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Chapter 1

Rate Equations

1.1 Initial mathematical model

The precise interactions in the regulation network of Colicin E2 release were presented
in the results part of the main article. Here we show how we derived the simplified rate
equations from the detailed regulation network. The following assumptions underly this
process:

1. CsrC interacts with CsrA in the same way as CsrB [1]. There are only minor
quantitative differences: At 37◦C, the half-life of small RNAs CsrB and CsrC are
1.6 min and 4.1 min, respectively [2]. Furthermore, CsrB has more binding sites
than CsrC, and it is unknown if the complex-binding kinetics are different for the
two sRNAs. However, we assume these differences to be so small that we can
describe the qualitative regulation mechanism of the two sRNAs by one effective
sRNA. The biological parameters of the effective sRNA are then adapted to the
biological parameters of CsrB and CsrC.

2. For the analysis of the post-transcriptional regulation of Colicin E2 release, we
will neglect the regulation of transcription and translation concerning long mRNA,
CsrA and sRNAs. In most models of prokaryotic gene expression it is assumed
that promoter kinetics are fast compared to production and degradation rates,
such that the promoter state is well approximated by its steady state [3]. Thus,
an effective transcription rate can be introduced that takes into account the
probability of a promoter being blocked. The effective rate is smaller than the
original rate. In literature this procedure is referred to as adiabatic elimination of
fast variables, see for example [4].

3. The system is considered homogeneous, i.e. reaction rates depend only on the
total amount of molecule numbers and not on the local concentration of specific
molecules.

4. The exact mechanism of CsrA complex degradation is not known. To keep our
model as general as possible we will allow for CsrA dimers to survive degradation
of the complexes with probability (1− pM ) in the case of mRNA complexes and
with probability (1− pS) for sRNA complexes. We choose CsrA to possibly
survive complex degradation, since proteins usually have a much longer lifetime.
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Notation

� L,M,A: Number of lysis proteins, free long mRNAs and CsrA dimers.

� CMA: Number of long mRNA-CsrA complexes.

� Cn: Number of CsrA-sRNA complexes with n CsrA dimers bound.

� S: Total number of sRNAs (sum over all Cn).

� αM , αA, αS , αL: Effective production of the component denoted by the subscript.

� δM , δA, δS , δL, δCma : Degradation rates of the component denoted by the
subscript.

� k+
M , k

−
M , k

+, k−: Binding rates (+) and unbinding rates (−) of CsrA with mRNAs
and sRNAs.

In general, one sRNA has at most N binding sites for CsrA dimers. The total number
of sRNAs S(t) is given by the sum over all numbers of complexes Cn(t) with n CsrA
dimers bound:

S(t) =

N∑
n=0

Cn(t) (1.1)

Rate equations

From the interaction scheme described in the main text we deduce the following rate
equations:

L̇ = αLM − δLL (1.2)

Ṁ = αM − δMM − kM+MA+ kM
−CMA (1.3)

Ȧ = αA − δAA− kM+MA+ kM
−CMA + δCMA

CMA(1− pM )

−Ak+
N∑
n=0

Cn(N − n) + k−
N∑
n=0

Cnn+

N∑
n=0

δSCnn(1− pS)
(1.4)

˙CMA = kM
+MA− kM−CMA − δCmaCMA (1.5)

Ċn = αSδn,0 + Cn−1Ak
+(N − (n− 1)) + Cn+1k

−(n+ 1) (1.6)

− Cn
[
Ak+(N − n) + k−n+ δS

]
C−1 = CN+1 = 0 (1.7)

With the definition of the total number of sRNA molecules in equation (1.1) we find:

Ṡ(t) = αS − δSS (1.8)

1.2 Analysis of sRNA complex dynamics

The rate equations (1.2)-(1.7) give a precise mathematical description. Yet, the
coupling of N + 1 differential equations for sRNA complexes to the dynamics of CsrA
makes it hard to analyze the system. In this section, we will calculate the first and
second moment of the distribution of occupied binding sites. We will find out that the
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time scale at which the stationary distribution is approached is fast compared to
production and degradation processes. Consequently, we can simplify the N + 1 rate
equations for the CsrA-sRNA complexes to one effective differential equation. A very
helpful tool for this task will be the definition of a generating function.

1.2.1 Generating function

A probability distribution can be characterized by its moments (if they are finite). The
moments of the probability distribution of occupied CsrA binding sites
p(n, t) = Cn(t)/S(t) are defined as:

〈ni〉 =

N∑
n=0

Cn
S
ni with i = 1, 2, . . . (1.9)

A powerful tool to investigate the moments of a probability distribution is to define a
probability generating function. In our case, we chose:

G(x, t) =

N∑
n=0

Cn
S
xn (1.10)

The useful property of a generating function is that it encodes the information of all
p(n) in one variable x. Consequently, the N + 1 coupled rate equations for sRNA
dynamics are simplified to one differential equation of G(x, t) in the variable x. Once
we have found the solution of the generating function, we can calculate the mean
number and the variance of occupied binding sites via:

〈n(t)〉 = ∂xG(x, t)|x=1 (1.11)

〈n2(t)〉 = ∂x(x∂xG(x, t))|x=1 (1.12)

Furthermore, we can calculate the probability that n CsrA binding sites are occupied:

p(n) =
Cn(t)

S(t)
=

1

n!
∂nxG(x, t)|x=0 (1.13)

Our next goal is to set up a differential equation for G(x, t) and to solve this equation.
Afterwards, we will infer on the result to obtain information on the probability
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distribution p(n). The time evolution for G(x, t) reads as follows:

d

dt
G(x, t) =

N∑
n=0

d

dt

(
Cn
S

)
xn =

N∑
n=0

(
Ċn
S
− Cn(αS − δSS)

S2

)
xn

=
1

S

N∑
n=0

(
αSδn,0 + Cn−1Ak

+(N − (n− 1)) + Cn+1k
−(n+ 1)

− Cn
[
Ak+(N − n) + k−n+ δS

]
− Cn

αS
S

+ CnδS

)
xn

(1.7)
=

1

S

N∑
n=0

(
αSδn,0 + CnAk

+(N − n)x+ Cnk
−n

1

x

− Cn
[
Ak+(N − n) + k−n

]
− Cn

αS
S

)
xn

=

N∑
n=0

(
αS
Cn

δn,0 +Ak+(N − n)(x− 1) + k−n

(
1

x
− 1

)
− αS

S

)
Cn
S
xn

=

N∑
n=0

(
αS
Cn

δn,0 +Ak+(x− 1)(N − x∂x) + k−(1− x)∂x −
αS
S

)
Cn
S
xn

d

dt
G(x, t) =

(
Ak+(x− 1)(N − x∂x) + k−(1− x)∂x −

αS
S(t)

)
G(x, t) +

αS
S(t)

(1.14)

The differential equation (1.14) may be solved using the methods of characteristics. To
this end we rewrite equation (1.14):(

− αS
S(t)

+Ak+(x(t)− 1)N

)
G(x(t), t) +

αS
S(t)︸ ︷︷ ︸

d
dtG(x(t),t)

=

(Ak+x(t) + k−)(x(t)− 1)︸ ︷︷ ︸
dx(t)
dt

∂xG(x(t), t) + ∂tG(x(t), t)

We end up with two differential equations of the form:

dx(t)

dt
= (Ak+x(t) + k−)(x(t)− 1) (1.15)

d

dt
G(x(t), t) =

(
− αS
S(t)

+Ak+(x(t)− 1)N

)
G(x(t), t) +

αS
S(t)

(1.16)

1.2.2 Solving the differential equation of the generating
function

Without loss of generality we set t0 = 0.
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Differential equation in x(t)

The differential equation (1.15) can readily be solved by separation of variables:∫ t

0

dt = t =

∫ x

x0

dx′

(x′ − 1)(k+Ax′ + k−)

=
1

k− +Ak+
log

(
|x− 1|

k− +Ak+x

k− +Ak+x0

|x0 − 1|

)
x(t) =

k− + et(k
−+Ak+) (x0 − 1) k− +Ax0k

+

k− +A
(
x0 − et(k−+Ak+) (x0 − 1)

)
k+

(1.17)

x0 =
(x− 1)k− + et(k

−+Ak+) (k− +Axk+)

−A(x− 1)k+ + et(k−+Ak+) (k− +Axk+)
(1.18)

Note here that both choices for |x− 1| = x− 1 or 1− x and |x0 − 1| = x0 − 1 or 1− x0

yield the same result if we use the same sign convention for x and x0.

Differential equation in G(x, t)

Solving equation (1.16) is more tedious, since it contains the time-dependent
inhomogeneity αS/S(t). The general solution of such an inhomogeneous differential
equation is given by the sum of the general solution Gh(x, t) of the homogeneous
differential equation, which neglects the inhomogeneity αS/S(t), and a particular solution
Gp(x, t) of the inhomogeneous differential equation, which takes into account the
inhomogeneity. Thus, we have:

G(x, t) = Gh(x, t) +Gp(x, t) (1.19)

Homogeneous solution

We start by solving the homogeneous differential equation:

d

dt
Gh(x(t), t) =

(
− αS
S(t)

+Ak+(x(t)− 1)N

)
Gh(x(t), t) (1.20)

We can set as initial condition G0
!
= xn0

0 , meaning that at t0 = 0 there are only
complexes with n0 CsrAs bound to it. Since there is one degree of freedom in the choice
of Gp(x(t), t) (we may add Gh(x, t) multiplied by an arbitrary constant), we can choose

Gp(x0, 0) = 0→ G0 = Gh(x0, 0) = G(x0, 0)
!
= xn0

0 . It follows:∫ G

G0

dG′h
G′h

=

∫ t

0

dt′
(
− αS
S(t′)

+Ak+(x(t′)− 1)N

)

Gh(x, t) = e−u(t)(k− +Ak+)Nxn0
0

(
e(k−+Ak+)t(k− +Ak+)2

Ak+(1− x) + (k− +Ak+x)e(k−+Ak+)t

)−N

= e−u(t)
(
k− +Ak+

)N ( (x− 1)k− + et(k
−+Ak+) (k− +Axk+)

A(1− x)k+ + et(k−+Ak+) (k− +Axk+)

)n0

·

·

(
e(k−+Ak+)t(k− +Ak+)2

Ak+(1− x) + (k− +Ak+x)e(k−+Ak+)t

)−N
(1.21)
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u(t) =

∫ t

0

dt′
αS
S(t′)

(1.22)

For the integration over time we have introduced x(t) explicitly. Following integration
we have replaced every x0 by the right-hand side of equation (1.18). The term u(t) is
the integral over the inhomogeneity that we leave untouched for the moment. When we
look at the long-time limit, u(t) will simplify significantly.

To simplify equation (1.21), we set n0 = 0. This choice will not limit our analysis,
because we are only interested in the stationary binding site distribution and in the
time scale at which the stationary binding site distribution is approached. Both objects
of interest are independent of n0. Hence, the general homogeneous solution is given by:

Gh(x, t) = e−u(t)

(
et(k

−+Ak+) (k− +Ak+)

−A(−1 + x)k+ + et(k−+Ak+) (k− +Axk+)

)−N
(1.23)

Gh(x0, t) = e−u(t)

(
k− +Ak+

k− +A
(
−et(k−+Ak+) (x0 − 1) + x0

)
k+

)N
(1.24)

Particular solution

As commonly done, we choose the ansatz Gp(x(t), t) = Gpp(t)Gh(t) for the particular
solution of equation (1.16). This ansatz leads to a differential equation for the
time-dependent parameter Gpp(t):

d

dt
Gpp(x(t), t) =

αS
S(t)Gh(x(t), t)

(1.25)

Thus, we find:

Gpp(x(t), t) =

∫ t

0

dt′
αS
S(t′)

eu(t′)︸ ︷︷ ︸
d

dt′ e
u(t′)

(
et(k

−+Ak+) (k− +Ak+)

A(x(t)− 1)k+ + et(k−+Ak+) (k− +Ax(t)k+)

)N

Gpp(x0, t) =

∫ t

0

dt′
[
d

dt′

(
eu(t′)

)]k− +A
(
−et(k

−+Ak+) (x0 − 1) + x0

)
k+

k− +Ak+

N

PI
=

eu(t′)

(
k− +Ak+x0 +Ak+(1− x0)e(k−+Ak+)t′

k− +Ak+

)Nt
0

−
∫ t

0

dt′eu(t′) d

dt′

(
k− +Ak+x0 +Ak+(1− x0)e(k−+Ak+)t′

k− +Ak+

)N

=

N∑
n=0

(
N

n

)(
k− +Ak+x0

k− +Ak+

)N−n(
Ak+(1− x0)

k− +Ak+

)n
([
eu(t′)e(k−+Ak+)nt′

]t
0
−
∫ t

0

dt′eu(t′)(k− +Ak+)ne(k−+Ak+)nt′
)

(1.26)
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In order to proceed with the calculations we have to specify u(t). Since
lim
t→∞

S(t) = S∞ = αS

δS
, we may calculate u(t) as follows:

u(t) =

∫ t

0

dt′
αS
S(t)

=

∫ t

0

dt′
(
αS
S∞

+ δu(t)

)
= δSt+

∫ t

0

dt′δu(t) (1.27)

Since S(t) converges exponentially fast towards S∞, we know that δu(t) has to go
exponentially fast to zero as well and we end up with a finite integral

∫∞
0
dt′δu(t) = ∆u.

Thus, for times larger than the time scale given by the degradation of sRNA, we may
approximate:

u(t) ≈ δSt+ ∆u (1.28)

It follows that for large times larger than 1/δS:

Gpp(x0, t) =

N∑
n=0

(
N

n

)(
k− +Ak+x0

k− +Ak+

)N−n(
Ak+(1− x0)

k− +Ak+

)n
([
eu(t)e(k−+Ak+)nt − 1

]
−
[

(k− +Ak+)n

(k− +Ak+)n+ δS
eδSt

′+∆ue(k−+Ak+)nt′
]t

0

)

=

N∑
n=0

(
N

n

)(
k− +Ak+x0

k− +Ak+

)N−n(
Ak+(1− x0)

k− +Ak+

)n
(

1− (k− +Ak+)n

(k− +Ak+)n+ δS

)(
eu(t)e(k−+Ak+)nt − 1

)

(1.29)

Gpp(x, t) =

N∑
n=0

(
N

n

)(
(k− +Ak+x)e(k−+Ak+)t

(k− +Ak+x)e(k−+Ak+)t −Ak+(x− 1)

)N−n
(

Ak+(1− x)

(k− +Ak+x)e(k−+Ak+)t −Ak+(x− 1)

)n
(

δS
(k− +Ak+)n+ δS

)(
eu(t)e(k−+Ak+)nt − 1

)
(1.30)

General solution for n0 = 0

Taking everything together we have:

G(x, t) = Gh(x, t)(1 +Gpp(x, t)) (1.31)

Gh(x, t) = e−u(t)

(
(k− +Ak+x)e(k−+Ak+)t −Ak+(x− 1)

e(k−+Ak+)t(k− +Ak+)

)N
(1.32)

Gpp(x, t) =

N∑
n=0

(
N

n

)(
(k− +Ak+x)e(k−+Ak+)t

(k− +Ak+x)e(k−+Ak+)t −Ak+(x− 1)

)N−n
(

Ak+(1− x)

(k− +Ak+x)e(k−+Ak+)t −Ak+(x− 1)

)n
(

δS
(k− +Ak+)n+ δS

)(
eu(t)e(k−+Ak+)nt − 1

)
(1.33)
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1.2.3 Calculating mean and variance

With the general solution of the generating function at hand, we can evaluate the mean
and the variance of n occupied binding sites:

〈n(t)〉 = ∂xG(x, t)|x=1 = [(1 +Gpp(x, t))∂xGh(x, t) +Gh(x, t)∂xGpp(x, t)]x=1

(1.34)

〈(n(t))2〉 = ∂x(x∂xG(x, t))|x=1 = ∂xG(x, t)|x=1 + x
[
(1 +Gpp(x, t))∂

2
xGh(x, t)+

+2∂xGh(x, t)∂xGpp(x, t) +Gh(x, t)∂2
xGpp(x, t)

]
x=1

(1.35)

Inserting equations (1.31)-(1.33) into equation (1.34) and equation (1.35) yields:

〈n(t)〉 =
ANk+

δs + k− +Ak+

(
1− e−(k−+Ak+)t−u(t)

)
(1.36)

〈n∞〉 =
ANk+

δs + k− +Ak+

=
ANk+

k− +Ak+

[
1− δs

k− +Ak+
+O

((
δs

k− +Ak+

)2
)] (1.37)

〈n2
∞〉 =

ANk+ (δs + 2 (k− +ANk+))

(δS + k− +Ak+) (δs + 2 (k− +Ak+))

=
ANk+ (k− +ANk+)

(k− +Ak+)
2 − (ANk+ (2k− +A(−1 + 3N)k+)) δs

2 (k− +Ak+)
3

+O

((
δs

(k− +Ak+)2

)2
) (1.38)

1.2.4 Discussion

From equation (1.36) we obtain an important result. Again taking u(t) ≈ δSt+ ∆u, we
find that the mean number of occupied binding sites relaxes with the rate
δS + k− +Ak+ to its stationary value, which is faster than the relaxation of sRNA
abundance, happening with rate δS . The degradation of sRNA happens on a time scale
of several minutes, whereas binding and unbinding of molecules occurs within several
seconds. Thus, δS � k− +Ak+ most likely holds, which has important consequences:
The relaxation of occupied binding sites towards its equilibrium value is so fast that it
can be considered in quasi-equilibrium compared to production and degradation processes.
Consequently, the dynamics of sRNA complexes may be approximated by its equilibrium
distribution.

If δS � k− +Ak+, the 0th order term in δs/(k−+Ak+) in equation (1.37) dominates and
we end up with the results for a simple random walk on N sites with hopping

probability p = Ak+

k−+Ak+ to the right and hopping probability q = k−

k−+Ak+ to the left.

For such a process, we have: 〈n〉 = Np and Var[n] = 〈n2〉 − 〈n〉2 = Npq, which is
reproduced by the 0th order term in equation (1.38).

The mean number of occupied binding sites decreases with increasing δS . This makes
sense, since an sRNA is always produced with no CsrA dimer bound, i.e. the source of
sRNAs pulls the mean towards lower values.
The faster sRNAs degrade, the less molecules are able to bind multiple CsrA molecules
before they degrade.
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1.3 Simplified mathematical model

With the results from above we can significantly simplify the rate equations (1.2)-(1.7).
First, we note that the rate equation for lysis proteins (1.2) is a linear differential
equation that depends only on the number of long mRNA molecules, the translation
rate αL and the degradation rate δL. Thus, once we understand the dynamics of M , we
comprehend the dynamics of L as well. That is why we ignore equation (1.2), leaving us
with the following set of equations:

Ṁ = αM − δMM − kM+MA+ kM
−CMA (1.39)

Ȧ = αA − δAA− kM+MA+ kM
−CMA + δCMA

CMA(1− pM )

−Ak+
N∑
n=0

Cn(N − n) + k−
N∑
n=0

Cnn+

N∑
n=0

δSCnn(1− pS)
(1.40)

˙CMA = kM
+MA− kM−CMA − δCmaCMA (1.41)

Ċn = αSδn,0 + Cn−1Ak
+(N − (n− 1)) + Cn+1k

−(n+ 1)

− Cn
[
Ak+(N − n) + k−n+ δS

] (1.42)

Ṡ = αS − δSS (1.43)

In section 1.2.4 we found that the probability distribution of occupied CsrA binding
sites on sRNA is approached on the time scale δS + k− +Ak+. As in the work of
Levine [5] and Legewie [6] we assume now rapid equilibrium of complex dynamics and
approximate the quasi-equilibrated CsrA binding sites distribution by a single, effective
complex configuration that has exactly 〈n∞〉 molecules bound:

C0, C1, . . . , CN → C〈n∞〉 with 〈n∞〉 =
ANk+

δS + k− +Ak+
(1.44)

As all sRNAs are assumed to have this distribution, it holds

C〈n∞〉 ≡ S (1.45)

The number of CsrA-mRNA complexes relaxes as well on a time scale proportional to
the complex binding and unbinding rates AkM

+ and kM
−. Consequently, we set the

left-hand side of equation (1.41) equal to zero:

˙CMA = 0 : CMA =
kM

+MA

kM
− + δCMA

=
kMMA

δCMA

(1.46)

For a clear notation, we defined the lumped complex dynamic parameters:

kM =
kM

+δCMA

kM
− + δCMA

(1.47)

k =
k+δS
k− + δS

(1.48)

These lumped parameters can be understood as the effectiveness of coupled degradation,
for it is the ratio of binding rate times degradation rate divided by the unbinding rate of
the complex. k will be used later on. Taking everything together, we find:

Ṁ = αM − δMM − kMMA (1.49)

Ȧ = αA − δAA− pMkMMA− pS
δSk

+

δS + k− +Ak+
NC〈n∞〉A (1.50)

Ṡ ≡ Ċ〈n∞〉 = αS − δSC〈n∞〉 (1.51)
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Since we switched to a description in which all sRNAs have the same effective binding
site occupation, we can perform another simplifying step: Instead of considering
S ≡ C〈n∞〉 sRNAs with N binding sites each, we change to NC〈n∞〉 sRNAs with a
single binding site. In other words, we consider each binding site a separate particle.
Then, the total number of sRNAs can then be written as sum of free (unbound) sRNAs
(Sfree) and sRNA-CsrA complexes(CAS).

NC〈n∞〉 = Sfree + CAS . (1.52)

By “adding a zero”, we can write the time derivative of NĊ〈n∞〉 as:

NĊ〈n∞〉 = Ṡfree + ĊAS (1.53)

Ṡfree = CASk
− − SfreeAk

+ +NαS − δSSfree (1.54)

ĊAS = −CASk− + SfreeAk
+ − δSCAS (1.55)

Assuming fast complex dynamics, we find:

ĊAS = 0 −→ CAS =
SfreeAk

+

k− + δS
(1.56)

Ṡfree = NαS − kASfree − δSSfree (1.57)

Then it follows:

δSk
+

δS + k− +Ak+
NC〈n∞〉 =

δSk
+

δS + k− +Ak+
(Sfree + CAS) (1.58)

=
δSk

+

δS + k− +Ak+
Sfree

k− + δS +Ak+

k− + δS
(1.59)

=
k+δS
k− + δS

Sfree = kSfree (1.60)

To obtain a clear and concise notation, we redefine Sfree → S and k → kS , which leads
to the very simple rate equations:

Ṁ = αM − δMM − kMMA

Ȧ = αA − δAA− kMpMMA− kSpSAS
Ṡ = NαS − δSS −AkSS

(1.61)

(1.62)

(1.63)

1.4 Dimensionless form of the rate equations

It proved beneficial to work with a dimensionless form of the rate equations (3.9)-(3.11).
We start by introducing characteristic time and molecule numbers
t = τtc, M = mmc, A = aac, S = ssc and find:

m′ = αM
tc
mc
− δM tc ·m− kM tcac ·ma (1.64)

a′ = αA
tc
ac
− δAtc · a− pMkM tcmc ·ma− pSkStcsc · as (1.65)

s′ = αS
tc
sc
− δStc · s− kStcac · as (1.66)
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Building on these equations, we have various possibilities to proceed. There are 10
parameters, which we could reduce to 6 parameter combinations. Yet, we would still
like to count molecule numbers in the same units, i.e. mc = ac = sc. Hence, the number
of lumped parameters will decrease by two to a final number of 8.

As a next step, we reduce the number of free parameters even further by dividing the
differential equations by suitable parameters. This is also an opportunity to introduce
small ratios that can be used for an expansion later on. In particular, we take
advantage of the fact that sRNAs, mRNAs and proteins in the regulation network have
quite different degradation rates. We choose tc = 1

δM
, which will lead to a small ratio

δam := δA
δM

. Later on, we will use this ratio as an expansion parameter.

Furthermore we would like to simplify the interaction terms and choose
mc = ac = sc = δM

kM
, which results in:

m′ =
αMkM

δM
2 −m−ma (1.67)

a′ =
αAkM

δM
2 −

δA
δM

a− pMam− pS
kS
kM

as (1.68)

s′ =
αSkS

δM
2 −

δS
δM

s− kS
kM

as (1.69)

To further simplify we define αm := αMkM
δM 2 , αa := αAkM

δM 2 , αs := αMkM
δM 2 and ksm = kS

kM
.

Thus, we find

m′ = αm −m−ma
a′ = αa − δama− pMam− pSksmas
s′ = αs − δsms− ksmas

(1.70)

(1.71)

(1.72)

The coupled equations (1.70)-(1.72) are easier to analyze, compared to the original rate
equations, but we have to be aware of the dependencies of our newly defined parameters
αm, αa and αs on kM and δM .

1.5 Stationary solution of free long mRNA
abundance

We start with equations (1.71) and (1.72) and solve the resulting quadratic equation.
We discard the solution with negative molecule numbers and find:

a∗ =
1

2ksm(δam +m∗pM )

[
− αsksmpS + αaksm − δamδsm − δsmm∗pM+

+
√

(αsksmpS − αaksm + δamδsm + δsmm∗pM )2 + 4αaδsmksm(δam +m∗pM )

]
(1.73)

s∗ =
1

2δsmksmpS

[
αsksmpS − αaksm − δamδsm − δsmm∗pM+

+
√

(αsksmpS − αaksm + δamδsm + δsmm∗pM )2 + 4αaδsmksm(δam +m∗pM )

]
(1.74)
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Inserting equation (1.73) into equation (1.70) leaves us with a radical equation for m∗.
Isolating the square root and taking the square on both sides yields:

0 = ksm(δam +m∗pM )
[
αsksmm

∗pS(αm −m∗)+
(αmksm +m∗(δsm − ksm))(αm(δam +m∗pM )−m∗(αa + δam +m∗pM ))

] (1.75)

Since δam > 0 and m∗ ≥ 0, we can discard the solution m∗ = −δam as unphysical and
divide by this solution. We now expand the equation and sort the terms in the order of
m∗:

0 = (m∗)3pM (ksm − δsm)+

(m∗)2[δsm(αmpM − αa − δam) + ksm(αa − 2αmpM − αspS + δam)]+

(m∗)1αm[ksm(αmpM + αspS − αa) + δam(δsm − 2ksm)]+

(m∗)0α2
mδamksm

=: (m∗)3M3 + (m∗)2M2 + (m∗)1M1 +M0

(1.76)

The solutions of this cubic equation can be calculated exactly. Solutions that do not
satisfy the original radical solution then have to be discarded. However, the general
solution of a cubic equation is very lengthy, and its explicit form does not reveal much
of physics or lead to a deeper understanding. That is why we would like to find an
easier, approximate solution that allows us to analyze the analytic findings.

1.5.1 Approximation for small and large molecule numbers

For small molecule numbers of long mRNA we can neglect the cubic term in equation
(1.76). This leaves us with a quadratic equation whose solution is given by:

m∗� =
1

−2M2

(
M1 +

√
M2

1 − 4M2M0

)
(1.77)

For large m∗, we neglect the term (m∗)0 = 1 in equation (1.76):

m∗� =
1

2M3

(
−M2 −

√
M2

2 − 4M3M1

)
(1.78)

1.5.2 Combined solution

Having found two solutions for the two regimes m∗ � 1 and m∗ � 1, the question
arises how these solutions may be combined to form one function that describes the
stationary solution of m∗ over the whole parameter range. In the two limiting cases, we
neglected for small molecule numbers the cubic term M3(m∗)3, and for larger molecule
numbers the term M0. When M3(m∗trans)

3 =M0, these two terms have exactly the
same magnitude and, as a consequence, yield exactly the same result for m∗. We use
this fact to introduce a transition from m∗� to m∗� and define:

m∗ :=

{
m∗� ;m∗� < m∗trans

m∗� ; else
for δsm < ksm (1.79)

m∗trans =

(
M0

M3

)1/3

=

(
α2
mδamksm

pM (ksm − δsm)

)1/3

(1.80)
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With the solution of m∗ and equations (1.73) and (1.74), we obtain a∗ and s∗.

There is a minor setback, since in the regime δsm > ksm the transition molecule number
m∗trans becomes negative. That is why equation (1.79) is only defined for δsm < ksm.

In the regime δsm > ksm we have to follow a different approach. So far, we derived a
cubic equation for m∗, but we can also do the same for s∗. Following the same steps as
above, while interchanging the roles of m and s, gives rise to another cubic equation:

0 = (s∗)3δsmksmpS(δsm − ksm)+

(s∗)2(ksm(−αmδsmpM + αspS(ksm − 2δsm) + αa(δsm − ksm)) + δamδsm(δsm − ksm))+

(s∗)1αs(ksm(αmpM + αspS − αa) + δam(ksm − 2δsm))+

(s∗)0α2
sδam

=: (s∗)3S3 + (s∗)2S2 + (s∗)1S1 + S0

(1.81)

In the same way as for the cubic equation in m∗, we can now calculate two limiting
solutions for s∗ � 1 and s∗ � 1 that we call s∗� and s∗�:

s∗� =
1

−2S2

(
S1 +

√
S2

1 − 4S2S0

)
(1.82)

s∗� =
1

−2S3

(
S2 +

√
S2

2 − 4S3S1

)
(1.83)

The transition between these solutions takes place at:

s∗trans =

(
α2
sδam

δsmksmpS(δsm − ksm)

)1/3

(1.84)

which is positive for δsm > ksm, as opposed to m∗trans. We further define:

s∗ :=

{
s∗� ; s∗� < s∗trans

s∗� ; else
for δsm > ksm (1.85)

From s∗ we may than calculate a∗, and finally m∗. Thus, we are able to find an
approximate analytic solution for the whole range of parameters (δsm ≷ ksm).
Comparison with the numerical solution of the cubic equation shows that the
approximation is very exact.

The advantage of our approximate solution compared to the exact solution of the cubic
equation (1.76) is twofold. First, due to its simple form we are able to understand the
equation and are in the position to predict, for example, the dependence of the
threshold on specific parameters (see section 1.6). Second, when studying fluctuations
we have to deal with long equations that contain the stationary solutions m∗, a∗, s∗ as
parameters. The simpler the stationary solutions, the quicker are the calculations.

1.6 Threshold properties of long mRNA expression

In the main text we found a distinct threshold in the expression of long mRNA. In this
section we will study the threshold properties of the stationary solution m∗ in great
detail. The analysis will be based on equation (1.79) in general and equation (1.77) in
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particular. Equation (1.77) describes well the stationary solution below threshold, from
which we can deduce threshold properties. We already defined:

M3 = pM (ksm − δsm) (1.86)

M2 = [δsm(αmpM − αa − δam) + ksm(αa − 2αmpM − αspS + δam)] (1.87)

M1 = αm[ksm(αmpM + αspS − αa) + δam(δsm − 2ksm)] (1.88)

M0 = α2
mδamksm (1.89)

The solution given by (1.79) is only valid in the regime δsm < ksm. In the regime
δsm > ksm, we would have to work with the approximate solution of s∗

(equation (1.85)), which complicates the threshold analysis in m∗. However, there is no
obvious reason why the dependence of threshold properties should be different in the
two parameter ranges δsm < ksm and δsm > ksm.

1.6.1 Threshold position

For small αM and αS , the terms M1 and M2 are negative. The negative M1-term in
front of the square root is compensated by the same term squared under the root.
Neglecting the second term under the square root, this would result in m∗ = 0 for
M1 < 0 and linear increase of m∗ once M1 becomes positive. This is how the threshold
is encoded in the equations, and we find the threshold position at M1 = 0:

αm,th =
1

pM

[
αa − αspS + δam

(
2− δsm

ksm

)]
≈ 1

pM
[αa − αspS ] (1.90)

αa,th = αmpM + αspS − δam
(

2− δsm
ksm

)
≈ αmpM + αspS (1.91)

From this expression we can deduce that we can shift the threshold to larger αm if

pM , pS↘: (1− pM ) and (1− pS) are the probabilities that a CsrA dimer survives the
degradation of an mRNA-CsrA complex and a CsrA-sRNA complex, respectively.
If pM = 1 (pS = 1) the regulation is called non-catalytic. If pM = 0 (pS = 0) the
regulation is called catalytic, for in this case CsrA acts as a catalyst for the
degradation of its binding partners. Then, the threshold value αm,th is
proportional to 1/pM , since 1/pM is the number of long mRNA molecules that are
degraded along with 1 CsrA dimer.

αa↗: Increasing αA leads to a build-up of a larger CsrA buffer that has a greater
capability to down-regulate long mRNA expression.

αs↘: For smaller αS less sRNA molecules are produced. It follows that less sRNA
molecules may interfere with CsrA dimers.

Since equation (1.90) is linear in all production rates, the statement above holds true
not only for dimensionless rates αs, αa but as well for dimensionful rates αM , αA.

1.7 Comparison with Gillespie simulations

We compared the stationary solution of the rate equations with Gillespie simulations. In
all Gillespie simulations the starting molecule numbers where set to M = A = S = 0.
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We observed that the system needs less than Noffset = 3000 reactions to relax to
equilibrium. We obtained the mean molecule number 〈M〉 by time averaging the
molecule number M over one run between reaction number Noffset and Nmax = 1000000.
Each molecule number M was weighted by the waiting time to the next reaction and
summed up. At the end, the result was divided by the total time it took between
reaction Noffset and Nmax. This can be expressed as:

〈M〉 =
1

T

Nmax−1∑
i=Noffset

∆tiMi (1.92)

Var[M ] =
1

T

Nmax−1∑
i=Noffset

∆tiM
2
i − 〈M〉2 (1.93)

where ∆ti = ti+1 − ti and T = tNmax − tNoffset
.

The stationary solution M∗ might be different from 〈M〉:

〈Ṁ〉 = 0 = 〈αM 〉 − 〈δMM〉 − 〈kMMA〉
= αM − δM 〈M〉 − kM 〈[〈M〉+ δM ][〈A〉+ δA]〉
= αM − δM 〈M〉 − kM 〈M〉〈A〉︸ ︷︷ ︸

stationary solution of rate equation

−kM [〈M〉〈δA〉+ 〈A〉〈δM 〉+ 〈δAδM 〉] (1.94)

S2 Figure shows very good agreement between the approximative analytical stationary
solution of long mRNA abundance and the mean molecule number of mRNA obtained
by Gillespie simulations.

1.8 Accounting for additional targets of CsrA

Our study focuses on gene regulation of Colicin E2 release. Therefore, we did not
explicitly consider other targets of CsrA (or any component in the E. coli cell),
although we are aware that CsrA alone can bind to at least over 700 different mRNA
targets. The question of how to obtain a simplified biochemical network despite the
thousands of different proteins in a living cell, is of very fundamental nature, and
remains unsolved. This is particularly critical in our case, since CsrA is a master
regulator protein in E. coli. However, we still think that it is possible to reduce these
system, and want to illustrate, how such a reduction can be done.

In section 1.3 of this Supporting Information, we derived the reduced model from a
simplified biochemical network (see S1 Fig). This network comprises five components:
The regulator CsrA (A), its target long mRNA (M), the “regulator’s regulator” sRNA
(S), and the complexes of CsrA with both the long mRNA (CMA) and the sRNA (CSA).
For the two types of sRNA (CsrB and CsrC), we derived an effective sRNA, which
contains only a single binding site (instead of N binding sites) and thus considerably
simplifies the equations (see section 1.3 of the Supporting Information). Employing the
effective sRNAs, the biochemical network can be written as the following set of ordinary
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differential equations:

CsrA : Ȧ = αA + k−S CSA + k−MCMA+

+ δCSA
CSA(1− pS) + δCMA

CMA(1− pM )

− δAA− k+
MMA− k+

S SA, (1.95)

long mRNA : Ṁ = αM + k−MCMA − δMM − k+
MMA, (1.96)

long mRNA-CsrA complex : ˙CMA = k+
MMA− k−MCMA − δCmaCMA, (1.97)

sRNA : Ṡ = NαS + k−S CSA − δSS − k
+
S SA, (1.98)

sRNA-CsrA complex : ĊSA = k+
S SA− k

−
S CSA − δCSA

CSA. (1.99)

These five differential equations describe the temporal change in the abundance of the
corresponding quantity. They all contain terms that describe production (α) or
degradation (δ) of components, or the formation (k+) and breaking (k+) of complexes.
Let us shortly recapitulate the biochemical significance of these terms. The first line in
the dynamical equation for CsrA (eq. (1.95)) comprises the rate of CsrA production
(αA), and two terms accounting for the increase in CsrA due to CsrA-sRNA- and
CsrA-mRNA-complexes breaking up, respectively. The next line contains two terms
describing the CsrA increase by the degradation of these two complexes, and include the
parameters pM and pS , which describe the probability for CsrA to be co-degraded with
the complex. Finally, the last line describes terms which reduce CsrA abundance: CsrA
decreases either by degradation of CsrA (δA), or by forming complexes with long mRNA
or sRNA, respectively. The equations for long mRNA and sRNA, eq. (1.96) and (1.98),
describe analogous biochemical processes. As the formation of a complex means a
decrease in the abundance of the respective complex partners, we find in the equations
of the complexes, eq. (1.97) and (1.99), that terms with positive sign in the dynamical
equations of A,M or S appear with negative sign the equations for complexes, and vice
versa.

In order to account for a new target, we assume that its qualitative behavior is that of
long mRNA. This means that in the model its differential equation has the very same
structure as that for the long mRNA, but of course with rate parameters specific to the
corresponding target. As it would be very unhandy to add over 700 targets to the
model, we introduce a single, effective target, T . This additional effective target is an
“average” mRNA target, which forms complexes with CsrA. Therefore, accounting for
such an effective target adds dynamic equations for the abundance of the target as well
as for its complexes,

eff. target : Ṫ = αT + k−T CTA − k
+
TAT − δTT (1.100)

target-CsrA complex : ĊTA = k+
T TA− k

−
T CTA − δCTA

CTA, (1.101)

and also adds new terms to the dynamic equation for CsrA, eq. (1.95):

CsrA : Ȧ = [r.h.s. of (1.95)]− k+
T TA+ k−T CTA + δCTA

CTA(1− pT ). (1.102)

As stated above, the structure of its terms is analogous to those found in the dynamics
of the long mRNA: The effective target is produced at rate αT and degraded at rate
δTT . Note that αT is chosen such that the target abundance in the cell matches the
combined abundance of the 700 different targets. As with long mRNA, the abundances
of A and T get reduced by the formation of CsrA-target-complex (−k+

T TA), and
increased once these complexes either break apart (+k−T CTA) or get degraded
(+δCTA

CTA(1− pT )). In the equation for the CsrA-target-complexes, the last three
rates appear again with opposite signs.
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Eqs.(1.96)-(1.102) now define our initial biochemical network, extended with an effective
additional target and its complex with CsrA. We proceed by first considering this
system in the steady state. From this state, we can calculate the component abundances.
In a second step, we make the simplifying assumptions that all complexes and, in a
third step, also the target abundance equilibrate fast compared to other components of
the reduced model. This fast-equilibrium-assumption eliminates the affected
biochemical processes, and allows us to finally reduce the model to three components.

Steady State. In order to compare the abundances predicted by the extended
biochemical network with experimental data, we start by considering the steady state of
the system. The steady state is defined as the state, in which no abundance is subject
to changes with time. It is obtained by setting the left hand sides of eqs.(1.96)-(1.102)
to zero (i.e. Ȧ = 0, Ṁ = 0, ...). We begin with the equations for the complexes,
eqs. (1.97), (1.99) and (1.101). For CMA (eq. (1.97)), we get from Ċ = 0,

CMA =
k+
M ·M ·A

k−M + δCMA

=
kM ·M ·A
δCMA

, (1.103)

where we introduced the effective binding parameters

kM :=
k+
MδCMA

k−M + δCMA

. (1.104)

As the equations of the complexes, eqs. (1.97), (1.99) and (1.101), have all the very
same structure, we can find equations and effective parameters for the sRNA/CsrA- and
target/CsrA-complexes analogously. Taken together, these equations read

CMA =
kM ·M ·A
δCMA

, kM :=
k+
MδCMA

k−M + δCMA

, (1.105)

CSA =
kS · S ·A
δCSA

, kS :=
k+
S δCSA

k−S + δCSA

, (1.106)

CTA =
kT · T ·A
δCTA

, kT :=
k+
T δCTA

k−T + δCTA

. (1.107)

Inserting these equations to the (steady state) differential equations for A,S,M and T ,
we obtain an set of coupled equations that is independent of the complex abundances:

0 = αA − δAA− kMpMM ·A− kSpSS ·A− kT pTA · T, (1.108)

0 = αM − δMM − kMM ·A, (1.109)

0 = NαS − δSS − kSS ·A, (1.110)

0 = αT − δTT − kTT ·A. (1.111)

These four equations describe the steady state of the free components A,S,M and T .
Note that by employing eqs. (1.105)-(1.107), we were able to combine for each
component complex degradation and (un)binding of the complex partners to an
effective “coupled degradation” term, e.g. −kMpMMA for long mRNA. This step
reduces the complexity: The equations for M,S and T now contain only three terms,
one each for production (α), degradation (δ) and complex formation with CsrA (k).
The dynamic equation for CsrA has the same structure, but a special coupled
degradation term: As CsrA forms complexes with each of the three other components
(M,S and T ), it also has three coupled degradation terms.
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Solving our system of equations, eqs. (1.108)-(1.111) numerically allows us to calculate
the steady state abundances of the system. To this end, we need to estimate the
production, degradation, and binding rates of all the components. We motivate our
estimations in chapter 2. Moreover, we assumed pM = pS = pT = 1, as CsrA dimers,
even if they survive complex degradation, are unlikely to form a complex again after
prolonged binding. More specifically, we used the following parameters (in the units
molecules/min, 1/min, 1/(molecules · min) for α, γ, k, respectively):

M: αM = 1 δM = 0.04 kM = 0.5 pM = 1 δCM
= δM (1.112)

S: NαS = 57.5 δS = 0.023 kS = 0.5 pM = 1 δCS
= δS (1.113)

T: αT = 350 δT = 0.04 kT = 0.5 pT = 1 δCT
= δT (1.114)

A: αA = 408.45 δA = 0.00007 (1.115)

Note that the production rates α of the components are unknown (see also chapter 2),
and are thus treated as free parameters. We chose them such that the numerical solution
of eqs. (1.108)-(1.111) with the other parameters in eqs. (1.112)-(1.115) results in

M = 0.01, S = 0.29, T = 1.77, A = 395.45,

CMA = 24.99, CTA = 8748.23, CSA = 2499.71.

We find that our model consistently predicts not only the abundance of free CsrA (A)
as found by Taniguchi et al. [7](474 ± 191 free CsrA molecules), but also its total
abundance A+ CMA + CTA + CSA and the sRNA ratio, which are given by Gudapathy
et al. (11.000-33.000 CsrA molecules in total, 16-32% bound to sRNA [8]). This shows
that the abundances in our model reconcile with abundances found in experiments.
Moreover, the model extended with the effective targets produced the same abundance
of free CsrA as our reduced model. From this we learn that it is indeed justifiable to use
a reduced model, which does not account for all possible targets, as the abundance of
free CsrA is sufficient to describe our specific regulatory system.

Dynamics. The next steps, which reduce the number of components in the model,
are more difficult, and require us to make assumptions on the speed of equilibration of a
subset of biochemical processes. Specifically, we assume fast complex equilibration (i.e.
ĊSA = 0, ...). This assumption is well established in the literature (see, for instance, [9]),
and has already been employed in our derivation of the reduced model. It allows us to
use eqs. (1.105)-(1.107):

CMA =
kM ·M ·A
δCMA

,

CSA =
kS · S ·A
δCSA

,

CTA =
kT · T ·A
δCTA

,

This yields the following set of equations

Ȧ = αA − δAA− kMMA− kSSA− kTAT, (1.116)

Ṁ = αM − δMM − kMMA, (1.117)

Ṡ = NαS − δSS − kSSA, (1.118)

Ṫ = αT − δTT − kTTA. (1.119)
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Note that the right hand side of these equations is identical to the right hand side of the
steady state equations, eqs.(1.96)-(1.102). These four equations describe the dynamics
of our reduced model (as presented in our paper), interacting with a second, effective
target for CsrA.

So far, we have showed how it is possible to account for additional targets in a cell in
the form of a single, effective target, and derived a reduced four-component model,
eqs. (1.116)-(1.119). In order to work with these equations, we must specify the
dynamics of the effective target. However, the corresponding rates for most targets are
not known, and can only be estimated roughly. It is therefore not useful to explicitly
account for these targets in the model. In the following paragraph, we will use the
aforementioned rough estimates to reduce eqs. (1.116)-(1.119) back to our
three-component model, as the additional terms for the target turn out to be constant
above a threshold value of A.

Elimination of the Target Dynamics. In order to eliminate T from
eqs. (1.116)-(1.119), we proceed analogous to the elimination of the complexes and
make the additional assumption that also the target abundance equilibrates fast. This
means that we assume Ṫ = 0 in eq. (1.119), and, just as with the complexes (see, e.g.,
eq. (1.103)), solve for the target abundance:

T =
αT

δT + kTA
. (1.120)

We then insert this solution in the differential equation for A, eq. (1.116):

Ȧ = αA − δAA− kMMA− kSSA− kT ·A ·
αT

δCT + kTA
. (1.121)

The equation for A is now independent of T , and eqs. (1.121),(1.117) and (1.118)
comprise a closed system of differential equations for three components (just as in our
reduced model presented in our main text). If we compare it to our reduced model, we
find that the models differ only by a single degradation term in the equation for CsrA.
The term reads

−kT ·A ·
αT

δCT + kTA
= −A · αT

δCT

kT
+A

, (1.122)

and is special for two reasons: First, it is the only term that contains the parameters for
the effective targets, and thus describes their influence on the dynamics. Second, its
dependence on the parameter A is more complex than for the other terms in eq. (1.121),
as it has it has a Langmuir-like dependence on A. Because of the Langmuir functional
form, the ratio of δCT and kT determines whether the term depends on A or not: If
δCT /kT is significantly larger than A, it dominates the denominator in eq. (1.122), and
the term becomes linearly dependent on A. In the opposite case, if A dominates the
denominator, it cancels with the linear A-dependence, rendering the term constant.
These two limiting scenarios can be summarized as follows:

δCT
kT
� A : A · αT

δCT

kT
+A

≈ A · αT
A

= αT , (1.123)

δCT
kT
� A : A · αT

δCT

kT
+A

≈ A · αT
δCT

kT

= A · αT kT
δCT

. (1.124)

If the parameter sets used in our simulations fall into one of the two limiting scenarios,
we could approximate the Langmuir-like term by either eq.(1.123) or (1.124). This
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would then simplify the analysis of the equations, and allows us to absorb the term
eq. (1.122) into an effective rate of production or degradation, respectively.

Using the parameters defined in eq. (1.114), we find δCT

kT
= 0.08. For steady state

calculations before an SOS signal, that is, when A� 1, we can thus assume δCT

kT
� A.

This means that eq.(1.123) can be applied, and eq. (1.122), becomes the constant αT .
We insert it to eq. (1.121) to get:

Ȧ = αA − δAA− kMMA− kSAS − kT ·A ·
αT

δCT + kTA
(1.125)

≈ αA − δAA− kMMA− kSAS − αT (1.126)

= (αA − αT )− δAA− kMMA− kSAS (1.127)

= αA,eff − δAA− kMMA− kSAS. (1.128)

In these steps, we approximated the Langmuir-like term by the constant limiting case,
as described above. We then eliminated this now constant term by adding it to the
(also constant) production rate αA, thus defining a new, effective production rate

αA,eff = αA − αT .

Calculating this effective production rate from the parameters defined in eqs. (1.115)
and (1.114), we get αA,eff = 58.45. If we use this value to numerically solve the steady
state eqs. (1.128),(1.117) and (1.118), we find that αA,eff does not reproduce the correct
steady state abundances. However, to get the correct values, we have to slightly increase
this value to 58.52. This slight difference stems from the approximation of the
Langmuir-like term.

With the correction, we get for our three-component system

M = 0.01, S = 0.30, A = 386.44,

CMA = 24.99, CSA = 2499.7,

which matches the abundances found in the steady state solution with the targets again
very well.

In summary, we derived the three-component system from our main text,

Ṁ = αM − δMM − kMMA,

Ȧ = αA − δAA− kMpMMA− kSpSAS,
Ṡ = NαS − δSS −AkSS,

from our initial biochemical network, eqs. (1.95)-(1.99), which now also accounted for
additional targets, eqs.(1.100) and (1.101). We found, that the following set of rate
parameters (in the units molecules/min, 1/min, 1/(molecules · min) for α, γ, k,
respectively):

M: αM = 1 δM = 0.04 kM = 0.5 pM = 1 δCM
= δM

S: NαS = 57.5 δS = 0.023 kS = 0.5 pM = 1 δCS
= δS

A: αA = 58.52 δA = 0.00007

the model is able to reproduce experimentally observed abundances.

23



Chapter 2

Biological parameter values in
post-transcriptional regulation

The goal of this chapter is to find meaningful parameter values. We follow a three step
procedure. First, literature is searched for experimental measurements. Second, if there
are no experimental measurements, we will estimate the range of parameter values by
looking at similar regulation systems in bacteria. Third, considering the explicit
biological processes involved in expression, we will find rough estimates for parameter
values and we will check if these values agree with the biological range found in step two.

2.1 Experimental values

At 37◦C the half-life of small RNAs CsrB and CsrC are 1.6 min and 4.1 min,
respectively [2]. Since the relation between degradation rates and half-life is
δ = 1/τ = ln 2/t1/2, we find δCsrB ≈ 0.43 min−1 and δCsrC ≈ 0.17 min−1. However, these
values have been measured in experimental conditions that suggest the presence of
CsrD, which was shown to be responsible for the degradation of the sRNAs CsrB and
CsrC. Recent studies show that CsrB/C decay is activated by the presence of glucose,
because glucose leads finally to activation of CsrD [10]. Another recent study
demonstrated, that only the unphosphorylated form of EIIAglc (the glucose specific
permease of the PTS system) is able to bind to CsrD and activate CsrB/C
degradation [11]. In this regard, [12] found that in glucose media, EIIA is
unphosphorylated, but phosphorylated in glycerol media. As we want to compare the
results of our model to experiments which employ glycerol as the only carbon source,
CsrD will not be activated. This implies that we can consider the half-life of the sRNA
to be about 30 min [13], which corresponds to δS = 0.023 min−1.

Long mRNA decays with a half-life of 18± 1.5 min [14], which leads to
δM ≈ 0.04 min−1.

For proteins in E. coli we know that ”[o]nly a limited portion of the cellular protein is
subject to rapid degradation. It decays with a half-life of approximately 1 hour and
constitutes 2 to 7% of the total cellular protein” [15]. This classification was refined one
year later [16]:
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1. 2%− 7% of all proteins in E. coli degrade quickly with a half-life of approximately
one hour, meaning δfast ≈ 0.012 min−1.

2. The remainder, i.e. 93%− 98% of all proteins in E . coli, degrades

(a) under starvation at a rate of 2.5%− 6% of proteins per hour. Since
N(t) = N0e

−δt, it follows that
δstarve = − ln(0.98− 0.935) hr−1 = (0.0034− 0.001) min−1.

(b) without starvation at a rate of 0.2%− 0.6% of proteins per hour. It follows
that δslow = (0.000034− 0.0001) min−1.

Since we are not interested in conditions under starvation, we have to choose either the
degradation rate of fast degrading proteins with δfast ≈ 0.01 min−1, or that of slowly
degrading proteins with δslow ≈ 0.00007 min−1. Since CsrA is generally described as
very stable [13], we assume δA = 0.00007 min−1.

In summary, we set the degradation rates as

δM = 0.04 min−1 δA = 0.00007 min−1 δS = 0.023 min−1

2.2 Estimations from similar system

In [6] a cyanobacterial iron stress response was analyzed and analytic calculations were
fitted to experimental data. This lead to an estimate of complex binding parameters.
The best-fit parameters for an up-regulated system are as follows:

k =
konδC

koff + δC
≈ konδC

koff
≈ 4.4 nM−1min−1.

In [5] the target gene sodB was regulated by an sRNA, RyhB, that is involved in iron
homeostasis of E. coli. The complex binding parameters were estimated to

k = 0.02 nM−1min−1.

The estimates for complex binding parameters deviate in the two different systems by
two orders of magnitudes. We will use these results as the biological range for these
parameters in our model of post-transcriptional regulation. We choose the mean order
of magnitude and take:

kM = kS = 0.5 min−1molecule−1.

Cooperative Binding. We are aware of the fact that some studies (like dscussed
in [17,18]) suggest that CsrB and CsrC are subject to positive cooperative binding, that
is, an increase in binding affinity of a sRNA the more CsrA molecules bind to it.
However, we were not able to find reliable quantitative data, which would clearly show
that our assumption of fast complex equilibration is void. Indirect ways of analyzing the
binding rates, particularly the measurement of KD values, produce highly varying
results, depending on the particular experimental condition used [19,20]. Since clear
evidence for highly cooperative binding interfering with our assumptions is missing, we
did not include this phenomenon in our model. In the case that future studies would
show that cooperative binding effects of CsrA to sRNA are indeed crucial, our model is
still valid, but has to be slightly extended: As the CsrA-sRNA-complexes cannot be
considered to equilibrate fast anymore, their abundance CSA must be included explicitly
in the model. This would turn the three-component-model to a four-component one.
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2.3 Biological estimations

Conversion of units

First, we have to find a conversion between the unit nanomolar (nM), as found in
experimental papers, and molecules per cell, as we have used for our estimations. The
cell volume of E. coli is VEC = (0.6− 0.7)µm3 [21]. Therefore,

1nM = 10−9 mol
dm3 = 10−9 0.65

1
6.02·1023 molecules

0.65·1015µm3 ≈ 0.4 molecules
0.65µm3 = 0.4 molecules

VEC
.

Production rates

The production rates of CsrA, the sRNAs and the long mRNA, αA, αS and αM , have
not been measured, and are thus unknown. In order to obtain plausible values, we fit
them such that our model produces component abundances that are found in the
literature.

For CsrA, Taniguchi [7] finds an abundance of free molecules of 474 ± 191 per cell. In
the reduced model, this value is reached in the steady state if we set
αA = 58.52 molecules/min. We show in section 1.8 of this Supporting Information, that
this number is in good agreement with an extended model, which also accounts for
additional targets of CsrA and correctly reproduces the total CsrA abundance in the
cell.

For sRNA, Gudapathy et al. [8] find an abundance of about Sexp = 250 CsrB molecules
per cell. Moreover, they assume that all of these molecules have formed a complex with
CsrA molecules (that is, there is no free sRNA in the system), and that for each sRNA
all binding sites are occupied with CsrA. The CsrB molecule is known to have
approximately 22 binding sites for CsrA, with N ≈ 10 CsrA dimers being attached on
average [1, 22]. Since our model uses an effective sRNA with only a single binding site,
we have to fit the sRNA production rate, NαS , such that our model produces the
N -fold amount of sRNAs compared to the abundance found in experiments. In order to
get N · Sexp = 10 · 250 sRNA complexes, we need to set NαS = 57.5 molecules/min.

For the long mRNA, the abundance in the cell has not been measured yet. Since the
gene of long mRNA (2335 nucleotides [23]) is about one order of magnitude larger than
the ones of CsrA (183 nucleotides [23]) and the sRNAs (369 nucleotides and 245 nt [23]),
the transcription of long mRNA will take longer. Consequently, we assumed αM to be
significantly smaller than the production rates of CsrA and sRNA. In our model, we
assumed it to be αM = 1.

In summary, we defined the following production rates for long mRNA, CsrA and sRNA:

αM = 1 molecules/min αA = 58.52 molecules/min αS = 57.5 molecules/min

Plasmid numbers

Previous studies showed that in a single E. coli cell there are approximately nsos = 20
copies of the plasmid containing the colicin operon. The variation in the colcin plasmid
number from cell to cell is caused by colicin E2 plasmids being steadily replicated in the
cell by a rolling circle replication mechanism. The plasmid copy number enters our
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model via the total (per cell) production rate of long mRNA (αM ) as a multiplicative
factor: αM = αMl

· (nsos −BSOS) (where BSOS denotes the number of plasmids with
respressed colicin promoter). Therefore, changes in the plasmid copy number affect our
model by either increasing (fewer plasmids) or decreasing (more plasmids) the delay
between SOS signal and lysis. However, since most colicin promoters are repressed, even
during an SOS signal, the consequences of this effect are limited, compared to changes
in the rate parameters. To show the effects of varying plasmid copy numbers, we briefly
discuss the lysis time distribution of a population, in which the plasmid copy number is
Poisson-distributed with mean nsos = 20 (see S4 Fig B). Compared to its counterpart
with fixed nsos, S4 Fig A, we find that the distribution in S4 Fig B is wider. This is due
to the effects of variation in nsos we described above: As the population contains cells
with plasmid levels both above and below the average, the distribution gets shifted in
both directions. However, the comparison with S4 Fig A also shows that the widening
of the distribution is rather weak, and that the overall shape of the distribution is
largely conserved. This illustrates that variations in plasmid copy number affect the
lysis time distribution only weakly. Moreover, the replication of plasmids is the only
mechanism that affects their copy number, and happens much slower than any other
process considered by our model. Hence, the effect of variation in plasmid copy number
on lysis time distributions is expected to be only minor. In order to keep the focus on
effects happening on the timescale of SOS responses, we kept the number of colicin
plasmids constant, and chose their abundance to be the average value.
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Chapter 3

Gillespie simulations

We define the following notation:

� R,Le,Col, L: number of RecA proteins, LexA dimers, Colicin proteins and lysis
proteins.

� MrMl,Ms,M : number of lexA, recA, short mRNAs and long mRNAs.

� S: number of effective sRNAs with one CsrA binding site.

� BrBl, Bsos: number of LexA dimers bound to the lexA, recA and SOS promoter.

� αMr , αMl
, αR, αLe, Bsos, αMs , αM , αA, αS , αL: Production rates (α) of the

component denoted by the subscript.

� δMr
, δMl

, δLe, δR, δMs
, δM , δA, δS , δL: Degradation rate of the component denoted

by the subscript.

� k+
r , k

+
l , k

+
sos, k

−
r , k

−
l , k

−
sos: Binding rates (+) and unbinding rates (−) of LexA

dimers to recA, lexA and SOS promoter sites. The subscript denotes the
component.

� kM , kS : coupled degradation parameters for the complexes of mRNA and sRNA,
respectively

� cp: Rate of LexA auto-cleavage due to RecA protein.

� nsos: number of ColE2 plasmids.

� 1− pM : Probability of CsrA dimers surviving degradation of sRNA-CsrA
complexes.

� 1− pS : Probability of CsrA dimers surviving degradation of mRNA-CsrA
complexes.
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3.1 Rate equations

With the defined interaction scheme and notation we are now able to introduce the rate
equations used by Shimoni [24]:

Ṁr = αMr
(1−Br)− δMr

Mr (3.1)

Ṁl = αMl
(1−Bl)− δMl

Ml (3.2)

Ṙ = αRMr − δRR (3.3)

L̇e = αLeMl − δLeLe− k+
l (1−Bl)Le+ k−l Bl − k

+
r (1−Br)Le+ k−r Br

− k+
sos(1−Bsos)Le+ k−sosBsos − cpRLe

(3.4)

Ḃr = k+
r (1−Br)Le− k−r Br (3.5)

Ḃl = k+
l (1−Bl)Le− k−l Bl (3.6)

˙Bsos = k+
sos(nsos −Bsos)Le− k−sosBsos (3.7)

Ṁs = αMs(nsos −Bsos)− δMsMs (3.8)

Ṁ = αMl
(nsos −Bsos)− δMM − kMMA (3.9)

Ȧ = αA − δAA− kMpMMA− kSpSAS (3.10)

Ṡ = αS − δSS −AkSS (3.11)

3.2 Gillespie simulations

From the rate equations (3.1)-(3.11) we set up a Gillespie simulation [25] with the
following reactions:

1. Mr
αMr (1−Br)−−−−−−−−→Mr + 1

2. Ml

αMl
(1−Bl)−−−−−−−→Ml + 1

3. R
αRMr−−−−→ R+ 1

4. Le
αLeMl−−−−→ Le+ 1

5. Mr
δMrMr−−−−−→Mr − 1

6. Ml

δMl
Ml−−−−→Ml − 1

7. R
δRR−−−→ R− 1

8. Le
δLeLe−−−−→ Le− 1

9. Le,Br
k+r (1−Br)Le−−−−−−−−→ Le− 1, Br + 1

10. Le,Bl
k+l (1−Bl)Le−−−−−−−−→ Le− 1, Bl + 1

11. Le,Br
k−r Br−−−−→ Le+ 1, Br − 1

12. Le,Bl
k−l Bl−−−→ Le+ 1, Bl − 1

13. Le
cpRLe−−−−→ Le− 1

14. Le,Bsos
k+sos(nsos−Bsos)Le−−−−−−−−−−−−→

Le− 1, Bsos + 1

15. Le,Bsos
k−sosBsos−−−−−→ Le+ 1, Bsos − 1

16. Ms
αMs (nsos−Bsos)−−−−−−−−−−→Ms + 1

17. Ms
δMsMs−−−−−→Ms − 1

18. M
αMl

(nsos−Bsos)−−−−−−−−−−→M + 1

19. M
δMM−−−→M − 1
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20. A
αA−−→ A+ 1

21. A
δAA−−−→ A− 1

22. S
αS−−→ S + 1

23. S
δSS−−→ S − 1

24. (M,A)
kMpMMA−−−−−−−→ (M − 1, A− 1)

25. (M,A)
kM (1−pM )MA−−−−−−−−−−→ (M − 1, A)

26. (A,S)
kSpSAS−−−−−→ (A− 1, S − 1)

27. (A,S)
kS(1−pS)AS−−−−−−−−→ (A,S − 1)

The parameter values are shown in S1 Table. The values from literature in this table
were taken from [2,14–16,24,26]. Estimated parameter values were chosen according
to [5, 6, 24]. For the transcription rates of long mRNA, CsrA and sRNA we calculated a
rough estimate using the transcription rate of RNA polymerase [27] and the length of
the individual genes [23], taking into account the number of Colicin plasmids, CsrA
binding sites on CsrB, and the translational burst size for CsrA. All parameters are
given in the unit of molecules per cell and minute.

30



Chapter 4

Linear noise approximation

4.1 Definitions

The state vector ~x = (X1, X2, . . . , XN )
T

gives the copy numbers of the N components
involved.

There are M reactions with rates ~W (~x) = (W1(~x),W2(~x), . . . ,WM (~x))
T

.

The matrix A with components aij gives the change in copy number of component i
following reaction j.

4.2 Master equation and rate equation

With the definitions above the master equation is given by:

d

dt
P (~x, t) =

M∑
j=1

[Wj(~x− ~aj)P (~x− ~aj , t)−Wj(~x)P (~x, t)] (4.1)

The Master equation 4.1 gives rise to the time evolution of the first moment:

〈~̇x〉 = 〈A ~W (~x)〉 ≈ A ~W (〈~x〉) (4.2)

In the last step we have neglected correlations. If all reaction rates in vector ~W were
linear, an equal sign would hold true. Equation (4.2) with neglected correlations is the
deterministic rate equation of the system.

4.3 Kramers-Moyal expansion and van Kampen’s
expansion

The master equation (4.1) is a set of Nx coupled ordinary differential equations (ODEs),
where Nx is the number of states in the system. There is a large number of states, since
each set of copy numbers corresponds to one individual state. This makes it very hard
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to acquire useful information directly from the master equation. A master equation is
often approximated by a Kramers-Moyal expansion, which converts the set of Nx
coupled ODEs to one partial differential equation of order imax:

d

dt
P (~x, t) = ∂tP (~x, t) ≈

imax∑
i=1

 (−1)i

i!

i∏
j=1

(∂xkj )

 i∏
j=1

(akj l)Wl(~x)P (~x, t)

 (4.3)

For the sake of concise notation, we define ~X = 〈~x〉, so ∂t ~X = A ~W ( ~X ). Next, we

introduce a new random variable ~ξ, which gives the fluctuations around the
deterministic trajectory given by the rate equations:

~x = ~X + ~ξ with ~ξ = O
(√
|~x|
)

(4.4)

It is important that fluctuations scale with the square root of the mean, because van
Kampen’s expansion is only valid if fluctuations are in the vicinity of the deterministic
rate equation. Contrary to the van Kampen expansion typically found in
textbooks [4, 28], we neglect the system size parameter Ω used for scaling arguments at
this point. The reasons will become clear in section 4.6.

The probability density in the new random variable ~ξ relates to the probability density
in the random variable ~x as

π(~ξ, t) = P (~x, t) = P ( ~X (t) + ~ξ, t). (4.5)

Consequently, we find:

∂tπ(~ξ, t) = ∂xiP (~x, t)
dxi(t)

dt
+ ∂tP (~x, t)

= ∂xi
P (~x, t)

dXi(t)
dt

+

imax∑
i=1

 (−1)i

i!

i∏
j=1

(∂xkj )

 i∏
j=1

(akj l)Wl(~x)P (~x, t)


= ∂ξiπ(~ξ, t)aijWj( ~X )

+

imax∑
i=1

 (−1)i

i!

i∏
j=1

(∂ξkj )

 i∏
j=1

(akj l)Wl( ~X + ~ξ)π(~ξ, t)


= −∂ξi

([
ailWl( ~X + ~ξ)− ailWl( ~X )

]
π(~ξ, t)

)
+

imax∑
i=2

 (−1)i

i!

i∏
j=1

(∂ξkj )

 i∏
j=1

(akj l)Wl( ~X + ~ξ)π(~ξ, t)

 .

(4.6)

To perform these calculations, we used several times the equality

∂ξi

[
π(~ξ, t)f(~x(~ξ))

]
= ∂ξi

[
P (~x(~ξ), t)f(~x(~ξ))

]
= ∂xj

[P (~x, t)f(~x)]
dxj
dξi︸︷︷︸
δi,j

= ∂xi
[P (~x, t)f(~x)] .

(4.7)

The basic assumption here is that fluctuations ~ξ around the mean ~X are expected to
scale with the square root of the mean as denoted in equation (4.4). It follows that for

large ~ξ and a sufficiently smooth reaction rate vector, we may perform a Taylor
expansion:

Wl( ~X + ~ξ) =

∞∑
u=0

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )

u∏
v=1

(ξkv ). (4.8)
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4.4 Simplification for post-transcriptional
regulation of Colicin release

So far, the analysis holds true for all systems that can be cast into the form defined in
section 4.1. Let us now turn to our specific model of post-transcriptional regulation of
Colicin release. With the reactions defined in chapter 1.7 we find:

A =

 1 −1 0 0 0 0 −1 −1 0 0
0 0 1 −1 0 0 −1 0 −1 0
0 0 0 0 1 −1 0 0 −1 −1

 (4.9)

~W (M,A, S) = (αM , δMM,αA, δAA,αS , δSS, kMpMMA,

kM (1− pM )MA, kSpSAS, kS(1− pS)AS)T
(4.10)

From equation (4.10) we see that all derivatives higher than second order must vanish,
which simplifies the sum in (4.8) significantly, i.e. u can take the values 0, 1 or 2.

4.5 Calculation of moments

With equation (4.6) we are in the position to calculate the moments of the random

variable ~ξ. We do so by integrating equation (4.6) multiplied by the random variables

whose moment is calculated by parts. Terms containing the expression
∏i
j=1(∂ξkj ) have

to be integrated by parts i times. After integration, only a few terms are non-zero. For
the first two moments we obtain:

∂t〈〈ξb〉〉 =

∫ ∞
−∞

dξ1dξ2 . . . dξn∂tπ(~ξ, t)ξb =

= abl

∞∑
u=1

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )〈〈

u∏
v=1

(ξkv )〉〉 (4.11)

∂t 〈〈ξbξc〉〉︸ ︷︷ ︸
symm in b,c

=

∫ ∞
−∞

dξ1dξ2 . . . dξn∂tπ(~ξ, t)ξbξc =

= abl

∞∑
u=1

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )〈〈

u∏
v=1

(ξkv )ξc〉〉 (4.12)

+ acl

∞∑
u=1

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )〈〈

u∏
v=1

(ξkv )ξb〉〉 (4.13)

+ ablacl

∞∑
u=0

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )〈〈

u∏
v=1

(ξkv )〉〉 (4.14)
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To calculate the third moments, we will need the following relations:

∂ξi(ξbξcξd) = δibξcξd + δicξbξd + δidξbξc (4.15)

2∏
j=1

(∂ξkj )(ξbξcξd) = ξb(δk1cδk2d + δk2cδk1d) + ξc(δk1bδk2d + δk2bδk1d)

+ ξd(δk1bδk2c + δk2bδk1c)

(4.16)

3∏
j=1

(∂ξkj )(ξbξcξd) =
∑

P̂(b,c,d)

δk1bδk2cδk3d (4.17)

4∏
j=1

(∂ξkj )(ξbξcξd) = 0 (4.18)

The operator P̂ (b, c, d) signifies all permutations in (b, c, d). It follows:

∂t� ξbξcξd �︸ ︷︷ ︸
symm in b,c,d

=

∫ ∞
−∞

dξ1dξ2 . . . dξn∂tπ(~ξ, t)ξbξcξd

= −
∫ ∞
−∞

d~ξ∂ξi

([
ailWl( ~X + ~ξ)− ailWl( ~X )

]
π(~ξ, t)

)
ξbξcξd

+

∫ ∞
−∞

d~ξ

∞∑
i=2

 (−1)i

i!

i∏
j=1

(∂ξkj )

 i∏
j=1

(akj l)Wl( ~X + ~ξ)π(~ξ, t)

 ξbξcξd

PI
=

∫ ∞
−∞

d~ξ∂ξi(ξbξcξd)
([
ailWl( ~X + ~ξ)− ailWl( ~X )

]
π(~ξ, t)

)

+

∫ ∞
−∞

d~ξ

2∏
j=1

(∂ξkj )(ξbξcξd)

1

2

2∏
j=1

(akj l)︸ ︷︷ ︸
symm in k1,k2

Wl( ~X + ~ξ)π(~ξ, t)



+

∫ ∞
−∞

d~ξ

3∏
j=1

(∂ξkj )(ξbξcξd)

1

6

3∏
j=1

(akj l)︸ ︷︷ ︸
symm in k1,k2,k3

Wl( ~X + ~ξ)π(~ξ, t)


+

∫ ∞
−∞

d~ξ
4∏
j=1

(∂ξkj )(ξbξcξd)

∞∑
i=4

 (−1)i

i!

i∏
j=5

(∂ξkj )

 i∏
j=1

(akj l)Wl( ~X + ~ξ)π(~ξ, t)


= abl

∞∑
u=1

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )�

u∏
v=1

(ξkv )ξcξd � (4.19)

+ acl

∞∑
u=1

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )�

u∏
v=1

(ξkv )ξbξd � (4.20)

+ adl

∞∑
u=1

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )�

u∏
v=1

(ξkv )ξbξc � (4.21)

+ acladl

∞∑
u=0

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )�

u∏
v=1

(ξkv )ξb � (4.22)
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+ abladl

∞∑
u=0

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )�

u∏
v=1

(ξkv )ξc � (4.23)

+ ablacl

∞∑
u=0

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )�

u∏
v=1

(ξkv )ξd � (4.24)

+ ablacladl

∞∑
u=0

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )�

u∏
v=1

(ξkv )� (4.25)

The same steps of calculation can be applied to the fourth moment as well. To avoid
too longish expressions, we just state the result:

∂t� ξbξcξdξe �︸ ︷︷ ︸
symm in b,c,d,e

=

∫ ∞
−∞

dξ1dξ2 . . . dξn∂tπ(~ξ, t)ξbξcξdξe

= abl

∞∑
u=1

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )�

u∏
v=1

(ξkv )ξcξdξe � (4.26)

+ acl

∞∑
u=1

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )�

u∏
v=1

(ξkv )ξbξcξd � (4.27)

+ adl

∞∑
u=1

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )�

u∏
v=1

(ξkv )ξbξcξe � (4.28)

+ ael

∞∑
u=1

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )�

u∏
v=1

(ξkv )ξbξcξd � (4.29)

+ ablacl

∞∑
u=0

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )�

u∏
v=1

(ξkv )ξdξe � (4.30)

+ abladl

∞∑
u=0

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )�

u∏
v=1

(ξkv )ξcξe � (4.31)

+ ablael

∞∑
u=0

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )�

u∏
v=1

(ξkv )ξcξd � (4.32)

+ acladl

∞∑
u=0

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )�

u∏
v=1

(ξkv )ξbξe � (4.33)

+ aclael

∞∑
u=0

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )�

u∏
v=1

(ξkv )ξbξd � (4.34)

+ adlael

∞∑
u=0

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )�

u∏
v=1

(ξkv )ξbξc � (4.35)

+ ablacladl

∞∑
u=0

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )�

u∏
v=1

(ξkv )ξe � (4.36)

+ ablaclael

∞∑
u=0

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )�

u∏
v=1

(ξkv )ξd � (4.37)

+ abladlael

∞∑
u=0

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )�

u∏
v=1

(ξkv )ξc � (4.38)

+ acladlael

∞∑
u=0

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )�

u∏
v=1

(ξkv )ξb � (4.39)

35



+ ablacladlael

∞∑
u=0

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )�

u∏
v=1

(ξkv )� (4.40)

4.6 Scaling of terms in the equations of moments

We have neglected the system size parameter Ω so far, which in fact seems odd, since
van Kampen’s expansion is also known as the Ω-expansion. There are two important
points why we have followed this procedure:

1. It is indeed possible to find a parameter Ω that fulfills the requirement needed for
an Ω-expansion, namely (Ṁ, Ȧ, Ṡ)T = ~F (M,A, S) = Ω~f(M/Ω,A/Ω, S/Ω). Ω has to
be a large quantity proportional to the system size. However, inserting real
parameters, we find Ω� 1. We conclude, that the parameter Ω is not well-defined
in our model, but would be only an artificial construct.

2. When looking at the scaling properties of 〈〈ξ〉〉, 〈〈ξ2〉〉, . . . we cannot simply group

all terms of the same order in
√

Ω
i
, i ∈ N, since all of these terms come in

combination with 〈〈ξ〉〉, 〈〈ξ2〉〉, . . . terms which in turn have a specific scaling
property, as we shall see.

In the following, we define the system size parameter Ω̃ as the total number of
molecules present in the system. With this definition we will work out the scaling
properties of 〈〈ξ〉〉, 〈〈ξ2〉〉, 〈〈ξ3〉〉 and 〈〈ξ4〉〉 in the system size parameter Ω̃ as well as the
significance of each term in the equations for the moments.

Scaling of specific terms:

� The stoichiometric matrix Abl scales with O(1).

� The reaction rate matrix is quadratic in the molecule numbers, such that ~W ( ~X )
scales with O(Ω̃2).

� Each derivative with respect to Xi introduces a factor O(1/Ω̃).

The equations derived for the moments (see section 4.5) may be classified into terms
with equal scaling behavior. The scaling behavior depends on u (0, 1 or 2) and the order
of the moment. Since we are interested in the stationary values of fluctuations, we can
set all derivatives with respect to time equal to zero, and find:

Equations u=0 u=1 u=2

(4.11) - O(Ω̃)〈〈ξ〉〉 O(1)〈〈ξ2〉〉
Table 4.1. Scaling of terms for first moments

Equations u=0 u=1 u=2

(4.12)-(4.13) - O(Ω̃)〈〈ξ2〉〉 O(1)〈〈ξ3〉〉
(4.14) O(Ω̃2) O(Ω̃)〈〈ξ〉〉 O(1)〈〈ξ2〉〉

Table 4.2. Scaling of terms for second moments
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Equations u=0 u=1 u=2

(4.19)-(4.21) - O(Ω̃)〈〈ξ3〉〉 O(1)〈〈ξ4〉〉
(4.22)-(4.24) O(Ω̃2)〈〈ξ〉〉 O(Ω̃)〈〈ξ2〉〉 O(1)〈〈ξ3〉〉
(4.25) O(Ω̃2) O(Ω̃)〈〈ξ〉〉 O(1)〈〈ξ2〉〉

Table 4.3. Scaling of terms for third moments

Equations u=0 u=1 u=2

(4.26)-(4.29) - O(Ω̃)〈〈ξ4〉〉 O(1)〈〈ξ5〉〉
(4.30)-(4.35) O(Ω̃2)〈〈ξ2〉〉 O(Ω̃)〈〈ξ3〉〉 O(1)〈〈ξ4〉〉
(4.36)-(4.39) O(Ω̃2)〈〈ξ〉〉 O(Ω̃)〈〈ξ2〉〉 O(1)〈〈ξ3〉〉
(4.40) O(Ω̃2) O(Ω̃)〈〈ξ〉〉 O(1)〈〈ξ2〉〉

Table 4.4. Scaling of terms for fourth moments

Looking at the dominant terms in the tables 4.1, 4.2, 4.3 and 4.4, we deduce:

〈〈ξ〉〉 = O(1/Ω̃)〈〈ξ2〉〉 (4.41)

〈〈ξ2〉〉 = O(Ω̃) +O(1/Ω̃)〈〈ξ3〉〉 (4.42)

〈〈ξ3〉〉 = O(Ω̃) +O(1)〈〈ξ2〉〉+O(1/Ω̃)〈〈ξ4〉〉 (4.43)

〈〈ξ4〉〉 = O(Ω̃)〈〈ξ2〉〉+O(1/Ω̃)〈〈ξ5〉〉 (4.44)

Since van Kampen’s expansion is only valid for small noise, we expect ξ to be of order
O
√

(Ω̃) and thus 〈〈ξ5〉〉 is smaller than of order O(Ω̃3).

Hence, we find: 〈〈ξ〉〉 = O(1), 〈〈ξ2〉〉 = O(Ω̃), 〈〈ξ3〉〉 = O(Ω̃), 〈〈ξ4〉〉 = O(Ω̃2) .

Using this result, we marked all terms in the tables above of order O(Ω̃3) in green, all
terms of order O(Ω̃2) in blue and all terms of order O(Ω̃) in red. In each of the
tables 4.1, 4.2, 4.3 and 4.4, we will call the dominant terms first order terms, followed by
second order terms that are of order O(Ω̃) smaller than first order terms. Consequently,
third order terms are of order O(Ω̃2) smaller than first order terms and so on.

4.7 Calculation of the Fano factor of long mRNA

The scaling behavior of all terms that are necessary to calculate fluctuations, i.e. second
moments, are given in table 4.2. The two dominating terms are marked blue. Thus, in
first order it is sufficient to take only these two terms into account. This procedure is in
fact the standard procedure used in the literature [4, 28,29]. Due to nonlinear reaction
rates, we get u = 2 terms, which mediate the coupling to higher moments. If we want to
calculate fluctuations to higher than just first order, we have to take into consideration
both red and blue terms in table 4.2. It follows that we have to include first moments
(table 4.1) and third moments (table 4.3). First moments are simple to implement,
because they couple only to second moments. To calculate third moments, however, we
have to consider all dominant terms (blue) in table 4.3. Unfortunately, these terms
include also fourth moments, which we would have to calculate via the green terms in
table 4.4.

Hence, if we want to consider higher order terms in our calculation of fluctuations, we
have to either work out the coupled equations from first moments up to fourth
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moments, or truncate the coupled equations by introducing a suitable closure-relation.
Furthermore, in the threshold region, where the coupling has its largest influence, copy
numbers are pretty low, which could bias all order arguments we have used so far.
Nonetheless, we would like to test how well the calculated results fit to data obtained by
Gillespie simulations. To this end we started from first order calculations and work our
way up to higher order calculations.

We began with the standard procedure by considering only the two dominant terms
(blue) in table 4.2. Comparing with the result of Gillespie simulations (see S3 Fig)
shows an adequate match, which overestimates fluctuations in the vicinity of the
threshold. When studying different parameter sets, it can be seen that, although
fluctuations are overestimated, the shape of the surface is well matched. We continued
and included higher moments, both by an adequate closure relation after the second
moment, as well as by actually implementing all terms of table 4.1, all terms of 4.2, all
blue terms of table 4.3 and all green terms of 4.4. However, the results for these
methods were (in general) worse than those from considering the dominant terms only.
Thus, we chose the first order method to calculate the Fano factor.
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