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ABSTRACT 

The tomographic method based on the orthogonal polynomial expansion on disc (OPED) was presented at SPIE 
conference of Medical Imaging 2006. We could show already some advantages compared to FBP as it is commonly used 
in today’s CT systems. However, OPED did show for some specific cases some noise in the reconstructed images and 
even artefacts, mainly an aliasing. We have found that the OPED algorithm can be essentially improved by integrating 
the polynomial over the whole area belonging to the pixel instead of assigning to the whole pixel the polynomial value 
calculated just for one point of this pixel (typically bottom left). This advantageous implementation is effective in view 
of reduction of the aliasing artefacts and noise without affecting the resolution. This can be fulfilled effectively for 
OPED due to its simple structure.   
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1. INTRODUCTION    
1.1 OPED

The series expansion methods represent a special class of solutions for the problem of reconstructing a function ),( yxf
from a limited set of its Radon projections tR vf , ,

t
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where yx sincosx . The of studying such solutions dates back to the article [1] where the solution appears as a 
result of imposing the norm minimum condition on the reconstruction of the function f supported in unit disc B. Other 
solutions of this problem under more general conditions were proposed since then by various authors (see e.g. [2], [3]). 
Detailed studying of this problem in terms of expansion of the function f in certain bases of orthogonal polynomials on 
unit disc was made in [4].  

However, the series expansions methods have still not found its place in the practical tomography. We think that this is 
due to their seemingly complex structure. In fact, in [4] there was shown that the following compact and simple relation 
is valid: 
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where tU k  is Chebyshev polynomial of the second kind. The relation (1) becomes equality for the polynomials of 
degree K. The right part of this formula has a very clear meaning. This is a partial sum of expansion of the function f in 
the basis of Chebyshev ridge polynomials of second kind on unit disc B. Therefore (1) was named OPED (Orthogonal 
Polynomial Expansion on Disc). It allows effective discretization and can be evaluated in a fast manner with a number of 
operation of the same order as for FBP (see [5], [6]).  In [7] it was shown that OPED can be effectively used both in 
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emission (PET) and transmission tomography, and in some cases has even advantages over FBP in terms of mean error, 
norm deviation and Hilbert cosine. 

1.2 Representation of reconstruction 

The choice of the evaluation grid is important for representing the reconstruction. In the 2D case, this is normally a N N
rectangular grid, and the only question is how large the number N must be. Very big N leads to higher evaluation cost. 
Besides, if N becomes larger the non-interest features such as streak artifacts or inevitable oscillations in the regions 
which are supposed to be constant become more prominent. Indeed, because of these noisy features, the reconstruction 
has to be sufficiently small in order to allow an adequate assessment in diagnostics. On the other side, according to the 
sampling theory, for adequate representation of a signal, its Nyquist frequency must be taken into account. Otherwise 
there is a risk to represent the signal with aliasing. Therefore the optimal size of the evaluation grid in tomography has to 
be chosen with consideration of the Nyquist frequency of the reconstruction. The latter is determined by the resolution of 
detectors participating in data collection and the number of read-out positions e.g. during one cycle of gantry rotation. 
However, in the practice one tends to evaluate the reconstructing function at the sampling rate which lies under the 
Nyquist level. In the “lucky” cases this leads to an image with somewhat higher visual quality. But even in the presence 
of the aliasing there exist different approaches to reduce the alias-effect in the reconstruction. In some cases, anti-aliasing
procedures are retroactive, i.e. they are applied to the results of the evaluation on some primary grid. The retroactive 
procedures inevitably affect the reconstruction so that the chosen grid is no more optimal for the final representation.  

Here we propose an efficient way to obtain the reconstructions which are free of aliasing and still optimal for the chosen 
evaluation gird.  

2. METHODS
An efficient way of representing the reconstruction which is free of aliasing and, at the same time, is optimal for the 
chosen evaluation grid can be described as follows.  Let B denote the unit disc in the plane, and let the reconstructing 
function g(x,y) be known for all Byx ),( . Instead of representing g by its samples ji yxg , , it can be represented by 
its weighted averages jig , ,

jijiji egyxegg ,, ,:],[ ,    (2) 

where ‘ ’ means the convolution with a kernel ),( yxe , and ),(,, yyxxeyxe jiji . Properties of the kernel 
function can be chosen ad hoc. Note that the smoothing of type (2) differs radically from retroactive smoothing of 
samples ),( ji yxg . The desired representation of ),( yxg is determined by a view of the kernel function and the size of its 
support. The latter has to be optimal for the chosen evaluation grid.  

For OPED the task (2) is reduced to the calculation of coefficients 

e
jiBB

jikjik dxdyyxeyxUeU
,

),()sincos(, ,,    (3) 

where e
jiB , is the support of the kernel e. If functions jie ,  generate a basis in the subspace BLE 2 , then one may speak 

of the representation of the reconstructing function ),( yxg in this basis. If jie , are orthonormal, then one can speaks of an 
orthogonal projection of g onto the subspace E. Except for removing the aliasing, this procedure has other advantages. 
First of all, it reduces the noise amplitude of g. Besides, one can reduce the time cost needed normally for additional anti-
aliasing procedures.  

In this paper we study a special case where the kernel function e is a box function with the support of size which is equal 
to the area of the pixel, i.e.  
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That is, we represent the reconstructing function ),( yxg by its averages over the pixels each side of size N/2 .

2.1 Integrating over pixels 

As it was already mentioned, the procedure of averaging is reduced to computing coefficients defined by (3) with kernels 
jie , defined in (4). This results in calculating the integral  
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Using the equality 
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(see Appendix A), one finds that    
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where 2

1

t
ttf  means as usually the difference 12 tftf .

In order to compute all coefficients jieg ,, , it is necessary to evaluate the expression 
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in all knots of the evaluation grid. Indeed, if ),( yxI is knows for all pairs ji yx , , then 
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Note that the cost of evaluation of (8) is the same as for the evaluation of (1). The desired representation is then 
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2.2 Numerical stability 

In expression (8) there is v2sin  in the denominator which can be either zero or very close to zero. Besides, there is a 
factor 1/k in (6), and k can be zero as well. These numerical instabilities can be treated as follows.  For the simplicity of 
notations in the following, let  

1

1
, ,1 dttUtRS kvfvk .
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Denote by 0 the set of all indices v such that 02sin v . Then yxI ,  can be written as a sum of two terms, 
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where the second term is numerically unstable. The contribution of this term in (9) is estimated in Appendix C. There it 
is shown that if 02sin:0 vv , then 

.111

,,,,,
1

1
1

1

1
1

11111111,

K

k

y
kikik

K

k

x
kikik

iiiiiiiiji

CyTyTCxTxT
K

yxIyxIyxIyxIeg
  (13) 

The case of zero index k is treated distinctly. Let  
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Denoting by yxI ,2  the second term in (14), one can find directly that  
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The whole algorithm can therefore be formulated as follows. Let 
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The approximation (16) is stable and can be computed in a fast manner. 

2.3 Fast reconstruction  

As it follows from (16), one needs to evaluate ji yxJ ,  and jir , for each grid point ji yx ,  lying inside of the unit disc. 
If the matrix NjKkjTk 0,1,1 is known in advance, then the cost of evaluation of jir ,  is 

)(KO multiplications. For the following let us introduce the family of functions  
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The idea of fast reconstruction is to evaluate functions 0,vtgv  first in points jt , 1...1 21 Mttt , and then 
to estimate vvv yxg sincos  interpolating known values jv tg .

For the evaluation of tgv , one needs to compute the matrix vkS , . The integral 
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can be represented in the form 
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This is done through the change t cos  in (19). In many practical cases the integral (20) can be approximated 
efficiently with Gaussian quadrature: 
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where j is equally spaced between 0 and . (In fact, the Gaussian quadrature is exact for trigonometric polynomials of 
degree  2N (see [8])). In this case the matrix vkS , can be evaluated in a fast manner by means of sine transform.  

The number of operations necessary for the evaluation of the matrix vkS , is of the order KK log2 . For the evaluation of 

functions )(tgv in M different points jt , one needs MKO 2 operations. Finally, if the size of evaluation grid for the 
reconstruction is chosen to be KK , then the whole number of operations necessary for the reconstruction is of the 
order KMKO log2 . This is of the same order as for the reconstruction with FBP. The similar scheme allowing to 
accelerate the evaluation of (1) without averaging was proposed in [5]. 

3. RESULTS

The method was tested on data produced analytically for the Shepp and Logan phantom. Exact characteristics of this 
phantom were published in [9]. The data were collected over the lines jvv tyx sincos  where 

1,...,1,0,2 Kvv
Kv  and 

K
jt jjj 2

1,cos

with K = 1001. The reconstructions from these data were performed twice on a 256 256 grid, once with averaging and 
once via direct evaluation of the formula (1) in the grid points. Both images are represented in Figure 1. The aliasing 
artifacts are clearly seen in the reconstruction performed without averaging (right image). Besides, the typical “step 
edge” artifact is also visible in this image. In contrary the reconstruction implying the averaging procedure is free from 
these artifacts. 
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  Fig.1. Two reconstructions made with averaging over pixel (left) and without (right). 

The profiles of the central vertical slice of both reconstructions are represented in the plots of Figure 2 and 3. The plot of 
Figure 2 shows the profile of the left image of Figure 1. Figure 3 shows the profile of the right image of Figure 1. One 
can see that the profile of the image implying the averaging is constant in the regions which have to be constant. At the 
same time, the resolution of averaged image was not suffered.    

       

   Fig.2. Profile of central vertical slice of the left image of Figure 1 
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   Fig.3. Profiles of central vertical slice of the right image of Figure 1. 

4. CONCLUSIONS 

We have shown that the operation of averaging over pixels of the reconstructing function ),( yxg can be effectively 
performed for OPED algorithm. Such an averaging differs from the averaging made retrospectively for the samples 

ii yxg ,  used sometimes in order to reduce the undesired effects such as e.g. aliasing. The averaging over pixels has a 
number of advantages. The most apparent one is that the averaged representation is free of aliasing. Another advantage is 
that the smoothness of edges of structures in the reconstruction is kept. The averaging over pixels has also the ability to 
reduce the amplitude of noise if the size of the pixel is bigger than the sampling rate corresponding to Nyquist frequency 
of the reconstruction.     

5. APPENDIX 
5.1 Appendix A 

Let
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Taking into account the following two equalities 
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one finds that  
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from which it follows that  
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5.2 Appendix B 

Representing Chebyshev polynomial tTk  of the fist kind with first two terms of its Taylor expansion and using the 
formula (A3), one finds that by 0
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Using (A4), one obtains that for the function k  defined in (A1), the approximation 
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is valid. 

5.3 Appendix C 
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where the set 0  is the set of all indices v such that 02sin v . The function k  is defined in (A1). One has to 
estimate the value 

iiiiiiii yxJyxJyxJyxJ ,,,, 1111 .    (C2) 

The following decomposition of 0 will be useful in the following: yyxx
00000 . For the indices from x
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inequality v  is valid, while for the indices from x
0 , v . In the same manner, if  yv 0  then v 2/ , and 

if yv 0 then v 2/3 . Using (B2), it is easy to find that by 0 the value (C2) takes the view 
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