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Abstract

Background: Short-term exposure to air pollution is associated with morbidity and mor-

tality. Metabolites are intermediaries in biochemical processes, and associations be-

tween air pollution and metabolites can yield unique mechanistic insights.

Methods: We used independent cross-sectional samples with targeted metabolomics

(138 metabolites across five metabolite classes) from three cohort studies, each a part of

the Cooperative Health Research in the Region of Augsburg (KORA). The KORA cohorts

are numbered (1 to 4) according to which survey they belong to, and lettered S or F ac-

cording to whether the survey was a baseline or follow-up survey. KORA F4 (N¼3044)

served as our discovery cohort, with KORA S4 (N¼ 485) serving as the primary replica-

tion cohort. KORA F4 and KORA S4 were primarily fasting cohorts. We used the non-

fasting KORA F3 (N¼377) cohort to evaluate replicated associations in non-fasting indi-

viduals, and we performed a random effects meta-analysis of all three cohorts.

Associations between the 0–4-day lags and the 5-day average of particulate matter

(PM)2.5, NO2 and ozone were modelled via generalized additive models. All air pollution

exposures were scaled to the interquartile range, and effect estimates presented as per-

cent changes relative to the geometric mean of the metabolite concentration (DGM).

Results: There were 10 discovery cohort associations, of which seven were lysophospha-

tidylcholines (LPCs); NO2 was the most ubiquitous exposure (5/10). The 5-day average

NO2-LPC(28:0) association was associated at a Bonferroni corrected P-value threshold

(P<1.2x10�4) in KORA F4 [DGM¼11.5%; 95% confidence interval (CI)¼ 6.60, 16.3], and

replicated (P<0.05) in KORA S4 (DGM¼21.0%; CI¼4.56, 37.5). This association was not

observed in the non-fasting KORA F3 cohort (DGM¼�5.96%; CI¼�26.3, 14.3), but re-

mained in the random effects meta-analysis (DGM¼10.6%; CI¼0.16, 21).
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Conclusions: LPCs are associated with short-term exposure to air pollutants, in particular

NO2. Further research is needed to understand the effect of nutritional/fasting status on

these associations and the causal mechanisms linking air pollution exposure and metab-

olite profiles.
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Introduction

Short-term air pollution exposure is associated with in-

flammatory markers,1–3 lung function,4,5 ischaemic heart

disease and stroke,6–9 myocardial infarction,7,10–12 and

death.8,13,14 Potential mechanisms linking air pollution ex-

posure and health are disruption of the autonomic nervous

system, increased oxidative stress and reactive oxygen spe-

cies, and direct damage to the vasculature by particulate

matter.15 Metabolomic profiling of large cohorts offers re-

searchers the opportunity to gain insights into the mechan-

isms linking air pollution and disease.

Metabolomics is the study of intermediate and end-

products of biochemical processes within cells.16,17 As such it

gives a snapshot of the biochemical state of cells—a product

of underlying genetics,18,19 nutrition20–22 and environmental

exposures.23,24 The importance of metabolomics in under-

standing complex diseases has been highlighted recently with

metabolomics profiles being associated cardiovascular disease

(CVD),25–28 cancer,29,30 obesity31,32 and diabetes.33–35

Current publications considering air pollution exposures

and blood chemistries have focused on traditional clinical

parameters such as: low-density lipoprotein cholesterols,36–38

cytokines39,40 and C-reactive protein.41–43 In the single broad

survey of metabolomics and air pollution to date, Menni

et al. examined 280 metabolites and showed that peripheral

blood metabolites are associated with both long-term expos-

ure to air pollution [particulate matter (PM)2.5 and PM10]

and lung function, possibly via inflammatory processes.44

This manuscript will explore the role of short-term (0–4-day)

variation in air pollution exposure and its association with a

broad spectrum of metabolites in population-based cohorts

from Augsburg, Germany.

Methods

Subjects

Participants were taken from the KORA F3, KORA S4 and

KORA F4 surveys, conducted in Augsburg, Germany. The

KORA cohorts are numbered (1–4) according to which

survey they belong to, and lettered S or F according to

whether the survey was a baseline or follow-up survey, re-

spectively. The KORA F3 cohort is a follow-up survey

taken from the KORA S3, and was conducted from 2004

to 2005.45,46 KORA S4 is a general population survey that

began in 1999 and ended in 2001.47 KORA F4 a follow-up

survey of KORA S4, with participants examined from

2006 to 2008.48 Detailed clinical and demographic infor-

mation was collected from all participants, including blood

samples for later analysis. All three studies were approved

by the ethics committee of the Bavarian Medical

Association in Munich, Germany. KORA F4 participants

with metabolomics data after applying quality control

(QC) procedures comprised our discovery cohort

(N¼ 3044). Our replication cohort consisted of KORA S4

participants who had metabolomics data, passed QC pro-

cedures and did not participate in KORA F4 (N¼ 485).

Similarly, we restricted KORA F3 to participants passing

all QC procedures and who did not participate in KORA

F4 or KORA S4 (N¼ 377).

Key Messages

• Short-term air pollution is associated with serum metabolite profiles that may provide clues to the biological mecha-

nisms linking air pollution and health.

• Short-term exposure to NO2 is positively associated with multiple lysophosphatidylcholines, a type of fatty acid, and

5-day average NO2 exposure is associated with a principal components analysis-derived lysophosphatidylcholine pro-

file indicating a broad association between NO2 and lysophosphatidylcholines.

• Large-scale metabolomics studies can provide unprecedented insights into the associations between environmental

exposures and biochemical mediators of health.
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Metabolite measurement

A total of 188 serum metabolites were assayed using the

Biocrates AbsoluteIDQTM P180 kit. Metabolites were

measured in serum taken from each participant on their

examination date. This examination date was then linked

with fixed site monitoring data from the city of Augsburg

for the relevant lags before the date of examination.

Identical QC procedures were used for KORA S4, KORA

F4 and KORA F3 and have been published in detail.49,50

The QC procedure was a two-step procedure applied sep-

arately to KORA S3 and KORA F4. In the first step, a coef-

ficient of variation was calculated for each metabolite,

using a reference sample measured five times across 10

plates. Metabolites with a coefficient of variation greater

than 25% or with more than 5% of values missing were

removed. The second step controlled for outliers by remov-

ing metabolite measurements five standard deviations be-

yond the mean concentration of the metabolite for that

individual. Individuals with more than three ‘independent

outliers’, outliers with a correlation < 70% with all other

outliers, were removed. Missing values were imputed via a

linear regression approach implemented in the R package

‘mice’.51 Multiple imputation (n ¼ 5) was used and the

imputed datasets averaged to get a single imputed value for

each metabolite. At total of 138 metabolites passed QC in

KORA S4 and KORA F4, and were available for analysis.

These 138 metabolites belonged to five general classes:

amino acids, phosphatidylcholines, lysophosphatidlycho-

lines (LPCs), sphingomyelins and fatty acids.

Air pollution assessment

Air pollution was assessed via fixed monitoring sites (one for

PM2.5 and ozone, three for NO2) within Augsburg, Germany.

For the KORA F4 cohort, PM2.5 was assessed via Tapered

Element Oscillating MicroBalance (TEOM) with Filter

Dynamics Measurement System (FDMS), and for the KORA

S4 cohort, PM2.5 measurements were assessed with TEOM

without FDMS. NO2 was assessed as the mean of three moni-

tors within the study area (two urban and one background),

and ozone was assessed as the daily maximal 8-h running

mean. For KORA F3, we imputed missing daily monitoring

data using a modified APHEA (Air Pollution and Health: A

European Approach) approach.52,53 KORA F4 and KORA

S4 participants did not have any missing monitor data.

Exposures are reported in mg/m3 for all assessment methods.

Statistical methods

A total of six exposure periods were considered for each

pollutant: 0-, 1, 2-, 3- and 4-day lags and the 5-day average

(arithmetic mean of the 0–4-day lags). All meteorological

variables were taken so as to correspond to the lag being

assessed. Before analysis, all air pollution exposures were

scaled to the interquartile range.

Generalized additive models implemented via the mgcv

package54 in R v3.1.355 were used to assess the linear asso-

ciation between interquartile range transformed air pollu-

tion exposure and natural-log transformed metabolite

concentrations. Our primary model adjusted for season (a

four-level factor variable; December–February, March–

May, June–August and September–November), time trend

(count of days from study start to examination), tempera-

ture, relative humidity, day of the week, age, sex, body

mass index and smoking (never vs former/current). This a

priori selected model matches previous approaches to the

analysis of short-term air pollution exposures, including

the use of both season and time trend variables to account

for seasonality.5,56 We used regression splines to account

for non-linearity in the time trend, temperature and rela-

tive humidity variables. Four degrees of freedom were used

for the temperature and relative humidity regression

splines and four degrees of freedom per year were used for

the time trend regression spline, resulting in 6, 8 and 6 de-

grees of freedom being used for KORA F4, KORA S4 and

KORA F3 respectively. As the metabolites for KORA F4

were assessed in separate batches, a categorical ‘batch’

variable was included in all KORA F4 analysis to remove

potential confounding from variation in the technician per-

forming the metabolite assessment or other laboratory-

related factors. Metabolites for KORA S4 and KORA F3

were assessed in a single batch. All effect estimates were

divided by the geometric mean of the metabolites so that

each effect estimate represents the estimated effect relative

to the geometric mean of the metabolite.

Given the three air pollution exposures and 138 metab-

olites, we set a P-value cutoff of P<1.2x10�4, 0.05/

(138*3), for discovery associations; this corresponds to a

Bonferroni correction.57 Replicated metabolites were those

with a consistent direction of association and P< 0.05 in

the KORA S4 cohort. Metabolites which replicated in

KORA S4 were then checked for replication (P< 0.05 and

same direction of association) in the KORA F3. We add-

itionally performed a random effects meta-analysis of all

three cohorts for all metabolite-exposure combinations

with P< 1.2x 10�4 in KORA F4. We used a random effects

meta-analysis model, due to potential for heterogeneity

across studies. We report the I2 58 as an estimate of the het-

erogeneity across studies. All meta-analyses were con-

ducted via the metafor R package.59

Associations from the KORA F4 primary model which

passed our P-value cutoff were tested for association in a

clinical model which included all primary model terms
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plus: influenza days (assessed on the day of examination),

socioeconomic status (SES) assessed via the Helmert

method,60 alcohol consumption (g/day) and diabetes status

(presence of type 2 diabetes or no). We additionally exam-

ined discovery associations for interactions between the

short-term air pollution exposures and sex and diabetes, as

well as smoking status. The effect of fasting status was

evaluated by analysing the clinical model in fasting KORA

F4 participants (N¼ 3028). We also re-analysed the

KORA F4 associations using a fixed 5-day average lag for

all of the meteorological variables. We performed this sen-

sitivity analysis to evaluate the impact of our choice to pair

the lag for the meteorological variables with that of the air

pollution exposures, which may represent a strong assump-

tion on the link between meteorology and air pollution

exposure.

To evaluate associations between short-term air pollu-

tion exposure and metabolite profiles, we used principal

components analysis (PCA) via the ‘stats’ package in R55

to construct principal components composed of metabol-

ites, which we call metabolite profiles, and associate

these with our air pollution exposures using the primary

model. We constructed the metabolite profiles in two

ways. First, by performing PCA on all metabolites, and se-

cond, by performing PCA in a metabolite class-specific

manner based on those metabolite classes with replicated

associations. Since PCA decomposes the total variance of a

dataset, by focusing on those classes of metabolites shown

to be associated in KORA F4 and replicated in KORA S4

we may enrich for associations. We set the significance

level for each set of PCA metabolite profiles at 0.05/(num-

ber PCA components tested). For the profiles based on all

metabolites, we used the Scree plot to determine which me-

tabolite profiles accounted for an outsized proportion of

the variance as compared with all PCA components. For

the metabolite class phosphatidylcholines (PCs), we test all

PCs from that metabolite class. All metabolite profiles

were constructed in KORA F4 and replicated in KORA S4.

We replicated the metabolite profiles from KORA F4 in

KORA S4 by directly applying the calculated KORA F4

loadings for each metabolite to KORA S4, as opposed to

re-doing the PCA in KORA S4 and obtaining new metabol-

ite loadings.

Results

Clinical characteristics for all three cohorts used for this ana-

lysis are given in Table 1. All results are given as percent

change relative to the geometric mean of the metabolite con-

centration (DGM) per interquartile range increase in air pol-

lution. All confidence intervals (CI) given are 95% CIs.

Associations in KORA F4 and replication in KORA

S4 and KORA F3

Ten associations representing seven metabolites passed

our discovery P-value cutoff (P< 1.2 x 10�4) in KORA

F4 using our primary model (Supplementary Table 1,

available as Supplementary data at IJE online). Five-day

average NO2 exposure was associated with four metab-

olites: lysophosphatidylcholine 28:0 [LPC(28:0)]

(DGM¼ 11.5%; CI¼ 6.60, 16.3), lysophosphatidylcho-

line 26:1 [LPC(26:1)] (DGM¼ 0.66%; CI¼ 0.38, 0.94),

C6:1 (DGM¼ 224%; CI¼126, 323); and lysophosphati-

dylcholine 28:1[LPC(28:1)] (DGM¼7.55%; CI¼4.21,

10.9). Three-day lag NO2 was associated with

LPC(26:1) (DGM¼ 0.54%; CI¼0.29, 0.78) and 2-day

lag NO2 was associated with phosphatidylcholine 40:1

[PC(40:1)] (DGM¼4.61%; CI¼ 2.29, 6.93). PM2.5 ex-

posure was associated with LPC(26:1) (0-day lag,

DGM¼ 0.47%; CI¼0.24, 0.69) and LPC(28:0) (1-day

lag, DGM¼ 7.78%; CI¼ 3.90, 11.7). Finally, we

observed two associations with ozone: 3-day lag ozone

with phosphatidylcholine (O-38:1) [PC(O-38:1)]

(DGM¼�9.88%; CI¼�14.8, -4.91) and 5-day average

ozone with lysophosphatidylcholine 24:0 [LPC(24:0)]

(DGM¼ 21.2%; CI¼ 10.4, 31.9). The 5-day average

NO2-LPC(28:0) replicated in KORA S4 (Figure 1, Table

2); however, this association did not replicate in KORA

Table 1. Clinical and meteorological covariates for the KORA

F4, KORA S4 and KORA F3 cohorts

KORA F4 KORA S4 KORA F3

N 3044 485 377

Sex (% males) 48.2 51.5 52.3

Age (years) 56.1 (13.2) 65.8 (5.31) 65.9 (7.37)

BMI (kg/m2) 27.6 (4.82) 29.0 (4.72) 28.5 (3.93)

Smoking (% never

smokers)

55.8 55.6 53.0

SES (Helmert) 14 (5.08) 11.8 (5.13)

SES (years of education) 11 (2.39)

Alcohol consumption

(g/day)

14.3 (19.5) 15.8 (20.8) 16.1 (21.7)

Type 2 diabetes (% yes)* 27 41.4 13.5

Temperature (�C) 8.98 (6.78) 10.7 (7.25) 6.42 (8.26)

Relative humidity 77.7 (12.5) 76.2 (12.9) 72.5 (13)

Number of influenza

days/year

109 55.8

PM2.5 (24 h, mg/m3) 14.8 (10.8) 16.0 (6.59) 15.6 (16.1)

Ozone (8 h max, mg/m3) 62.2 (31.2) 65.9 (35.3) 67.9 (34.2)

NO2 (24 h, mg/m3) 34.5 (10.8) 41.8 (10.7) 48.6 (15.2)

Mean (SD) given for continuous variables.

*Diabetes case status for KORA F3 does not differentiate between type 1

and type 2 diabetes.
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F3 (Table 2). Of the 10 KORA F4 associations in the dis-

covery cohort, six were associated with exposures in a

random effects meta-analysis, all of which were LPCs

with the exception of the 3-day lag NO2-C6:1 associ-

ation (Figure 2, Table 3).

Sensitivity analyses of KORA F4 associations

All 10 associations observed in KORA F4 primary model

analysis remained in the clinical model and when restricted

to fasting participants (Supplementary Table 1). We strati-

fied the KORA F4 cohort on sex, diabetes and smoking

status to determine if there were any clinical state-specific

associations or potential interactions. As the LPC(28:0)-5

day average NO2 association was the only replicated asso-

ciation, we focused our stratified and interaction analysis

on this metabolite-lag-exposure. There were no strong dif-

ferences according to sex in KORA F4; however, KORA

S4 associations indicated that females had a weaker associ-

ation than males. Individuals with type 2 diabetes had a

stronger association in KORA F4. The interaction between

air pollution and type 2 diabetes was the only interaction

with P< 0.05 (P¼0.02; Figure 2, Table 2). As an add-

itional sensitivity analysis, we evaluated the effect of our

choice to match the meteorological variables to the air pol-

lution lag being considered. When using a fixed 5-day aver-

age of the meteorological variables, all 10 KORA F4

Figure 1. Associations for the primary model (Basic) clinical model

(Clinical), primary model when restricted to fasting individuals (Fasting),

and the stratified analyses by sex, diabetes and smoking for both the

KORA F4 (solid) and KORA S4 (dashed) cohorts. The interaction between

diabetes status and 5-day average NO2 had a P< 0.05 in KORA F4.

Associations for the Basic, Full and Fasting models were nearly identical.

Table 2. Regression estimates for the clinical and fasting models and diabetes, smoking and sex stratifications of the primary

model for KORA F4 and KORA S4 for the LPC (28:0) - 5-day average NO2 exposure. Interactions between the exposure and dia-

betes, sex and smoking were assessed in KORA F4. Though stratifications on clinical variables were examined in both KORA F4

and KORA S4, interactions with sex, diabetes status and smoking were only directly tested for in KORA F4 as described in

Methods. For reference, the primary model associations are also given. The regression estimate scaled to a percent change in

geometric mean (DGM) and 95% confidence interval (CI) are given. The ‘Fasting Individuals Model’ was the Clinical Model re-

stricted to participants fasting at the time of sample collection

KORA F4 DGM (%) CI P-value Interaction P-value

Primary Model 11.5 6.6, 16.3 3.91 x 10�6

Clinical Model 11.6 6.78, 16.5 2.77 x 10�6

Fasting Individuals Model 11.8 6.89, 16.6 2.32 x 10�6

Males 10.8 3.51, 18.1 0.004 0.81

Females 12.5 5.70, 19.3 3.19 x 10�4

Type 2 diabetes (no) 16.0 10.3, 21.7 3.54 x 10�8 0.016

Type 2 diabetes (yes) �1.73 �11.2, 7.74 0.72

Never smokers 9.46 2.10, 16.8 0.01 0.16

Smokers 13.2 6.65, 19.7 7.83 x 10�5

KORA S4

Primary Model 21.0 4.56, 37.5 0.013

Clinical Model 23.3 6.60, 40.0 0.007

Fasting Individuals Model 27.2 7.33, 47.1 0.008

Males 11.3 �10.2, 32.7 0.30 Interaction not assessed

Females 38.0 7.18, 69.8 0.017

Type 2 diabetes (no) 15.8 �3.02, 34.6 0.10 Interaction not assessed

Type 2 diabetes (yes) 25.0 �3.83, 53.9 0.091

Never smokers 27.4 5.10, 49.8 0.017 Interaction not assessed

Smokers 14.1 �10.1, 38.4 0.26
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Figure 2. Random effects meta-analysis results for those metabolite-air pollution pairs with at least one association with P< 1.2 x 10�4 in KORA F4. The six

lags are shown across the x-axis. On the y-axis is the percent change relative to the geometric mean (DGM). *¼associations with P<1.2 x 10�4 in KORA F4.

Table 3. Meta-analysis results for discovery metabolite associations with P< 1.2 x 10�4. Random effects meta-analysis of all

three cohorts

Association DGM (%) CI P I2

C6:1-NO2 5-day average 135 �35.9, 307 0.12 40.4

PC(40:1)-NO2 2-day lag 2.58 �4.05, 9.21 0.45 71.2

PC(O-38:1)-ozone 3-day lag �3.97 �11.8, 3.84 0.32 80.9

LPC(24:0)-ozone 5-day average 20.6 10.0, 31.1 1.30 x 10�4 0.0

LPC(26:1)-PM2.5 0-day lag 0.47 0.25, 0.68 2.6 x 10�5 0.0

LPC(26:1)-NO2 3-day lag 0.52 0.29, 0.75 1.1 x 10�5 0.0

LPC(26:1)-NO2 5-day average 0.48 0.04, 0.92 0.03 24.4

LPC(28:0)-PM2.5 1-day lag 3.36 �5.81, 12.5 0.47 41.9

LPC(28:0)-NO2 5-day average* 10.6 0.16, 21.0 0.05 48.1

LPC(28:1)-NO2 5-day average 7.14 3.99, 10.3 9.1 x 10�6 0.0

I2, I2 statistic for heterogeneity.

*P< 1.2 x 10�4 in discovery (KORA F4) and P< 0.05 in replication (KORA S4) analyses of primary model.
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associations with P< 1.2x10�4 in the initial analysis re-

mained associated, though some of the effect sizes were

attenuated (Supplementary Table 2, available as

Supplementary data at IJE online).

As the Bonferroni cutoff used for the discovery P-value

threshold can be conservative, we also report all associ-

ations with P< 0.05 when using the Benjamini-Hochberg

false discovery rate (FDR) correction.61 Here there were

26 associations in KORA F4 with an FDR P<0.05. As

seen when using a Bonferroni P-value-based cutoff, the re-

sults with an FDR P< 0.05 were dominated by LPCs (14/

26) and NO2 was the most common exposure (18/26)

(Supplementary Table 3, available as Supplementary data

at IJE online).

Analyses of PCA constructed metabolite profiles

Based on the Scree plot from the PCA of all metabolites,

only the first principal component, i.e. metabolite profile,

contained a substantially greater proportion of variance

than the other metabolite profiles (Supplementary Figure

2, available as Supplementary data at IJE online). We num-

ber the metabolite profiles in order of their percent vari-

ance explained. For both KORA S4 and KORA F4, this

metabolite profile was composed of long-chain phosphat-

idylcholines but it was not associated with any air pollu-

tion exposure (data not shown). Given the multiple

discovery associations and replicated association between

LPCs and 5-day average NO2 exposure, we investigated as-

sociations between LPC metabolite profiles and 5-day

average NO2. There was substantial correlation (Pearson’s

R) between KORA S4 and KORA F4 for the top LPC pro-

files (Supplementary Table 4, available as Supplementary

data at IJE online). There were 13 total LPCs shared be-

tween KORA S4 and KORA F4, and PCA yielded 13 LPC

profiles. Thus, associated metabolite profiles were deter-

mined to be those with P< 0.0038. For KORA F4 there

were two LPC metabolite profiles associated with 5-day

average NO2 exposure: LPC profile 2 (P¼ 9.9x10�6) and

LPC profile 10 (P¼ 0.001). The 5-day average NO2-LPC

profile 2 association replicated in KORA S4 (P¼ 0.047).

LPC profile 2 explained 7.7% of the LPC variation in

KORA F4. KORA F4 loadings for LPC profile 2 are given

in Supplementary Table 5 (available as Supplementary

data at IJE online).

Discussion

We analysed the short-term effects of air pollution expos-

ures on serum metabolites and metabolite profiles. Each of

these air pollution exposures is known to have adverse

health effects,15,62–65 and many of the health outcomes

associated with these exposures have themselves been asso-

ciated with metabolites.66–69 To overcome the potential

for an excess of false-positives due to the number of tests

performed, we used a Bonferroni correction for the num-

ber of metabolites and exposures assessed. This correction

controls the family-wide error rate by imposing a P-value

cutoff on associations, here P< 1.2x10�4. This is an effect-

ive but restrictive method to limit false-positive associ-

ations. To give a broader examination of associations, we

have included all those associations with an FDR P<0.05

in Supplementary Table 3. The 5-day average NO2 expos-

ure had the greatest number of associations in our discov-

ery cohort (Supplementary Table 1). Our primary model

adjusted for age, sex, obesity(BMI) and smoking – all

known to associate with metabolite concentrations.50,70–72

We additionally controlled for season using both season in-

dicator and linear terms. We feel this seasonal adjustment

is warranted given the known association between metab-

olites and season.73,74 Using the primary model we

observed 10 associations in KORA F4, and we replicated

the association between 5-day average NO2 exposure and

LPC(28:0). Six of the 10 discovery associations were asso-

ciated in the meta-analysis, and four of the six meta-

analysis associations were with NO2 exposure. NO2 is pri-

marily associated with traffic-related air pollution,75–77

and is associated with a variety of adverse health

outcomes.64,65,78,79

LPCs and air pollution

In the discovery, replication and meta-analysis associ-

ations, the LPCs were the most consistently represented

metabolite class. LPCs are generated via enzymatic reac-

tions catalyzed by phospholipase A1 and phospholipase

A2. In a previous study of pulmonary artery endothelial

cells, short-term (24- and 48-h) exposure to NO2 increased

the activity of phospholipase A1 relative to cells receiving a

control exposure.80 Phospholipase A1 and phospholipase

A2 generate specific isomers of LPCs via SN1 and SN2 re-

actions, respectively. Our LPC measures represent the sum

of these two isomers, and further analysis is necessary to

associate enzyme-specific isomers with NO2 exposure.

Though only the NO2 exposure replicated, both PM2.5

and ozone additionally had associations with metabolites

in the KORA F4 cohorts. The meta-analysis also revealed

associations between ozone and PM2.5 and LPCs particu-

larly when examining the 5-day average (Figure 2,

Supplementary Table 2). Thus, whereas NO2 is the expos-

ure most strongly and broadly associated with LPCs in our

analysis, it is likely that multiple exposures are associated

with specific LPCs. In an analysis of LPC metabolite pro-

files created via PCA, the 5-day average NO2 exposure was
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associated with two LPC metabolite profiles in KORA F4,

one of which replicated in KORA S4.

Very-long chain fatty acids and health

All of the LPCs with P< 1.2x10�4 in KORA F4 and

P< 0.05 in the meta-analysis associations belong to a class

of fatty acids referred to as very-long chain fatty acids

(VLCFAs). The accumulation of VLCFAs has been linked

to oxidative stress.81 Additionally, X-linked adrenoleuko-

dystrophy (X-ALD), a peroxisomal disorder, has been

linked to the accumulation of VLCFAs.82 Individuals with

X-ALD have also been found to have increased reactive

oxygen species in their fibroblasts,83 suggesting that oxida-

tive stress may be a contributing factor or by-product of X-

ALD and the accumulation of VLCFAs. Thus, oxidative

stress may link short-term air pollution exposure and LPCs

given the known association between air pollution and oxi-

dative stress.84

Strengths and limitations

The main strength of this study is the use of multiple co-

horts to perform independent cross-sectional analyses to

establish a relationship between short-term variation in air

pollution and serum metabolites. We used three independ-

ent cohorts with a combined sample size of 3906 to dis-

cover and replicate our associations and perform a meta-

analysis of replicated associations. In the meta-analysis,

the majority of the associations showed little heterogen-

eity; however, for the majority of the associations the effect

sizes and P-values were attenuated in the random effects

meta-analysis as compared with a fixed effects meta-

analysis (Table 3), and there was substantial inter-cohort

variability in the effect estimates (Supplementary Figure 1,

available as Supplementary data at IJE online), prompting

us to focus our investigations on the random effects meta-

analysis. The lack of reported heterogeneity despite the

observed inter-cohort variability and fixed effects results

attenuation could indicate that the heterogeneity is being

underestimated as can occur in meta-analyses with low

numbers of studies.58 Reasons for the inter-cohort variabil-

ity (especially with respect to KORA F3) include: vari-

ations in sample size; differences in fasting status; and the

imputation procedure used to replace missing values for

NO2, PM2.5 and ozone in KORA F3 – which was not ne-

cessary for KORA F4 or S4.

Another strength of our study is that air pollution and

metabolite assessment were done independently and the

large selection of metabolites assessed. We assessed 138

metabolites belonging to a variety of different classes. This

provides a broad look at metabolite associations across

several metabolite classes. Also, we were able to create

class-specific metabolite profiles and demonstrate that an

LPC metabolite profile was associated with 5-day average

NO2 exposure.

A limitation of our study is the fact that all cohorts

were sampled from the same region in Southern Germany.

This geographically restricted sampling may limit the gen-

eralizability of our associations. Further work to establish

these associations in multi-ethnic cohorts should be under-

taken. Also, although we adjusted for both clinical and me-

teorological factors in our primary model, and verified that

associations remain in a more fully adjusted clinical model,

the possibility persists that unobserved confounders may

alter the observed associations. The most prominent of

these would likely be dietary factors which were not as-

sessed in the KORA cohorts. The effects from diet could be

long-lasting and persist even if samples are taken in a fast-

ing state. Future analyses should seek to collect detailed

dietary information to establish the independence of these

associations from dietary confounders. A final limitation is

the use of a fixed monitoring site which could cause expos-

ure misclassification. We expect that this error would be of

the Berkson type, i.e. independent of true exposure, and

therefore only impact on the standard error and should be

offset by our large sample size for the discovery cohort and

meta-analysis.

Conclusion

In conclusion, we observe multiple associations between

short-term air pollution exposure and serum metabolites.

Several LPCs were associated with short-term air pollution

exposure, with NO2 responsible for five of the 10 discov-

ery cohort associations and the only replicated association

[5-day average NO2–LPC(28:0)]. In a meta-analysis, the

strongest LPC associations by P-value were with NO2, and

NO2 was the exposure most often associated with the

LPCs. However, additional LPC associations were

observed for PM2.5 - LPC(28:0) and -LPC(26:1) and ozone

[LPC(24:0)]. Finally, we observed an association between

5-day average NO2 and a metabolite profile based on the

LPCs, indicating that the LPCs may be broadly associated

with short-term exposure to NO2.

Supplementary Data

Supplementary data are available at IJE online.
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69. Oberbach A, Blüher M. Wirth H zz Combined proteomic and

metabolomic profiling of serum reveals association of the com-

plement system with obesity and identifies novel markers of

body fat mass changes. J Proteome Res 2011;10:4769–88.

70. Yu Z, Zhai G, Singmann P et al. Human serum metabolic pro-

files are age dependent. Aging Cell 2012;11:960–67.

71. Mittelstrass K, Ried JS, Yu Z et al. Discovery of sexual dimorphisms

in metabolic and genetic biomarkers. PLoS Genet 2011;7:e1002215.

72. Xu T, Holzapfel C, Dong X et al. Effects of smoking and smok-

ing cessation on human serum metabolite profile: results from

the KORA cohort study. BMC Med 2013;11:1.

73. Juttmann J, Visser T, Buurman C, De Kam E, Birkenh€ager J.

Seasonal fluctuations in serum concentrations of vitamin D me-

tabolites in normal subjects. Br Med J 1981;282:1349–52.

74. Lambert G, Reid C, Kaye D, Jennings G, Esler M. Effect of sun-

light and season on serotonin turnover in the brain. Lancet

2002;360:1840–42.

75. Beckerman B, Jerrett M, Brook JR, Verma DK, Arain MA,

FinkelsteinMM . Correlation of nitrogen dioxide with other traf-

fic pollutants near a major expressway. Atmos Environ

2008;42:275–90.

76. Janssen NAH, van Vliet PHN, Aarts F, Harssema H, Brunekreef B.

Assessment of exposure to traffic related air pollution of children at-

tending schools near motorways. Atmos Environ 2001;35:3875–84.

77. Roorda-Knape MC, Janssen NAH, De Hartog JJ, Van Vliet PHN,

Harssema H, Brunekreef B. Air pollution from traffic in city districts

near major motorways. Atmos Environ 1998;32:1921–30.

78. Hoffmann B, Moebus S, Dragano N et al. Residential traffic ex-

posure and coronary heart disease: results from the Heinz

Nixdorf Recall Study. Biomarkers 2009;14:74–78.

79. Gauderman WJ, Avol E, Gilliland F et al. The effect of air pollu-

tion on lung development from 10 to 18 years of age. N Engl J

Med 2004;351:1057–67.

80. Bhat GB, Patel JM, Block ER. Exposure of pulmonary artery

endothelial cells to nitrogen dioxide activates phospholipase A1.

J Biochem Toxicol 1990;5:67–69.

81. Galea E, Launay N, Portero-Otin M et al. Oxidative stress

underlying axonal degeneration in adrenoleukodystrophy: A

paradigm for multifactorial neurodegenerative diseases?.

Biochim Biophys Acta 2012;1822:1475–88.

82. Geillon F, Gondcaille C, Charbonnier S et al. Structure-function

analysis of peroxisomal ATP-binding cassette transporters using

chimeric dimers. J Biol Chem 2014;289:24511–20.

83. Fourcade S, Lopez-Erauskin J, Galino J et al. Early oxidative

damage underlying neurodegeneration in X-adrenoleukodystro-

phy. Hum Mol Genet 2008;17:1762–73.

84. Kelly FJ. Oxidative stress: its role in air pollution and adverse

health effects. Occup Environ Med 2003;60:612–16.

1538 International Journal of Epidemiology, 2016, Vol. 45, No. 5

 at H
elm

holtz Z
entrum

 M
uenchen on N

ovem
ber 29, 2016

http://ije.oxfordjournals.org/
D

ow
nloaded from

 

http://ije.oxfordjournals.org/

	dyw247-TF1
	dyw247-TF2
	dyw247-TF3
	dyw247-TF4

