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Cytokines, pathogens, and antigens signal through NF-κB (nu-
clear factor κB) transcription factors to regulate the expression
of genes that mediate the inflammatory response. Stimulation
of G protein–coupled receptors (GPCRs) has also been shown
to trigger inflammatory responses by activating the canonical
NF-κB pathway, which involves the phosphorylation and degra-
dation of cytosolic NF-κB inhibitors (IκBs) that depend on the
IκB kinase (IKK). However, genetic data about the molecular
links between GPCR-proximal events and activation of IKK
and, thereby, of NF-κB have remained elusive. Recent studies
by Klemm et al., McAllister-Lucas et al., and Wang et al. now
present compelling evidence that signaling complexes contain-
ing the adaptor proteins Bcl10 (B cell chronic lymphocytic
leukemia and/or lymphoma 10) and Malt1 [mucosa-associated
lymphoid tissue (MALT) lymphoma translocation gene 1], con-
stitute the missing link between GPCRs and IKK and NF-κB
activation (1–3). A separate study by Gross et al. reports an in-
triguing finding, that Dectin-1–mediated antifungal immunity
in dendritic cells is also regulated by the Bcl10-Malt1 module
(4). GPCR- and Dectin-1–induced NF-κB activation depends
on the interaction of the Bcl10-Malt1 module with specific
Bcl10-binding CARD (caspase recruitment domain)–containing
scaffold proteins (2, 4). Together with previous data establishing
a crucial role for CARD11 [also known as CARMA1, for
CARD-MAGUK (membrane-associated guanylate kinase)] as-
sociation with Bcl10-Malt1 in lymphocytes, these results sug-
gest that diverse receptor systems use distinct CARD scaffolds
and conserved Bcl10-Malt1 modules to stimulate IKK and NF-
κB signaling (Fig. 1).

CARD11-Bcl10-Malt1 Signalosome Links Antigen 
Engagement to NF-κB
Bcl10-Malt1 complexes were initially shown to link antigen re-
ceptor signaling in lymphocytes to downstream IKK and NF-
κB activation (5, 6). Engagement of an antigen with T or B cell
receptors (TCRs or BCRs) triggers phosphorylation of
CARD11 by protein kinase C (PKCθ in T cells; PKCβ in B
cells). Phosphorylation of CARD11 induces a conformational
change that permits recruitment of Bcl10-Malt1 to CARD11
and thereby directs assembly of the C11-B-M signalosome
(CARD11-Bcl10-Malt1) (7, 8). Complex formation requires the
heterotypic interaction between the CARDs of CARD11 and
Bcl10. Further, the CARD11 C-terminal MAGUK region is re-
quired for antigen-mediated NF-κB activation and anchors the
C11-B-M complex to the membrane (5). These data initially
suggested that Bcl10, Malt1, and CARD11 played a specific
role in triggering antigen-receptor–dependent responses in lym-

phocytes. However, of the three proteins, only expression of
CARD11 is restricted to cells of the lymphoid lineage. In con-
trast, Bcl10 and Malt1 are expressed in many different tissues
(2). Data about mast cell activation provided the first clue that
Bcl10-Malt1 function is not restricted to lymphocytes. Mast
cells express Fcε receptors (FcεR), which are structurally relat-
ed to T and B cell receptors. Cross-linking of FcεRI (the high-
affinity receptor for the Fc portion of IgE)–bound IgE with a
multivalent antigen triggers mast cell degranulation and produc-
tion of inflammatory cytokines. FcεRI clustering or PKC acti-
vation of mast cells from mice lacking Bcl10 or Malt1 fails to
induce production of the inflammatory cytokines TNFα (tumor
necrosis factor α) and IL-6 (interleukin 6), which correlates
with defective IKK and NF-κB signaling (9, 10).

CARD10-Bcl10-Malt1 Signalosome Triggers GPCR
Signaling to NF-κB
Two recent studies implicate Bcl10 and Malt1 in lysophospha-
tidic acid (LPA)–induced NF-κB activation in mouse embryonic
fibroblasts (MEFs) (1, 3). LPA is a potent bioactive lipid that
binds to LPA receptors (1 to 4) and elicits effects on cell prolif-
eration, survival, and migration. LPA receptors belong to the
large family of GPCRs or seven-transmembrane receptors.
GPCR engagement with structurally diverse ligands, including
hormones, neurotransmitters, odorants, certain tastants, light,
chemokines, and calcium, initiates the intracellular recruitment
of heterotrimeric guanine nucleotide–binding proteins (G pro-
teins) to the receptor. G proteins consist of three subunits, the
Gα subunits that are responsible for guanosine triphosphate
(GTP) and guanosine diphosphate (GDP) binding and GTP hy-
drolysis and the associated β and γ subunits (Gβ/γ). Ligand
binding stimulates an exchange of GDP to GTP on Gα, which
provokes dissociation of Gβ/γ from Gα, thereby activating the
G protein. Certain types of GPCRs promote inflammatory reac-
tions by modulating the activity of NF-κB, a process that in-
volves signaling through members of the Gα12/13, Gαq, and Gαi
families (11). PKC activity is required for mediating LPA-in-
duced NF-κB activation, which suggests that similar mecha-
nisms could be involved downstream of antigen receptors and
GPCRs (12, 13). Indeed, MEFs deficient in Bcl10 show strong-
ly impaired NF-κB activation and reduced expression of the in-
flammatory cytokines IL-6 and macrophage inflammatory pro-
tein-2 (MIP-2) in response to LPA stimulation (1, 3). By block-
ing Gα12- and Gαq-induced NF-κB activation with small inter-
fering RNAs (siRNAs) directed against Bcl10, Lin and co-
workers demonstrated that G proteins are involved in Bcl10-
dependent NF-κB activation (3). In addition, Malt1 deficiency
in MEFs abrogates NF-κB activation in response to LPA, which
suggests that Bcl10-Malt1 complexes direct GPCR signaling to
IKK and NF-κB (1).

By analyzing angiotensin II (Ang II)–mediated signal trans-
duction, McAllister-Lucas et al. provided evidence that
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CARD10 (also known as CARMA3), which is structurally
closely related to CARD11, bridges G-protein activation to the
Bcl10-Malt1-IKK-NF-κB pathway (2). In addition to its effects
on blood pressure, Ang II is known for its proinflammatory ac-
tions. Ang II binds to the type 1 Ang II receptor (AT1R), a
GPCR expressed in the liver. In hepatocytes, deficiency in
CARD10 or Bcl10 and siRNA-mediated inactivation of Malt1
impaired Ang II induction of NF-κB (2). Even though it must
be formerly proved for other GPCR agonists, the data indicate
that the CARD10 (CARMA3)–Bcl10-Malt1 (C10-B-M) sig-
nalosome is a general regulator for GPCR signaling to the in-
flammatory NF-κB pathway. The mechanistic details of
CARD10 activation and the specific PKC isoforms that link Gα

to CARD10 remain to be identified; however, at least for LPA
signaling, a prominent function of PKCδ in linking GPCR sig-
naling to the CARD10-Bcl10-Malt1-IKK-NF-κB pathway can
be assumed (12).

CARD9-Bcl10-Malt1 Signalosome Controls NF-κB in
Response to Fungal Recognition
CARD9 structurally resembles CARD10 and CARD11 in that it
contains an N-terminal CARD and an adjacent coiled-coil mo-
tif, but it lacks the C-terminal MAGUK domain (14). Analysis
of CARD9-deficient mice strengthens the concept that different
CARD scaffolds provide platforms for Bcl10-Malt1 complexes
to trigger NF-κB activation. CARD9 is expressed in various tis-
sues, including spleen, lung, and peripheral blood lymphocytes.
It binds to Bcl10 and activates NF-κB, which suggests a role in
antigen receptor signaling. However, Ruland and co-workers
found no evidence that CARD9 is involved in TCR- and BCR-
dependent signal transduction (4). Instead, CARD9 serves the
functions of a typical CARD scaffold in bone-marrow–derived

dendritic cells (BMDCs) by directing antifungal responses initi-
ated by Dectin-1 to the NF-κB pathway. Dectin-1 belongs to the
group of non–Toll-like receptor (TLR)–type pattern-recognition
receptors (PRR) that recognize zymosan, a component of the
yeast cell wall (15). Consequently, clearance of fungal Candida
albicans cells was strongly impaired in CARD9−/− mice (4). Zy-
mosan can also bind to TLR2, but using BMDCs deficient in
the TLR adaptor Myd88, Gross et al. demonstrated that Dectin-
1 is the critical zymosan receptor for the induction of CARD9-
dependent NF-κB activation and cytokine production (4). NF-
κB activation and induction of inflammatory cytokines by zy-
mosan was also abolished in Bcl10−/− and Malt1−/− BMDCs,
which suggests that a C9-B-M signalosome with crucial func-

tion forms in innate immunity. Recently, a link between
CARD9 and mitogen-activated protein kinase (MAPK) activa-
tion was reported for intracellular pathogen reception by NOD2
(nucleotide-binding oligomerization domain protein 2), but no
effect on NF-κB signaling was observed (16). Thus, the C9-B-
M signalosome may selectively channel fungal recognition to
IKK and NF-κB signaling.

Outlook
These studies establish an essential switch function of the C-B-M
signalosome for activation of NF-κB signaling by showing that
diverse receptors can connect to the conserved Bcl10-Malt1
complex through distinct CARD coiled-coil scaffolds. Thus,
evolutionarily conserved mechanisms connect fungal recognition
(Dectin-1), antigen binding (TCR, BCR, and FcεRI), and
GPCRs (LPA and AT1R) to IKK and NF-κB. Because no func-
tion for placental CARD14 (also known as CARMA2) has been
assigned, it is likely that more receptors will be identified that
link to NF-κB through C-B-M complexes (17). Further, the abil-
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Fig. 1. Conserved Bcl10-Malt1 complexes interact with different CARD scaffolds to link various receptors to IKK and NF-κB signaling.
TCR and BCR signaling in lymphocytes involves the PKCθ- or PKCβ-dependent CARD11, Bcl10, and Malt1 complex. In T cells,
TRAF2 and TRAF6 couple the C11-B-M signalosome to the IKK complex. In response to FcεRI signaling in mast cells, Bcl10-Malt1
associates with an unknown CARD protein. In dendritic cells, antifungal recognition by Dectin-1 initiates C9-B-M–dependent NF-κB
activation. GPCRs require the C10-B-M signalosome for activation of proinflammatory NF-κB.

 on January 4, 2017
http://stke.sciencem

ag.org/
D

ow
nloaded from

 

http://stke.sciencemag.org/


www.stke.org/cgi/content/full/2007/384/pe21 Page 3

ity of the distantly related CARD9 protein to participate in a C-B-
M signalosome hampers our ability to predict functional ho-
mologs (14). The results indicate that binding of Bcl10 is the min-
imal requirement for a CARD scaffold to connect to NF-κB
through the Bcl10-Malt1 module. A systematic analysis of the
ability of Bcl10 to associate with other CARD-containing proteins
might lead to the identification of further processes that trigger
C-B-M–dependent NF-κB signaling. Note that, with the exception
of Bcl10, which plays a role in neural tube closure in the develop-
ing embryo (18), C-B-M components seem to be largely dispens-
able for vital developmental or differentiation processes.

Almost all mechanistic insights into CARD-Bcl10-Malt1
regulation arose from research in T and B cells. A considerable
amount of biochemical work is needed to elucidate and to com-
pare the activation of the different C-B-M signalosomes down-
stream of TCRs and BCRs, FcεRI, GPCRs, and Dectin-1. Anal-
ysis of CARD9 function will be particularly informative, be-
cause it lacks the MAGUK domain; it will be interesting to see
whether CARD9 associates with the plasma membrane and is
targeted by PKCs. One important issue concerns the mechanism
of C-B-M signalosome–mediated IKK activation. In T cells,
Bcl10-Malt1 complexes induce a regulatory ubiquitination of
IKKγ that seems to be catalyzed by TRAF2 (tumor-necrosis-
factor-receptor–associated factor 2) and TRAF6 (19, 20). Ang II
stimulates IKKγ ubiquitination, which suggests that similar
events take place downstream of the GPCR pathways, but an in-
volvement of TRAFs in GPCR signaling remains to be proven
(2). Negative regulatory events that involve phosphorylation
and degradation of Bcl10 impinge on the C11-B-M complex in
lymphocytes (21–24); Klemm et al. have observed PKC-depen-
dent Bcl10 degradation following LPA stimulation of MEFs, in-
dicating that conserved mechanisms for postinductive inactiva-
tion exist (1). Finally, constitutive activation of antiapoptotic
NF-κB signaling contributes to tumor formation. Inactivation of
CARD11, Bcl10, or Malt1 impairs the survival of a subset of
cells derived from malignant lymphomas (25). The functional
identification of C-B-M signalosomes outside the immune sys-
tem suggests that survival of other tumors cells may also de-
pend CARD-Bcl10-Malt1 signaling. The disruption of C-B-M
signalosomes may thus represent an attractive therapeutic strat-
egy in certain types of tumors.
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