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Abstract 22 

Stable isotope probing of RNA has enthused researchers right from its first introduction in 2002. The 23 

concept of a labelling-based detection of process-targeted microbes independent of cellular 24 

replication or growth has allowed for a much more direct handle on functionally relevant microbiota 25 

than by labelling of other biomarkers. This has led to a widespread application of the technology, and 26 

breakthroughs in our understanding of carbon flow in natural microbiomes, autotrophic and 27 

heterotrophic physiologies, microbial food webs, host-microbe interactions and environmental 28 

biotechnology. Recent studies detecting labelled mRNA demonstrate that RNA-SIP is not limited to 29 

the analysis of rRNA, but is currently developing towards an approach for accessing targeted 30 

transcriptomes. In combination with next-generation sequencing and other methodological 31 

advances, RNA-SIP will continue to deliver invaluable insights into the functioning of microbial 32 

communities. 33 

  34 
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Introduction 35 

Microorganisms that utilize a specific growth substrate can be identified in a sample by stable 36 

isotope probing (SIP). A substrate artificially labelled with a rare stable isotope (e.g. 13C, 15N, 18O) is 37 

provided as smart tracer, which becomes assimilated into the biomolecules of target organisms. 38 

Methods are available to analyse the incorporation of label into various biomarkers, including 39 

phospholipid fatty acids (PLFAs), DNA, RNA, proteins and entire cells. Each of these is discussed 40 

within this themed issue. Here we focus on the most recent advances in the development and 41 

application of RNA-SIP (Fig. 1).  42 

For both DNA- and RNA-SIP, labelled nucleic acids are physically separated by isopycnic gradient 43 

centrifugation. Gradients of cesium chloride (CsCl) are used for DNA [1], whereas cesium 44 

trifluoroacetate (CsTFA) amended with a small percentage of formamide is used for RNA [2]. 45 

Fractionation of SIP gradients was first introduced for RNA, an important advance compared to 46 

ethidium bromide-based band detection. Fractionation allows access to the full range of buoyant 47 

densities resolved in gradients, including only partially labelled nucleic acids. In combination with 48 

quantitative analyses of gradient fractions, the distribution of specific RNA-populations across 49 

gradient fractions can be compared [3].  50 

Most of the RNA-SIP studies to date have targeted rRNA, generating taxonomic information on the 51 

microbes involved in label assimilation. Undoubtedly, this is where the approach has had its greatest 52 

appeal in tracing lineage-specific carbon flow within complex microbial communities. However, 53 

Huang et al. [4] noted that labelled mRNA transcripts can also be detected in gradient fractions. 54 

Dumont and colleagues [5] compared the results of labelling methanotrophs with 13CH4 in lake 55 

sediment by targeting 16S rRNA and pmoA markers by both DNA- and RNA-SIP and showed that the 56 

labelling of pmoA transcripts was more rapid than that of pmoA genes. This study laid the foundation 57 

for the combination of SIP with next-generation sequencing-based metatranscriptomics [6]. This 58 

emerging approach to target specific microbial transcriptomes has the potential to alleviate some of 59 
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the most fundamental limitations of non-targeted ‘omics [7] in complex systems. Considerable 60 

advances can be expected from the implementation of this novel strategy in different research fields. 61 

 62 

RNA-SIP: strengths and limitations 63 

RNA and DNA are preferred biomarkers for taxonomic identification of labelled microbes (Table 1). 64 

RNA labelling, unlike DNA, is independent of cellular replication, making RNA-SIP more sensitive 65 

[2,5]. A community’s metagenome may remain static over time scales where its transcriptome 66 

dynamically responds to environmental change. Moreover, the targeted microbes might be slow 67 

growing. For example, in a study on autotrophic ammonia-oxidizing archaea (AOA) in an agricultural 68 

soil, labelled AOA were only detectable by RNA-SIP, suggesting that they did not replicate sufficiently 69 

for DNA labelling [8]. Similarly, 13C-acetate assimilation by putative mixotrophic atmospheric 70 

methane oxidizers in a forest soil was apparent after 3 weeks in labelled mRNA but not in DNA [9]. 71 

On the other hand, work with RNA requires caution, as it is less stable than DNA. This is especially 72 

true for mRNA. Thus optimized laboratory routines are required to mitigate these issues. The 73 

prolonged ultracentrifugation times at room temperature required for RNA-SIP are fortunately not of 74 

concern because of the RNase-inhibitory function of CsTFA, a chaotropic salt [5].  75 

Protein-SIP, the youngest amongst the different strategies to detect biomarker labelling, allows for 76 

the most direct indication of specific metabolic activities by a given microbial population [10]. 77 

However, it requires a considerable depth of à-priori (meta)genomic information in order to 78 

phylogenetically place labelled peptide sequences. This is often difficult to accomplish for more 79 

complex communities or as-yet uncultivated lineages. The most recent advances in mRNA-SIP 80 

demonstrate that it is a powerful alternative to detect process-related gene expression 81 

[4,5,8,9,11,12].  82 

Based on mass spectrometry as opposed to buoyant density separation, protein-SIP and PLFA-SIP 83 

have detection limits at ~1% isotope incorporation or below for 13C [13]. Until recently, the detection 84 
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limits of DNA- or rRNA-SIP were estimated to be ~20% 13C enrichment, controlled mainly by the limits 85 

of gradient fractionation. However, the application of high-throughput sequencing of gradient 86 

fractions does not only allow for a very sensitive detection of highly labelled populations at 87 

extremely low-abundance [14]. If combined with models assuming normal distribution of distinct 88 

rRNA species across buoyant densities, the estimation of population-specific labelling of only a few 89 

atom % 13C can be inferred via buoyant density shifts [15]. The comprehensive sequencing-based 90 

quantitative interpretation of DNA-SIP gradients has recently been introduced [16], which 91 

substantiates this enhanced sensitivity for both 13C- and 18O-labelling at an unprecedented level of 92 

lineage-specific resolution. The integration of novel analytical strategies and interpretation routines 93 

will continue to increase the sensitivity of rRNA-SIP. 94 

 95 

Applications of RNA-SIP 96 

Carbon flow in complex natural microbiota 97 

Since its introduction for the identification of aerobic phenol degraders in an industrial bioreactor [2], 98 

RNA-SIP has been applied to elucidate microbial key players involved in a wide range of catabolic and 99 

respiratory processes, and in chemolithoautotrophy. A number of RNA-SIP studies have addressed 100 

aerobic methano- and methylotrophs in different habitats. Recent work has investigated aerobic 101 

methanotroph diversity in the sediment of an oligotrophic German lake [5,6], revealing that mostly 102 

type I methanotrophs, closely related to phylotypes also found in other lakes, were active in 103 

methane turnover. The labelled metatranscriptome provided a wealth of detail on expressed 104 

metabolic pathways active in methane and nitrogen cycling [6]. Other studies have pulsed 105 

methanotroph communities in soil with 13C-acetate instead of 13C-methane [9,12], showing that 106 

distinct uncultured lineages of type II methanotrophs assimilated carbon from acetate, proving them 107 

to be facultative methanotrophs.  108 
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RNA-SIP has also frequently targeted ammonia oxidizers, for which potential mixotrophy is also 109 

relevant. Pratscher et al. showed using rRNA/mRNA-SIP that ammonia-oxidizing archaea in an 110 

agricultural soil relied primarily on autotrophic CO2 fixation involving the 3-hydroxypropionate 111 

pathway [8]. RNA-SIP has also been employed to unravel trophic interactions of nitrifiers. In 112 

ammonia-oxidizing activated sludge, protozoan grazing of bacteria was revealed by tracing carbon 113 

flow from 13C-bicarbonate into rRNA of ciliate grazers (Epistylis spp.) [17]. More recently, a 114 

Micavibrio-like bacterial micropredator was demonstrated to prey on nitrite-oxidizing Nitrospira spp. 115 

in a similar system [18].  116 

Carbon usage in sulfur-oxidizing Sulfurimonas spp. at a pelagic redoxcline has also been traced by 117 

rRNA-SIP [19]. In situ experiments with 13C-pyruvate found no rRNA labelling of Sulfurimonas GD17, 118 

despite its known pyruvate metabolism. Pure culture incubations found that the 13C was 119 

incorporated only into amino acids, not nucleic acids. Using a differential labelling strategy with CO2 120 

and pyruvate, the authors were able to show that these presumed chemolithoautotrophic 121 

denitrifiers could assimilate pyruvate as supplementary carbon source in situ. Thus, whenever 122 

possible, different SIP approaches should be combined to elucidate peculiar physiologies. In a follow-123 

up study, the authors used 13C-labelled cells of Sufurimonas spp. to reveal that specific marine ciliate 124 

and flagellate populations grazed on the labelled cells and thus controlled the daily bacterial 125 

production of lithoautotrophs at the investigated redoxcline [20]. 126 

In anoxic marine sediments, recent RNA-SIP work has focused on the identification of acetate-127 

oxidizing microbes in manganese reducing incubations [21]. In distinct sediments from Sweden, 128 

Norway and Korea, the labelling of Colwiella spp., Arcobacter spp. and the Oceanospirillaceae were 129 

surprisingly consistent. A similar experiment indicated that members of the Desulfuromonadales 130 

were the key acetate consumers under strictly iron or manganese-reducing conditions [22].  131 

 132 
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Host-microbe interactions 133 

RNA-SIP has also been extensively used in disentangling interactions between unicellular and 134 

multicellular organisms, especially plant-microbe interactions. In a climate-change oriented study, 135 

Drigo et al. pulsed 13CO2 into mycorrhizal and non-mycorrhizal C-3 plants [23], revealing that elevated 136 

atmospheric CO2 concentrations induced changes in rhizospheric C flow, especially in mycorrhizal 137 

plants. A stimulation of mycorrhizal fungi resulted in feedbacks on the entire soil food web. These 138 

effects were also shown to develop over multiple seasons [24]. Using 13CO2, a greater proportion 139 

(~20%) of the root-colonizing bacteria of rice plants was shown to draw directly on fresh plant 140 

assimilates vs. bacteria in the rhizosphere (~4%) [25]. RNA-SIP with 13CO2 has also shown that 141 

genetically modified potato cultivars exert distinct selective forces on rhizosphere communities than 142 

unmodified cultivars [26], an important advance in studying potential impacts of GM plants. The 143 

principle applicability of mRNA-SIP has also been demonstrated for plant-microbe systems [11]. Here, 144 

the labelling of distinct coding and non-coding bacterial mRNAs was found comparing the 145 

rhizosphere and rhizoplane of Arabidopsis thaliana, providing valuable insights on how microbes 146 

adapt to the host environment. 147 

RNA-SIP is also highly useful for the functional dissection of the gut microbiome. Its application for 148 

the tracing of microbial starch metabolism in the human colon in an in vitro gut model was already 149 

demonstrated in 2009 [27], but related in vivo studies are yet to come. For animal systems, Godwin 150 

et al. compared the assimilation of 13CO2 pulses in communities from the kangaroo foregut and the 151 

bovine rumen [28]. Evidence for dominant acetogenesis was found in the kangaroo foregut, with 152 

Blautia coccoides identified as the key acetogen. This explained why kangaroos have much lower 153 

methane emissions in comparison to cows, in which the rumen is dominated by hydrogenotrophic 154 

methanogens. In the same year Tannock et al [29] used RNA-SIP to identify bacteria in the rat cecum 155 

degrading the dietary fructane inulin. Bacteroides uniformis, Blautia glucerasea, Clostridium indolis, 156 

and Bifidobacterium animalis dominated the assimilation of 13C from inulin fed to rats. In an elegant 157 

laboratory verification, representative isolates of the RNA-SIP identified bacteria were then tested 158 
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for growth on inulin. Here, B. uniformis was the only strain that could actually ferment inulin, whilst 159 

the others were only consuming hydrolysis products. 160 

 161 

Environmental biotechnology 162 

RNA-SIP was first developed in the context of phenol biodegradation in an activated sludge 163 

community treating coking effluent [2]. The identification of microbes responsible for pollutant 164 

degradation remains a key application today, along with processes in wastewater treatment and 165 

anaerobic digestion. The primary report on mRNA-SIP addressed aerobic naphthalene degradation in 166 

contaminated groundwater [4]. By combining rRNA-SIP, mRNA-SIP and Raman-FISH, the authors 167 

showed that an Acidovorax sp. which eluded laboratory cultivation was responsible for degradation 168 

of naphthalene under the low µM concentrations relevant in situ. Jechalke et al [30] recently 169 

published a comprehensive dissection of a benzene degrading biofilm from an aerated groundwater 170 

treatment pond. rRNA-SIP identified Zoogloea and Dechloromonas spp. as the dominant assimilators 171 

of 13C from benzene. Compound-specific isotope fractionation analysis implicated a dihydroxylation 172 

reaction for aromatic ring cleavage, consistent with 13C incorporation by specific dioxygenases 173 

detected in protein-SIP. A further recent combination of rRNA-, DNA- and protein-SIP investigated 174 

anaerobic hydrocarbon degradation in marine sediments [31]. 13C-labelled butane and dodecane 175 

were pulsed into seep samples from the Mediterranean and the Gulf of California under sulfate-176 

reducing conditions. Members of the Desulfobacteraceae were found to be the dominating 177 

degraders for all treatments. But while butane degraders were closely related, long-chain alkane 178 

degraders appeared more distinct between sites. Labelling of several key enzymes involved in 179 

anaerobic alkane oxidation was also found via protein SIP in the same study. rRNA-SIP has also been 180 

applied to elucidate the role of different bacterial populations active in methanogenic toluene-181 

degradation [32]. A network of interactions between Desulfosporosinus spp. as primary degraders 182 

and distinct Syntrophaceae, Desulfovibrionales and Chloroflexi as syntrophic partners was suggested 183 

in a respective enrichment culture. 184 
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rRNA-SIP has also been applied for the identification of microbes in activated sludge assimilating 13C 185 

from nonyl phenol, a common low-level pollutant and xenoestrogen in the urban water cycle [15]. 186 

The most intensively labelled degrader phylotype (Afipia sp.) was relatively low in rRNA abundance. 187 

Conversely, less enriched phylotypes (Propionibacterium and Frateuria spp.) were more abundant, 188 

and therefore made a greater contribution to nonyl phenol biodegradation. In another example of 189 

RNA-SIP applied to wastewater treatment, Nielsen et al. [33] identified glucose-fermenting bacteria 190 

in a full-scale enhanced biological phosphorus removal (EBPR) system. Mainly Gram-positive 191 

Propionibacteriaceae and Streptococcaceae were identified as primary glucose fermenters. These 192 

were subsequently quantified by FISH across a range of distinct wastewater treatment plants, giving 193 

an elegant example of how SIP can guide monitoring approaches back in the field.  194 

Finally, Ito et al. have pioneered the application of RNA-SIP to carbon flow in anaerobic digestion 195 

processes [34]. SIP with 13C-labelled glucose and propionate as well as MAR-FISH 196 

(microautoradiography and fluorescence in situ hybridization) with 14C acetate suggested that an 197 

uncultured Synergistes lineage was active as syntrophic acetate oxidizers, outcompeting acetoclastic 198 

methanogens. In their follow-up study, the authors demonstrated how rRNA-SIP and population-199 

specific substrate flux analyses can be combined to identify rate-limiting steps in anaerobic digestion 200 

[35]. Taken together, the many recent applications of RNA-SIP reviewed here substantiate the 201 

approach as a prime research strategy to unravel specific activities, ecophysiologies and interactions 202 

in complex natural microbiota. 203 

 204 

Future directions 205 

Undoubtedly, the application of next-generation sequencing to density-resolved RNA fractions 206 

represents the largest recent methodological advance in RNA-SIP. Although the methodologies are at 207 

hand and the next-generation sequencing of amplicons from RNA gradients is now routine 208 

[14,15,25,28,29,31,36,37], only one study to date has retrieved a labelling-assisted targeted 209 

transcriptome [6]. Although this was mostly a proof-of-concept experiment with aerobic 210 
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methanotrophs, it clearly shows that the metatranscriptome of target populations in environmental 211 

samples can be selectively recovered. The combination of SIP with such ‘omics techniques is of 212 

significant potential, since it provides functional context to sequence data that is not only inferred, 213 

but proven by label incorporation. The physical separation of labelled biomarkers - such as in DNA 214 

and RNA-SIP - focuses sequencing analysis and allows for a greater analysis depth of target 215 

populations.  216 

All other SIP studies reporting on labelled mRNA to date have used either fingerprinting, RT-qPCR, or 217 

cloning and sequencing of transcripts to substantiate labelling [4,5,8,9,11,12]. This is surprising since 218 

total RNA sequencing strategies are long established [38]. However, the rather small total quantities 219 

of labelled RNA (~10s of ng) obtainable from gradient fractions represents a major technical 220 

limitation to this end. Both pre-gradient rRNA depletion and post-fractionation RNA amplification 221 

(Fig. 1) have the potential to skew transcript ratios [39] and thus to interfere with the detection of 222 

labelling. Yet, sequencing technologies and strategies to work with extremely small transcript 223 

quantities are rapidly evolving [40]. Thus we expect to see substantial advances in SIP-mediated 224 

targeted transcriptomics in the next years.   225 

For ‘classical’ rRNA-SIP, the application of high-throughput sequencing has added valuable taxon-226 

level precision to quantitative gradient interpretation. Combined with turnover rates and net 227 

substrate fluxes, the labelling intensity can be used to infer the contribution of distinct populations to 228 

a transformation process, and to quantify population-level substrate utilization [15]. In DNA-SIP, the 229 

combination of 13C- and 18O-labelling has recently been suggested as a quantitative measure to infer 230 

general bacterial growth rates [16], as discussed in another review of this thematic issue [41]. 231 

However, it is also clear that extensive efforts are required to identify sequencing OTUs whose 232 

distribution between density fractions is significantly altered by label incorporation, and to 233 

sensitively quantify those density shifts [15,16,42]. In essence, all strategies chosen to substantiate 234 

lineage-specific label incorporation must fulfil the criterion of comprehensively comparing template 235 
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abundance in high vs. low density fractions of gradients from labelled treatments and unlabelled 236 

controls [43].   237 

Most RNA-SIP studies to date have relied on 13C-labelling. However, alternative isotope tracers are 238 

available and should find wider consideration. 15N-labelling to trace microbes active in nitrogen 239 

cycling is well established in DNA-SIP [42,44,45]. Still, to the best of our knowledge, no RNA-SIP study 240 

with 15N has been published. In contrast, two studies are available that have performed RNA labelling 241 

with H2
18O. The first study provided insights on a microbial re-activation cascade that occurs when 242 

dried soil crusts are rehydrated upon rainfall [36], allowing to better understand microbial feedbacks 243 

to increasing aridity and extreme rain events. More recently, it was demonstrated that after a 244 

prolonged ~5 weeks of incubation of a soil with H2
18O, >75% of the rRNA was 18O-labelled [37]. Both 245 

studies demonstrate that H2
18O is effective as a universal label for active microbes in RNA-SIP. 246 

While the integration of different SIP strategies is becoming increasingly important (e.g. 247 

combinations of RNA- & Raman-SIP [4], combined 13C- and 14C-labels [19], RNA-, DNA- and protein-248 

SIP [30,31]), gradient-independent detection methods for labelled RNA are also emerging. The so-249 

called “Chip-SIP” approach relies on the direct isotopic characterization of rRNA hybridised to a 250 

phylogenetic microarray by NanoSIMS mass spectrometric imaging [46]. Although the availability of 251 

such analytical platforms is still limiting, the approach has been demonstrated to provide valuable 252 

quantitative insights into lineage-specific carbon and nitrogen usage in estuarine and marine 253 

microbiota [47,48]. Furthermore, a highly sensitive method for the measurement of isotopic 254 

enrichment in RNA using ultrahigh-performance liquid chromatography-tandem mass spectrometry 255 

(UHPLC-MS/MS) has recently been published [49]. This protocol can detect an enrichment of 1.5 256 

atom % 13C in as little as 1 ng of nucleic acids and it enables researchers to directly quantify isotope 257 

enrichment in RNA from gradient fractions. In combination with the application of targeted RNA 258 

cleavage catalysts to RNA-SIP such as LNAzymes [18] or RNaseH [50], we believe that such 259 

centrifugation-independent approaches have great unrealised potential to advance RNA-SIP 260 

methodologies, and to find more unexpected needles in the many microbial haystacks. 261 
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Table 426 

Table 1. Strengths and limitations of major biomarkers and approaches used in SIP. 427 

Marker Analysis Method Strength Limitation 

PLFA Gas chromatography – 
isotope ratio mass 
spectrometry (GC-IRMS) 

- High sensitivity, quantitative 
- Can infer absolute label 
incorporation 

- Very low taxonomic 
resolution 

DNA Isopycnic centrifugation, 
various downstream analysis 
options (qPCR, fingerprinting, 
marker gene sequencing, 
‘omics) 

- Labelling inferred  via rRNA gene 
community structure 
- Metabolic potential via functional 
genes 
- Potential for targeted (meta-) 
genome assembly  

- Labelling dependent on 
genome replication and 
cellular growth 
- Strong impact of genomic 
G+C content on buoyant 
density 

rRNA Isopycnic centrifugation, 
various downstream analysis 
options (qPCR, fingerprinting, 
rRNA amplicon or total rRNA 
sequencing) 

- Labelling inferred  via rRNA 
community structure 
- Rapid labelling, independent of 
cell replication  
- Most active organisms and 
dynamic changes resolved 

- No data on functional genes 
/ gene expression 
- RNA less stable than DNA, 
difficult to obtain from some 
samples 

mRNA Isopycnic centrifugation, 
various downstream analysis 
options (qPCR, fingerprinting, 
mRNA amplicon or total RNA 
sequencing) 

- Labelling of actively transcribed 
genes, direct ties to community 
function 
- Rapid labelling, independent of 
cell replication  
- Resolution of rapid changes 
- Differential gene expression 
under varying conditions 

- Taxonomic precision can be 
limited 
- mRNA very unstable; high 
risk of degradation 
- Low mRNA quantities  
(<5% of total RNA) 
- enrichment or pre-
amplification may be 
necessary 

Protein Protein fractionation, 
proteolysis, metaproteomics 
by high-resolution mass 
spectrometry of peptides 

- Direct link between metabolic 
activity and phylogeny 
- High sensitivity, quantitative 
- Rapid labelling, independent of 
cell replication  
- Short incubation times 

- Labour intensive workflow 
- Requires à priori 
metagenomic data for 
identification of labelled taxa 

 428 

  429 



18 
 

Figure legends 430 

 431 

Figure 1. General workflow of RNA-SIP and downstream labelling detection approaches. Steps in 432 

dashed boxes are optional steps that may be necessary for the detection of labelled transcriptomes.  433 

 434 


