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Cytokines, pathogens, and antigens signal through NF-xB (nu-
clear factor xB) transcription factors to regulate the expression
of genes that mediate the inflammatory response. Stimulation
of G protein—coupled receptors (GPCRs) has also been shown
to trigger inflammatory responses by activating the canonical
NF-xB pathway, which involves the phosphorylation and degra-
dation of cytosolic NF-kB inhibitors (IxBs) that depend on the
IxB kinase (IKK). However, genetic data about the molecular
links between GPCR-proximal events and activation of IKK
and, thereby, of NF-kB have remained elusive. Recent studies
by Klemm et al., McAllister-Lucas et al., and Wang et al. now
present compelling evidence that signaling complexes contain-
ing the adaptor proteins Bcll0 (B cell chronic lymphocytic
leukemia and/or lymphoma 10) and Maltl [mucosa-associated
lymphoid tissue (MALT) lymphoma translocation gene 1], con-
stitute the missing link between GPCRs and IKK and NF-«xB
activation (/-3). A separate study by Gross ef al. reports an in-
triguing finding, that Dectin-1-mediated antifungal immunity
in dendritic cells is also regulated by the Bcl10-Maltl module
(4). GPCR- and Dectin-1-induced NF-kB activation depends
on the interaction of the Bcl10-Maltl module with specific
Bcl10-binding CARD (caspase recruitment domain)—containing
scaffold proteins (2, 4). Together with previous data establishing
a crucial role for CARDI11 [also known as CARMALI, for
CARD-MAGUK (membrane-associated guanylate kinase)] as-
sociation with Bell10-Maltl in lymphocytes, these results sug-
gest that diverse receptor systems use distinct CARD scaffolds
and conserved Bcll0-Maltl modules to stimulate IKK and NF-
kB signaling (Fig. 1).

CARD11-Bcl10-Malt1 Signalosome Links Antigen
Engagement to NF-xB

Bcl10-Maltl complexes were initially shown to link antigen re-
ceptor signaling in lymphocytes to downstream IKK and NF-
kB activation (5, 6). Engagement of an antigen with T or B cell
receptors (TCRs or BCRs) triggers phosphorylation of
CARDI11 by protein kinase C (PKCHO in T cells; PKCP in B
cells). Phosphorylation of CARDI11 induces a conformational
change that permits recruitment of Bcl10-Maltl to CARDI11
and thereby directs assembly of the C11-B-M signalosome
(CARD11-Bcl10-Maltl) (7, §). Complex formation requires the
heterotypic interaction between the CARDs of CARDI11 and
Bcl10. Further, the CARDI11 C-terminal MAGUK region is re-
quired for antigen-mediated NF-xB activation and anchors the
C11-B-M complex to the membrane (5). These data initially
suggested that Bcl10, Maltl, and CARDI1 played a specific
role in triggering antigen-receptor—dependent responses in lym-
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phocytes. However, of the three proteins, only expression of
CARDI1 is restricted to cells of the lymphoid lineage. In con-
trast, Bcl10 and Maltl are expressed in many different tissues
(2). Data about mast cell activation provided the first clue that
Bcl10-Maltl function is not restricted to lymphocytes. Mast
cells express Fce receptors (FceR), which are structurally relat-
ed to T and B cell receptors. Cross-linking of FceRI (the high-
affinity receptor for the Fc portion of IgE)-bound IgE with a
multivalent antigen triggers mast cell degranulation and produc-
tion of inflammatory cytokines. FceRI clustering or PKC acti-
vation of mast cells from mice lacking Bcl10 or Maltl fails to
induce production of the inflammatory cytokines TNFo. (tumor
necrosis factor o) and IL-6 (interleukin 6), which correlates
with defective IKK and NF-kB signaling (9, 10).

CARD10-Bcl10-Malt1 Signalosome Triggers GPCR
Signaling to NF-xB
Two recent studies implicate Bcl10 and Maltl in lysophospha-
tidic acid (LPA)—induced NF-kB activation in mouse embryonic
fibroblasts (MEFs) (7, 3). LPA is a potent bioactive lipid that
binds to LPA receptors (1 to 4) and elicits effects on cell prolif-
eration, survival, and migration. LPA receptors belong to the
large family of GPCRs or seven-transmembrane receptors.
GPCR engagement with structurally diverse ligands, including
hormones, neurotransmitters, odorants, certain tastants, light,
chemokines, and calcium, initiates the intracellular recruitment
of heterotrimeric guanine nucleotide—binding proteins (G pro-
teins) to the receptor. G proteins consist of three subunits, the
Go subunits that are responsible for guanosine triphosphate
(GTP) and guanosine diphosphate (GDP) binding and GTP hy-
drolysis and the associated B and y subunits (GB/y). Ligand
binding stimulates an exchange of GDP to GTP on Go, which
provokes dissociation of GB/y from Ga., thereby activating the
G protein. Certain types of GPCRs promote inflammatory reac-
tions by modulating the activity of NF-xB, a process that in-
volves signaling through members of the Gotj5/13, GO, and Go;
families (/7). PKC activity is required for mediating LPA-in-
duced NF-xB activation, which suggests that similar mecha-
nisms could be involved downstream of antigen receptors and
GPCRs (12, 13). Indeed, MEFs deficient in Bcl10 show strong-
ly impaired NF-kB activation and reduced expression of the in-
flammatory cytokines IL-6 and macrophage inflammatory pro-
tein-2 (MIP-2) in response to LPA stimulation (7, 3). By block-
ing Goj,- and Gog-induced NF-xB activation with small inter-
fering RNAs (siRNAs) directed against Bcl10, Lin and co-
workers demonstrated that G proteins are involved in Bcll0-
dependent NF-kB activation (3). In addition, Malt1 deficiency
in MEFs abrogates NF-kB activation in response to LPA, which
suggests that Bcl10-Maltl complexes direct GPCR signaling to
IKK and NF-kB (/).

By analyzing angiotensin II (Ang II)-mediated signal trans-
duction, McAllister-Lucas et al. provided evidence that
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CARDI10 (also known as CARMA3), which is structurally
closely related to CARD11, bridges G-protein activation to the
Bcl10-Malt1-IKK-NF-kB pathway (2). In addition to its effects
on blood pressure, Ang II is known for its proinflammatory ac-
tions. Ang II binds to the type 1 Ang II receptor (AT;R), a
GPCR expressed in the liver. In hepatocytes, deficiency in
CARDI10 or Bcll0 and siRNA-mediated inactivation of Maltl
impaired Ang II induction of NF-kB (2). Even though it must
be formerly proved for other GPCR agonists, the data indicate
that the CARD10 (CARMA3)-Bcl10-Maltl (C10-B-M) sig-
nalosome is a general regulator for GPCR signaling to the in-
flammatory NF-kB pathway. The mechanistic details of
CARDI10 activation and the specific PKC isoforms that link Gou

o

dendritic cells (BMDCs) by directing antifungal responses initi-
ated by Dectin-1 to the NF-kB pathway. Dectin-1 belongs to the
group of non—Toll-like receptor (TLR)-type pattern-recognition
receptors (PRR) that recognize zymosan, a component of the
yeast cell wall (75). Consequently, clearance of fungal Candida
albicans cells was strongly impaired in CARD9~~ mice (4). Zy-
mosan can also bind to TLR2, but using BMDCs deficient in
the TLR adaptor MydS88, Gross et al. demonstrated that Dectin-
1 is the critical zymosan receptor for the induction of CARD9-
dependent NF-kB activation and cytokine production (4). NF-
kB activation and induction of inflammatory cytokines by zy-
mosan was also abolished in Bcl10~~ and Maltl”~ BMDCs,
which suggests that a C9-B-M signalosome with crucial func-
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Fig. 1. Conserved Bcl10-Malt1 complexes interact with different CARD scaffolds to link various receptors to IKK and NF-kB signaling.
TCR and BCR signaling in lymphocytes involves the PKC8- or PKCB-dependent CARD11, Bcl10, and Malt1 complex. In T cells,
TRAF2 and TRAF6 couple the C11-B-M signalosome to the IKK complex. In response to FceRl signaling in mast cells, Bcl10-Malt1
associates with an unknown CARD protein. In dendritic cells, antifungal recognition by Dectin-1 initiates C9-B-M—-dependent NF-xB
activation. GPCRs require the C10-B-M signalosome for activation of proinflammatory NF-xB.

to CARDI10 remain to be identified; however, at least for LPA
signaling, a prominent function of PKC$ in linking GPCR sig-
naling to the CARD10-Bcl10-Malt1-IKK-NF-kB pathway can
be assumed (72).

CARD9-Bcl10-Malt1 Signalosome Controls NF-«B in
Response to Fungal Recognition

CARDO structurally resembles CARD10 and CARD11 in that it
contains an N-terminal CARD and an adjacent coiled-coil mo-
tif, but it lacks the C-terminal MAGUK domain (/4). Analysis
of CARD9-deficient mice strengthens the concept that different
CARD scaffolds provide platforms for Bell0-Maltl complexes
to trigger NF-xB activation. CARD? is expressed in various tis-
sues, including spleen, lung, and peripheral blood lymphocytes.
It binds to Bcl10 and activates NF-kB, which suggests a role in
antigen receptor signaling. However, Ruland and co-workers
found no evidence that CARD? is involved in TCR- and BCR-
dependent signal transduction (4). Instead, CARD9 serves the
functions of a typical CARD scaffold in bone-marrow—derived
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tion forms in innate immunity. Recently, a link between
CARD?9 and mitogen-activated protein kinase (MAPK) activa-
tion was reported for intracellular pathogen reception by NOD2
(nucleotide-binding oligomerization domain protein 2), but no
effect on NF-xB signaling was observed (/6). Thus, the C9-B-
M signalosome may selectively channel fungal recognition to
IKK and NF-kB signaling.

Outlook

These studies establish an essential switch function of the C-B-M
signalosome for activation of NF-kB signaling by showing that
diverse receptors can connect to the conserved Bcll0-Maltl
complex through distinct CARD coiled-coil scaffolds. Thus,
evolutionarily conserved mechanisms connect fungal recognition
(Dectin-1), antigen binding (TCR, BCR, and FceRI), and
GPCRs (LPA and ATR) to IKK and NF-xB. Because no func-
tion for placental CARD14 (also known as CARMA?2) has been
assigned, it is likely that more receptors will be identified that
link to NF-xB through C-B-M complexes (/7). Further, the abil-
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ity of the distantly related CARD9 protein to participate in a C-B-
M signalosome hampers our ability to predict functional ho-
mologs (/4). The results indicate that binding of Bcl10 is the min-
imal requirement for a CARD scaffold to connect to NF-xB
through the Bcl10-Maltl module. A systematic analysis of the
ability of Bcl10 to associate with other CARD-containing proteins
might lead to the identification of further processes that trigger
C-B-M-dependent NF-xB signaling. Note that, with the exception
of Bel10, which plays a role in neural tube closure in the develop-
ing embryo (/8), C-B-M components seem to be largely dispens-
able for vital developmental or differentiation processes.

Almost all mechanistic insights into CARD-Bcl10-Maltl
regulation arose from research in T and B cells. A considerable
amount of biochemical work is needed to elucidate and to com-
pare the activation of the different C-B-M signalosomes down-
stream of TCRs and BCRs, FceRI, GPCRs, and Dectin-1. Anal-
ysis of CARD9 function will be particularly informative, be-
cause it lacks the MAGUK domain; it will be interesting to see
whether CARD9 associates with the plasma membrane and is
targeted by PKCs. One important issue concerns the mechanism
of C-B-M signalosome—mediated IKK activation. In T cells,
Bcl10-Maltl complexes induce a regulatory ubiquitination of
IKKY that seems to be catalyzed by TRAF2 (tumor-necrosis-
factor-receptor—associated factor 2) and TRAF6 (19, 20). Ang 11
stimulates IKKy ubiquitination, which suggests that similar
events take place downstream of the GPCR pathways, but an in-
volvement of TRAFs in GPCR signaling remains to be proven
(2). Negative regulatory events that involve phosphorylation
and degradation of Bcl10 impinge on the C11-B-M complex in
lymphocytes (21-24); Klemm et al. have observed PKC-depen-
dent Bcl10 degradation following LPA stimulation of MEFs, in-
dicating that conserved mechanisms for postinductive inactiva-
tion exist (/). Finally, constitutive activation of antiapoptotic
NF-xB signaling contributes to tumor formation. Inactivation of
CARDI1, Bcll0, or Maltl impairs the survival of a subset of
cells derived from malignant lymphomas (25). The functional
identification of C-B-M signalosomes outside the immune sys-
tem suggests that survival of other tumors cells may also de-
pend CARD-Bcl10-Maltl signaling. The disruption of C-B-M
signalosomes may thus represent an attractive therapeutic strat-
egy in certain types of tumors.
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