog transcriptional dynamics have been described sta-

tistically using a simple, unregulated telegraph model fit to the

timing of periods of gene activity (Ochiai et al., 2014). To ulti-

mately discriminate between such mechanisms, quantitative

model selection based on single-cell data is required. However,

until now, extracting mechanistic knowledge from fluorescent

fusion protein trajectories has been hampered by the lack of suit-

able inference techniques. In particular, the intrinsic stochasticity

of Nanog expression at the single cell level and the proliferating

nature of mESC populations necessitate an approach that is fully

stochastic, Bayesian, and suited to tree-structured data. Using

STILT, we overcome these challenges to make use of the full in-

formation content of time-lapse fluorescence movies, quantita-

tively fit and select among putative models of autoregulation.

Consistent with recent evidence, we find positive feedback to

be unlikely to explain the observed Nanog lineage trees. Instead,

STILT indicates greater evidence for the no feedback model for

many subtrees and negative feedback for fewer subtrees,

whereas positive feedback is consistently disfavored. However,

the goodness-of-fit test indicates overall better agreement with

data for the negative feedback model. The stronger evidence
488 Cell Systems 3, 480–490, November 23, 2016
for no feedback arises because the fitted parameter values

are a priori more likely with the assumed prior distributions

compared to the negative feedback model, i.e., the negative

feedbackmodel agrees with the data for amore limited set of pa-

rameters, which were assumed to be less likely. However, as for

all Bayesian inference methods, this result is influenced by the

choice of prior distributions and thus should be considered in

context of the goodness-of-fit test results.

To discriminate between no feedback and negative feedback,

we used STILT as an experimental design tool and quantitatively

predicted the strength of downregulation upon overexpression.

Further investigation using novel experiments revealed the ex-

pected strongdownregulation uponhigh expression of transgenic

Nanog, in very good agreement with model predictions. Taken

together, we conclude that Nanog negative autoregulation is

indeed likelybut hasaprominent effectonlyat relatively high levels

of protein expression, which renders model discrimination based

on Bayes factors alone difficult. The lack of strong autoregulation

suggests stable oscillations to be unlikely, in accordance with

previous analysis (Filipczyk et al., 2015), and supports the notion

that Nanog undergoes broad fluctuations that serve to diversify

the mESC population’s ability to respond to differentiation cues

(Abranches et al., 2014; Torres-Padilla and Chambers, 2014).

The inferred motif naturally represents a simplification of

Nanog’s true regulatory mechanism. For example, although

Nanog autoinhibition is thought to be mediated by Zfp281 and

the NuRD complex (Fidalgo et al., 2012), these factors are

omitted for simplicity; this is equivalent to assuming Zfp281

abundance to be approximately constant. We further neglect

the possibility of monoallelic expression of Nanog. However, it

has been previously shown that both Nanog mRNA and protein

are highly correlated between alleles (Filipczyk et al., 2013; Han-

sen and van Oudenaarden, 2013), motivating this assumption.

Despite these simplifications, the negative feedback model (1)

produces sample trajectories that reproduce the observed

data, (2) agrees quantitatively with observed fluorescence line-

age trees using the goodness-of-fit test, and (3) accurately pre-

dicts the magnitude of downregulation in overexpression exper-

iments. Thus, we conclude that the autoinhibitory motif provides

a simple but accurate description of Nanog protein dynamics,

superior to the considered alternatives.

Whereas we have focused on Nanog autoregulation, STILT

may be used for inference and model selection for arbitrary sto-

chastic gene regulation models applied to fluorescence lineage

trees, thus enabling quantitative and exact analysis of lineage-

tracked time-lapse fluorescence data. Future research will focus

on improving STILT’s performance for large/high-dimensional

datasets. The generic MATLAB implementation is provided as

open source with SBML compatibility for easy import of user-

specified models.
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Kalmar, T., Lim, C., Hayward, P., Muñoz-Descalzo, S., Nichols, J., Garcia-

Ojalvo, J., and Martinez Arias, A. (2009). Regulated fluctuations in nanog

expression mediate cell fate decisions in embryonic stem cells. PLoS Biol. 7,

e1000149.

Kass, R.E., and Raftery, A.E. (1995). Bayes factors. J. Am. Stat. Assoc. 90,

773–795.
Cell Systems 3, 480–490, November 23, 2016 489

http://dx.doi.org/10.1016/j.cels.2016.11.001
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref1
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref1
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref1
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref2
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref2
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref2
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref3
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref3
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref3
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref4
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref4
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref5
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref5
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref5
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref5
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref6
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref6
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref7
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref7
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref8
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref8
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref8
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref9
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref9
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref9
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref10
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref10
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref11
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref11
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref11
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref12
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref12
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref12
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref13
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref13
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref14
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref14
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref14
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref14
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref14
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref15
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref15
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref15
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref16
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref16
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref16
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref16
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref17
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref17
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref18
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref18
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref19
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref19
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref19
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref20
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref20
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref21
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref21
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref21
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref22
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref22
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref23
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref23
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref23
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref23
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref24
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref24
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref24
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref24
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref25
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref25
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref25
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref25
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref26
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref26
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref27
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref27
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref27
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref27
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref28
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref28


Kreutz, C., Bartolome Rodriguez, M.M., Maiwald, T., Seidl, M., Blum, H.E.,

Mohr, L., and Timmer, J. (2007). An error model for protein quantification.

Bioinformatics 23, 2747–2753.

Larson, D.R., Zenklusen, D., Wu, B., Chao, J.A., and Singer, R.H. (2011). Real-

time observation of transcription initiation and elongation on an endogenous

yeast gene. Science 332, 475–478.

Locke, J.C.W., and Elowitz, M.B. (2009). Using movies to analyse gene circuit

dynamics in single cells. Nat. Rev. Microbiol. 7, 383–392.

MacArthur, B.D., Sevilla, A., Lenz, M., M€uller, F.-J., Schuldt, B.M., Schuppert,

A.A., Ridden, S.J., Stumpf, P.S., Fidalgo, M., Maayan, A., et al. (2012). Nanog-

dependent feedback loops regulate murine embryonic stem cell heterogene-

ity. Nat. Cell Biol. 14, 1139–1147.

Mullin, N.P., Yates, A., Rowe, A.J., Nijmeijer, B., Colby, D., Barlow, P.N.,

Walkinshaw, M.D., and Chambers, I. (2008). The pluripotency rheostat

Nanog functions as a dimer. Biochem. J. 411, 227–231.

Munsky, B., and Khammash, M. (2006). The finite state projection algorithm for

the solution of the chemical master equation. J. Chem. Phys. 124, 044104.

Muzzey, D., and van Oudenaarden, A. (2009). Quantitative time-lapse fluores-

cence microscopy in single cells. Annu. Rev. Cell Dev. Biol. 25, 301–327.

Nair, G., Abranches, E., Guedes, A.M.V., Henrique, D., and Raj, A. (2015).

Heterogeneous lineage marker expression in naive embryonic stem cells is

mostly due to spontaneous differentiation. Sci. Rep. 5, 13339.

Navarro, P., Festuccia, N., Colby, D., Gagliardi, A., Mullin, N.P., Zhang, W.,

Karwacki-Neisius, V., Osorno, R., Kelly, D., Robertson, M., and Chambers, I.

(2012). OCT4/SOX2-independent Nanog autorepression modulates heteroge-

neous Nanog gene expression in mouse ES cells. EMBO J. 31, 4547–4562.

Ochiai, H., Sugawara, T., Sakuma, T., and Yamamoto, T. (2014). Stochastic

promoter activation affects Nanog expression variability in mouse embryonic

stem cells. Sci. Rep. 4, 7125.

Pitt, M.K., and Shephard, N. (1999). Filtering via simulation: auxiliary particle

filters. J. Am. Stat. Assoc. 94, 590–599.

Raj, A., and van Oudenaarden, A. (2008). Nature, nurture, or chance: stochas-

tic gene expression and its consequences. Cell 135, 216–226.

Raj, A., Peskin, C.S., Tranchina, D., Vargas, D.Y., and Tyagi, S. (2006).

Stochastic mRNA synthesis in mammalian cells. PLoS Biol. 4, e309.

Rieger, M.A., Hoppe, P.S., Smejkal, B.M., Eitelhuber, A.C., and Schroeder, T.

(2009). Hematopoietic cytokines can instruct lineage choice. Science 325,

217–218.

Saunders, A., Faiola, F., and Wang, J. (2013). Concise review: pursuing self-

renewal and pluripotency with the stem cell factor Nanog. Stem Cells 31,

1227–1236.
490 Cell Systems 3, 480–490, November 23, 2016
Schwanh€ausser, B., Busse, D., Li, N., Dittmar, G., Schuchhardt, J., Wolf, J.,

Chen, W., and Selbach, M. (2011). Global quantification of mammalian gene

expression control. Nature 473, 337–342.

Schwanh€ausser, B., Busse, D., Li, N., Dittmar, G., Schuchhardt, J., Wolf, J.,

Chen, W., and Selbach, M. (2013). Corrigendum: global quantification of

mammalian gene expression control. Nature 495, 126–127.

Sharova, L.V., Sharov, A.A., Nedorezov, T., Piao, Y., Shaik, N., and Ko, M.S.H.

(2009). Database for mRNA half-life of 19 977 genes obtained by DNA micro-

array analysis of pluripotent and differentiating mouse embryonic stem cells.

DNA Res. 16, 45–58.

Singer, Z.S., Yong, J., Tischler, J., Hackett, J.A., Altinok, A., Surani, M.A., Cai,

L., and Elowitz, M.B. (2014). Dynamic heterogeneity and DNA methylation in

embryonic stem cells. Mol. Cell 55, 319–331.

Sokolik, C., Liu, Y., Bauer, D., McPherson, J., Broeker, M., Heimberg, G., Qi,

L.S., Sivak, D.A., and Thomson, M. (2015). Transcription factor competition

allows embryonic stem cells to distinguish authentic signals from noise. Cell

Syst. 1, 117–129.

Spencer, S.L., Gaudet, S., Albeck, J.G., Burke, J.M., and Sorger, P.K. (2009).

Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis.

Nature 459, 428–432.

Suter, D.M., Molina, N., Gatfield, D., Schneider, K., Schibler, U., and Naef, F.

(2011). Mammalian genes are transcribed with widely different bursting

kinetics. Science 332, 472–474.

Tay, S., Hughey, J.J., Lee, T.K., Lipniacki, T., Quake, S.R., and Covert, M.W.

(2010). Single-cell NF-kappaB dynamics reveal digital activation and analogue

information processing. Nature 466, 267–271.

Torres-Padilla, M.-E., and Chambers, I. (2014). Transcription factor heteroge-

neity in pluripotent stem cells: a stochastic advantage. Development 141,

2173–2181.

Wang, J., Levasseur, D.N., and Orkin, S.H. (2008). Requirement of Nanog

dimerization for stem cell self-renewal and pluripotency. Proc. Natl. Acad.

Sci. USA 105, 6326–6331.

Wilkinson, D.J. (2009). Stochastic modelling for quantitative description of

heterogeneous biological systems. Nat. Rev. Genet. 10, 122–133.

Wilkinson, D.J. (2011). Stochastic Modelling for Systems Biology, Second

Edition (CRC Press).

Zechner, C., Pelet, S., Peter, M., and Koeppl, H. (2011). Recursive Bayesian

estimation of stochastic rate constants from heterogeneous cell populations.

2011 50th IEEE Conference on Decision and Control and European Control

Conference (CDC-ECC) 5837–5843.

http://refhub.elsevier.com/S2405-4712(16)30365-9/sref29
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref29
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref29
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref30
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref30
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref30
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref31
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref31
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref32
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref32
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref32
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref32
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref32
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref33
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref33
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref33
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref34
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref34
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref35
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref35
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref36
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref36
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref36
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref37
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref37
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref37
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref37
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref38
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref38
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref38
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref39
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref39
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref40
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref40
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref41
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref41
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref42
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref42
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref42
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref43
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref43
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref43
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref44
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref44
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref44
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref44
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref45
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref45
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref45
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref45
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref46
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref46
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref46
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref46
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref47
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref47
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref47
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref48
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref48
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref48
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref48
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref49
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref49
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref49
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref50
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref50
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref50
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref51
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref51
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref51
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref52
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref52
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref52
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref53
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref53
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref53
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref54
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref54
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref55
http://refhub.elsevier.com/S2405-4712(16)30365-9/sref55


STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Lipofectamine 2000 Life Technologies 11668-019

Experimental Models: Cell Lines

Mouse embryonic stem cell: R1 NanogVENUS Filipczyk et al., 2015 N/A
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Exogenous Nanog Construct
ESC Culture

Mouse ESCs were of R1 background and report endogenous Nanog protein levels from one allele by fluorescent fusion proteins,

either NanogVENUS (NV) or NanogKATUSHKA (NK). ESCs were cultured in DMEM (Catalogue number: D1145 Sigma, MO, USA)

supplemented with 2mMGlutaMAX (Catalogue number: 35050-038, GIBCO, USA), 1% Non-essential amino acids (Catalogue num-

ber: 11140-035, GIBCO, CA, USA), 1mM Sodium Pyruvate (Catalogue number: S8636, Sigma, MO, USA), 50uM b-mercaptoethanol

(Catalogue number: M6250, Sigma-Aldrich, USA), 10% FCS (Catalogue number: 2602P250915, PAN, Aidenbach, Germany) and

10ng/ml LIF (GFM200, Cell Guidance Systems, Cambridge, UK) on 0.1% porcine gelatin (Sigma, Catalogue number: G1890-100G).

Nanog Overexpression Experiments

30,000 cells were seeded in a single well of a 24w plate and transfection was performed 5-7h after seeding. For transfections, 250ng

plasmid, 1ul Lipofectamine 2000 (11668-019, Life Technologies) and 50ul Opti-MEM (31985-062; Life Technologies) were mixed and

added to the cells. Cells were analyzed by flow cytometry 46h after transfection using a BD LSR Fortessa (BD Biosciences, CA, USA)

and data were analyzed with FlowJo (OR, USA). Cells were gated for non-debris and singlets using FCS-A, SSC-A and FCS-W chan-

nels. Fluorescence channels were compensated using controls that only expressed one of each fluorescent protein. R1 wild-type

cells were used as control for cellular autofluorescence. All experiments have been performed in triplicate.

Expression Plasmids

The Nanog coding sequence was cloned in several variants as a 2A construct into a piggybac vector that has been modified to ex-

press a fluorescent nuclear membrane tag (iRFPnucmem) from the CAG promoter using the In-Fusion system (Catalogue number:

638911, Takara, Japan). The resulting constructs are supposed to express iRFPnucmem and Nanog proteins in equal abundances.

The plasmid CAG.iRFPnucmem-P2A-NanogVENUS was used in overexpression experiments to allow for comparison of exogenous

NanogVENUS levels with endogenous NanogVENUS levels of the R1 NanogVENUS cell line. The NanogVENUS plasmid performed

identically to positive control plasmids (CAG.iRFPnucmem-P2A-Nanog; with or without ATG for Nanog). An empty vector control

(CAG.iRFPnucmem-P2A) was also used during experiments.

METHOD DETAILS

Chemical Reaction Networks
We consider the case of parameter inference andmodel comparison for stochastic models of gene regulation described by chemical

reaction networks. A chemical reaction network consists of a set of chemical species (e.g., DNA, mRNA, protein, etc.) which may

interact via a set of chemical reactions such as synthesis, destruction, or modification.

Each reaction is defined by its stoichiometry, i.e., the quantity of each educt consumed and product produced by the reaction, and

reaction rate. Reactions are presumed to take place stochastically as a function of the state of the system, i.e., the number of mol-

ecules of each species at a given point in time. The probability of a reaction occurring in infinitesimal time, called the reaction pro-

pensity, depends on the number of molecules of each educt available, the reaction volume of the cellular compartment where the

reaction takes place, and a reaction constant. Zeroth order reactions involve the production of a species with no dependence on

an educt, for example due to constitutive production; their reaction propensities are constant. First order reactions proceed with

Plasmid PB.CAG.iRFPnucmemP2ANanogVENUS This paper N/A
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propensity proportional to the number of available molecules of a single educt. Second order reactions involve two species, and their

propensity is proportional to the abundances of both involved educts, and so on. The reaction constants k depend on the chemical

species involved, temperature and reaction system volume. Reaction propensities are summarized in the table below.
Reaction order Reaction Propensity function (a)

Zeroth B/X k

First X/Y kx

Second X +Y/Z kxy

Second (same species) 2X/Y kxðx � 1Þ=2
Third X +Y +Z/A kxyz
Inference of Latent History and Model Parameters
Inference Using Bootstrap Particle Filtering

STILT builds upon the recursive, simulation-based particle filter first introduced by Pitt and Sheppard (Pitt and Shephard, 1999). The

particle filter approximates the posterior distribution of the latent history of all chemical species for each cell, and all model param-

eters, iteratively updating the approximation by including new observations.

Consider a chemical reaction network with Ns chemical species, of which No%Ns are observed via measurement. The vector of

reaction constants governing all reactions of this network is denoted by q. We denote by Y t the measurement at time t, and by

Y0:N = ðYt0;.;YtNÞ the set of observations obtained at a series of N discrete measurement time points t0;.; tN. Each observation

Yt ˛ RNo consists of the measurements ofNo observed chemical species. We assume that the observations Yt constitute noisy mea-

surements of the true unknown state of the system at time t, denoted by Xt. We denote by X½t1 ;t2 � the path (trajectory) of the random

variable Xt from time t1 to time t2, and denote by X0:N = ðXt0;.;XtNÞ the value of Xt at the measurement time points t0;.; tN.

The objective of the bootstrap particle filter is to sample from the posterior joint density PðX½t0 ;tN�;q
��Y0:N;MÞ of latent trajectories

X½t0 ;tN� and parameters q for a model with index M, given the observed data Y0:N. We drop the model index M for simplicity; when

comparing models we will again introduce this notation. The latent trajectories X½t0 ;tN � are realizations of a stochastic process, and

the data Y0:N represent noisy observations of (a function of) the latent process obtained at discrete times. The posterior joint density

depends on the likelihood PðY0:N jX½t0 ;tN �; qÞ and parameter prior probability distribution pðqÞ according to Bayes’ Law:

P
�
X½t0 ;tN �; q

��Y0:N

�
=
P
�
Y0:N

��X½t0 ;tN �;q
�
P
�
X½t0 ;tN �;q

�
PðY0:NÞ

=
P
�
Y0:N jX½t0 ;tN �

�
P
�
X½t0 ;tN �

��q�pðqÞ
PðY0:NÞ

=
PðY0:N jX0:NÞP

�
X½t0 ;tN �

��q�pðqÞ
PðY0:NÞ :

(1)

The simplification on the right side of (Equation 1) is possible since the probability of observing data Y0:N given a latent trajectory

X½t0 ;tN� depends only on its value at the measurement time points X0:N. Furthermore, it does not depend on the underlying parameters

q of the stochastic process (measurement error is considered separately). The probability PðX½t0 ;tN�
��qÞ captures the evolution of the

stochastic process parameterized by q.

The observations Y0:N are related to X½t0 ;tN� by a measurement function g with parameter h: PðY0:N jX0:NÞ=gðY0:N;X0:N;hÞ,
which captures the measurement process and/or apparatus. For example, gmight be a (multivariate) Gaussian in which case h con-

tains the variance of the measurement process and potentially a scaling factor. We restrict ourselves to chemical reaction networks

for which the stochastic process Xt is a Markov jump process on a subset of the integer lattice NNs , corresponding to molecular copy

numbers reachable by the chemical reactions of the network. For such a system, the exact likelihood of the latent trajectory

PðX½t0 ;tN �
��Xt0;qÞ can be computed (Wilkinson, 2011), and exact samples of X½t0 ;tN �

��Xt0; q can be generated e.g., using Gillespie’s

algorithm (Gillespie, 1977). Note that the transition density (i.e., PðXt0 jXt; qÞ; t0 > t) of the stochastic process is in general not known,

but can be approximated for small systems, e.g., using the Finite State Projection (Munsky and Khammash, 2006).

Assuming uncorrelated measurement errors in the observation function g, the likelihood PðY0:N jX0:NÞ factorizes as:

PðY0:N jX0:NÞ=
YN
i =0

P
�
Yti

��Xti

�
: (2)

for a series of N observations.

Furthermore, the stochastic process Xt is Markovian such that the probability PðXs jX½t0 ;t�Þ=PðXs jXtÞ for some sRt. The likelihood

of the trajectory X½t0 ;tN � therefore decomposes as:
P
�
X½t0 ;tN �

��q�=P
�
Xt0
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P
�
X½ti�1 ;ti �

��Xti�1
; q
�

(3)



Following the derivation of Gordon et al. (Gordon et al., 1993), we combine Equation 2 and Equation 3, and substitute into Equa-

tion 1, to obtain a new expression for the posterior density:

P
�
X½t0 ;tN �;q

��Y0:N

�
=
YN
i = 1

P
�
Yti

��Xti

�
P
�
X½ti�1 ;ti �

��Xti�1
; q
�

P
�
Yti

� P
�
Xt0

��q�pðqÞ
=
P
�
YtN

��XtN

�
P
�
X½tN�1 ;tN �

��XtN�1
;q
�

P
�
YtN

� 3
YN�1

i = 1

P
�
Yti

��Xti

�
P
�
X½ti�1 ;ti �

��Xti�1
;q
�

P
�
Yti

� P
�
Xt0

��q�pðqÞ
=
P
�
YtN

��XtN

�
P
�
X½tN�1 ;tN �

��XtN�1
; q
�

P
�
YtN

� P
�
X½t0 ;tN�1 �; q

��Y0:N�1

�
(4)

This can be rewritten as

P
�
X½t0 ;tN �; q

��Y0:N

�
=wN

P
�
X½tN�1 ;tN �

��XtN�1
;q
�

P
�
YtN

� P
�
X½t0 ;tN�1 �;q

��Y0:N�1

�
(5)

where wN =PðYtN jXtNÞ.
Hence, there is a simple update rule relating the posterior distribution using observations until time point tN�1 to the posterior dis-

tribution with the next observation at time point tN. We note also that one can generate a sample from the posterior joint density of the

system at times until ti, PðX½t0 ;ti �;q
��Y0:iÞ, by first sampling a trajectory from the marginal distibution PðX½t0 ;ti �

��Y0:iÞ and then sampling a

parameter q jX½t0 ;ti �, suggesting a Gibbs sampling approach, i.e., PðX ½t0 ;ti �; q
��Y0:iÞ=Pðq jX ½t0 ;ti �ÞPðX ½t0 ;ti �

��Y0:iÞ.
These observations and the recursive factorization of the joint posterior (Equation 5) motivates the so-called bootstrap (recursive)

particle filter (Gordon et al., 1993), which iteratively generates samples (particles) from the posterior distribution conditioned on all

prior observations, shown in Algorithm 1.
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The recursive particle filter begins by sampling parameters q from the parameter prior distribution pðqÞ, and an initial state Xt0 from

its prior, for an ensemble ofK particles, i.e., each particle is a sample from the joint density ofXt0 and q. At each iteration i, the particles

are resampled according to their normalized weights w
ðkÞ
i =
PK

[=1w
ð[Þ
i , such that particles that have a state X

ðkÞ
ti

for which the current

observation Yti is likely are sampled more frequently. After updating the latent history samples X
ðkÞ
½t0 ;ti �, new samples are generated for

the parameters conditional on those latent histories using a Gibbs sampling approach. Together the sample ðXðkÞ
ti
;qðkÞÞ is used to

simulate a new trajectory on the interval ½ti; ti +1� using the stochastic simulation algorithm or variants (Gillespie, 2007; Golightly

and Gillespie, 2013). The result of the recursive particle filter at iteration i is an exact sample from the posterior joint density of

ðX½t0 ;ti �;q
��Y0:iÞ, as shown in Equation 4.

Gamma priors

We consider the case of mass action kinetics models of chemical reaction networks, in which case each parameter q1;.; qd cor-

responds to the kinetic constant of a chemical reaction (see table above). The inference procedure is significantly simplified if one

assumes that the prior distribution of each parameter is gamma distributed, and that the prior distributions of all parameters are

conditionally independent:

pðqÞ=
Yd
p= 1

ppðqpÞ=
Yd
p= 1

G
�
qp;ap; bp

�
(6)

where ap and bp are the hyperparameters for the distribution of qp;p= 1.d, andGðx;a;bÞ= ðba=GðaÞÞxa�1e�bx. The two parameters a

and b of the gamma distribution can be chosen e.g., to match a target mean m and variance s2:

a=
!
m2=s2 (7)
b=
!
m=s2: (8)

The assumption of conditional independence of the prior distributions of model parameters is often justified, as information about

the covariance of biological constants is often not available.

Using gamma priors for each model parameter, the likelihood PðX½t;t + t�
��qÞ of a particular (fully-observed) realization of the Markov

jump process Xt on the interval ½t; t + t� is conjugate to the prior, such that the posterior probability Pðq jX½t;t + t�Þ is also gamma

distributed (see Wilkinson et al. (Wilkinson, 2011), p. 281):

P
�
q
��X½t;t + t�

�
=
P
�
X½t;t + t�

��q�
P
�
X½t;t + t�

� pðqÞ=P
�
X½t;t + t�

��q�
P
�
X½t;t + t�

� Yd
p= 1

G
�
qp;ap;bp

�

=
Yd
p= 1

G
�
qp;ap + rp; bp +Gp

� (9)

where rp is the number of reaction firings of reaction p on the interval ½t; t + t� and the term Gp = ð1=qpÞ
R t + t

t apðXsÞds is the integral of

the reaction propensity ap of the pth reaction (see table above), rescaled by the reaction constant qp. The rescaling renders Gp

dependent only on the instantaneous configuration of the system at all points along the trajectory, and not on the reaction

constants. Hence, a new sample for q given the newly simulated trajectory (line 13 of Algorithm 1) can be generated by simply

sampling from the updated gamma posterior (Equation 9); furthermore, the summary statistics rp and Gp are sufficient for

describing the posterior distribution of qp. Thus, the full trajectories do not need to be stored, but instead the new simulations

can be used to merely update the parameters of the posterior distribution of q (i.e., set ap)ap + rp;bp)bp +Gp), reducing storage

requirements.

STILT: Stochastic Inference on Lineage Trees

The particle filtering strategy described in Algorithm 1 is suitable for inference of the latent history of a single cell. However, if the

cellular lineage is known it is possible to exploit the tree structure to improve the performance of the inference algorithm, for instance

by constraining the range of possible initial values for daughter cells at the moment of division according to the state of the mother

cell. This ismore informative than assuming arbitrary distributions for the initial conditions of latent species, as required in Algorithm 1.

Moreover, when incorporating the tree structure, the inferred parameter values are required to generate trajectories that have a high

likelihood for multiple cells simultaneously as the cells proliferate.

STILT performs tree-based inference as outlined in Algorithm 2 below. We consider a tree comprised of Nc total cells, with indices

j = 1;.;Nc. For the jth cell there is a series of Nj (possibly multivariate) measurements obtained at times j t1;.;j tNj
, corresponding to
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each of the No observed species, denoted by jY1:Nj
= ðjYj t1 ;.; jYj tNj

Þ,. The algorithm begins by initializing a set of K particles for the

tree’s founding cell with index j = 1, where each particle k comprises both a latent initial state 1X
ðkÞ
t0

and a set of parameters qðkÞ. All
particles are initially equally weighted as 1=K. The algorithm then iterates through all of the measurement time points, where for

simplicity we assume thatmeasurements of all cells are obtained at a regular intervalDt (i.e., jt[ = nDt c[;n ˛ N); however, themethod

is equally valid for irregular measurement time intervals. At each iteration i, particles are resampled with frequencies proportional to

their weights, and cells that are alive/measured at the current time point iDt are simulated one time step using the generative stochas-

tic process with the sampled parameters qðkÞ to generate a sample jX
ðkÞ
½iDt;ði + 1ÞDt� of the latent history of cell j over the time interval

½iDt; ði + 1ÞDt�.
If a cell is observed to divide between this time point and the next, the cell’s contents are allocated to the daughter cells.

If both daughter cells are present, the total cellular contents of the mother cell must be conserved. For simplicity the

division is assumed to take place just before the first observation of the two daughter cells at time ði + 1ÞDt. Cells are

ordered such that cell j gives rise to cells with indices 2j and 2j + 1, with latent states 2jX
ðkÞ
ti +1

and 2j +1X
ðkÞ
ti + 1

, for the kth particle.

The conservation relationship between mother and daughter cells is enforced by requiring that 2jX
ðkÞ
ti + 1

+ 2j +1X
ðkÞ
ti + 1

= jX
ðkÞ
ti + 1

. How-

ever, some species may be presumed to be identical between mother and daughter cells, e.g., DNA in active or inactive

conformation.

After each forward simulation or division step the likelihood PðjYti + 1
j jXðkÞ

ti + 1
Þ= gðjYti + 1

; jX
ðkÞ
ti + 1

;hÞ of each latent history is computed

according to the observation function g, and used to reweight the particles. The observations of each cell are presumed

independent conditional on the latent state, thus the likelihood of the complete set of observed cells is the product of the likeli-

hoods of each cell, and the total weight of particle k is given by the product of the weights of each observed cell at that time

point.

Assuming conditionally independent gamma priors pðqpÞ=Gðqp;ap; bpÞ for each parameter qp, the posterior probability of the

model parameters conditional on the sampled latent histories until the current time point is shifted similarly to in (Equation 9), where

ap increases by the summed number of reaction firings and bp by the summed integrals of the (rescaled) propensity functions, over all

newly simulated trajectories on the interval ½iDt; ði + 1ÞDt�. We define the set Ai to be the set of indices of all cells observed at any point

on the interval ½0; iDt�:

Ai =
n
j j j t1%iDt

o
(10)
Let j rpðiDtÞ be the number of firings of reaction p in cell j at all times t%iDt and jGpðiDtÞ= ð1=qpÞ
Rminðj tNj ;iDtÞ
jt1

apðjXsÞds be the integral of
the rescaled propensity function of reaction p for cell j until time iDt, for a particular realization of the stochastic process for cell j. With

these definitions, the posterior joint density of model parameters q is given by:

Pðq jBiÞ=
Yd
p= 1

G

 
qp;ap +

X
a˛Ai

arpðiDtÞ;bp +
X
a˛Ai

aGpðiDtÞ
!

(11)
where the set Bi = faX½at1 ;minðatNa ;iDtÞ�ga˛Ai gives the set of realizations of the stochastic process for all cells observed at or before

time iDt. Equation 11 provides the means to generate samples qðkÞ from the probability density of model parameters conditional

on a particular sampled complete genealogy Bi. The parameter samples qðkÞ for each particle k are obtained by substituting

the sampled trajectories for that particle into all expressions, i.e., aX becomes aX(k), arp becomes ar
ðkÞ
p , and aGp becomes

aaG
ðkÞ
p . Since only the summary statistics are necessary to compute the posterior of the parameters, the full trajectories

do not need to be saved, leading to a significant reduction in storage requirements. Finally, after iterating through all time

points, the particles are resampled according to their weights yielding a set of K latent trajectories (if stored) and parameter

sets. Thus the tree-based inference algorithm extends the single-cell-based inference algorithm (Algorithm 1) by establishing

continuity between mother and daughter cells and initializing new latent trajectories for daughter cells according to the division

process.
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Single-Cell versus Tree-Based Inference

In the previous sections we presented two algorithms for inferring model parameters using the bootstrap particle filter. Algorithm 1

treats each cell individually while Algorithm 2 explicitly incorporates the known cellular lineage tree. As an alternative to Algo-

rithm 2, it is also possible to fit all cells by simply discarding lineage knowledge, artificially synchronizing all cells to start at the

same time point, and fitting cells in parallel. However, testing revealed that this approach quickly converges to local optima

due to the inability to fit all cells simultaneously without information about their initial conditions. In contrast, Algorithm 2 benefits

from exploiting the initial iterations of the algorithm with fewer cells in order to pre-converge the parameter distributions, and pro-

vides good estimates for the initial conditions of daughter cells upon division of the mother cell under the assumed division

process.

The single-cell based inference performed consistently worse than the tree-based inference using STILT on synthetic data, in

terms of model identification (Table S4) and parameter estimates (Figure S7). This is likely because the single-cell-based inference

does not exploit the lineage structure to improve the estimation of the initial conditions (i.e., by enforcing conservation of inherited

cellular material betweenmother and daughter cells), and because it is not obvious how to combine the inference results of individual

cells in order to provide a better estimate of the overall population parameters.

Model Assumptions
Cell Division

We assume that at the time of division, eachmother cell allocates its contents (mRNA and protein) randomly with equal probability to

each daughter cell. Thus the number of mRNA molecules are distributed as:

PðM1 =m1;M2 =m2 jM0 =m0Þ= 0:5m0m0!

m1!m2!
dm0 ;m1 +m2

(12)

where M1, M2 are the number of mRNA molecules of the two daughter cells upon division, and M0 that of the mother cell; dx;y is

the Kronecker delta. The protein contents are allocated analogously, although for numerical efficiency the binomial distribution is

approximated by a normal distribution with equivalent mean and variance.

The conformation of the DNA (i.e., active or inactive) for each gene is assumed to persist from mother cell to daughter cell at

division. This assumption is motivated by the observation that progeny of a cell typically resemble the ancestor cell in terms of

gene activity. However, due to the stochastic nature of themodel, some simulated trajectories may still switch activation state shortly

after division, effectively permitting cells to also switch activation state upon division if this trajectory exhibits high likelihood. We note

however that this is not an essential assumption of the inference procedure and can be easily changed for alternative scenarios; the

behavior of species is easily configured in STILT.

Feedback Models

In the feedbackmodels, the DNA activation and inactivation rates aremodified by the protein abundance. For the Negative Feedback

model the amount of protein modulates the rate of DNA inactivation and for the Positive Feedback model protein modulates the rate

of DNA activation. We consider the case of switch-like activation/inactivation of the DNAwith increasing concentration of protein. We

achieve this by assuming that the propensity of DNA activation in the Positive Feedback model is given by aon = konP
2 and of DNA

inactivation by aoff = koffP
2 in the Negative Feedback model.

We assume fast binding and dissociation of protein to the DNA relative to protein production and degradation, such that the protein

abundance can be treated as approximately constant on the timescale of binding dynamics. With this assumption, the probability of

DNA being in either the active ðDNA�Þ or inactive state (DNA) evolves for the Negative Feedback model according to the chemical

master equation:

_PðDNA�; tÞ=PðDNA; tÞkon � PðDNA�dt; tÞkoffP2 (13)
_PðDNA; tÞ= � PðDNA; tÞkon +PðDNA�; tÞkoffP2: (14)

Requiring that PSSðDNA�Þ+PSSðDNAÞ= 1, the steady state solution gives:

PSSðDNAÞ= P2

kon
koff

+P2
(15)
PSSðDNA�Þ=
kon
koff

kon
koff

+P2
: (16)

Thus the probability of DNA being inactive is a sigmoidally increasing function of the number of proteins. This activation function is a

Hill function with coefficient 2, corresponding to cooperative binding of twoNanogmolecules at the promoter/enhancer. The quantity

ðkoff=konÞ1=2 determines the protein abundance for which the DNA has 50% probability of being active.
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Similarly, for the Positive Feedback model, the probability of the DNA states evolves as:

_PðDNA�; tÞ=PðDNA; tÞkonP2 � PðDNA�; tÞkoff (17)
_PðDNA; tÞ= � PðDNA; tÞkonP2 +PðDNA�; tÞkoff (18)

for which the steady state solution gives:

PSSðDNAÞ=
koff
kon

koff
kon

+P2
(19)
PSSðDNA�Þ= P2

koff
kon

+P2
; (20)

which is a Hill function with coefficient 2 for the probability of DNA activation.

Biallelic Expression

In the synthetic datasets we consider expression dynamics of a single allele only. Thus, there are precisely four species: DNA in active

and inactive conformations, mRNA and protein. In the NanogVENUS subtree modeling, the fluorescent fusion protein NanogVENUS

is also expressed only in a single allele \cite{Filipzyck:2015eka}. Hencewe apply the samemodels as for the synthetic data. However,

there is also the possibility of expression in the other, unlabeled Nanog allele. Since we cannot quantify this allele, we assume that its

expression is highly correlated to the observed allele, which has previously been reported for the same system (Filipczyk et al., 2013).

Assuming equal proportions of observed and unobserved Nanog protein, the total amount is roughly double, which translates to a

four-fold rescaling of the estimated rate constants kon and koff for the Positive andNegative Feedbackmodels, respectively. The infer-

ence procedure is otherwise not affected.

Cellular Compartments

For simplification, we do not explicitly model cellular compartments such as cytoplasm or nucleus. Thus nuclear translocation effects

are implicitly captured by the estimated rate constants. The NanogVENUS experiments analyzed \cite{Filipzyck:2015eka} quantify

only nuclear protein. Thus the model pertains only to the expression dynamics of nuclear Nanog. The estimated protein degradation

rate also captures both degradation and implicitly the dilution to the cytoplasmic compartment.

Model Specifications
Measurement Function

STILT requires the specification of an observation function that yields the likelihood of a particular observation Ytk given the state

of the latent history Xtk at some time tk, this function is referred to as g above and corresponds to the measurement process. In

the case of time-lapse fluorescence microscopy one typically assumes that the fluorescence intensity is proportional to the abun-

dance of fluorophores. Assuming that the measurement process induces some small error ε, this gives the simple linear relation

Ytk = lXtk + 3: (21)

where l is the mean fluorescence intensity per molecule. In the analysis of the synthetic lineage trees (Figure 2), no conversion

between proteins and fluorescence intensity was necessary, i.e., l= 1. We let 3 � Nð0;s2Þ with standard deviation s= 200 proteins.

This is the same as was used for generating the noisy observations of the synthetic data.

In the analysis of NanogVENUS fluorescence lineage trees, we estimate lz105 proteins per unit fluorescence intensity based on

comparison of mean concentration estimated from western blot and mean fluorescence intensity of unbiased NanogVENUS lineage

trees (see Estimation of fluorescence intensity conversion factor). We likewise assume Gaussian measurement noise, and use the

NanogVENUS lineage trees to estimate the standard deviation to be approximately s= 23104 based on the small signal fluctuations.

We note that the exact value of the measurement error should not bias the inference results, but rather, too small a value will lead to

non-robust estimation of parameters as there is a higher risk of toomany particles being discarded due to low likelihood, and too high

a value leads to a poorer ability to infer model parameters as too few particles are discarded. However, the robust estimation ofmodel

parameters and apparent divergence from the prior (see Figure S3) seems to indicate an adequate choice for the magnitude of the

measurement error s.

Prior Distributions

STILT is a Bayesian inference technique and thus requires specification of prior distributions for model parameters.We utilize gamma

priors distributions for each parameter, which greatly simplifies the sampling procedure (see Gamma priors). For the in silico exper-

iments, the true model parameter were known. In this case, the priors distributions were chosen so that they i) contain the true model

parameters, and ii) allow for easy visual assessment of convergence to the true model parameters.

For the investigation of the Nanog subtrees, the prior distributions were obtained as follows.
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mRNA Degradation

The half-life of NanogmRNA in mouse ES cells cultured in serum/LIF has been estimated as 6.8 hr (Ochiai et al., 2014), and 3.9-6.4 hr

(Sharova et al., 2009). We thus chose a= 8 and b= 40 for which the 95% confidence interval of the half-life is (1.9 hr, 8.0 h).

Transcription

The Nanog mRNA transcription rate was recently estimated as approximately 125 molecules/h in serum/LIF (Ochiai et al., 2014).

Moreover, the number of NanogmRNAmolecules inmouse ES cells under serum/LIF conditions is approximately 300 or fewer, rarely

exceeding 400 (Nair et al., 2015; Singer et al., 2014). Using the mean estimated degradation rate of 0.2 h–1, and assuming DNA

remains active, the expected number of mRNAs (given by km=gm) would thus be approximately 625 molecules which is more than

typically expected. We therefore set the prior distribution constants to be a= 10; b= 0:1 for which the 95% confidence interval of

the transcription rate becomes ½47:95;170:85� h–1, and the expected number of transcripts is approximately 500. This number is

somewhat reduced by the fact that the DNA is typically not persistently active, and by the cell division process which reduces the

mRNA count by a factor of approximately 2.

Protein Degradation

The half-life of Nanog has been reported as approximately 2:1±0:8 h (Sokolik et al., 2015). Nanog’s half-life was also measured in

the analyzed dataset and found to be closer to 5 hr \cite{Filipzyck:2015eka}. We therefore conservatively set the prior distribution

constants to be a= 2;b= 4 such that the 95% confidence interval of the half-life is approximately 0:5� 11:5 h.

Translation

The translation rate of Nanog is not well characterized. However, the estimatedmean number of Nanogmolecules per cell is approx-

imately 350,000, the mean degradation rate approximately 0.2 h–1, and mean number of mRNA molecules roughly 200. In the deter-

ministic limit, the expected number of proteins is given by hpi= ðkm=gmÞhmi, where hpi and hmi denote the mean protein and mRNA

counts, respectively. Substituting our estimates, we obtain approximately 350 mRNA–1 h–1. We thus chose a= 3; b= 0:01 such that

the mean (std.) translation rate is 300 ±173 mRNA–1 h–1. We note that this is in rough agreement with the mean estimated translation

rate of 478 mRNA–1 h–1 over all analyzed genes in mouse fibroblasts (maximum estimated rate of 1000mRNA–1 h–1) (Schwanh€ausser

et al., 2011).

DNA Activation and Inactivation

The rate of DNA activation and inactivation for Nanog is not well studied. By inspecting the analyzed NanogVENUS subtrees, we

surmise that periods of rapid fluorescence intensity likely correspond to periods of DNA activity, and periods of decline to DNA

inactivity. Thus activation and inactivation presumably proceeds with expected waiting time on the order of hours and not days

or longer. Consistent with this, Sokolik et al. estimated active/inactive switching times to be approximately 3:8±1:2 h (Sokolik

et al., 2015). Since the autoregulation models studied differ in the form of their activation/inactivation rates, it was necessary

to choose priors for each separately. For each of the three models, the prior distributions for kon and koff were chosen such

that the waiting times for activation/inactivation were on the order hours, and such that trees simulated with these parameters

produced reasonable dynamics, i.e., observed DNA state switching, and approximately correct order of magnitude for number

of proteins.

Initial Conditions

The initial state of the founder cell of the cellular lineage trees is unknown. In the considered models DNA and mRNA are entirely

latent, while protein is observed with noise. For both the in silico experiments and the NanogVENUS subtrees, we initialized each

cell’s DNA state to be active or inactive with 50% probability, and to have an initial mRNA count uniformly sampled from ½0; 50�mol-

ecules. The protein copy number was sampled from aGaussian distribution centered on the first observation, with standard deviation

specified by the measurement function (see Measurement function).

Number of Particles

All implementations of the bootstrap particle filter require specification of the number of particles to use for approximating the latent

history and posterior parameter distributions. The accuracy of the approximation improves in the Monte Carlo sense as the number

of particles is increased. However, the incurred computational overhead increases proportionally. We used 73105 particles for

inference of the synthetic lineage trees, 105 for each synthetic cell for the single-cell-based algorithm, and 106 particles for

the NanogVENUS subtrees. We determined the number of particles to use based on robustness of convergence of the parameter

posteriors, and run-time. Inference typically completed on a multicore machine in approximately 10h for 106 particles for a single

subtree.

Implementation

STILT (see Algorithm 2) was implemented using MATLAB 2015. It includes code for importing SBML models and fast, parallel sto-

chastic forward simulations for the system state using MATLAB’s parallel computing toolbox.

Model Definition via SBML

Our implementation supports the import of biochemical networkmodels fromSBMLusing libSBML 5.12.0 (Bornstein et al., 2008), but

can also be specified directly in MATLAB. Species, reactions and their parameters are translated into a stoichiometric matrix and

vectorized MATLAB functions for computing reaction propensities (see Chemical reaction networks).

Simulation

The stochastic simulation codewas implemented using explicit, adaptive t -leaping (Cao et al., 2006, 2007), which generates approx-

imate samples from the exact stochastic process. In general, t -leaping approximates the Markov jump process by a Poisson pro-

cess with the same expected number of reactions firing for time intervals where the reaction propensities remain relatively constant.
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Such an approximation is generally necessary when the system becomes stiff, i.e., when there exist reactions with widely varying

timescales such as is the case for the protein production and degradation compared to DNA activation and inactivation. As for

(Cao et al., 2007) our implementation distinguishes between critical and non-critical reactions (based on current educt availability,

the parameter Nc is set to 10) and performs explicit t -leaping (with parameter 3= 0:03) for non-critical reactions with error bounding

implemented for first, second and third order reactions. The simulation code was implemented completely vectorized and provides

the approximated integrated reaction propensities (for mass action propensities only) and the number of reactions firing, which are

required for inference (see Inference of latent history andmodel parameters). The forward simulation code can be further accelerated

by converting the entire function or only the Poisson random number generation to C code, which lead to significant speedup for the

studied systems.

Data Structure

Measurement data are specified using a generic MATLAB structure containing measurement times, cell number and an indicator for

censoring (e.g., for inaccurate or missing data) as well as measurements and their respective measurement errors. Field names of

measurements are automatically matched to SBML species. Parameter priors, model specifications (e.g., behavior on cell division),

compilation behavior and other user configurations are provided via an options structure.

Model Evaluation
Marginal Likelihoods and Bayes Factors

The particle filtering approach presented above can be used for performing model comparison via Bayes factors, i.e., by computing

PðM1 jY0:NÞ=PðM2 jY0:NÞ, the ratio of the posterior probabilities of Model 1 (M1) to Model 2 (M2) for any two models. As before, we

denote the series of observations at times t0;.; tN by Y0:N = ðYt0;.;YtNÞ. Using Bayes’ law, one can reformulate the marginal pos-

terior probability of a model M as:

PðM jY0:NÞ=PðY0:N jMÞPðMÞ
PðY0:NÞ (22)

Following Wilkinson et al. (Wilkinson, 2011), p. 294, we can approximate the marginal likelihood of the model PðY0:N jMÞ using the

sampled particles at each iteration i. First, the distribution of the observed data at time ti + 1 depends only observations up to ti:

PðYti + 1
jY0:N;MÞ=PðYti + 1

jY0:i;MÞ. Moreover, this probability is approximated by the expectation of the likelihood, or weights wðkÞ,
of the particles:

P
�
Yti + 1

��Y0:i;M
�
=

Z
P
�
Yti + 1

��Xti + 1

�
P
�
Xti +1

��Y0:i;M
�
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1

K

XK
k = 1

P
�
Yti +1

��XðkÞ
ti +1

�
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

w
ðkÞ
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(23)

where the X
ðkÞ
ti + 1

are sampled (via the particle filter) from the marginal posterior up to time ti +1 given by PðXti + 1
jY0:i;MÞ. This is nothing

more than a Monte Carlo approximation of the integral, which provides an unbiased approximation of PðYti + 1
jY0:i;MÞ with variance

decreasing as K�1 (Doucet and Johansen, 2009).

Next, since the distribution of each observation depends only on previous observations, themarginal probability of the entire set of

observations PðY0:N jMÞ is given by the product:

PðY0:N jMÞ=P
�
Yt0

�YN
i = 0

P
�
Yti + 1

��Y0:i;M
�
: (24)

Assuming a priori equally likely models, the factor of PðMÞ in Equation 22 cancels between the two models and the Bayes factor

reduces to the ratio of marginal likelihoods. In the analysis presented in this work we primarily utilize log Bayes factors and marginal

log likelihoods due to their superior numerical performance.

Goodness-of-Fit Test

To assess the extent to which a particular model agrees with an observed dataset, we developed a simple goodness-of-fit (GOF) test.

The GOF test utilizes an estimate for model parameters obtained from the particle filter to generate many synthetic datasets, which

are then compared against the measured data. Specifically, we use the assumed model to generate many synthetic lineage trees of

the same number of generations as the observed data using the median posterior parameter estimate of each parameter. For each

newly simulated dataset, we approximate its log likelihood conditioned on the parameter set that was used to generate that data. The

conditional log likelihood (CLL) is approximated again via a particle filter, where the parameters are fixed. This conditional particle

filter only samples from the latent history of all state variables while keeping the parameters fixed, and is essentially the same as

in Algorithm 2 omitting the parameter resampling step.

To compensate for the fact that the simulated datasets and the measured dataset do not necessarily contain the same number of

transitions, we normalize the estimated CLL of each simulation by the number of simulated transitions (i.e., between measurement

time points). We likewise normalize the CLL of the actual data by the number of transitions (subtracting censored observations), to
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obtain the average CLL per transition. Without this compensation the CLL is always decreasing with the number of transitions

since the log likelihood is never greater than zero, which could potentially bias the CLL depending on the random lifetime of each

simulated cell.

In all applications of the GOF we used 300 samples to approximate the null distribution of the CLL, and 500 particles per sample to

approximate the CLL. The GOF test approximates the null distribution of the CLL, i.e., the distribution of CLL values yielded by the

particle filter when the parameters andmodel utilized are known to be true.We compute the CLL of the actual dataset using the same

parameter values and compare it with the null distribution of the CLL. If it lies within this distribution, then with high probability the

dataset could have been produced by the chosen mechanistic model and parameter set, and the model cannot be rejected.

Conversely, if the CLL of the observed dataset lies outside the null distribution, the model and parameters are unlikely to have

produced this dataset. Thus, we define three categories of model agreement with the null distribution: reject (p < 0.02), marginal

(p < 0.05), and accept, otherwise. Empirical p values are estimated using the empirical cumulative distribution function of the

estimated CLL.

Time-Lapse Fluorescence Microscopy Data
Pre-processing

We obtained quantified time-lapse fluorescence microscopy movies of NanogVENUS in mouse embryonic stem cells from the data-

set of Filipczyk et al. \cite{Filipzyck:2015eka} and converted fluorescence intensities to protein numbers (seeMeasurement function).

Since the time-lapse fluorescence microscopy quantification introduces error due to variability in the cellular (nuclear) segmenta-

tions, background correction, etc., we performed a data cleaning step prior to analysis. We censored measurements for all automat-

ically segmented cells that could not bemanually verified, e.g., if the cells were too densely packed or overlapping to be reliably quan-

tified. We further censored very large jumps (the top 5% of absolute change in intensity) in the quantified intensity of individual cells,

which result from either contamination due to microscopic debris, errors in cell segmentation, and in some cases jumps in the inten-

sity at the last time point before cell division which presumably arise due to a sudden change in the cellular morphology preceding

division that leads to a large overlap of cytoplasmic and nuclear volumes (see Figure S8 for examples). Censored measurements

affect the inference by rendering all simulated particles equally likely at that iteration; the algorithm otherwise proceeds as normal.

After cleaning and selecting datasets, we obtained a total of 7 quantified cellular genealogies from 3 different experiments. To

improve computational efficiency, and for comparison with the synthetic data, we subdivided these large trees into smaller subtrees

each containing 7 cells with no overlap between subtrees (see Figure 3A), thus obtaining 4 subtrees from the first experiment, 8 sub-

trees from 3 different parent trees of the second experiment, and 1 subtree from each of 3 parent trees of the third experiment; in total

15 subtrees were used for further analysis (see Figure S2).

Estimation of Fluorescence Intensity Conversion Factor

To estimate the absolute number of NanogVENUS molecules per cell, we performed western blots experiments on 10% polyacryl-

amide gels.We comparedwestern Blots with a known quantity of NanogGFP single knockin fusion ESCs andwith different quantities

of recombinant GFP (Catalogue number: 632373, Clonetech, CA, USA). Both NanogGFP and GFP proteins were detected using an

anti-GFP primary antibody consisting of two monoclonal clones (Catalogue number: 1181460001, Roche, Mannheim, Germany).

Western blot band intensities were quantified by using the Gel Analyzer tool in FIJI to gate on protein lanes and quantify band inten-

sities over background. We found that the relationship between the GFP quantities x and the corresponding intensity y is best

described by a sigmoid function:

yðxÞ=
�

lxn

Kn + xn

	
3 (25)

The model parameters lj, Kj, nj were obtained by local optimization using multiple restarts initialized according to Latin-hypercube

sampling. The exponent n determines the shape of the sigmoid function,K sets the inflection point, l is themaximumof the curve and

3 is a log-normally distributed error term with expectation 1 and standard deviation s, as is suggested for western blot data (Kreutz

et al., 2007). We compared this model against linear models both with and without intercept and found it to be superior according to

both the Bayesian Information Criterion and coefficient of variation between replicates. We solve Equation 25 for x to obtain

x =
Kj�lj

yj
� 1
�1
nj

: (26)

The total quantity of protein x is related to the cellular average Pj as

x =Pjcw; (27)

where c is the number of loaded cells and w is the molecular weight for the protein of interest. Thus we determined the number

of proteins Pj per cell from the sample intensity yj of each western blot replicate j by first computing x from the observed intensity

y according to Equation 25, and then substituting into Equation 27.

As Pj is a combination of uncertain variables, we obtained error bars for each Pj individually by applying standard error propagation

to account for uncertainties in the number of cells c (we assume a standard deviation of 10%) and uncertainties in the model
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(estimated via the standard deviation s of our noisemodel). However, we find that the uncertainties for each individual replicate Pj are

always smaller than the inter-replicate standard deviations by a factor of 0.3 or smaller. Therefore, we only consider the standard

deviation across replicates, as this is the dominant source of uncertainty in our procedure. Finally, we determined the fold-change

between NanogVENUS andNanogGFP from three western blots. Uncertainty of protein abundance over replicates was estimated by

simple error propagation. All above experiments and analysis were performed in triplicate.

The resulting estimate is of approximately 350; 000±72;000 molecules of NanogVENUS expressed in each cell. Using the

distribution of NanogVENUS fluorescence intensities over unsorted mESCs, we obtain a median intensity of approximately 3.5,

from which we determine the calibration factor of NanogVENUS fluorescence intensity to NanogVENUS molecules count to be

approximately 100,000.

Experimental Validation of Negative Feedback Model
Exogenous NanogVENUS Expression Compartments

Using the wild-type cell line which expresses no NanogVENUS, we obtained the NanogVENUS intensity distribution due only to au-

tofluorescence (Figure S4B), fromwhich we deduce the 0.95 quantile of NanogVENUS autofluorescence, denoted INVneg. We then used

the expression distribution of a cell line which expresses NanogVENUS at one endogenous allele (NV cell line, see Exogenous Nanog

construct) to derive the 0.95 quantile of unperturbed NanogVENUS expression, denoted INV0 .

We define the NanogVENUS ‘‘No Exogenous’’ compartment as NanogVENUS fluorescence intensities that are below INVneg. Since

NanogVENUS is only expressed on one allele of the NV cell line, the total quantity of Nanog in the cell is approximately twice this

amount. Based on this we define the 1x overexpression (OE) compartment to be intensities that are above the No Exogenous

compartment but below 200% of the normal level INV0 . The 2x OE compartment has NanogVENUS intensities INV between 2-4 times

normal, and the 3x OE compartment between 4-6 times normal. Cells with higher NanogVENUS intensities fall into the ‘‘very high’’

intensity compartment see table below).
k NanogVENUS compartment Intensity range ðINVk Þ NanogVENUS median expression (INVmed, % of INV0 )

1 No Exogenous ð�N; INVnegÞ 9.55%

2 1x OE ½INVneg; 23INV0 Þ 56.56%

3 2x OE ½2;4Þ3INV0 263.87%

4 3x OE ½4;6Þ3INV0 482.38%

5 very high ½63INV0 ;NÞ 1254.41%
Downregulation of Endogenous Nanog Levels

To investigate negative feedback, we utilize the NK cell line (see Exogenous Nanog construct), and compute the expression levels

of endogenous NanogKATUSHKA for different levels of exogenous transgenic NanogVENUS expression. We first obtain the auto-

fluorescence intensity distribution on the NanogKATUSHKA channel using NV cells which express no KATUSHKA, from which we

estimate the 0.95 quantile of intensity of the KATUSHKA negative compartment, denoted INKneg (Figure S4D). We first normalize

NanogKATUSHKA fluorescence relative to background by subtracting INKneg from the measured intensities. We then compute the me-

dian fold-change, for each overexpression compartment k, of normalized expression of NanogKATUSHKA relative to that of the No

Exogenous compartment (see Figure 4E; see table above). Denoting the NanogKATUSHKA expression of a cell with index j by j INK ,

and its NanogVENUS expression by j INV , the median fold-change for compartment k is given by:

FCNK
k =

medianfj:j INV˛INVk g
�
j INK � INKneg

�
medianfj:j INV˛INV1 g

�
j INK � INKneg

�: (28)

Comparison of Experimental Replicates

The NanogVENUS overexpression experiment described above was performed three times. To compensate for batch effects, the

distributions in each experiment were normalized relative to the first experiment. Specifically, for each replicate, the fluorescence

intensity of endogenous NanogKATUSHKA was scaled linearly so that the median intensity of cells matches to the median intensity

of the first experiment. The same NanogKATUSHKA background level INKneg was used for each of the three replicates (see Downregu-

lation of endogenous Nanog levels).

In Silico Perturbation Experiment

We replicate the experimental setup by extending the Negative Feedback model to include exogenous Nanog (Pex), such that the

propensity of DNA inactivation becomes

aoff = koffðPen +PexÞ2: (29)
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Parameter Value Units

kon 0.6854 h�1

koff 5:690310�11 h�1 protein�2

km 110.3 h�1

gm 0.226 h�1 mRNA�1

kp 619.5 h�1 mRNA�1

gp 0.220 h�1 protein�1
From the time-lapse fluorescence microscopy movies of NanogVENUS subtrees we obtain estimates of posterior distributions of

parameters for the Negative Feedback model (Table S6). We compute the median of the posterior for each parameter and subtree,

and then the mean of the medians for each parameter over the subtrees (see table below). We then perform in silico perturbation

experiments using these mean parameter values and various levels of exogenous Nanog.

To mimic the experimental setup, we sampled intensity values INVex directly from the measured distributions of exogenous

NanogVENUS for each overexpression compartment separately. We convert the sampled intensities into a specific number of

molecules by computing the overexpression relative to wild-type NV cells. Since the fluorescent reporter is expressed only on

one allele, a 100% increase of NanogVENUS corresponds to an approximately 50% increase in total Nanog levels. We assume

approximately 23105 NanogVENUS molecules in a cell with no exogenous perturbation (see Nanog Bandplots in Mendeley Data

archive). We thus compute the sampled amount of exogenous NanogVENUS molecules as Pex = ð1=2ÞðINVex =INV0 Þð23105Þ.
For each sampled quantity of exogenous NanogVENUS, we generated 50 synthetic lineage trees of 5 generations each. The

founder cell of each lineage tree had DNA initially active, between 0 and 150 mRNA molecules (uniformly sampled), and between

105 and 23105 Nanog molecules (uniformly sampled). The exogenous Nanog levels were held fixed at the sampled value for the

duration of the simulation.

Comparison to Simulations

The distribution of endogenous Nanog following perturbation was computed for each overexpression compartment after 46h of

simulated time. The fold-change of endogenous Nanog expression relative to expression with no perturbation was computed anal-

ogously to Equation 28:

jFCsim
k =

jNsim
k

median
�
jNsim

1

� (30)

where jNsim
k denotes the number of endogenous Nanog molecules of cell j, 46 hr after the perturbation corresponding to

compartment k.

In Figure 4E, we plot the distribution of the fold-change of simulated cells with respect to the No Exogenous compartment as a

box-and-whiskers plot (median shown as red line).We compare this against themedian (mean, s.e.m. from 3 experimental replicates)

fold-change computed for the experimental data, see Equation 28. The comparisons against each experimental replicate individually

are shown in Figure S4E.

DATA AND SOFTWARE AVAILABILITY

Software
STILT is available for download at http://www.imsb.ethz.ch/research/claassen/Software/stilt—stochastic-inference-on-lineage-

trees.html.

Data Resources
The NanogVENUS fluorescence lineage tree quantifications analyzed are available upon request.

The sampled trajectories (Bandplots) for Nanog subtrees (protein and mRNA), and the distributions produced by the goodness-

of-fit test for the Nanog subtrees are available for download from Mendeley Data at https://data.mendeley.com/datasets/

wx6s4mj7s8/2.
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