Airborne Indoor Particles from Schools Are More Toxic than Outdoor Particles

Sebastian Oeder^{1,2}, Rudolf A. Jörres³, Ingrid Weichenmeier^{1,2}, Gudrun Pusch^{1,2}, Wolfgang Schober^{1,4}, Florian Pfab¹, Heidrun Behrendt², Rudolf Schierl³, Angelika Kronseder³, Dennis Nowak³, Silvio Dietrich⁴, Enrique Fernández-Caldas⁵, Jutta Lintelmann⁶, Ralf Zimmermann^{6,7}, Roland Lang^{8,9}, Jörg Mages⁸, Hermann Fromme⁴, and Jeroen T. M. Buters^{1,2}

¹Center of Allergy & Environment, Helmholtz Zentrum München/Technische Universität München, Munich, Germany; ²Kühne Foundation, Christine Kühne Center for Allergy Research and Education, Munich, Germany; ³Institute and Outpatient Clinic for Occupational, Social, and Environmental Medicine, Ludwig-Maximilians-Universität, Munich, Germany; ⁴Bavarian Health and Food Safety Authority, Department of Chemical Safety and Toxicology, Munich, Germany; ⁵Research & Development Department, Laboratory LETI, Madrid, Spain; ⁶Joint Mass Spectrometry Centre, Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München–German Research Centre for Environmental Health GmbH, Oberschleißheim, Germany; ⁷Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany; ⁸Technische Universität München, Institute of Medical Microbiology, Munich, Germany; and ⁹Institute of Clinical Microbiology, University Hospital Erlangen, Erlangen, Germany

High concentrations of particulate matter (PM₁₀) were measured in classrooms. This study addresses the hazard of indoor particles in comparison to the better-studied outdoor particles. Samples were taken from six schools during teaching hours. Genome-wide gene expression in human BEAS-2B lung epithelial cells was analyzed and verified by quantitative PCR. Polycyclic aromatic hydrocarbons, endotoxin, and cat allergen (Fel d 1) were analyzed by standard methods. Enhancement of allergic reactivity by PM₁₀ was confirmed in human primary basophils. Acceleration of human blood coagulation was determined with supernatants of PM₁₀-exposed human peripheral blood monocytes. Indoor PM₁₀ induced serine protease inhibitor B2 (involved in blood coagulation) and inflammatory genes (such as CXCL6, CXCL1, IL6, IL8; all P < 0.001). Outdoor PM₁₀ induced xenobiotic metabolizing enzymes (cytochrome P450 [CYP] 1A1, CYP1B1, TIPARP; all P < 0.001). The induction of inflammatory genes by indoor PM $_{10}$ was explained by endotoxin (indoor 128.5 \pm 42.2 EU/mg versus outdoor 13.4 \pm 21.5 EU/mg; P < 0.001), the induction of CYP by outdoor polycyclic aromatic hydrocarbons (indoor 8.3 \pm 4.9 ng/mg versus outdoor 16.7 \pm 15.2 ng/mg; P< 0.01). The induction of serine protease inhibitor B2 was confirmed by a more rapid human blood coagulation (P < 0.05). Indoor PM₁₀ only affected allergic reactivity from human primary basophils from cat-allergic individuals. This was explained by varying Fel d 1 concentrations in indoor PM_{10} (P < 0.001). Indoor PM_{10} , compared with outdoor PM_{10} , was six times higher and, on an equal weight basis, induced more inflammatory and allergenic reactions, and accelerated blood coagulation. Outdoor PM₁₀ had significantly lower effects, but induced detoxifying enzymes. Therefore, preliminary interventions for the reduction of classroom PM₁₀ seem reasonable, perhaps through intensified ventilation.

(Received in original form April 12, 2012 and in final form August 3, 2012)

This work was supported by the Bavarian State Ministry of the Environment and Public Health under project UGV03060902114 with additional support from the Kühne Foundation, Christine Kühne—Center for Allergy Research and Education.

Author contributions: conception and design—H.B., H.F., D.N., J.T.M.B.; analysis and interpretation—S.O., I.W., G.P., A.K., J.M., R.L., S.D., W.S., R.A.J., R.S., F.P., E.F.-C., J.T.M.B.; drafting of the manuscript—J.T.M.B., S.O.

Correspondence and requests for reprints should be addressed to Jeroen T.M. Buters, Ph.D., Center of Allergy & Environment, Technische Universität München, Biedersteiner Strasse 29, 80802 Munich, Germany. E-mail: buters@lrz.tum.de

This article has an online supplement, which is accessible from this issue's table of contents at www.atsjournals.org

Am J Respir Cell Mol Biol Vol 47, Iss. 5, pp 575–582, Nov 2012 Copyright © 2012 by the American Thoracic Society Originally Published in Press as DOI: 10.1165/rcmb.2012-0139OC on August 16, 2012 Internet address: www.atsjournals.org

CLINICAL RELEVANCE

Our investigation shows that school indoor air particulate matter is not devoid of biological effects. Indeed, the effects are stronger for indoor particles than for the concomitantly collected outdoor particles. Thus, more attention should be given to the health effects of school indoor air particulate matter. In the meantime, increased ventilation seems a sensible option.

Keywords: children; particulate matter; inflammation; blood coagulation; allergy

Indoor air of school classrooms contains large amounts of airborne particulate matter (PM_{10}), much greater than outdoor or home air (1–5). In Germany, children spend \sim 5–6 hours per day inside classrooms, and time multiplied by exposure shows that >60% of PM_{10} exposure in children stems from school indoor air (4). Children therefore experience a major part of their exposure to PM in this specific indoor environment. Because children are developing, they are therefore especially vulnerable to the effects of air pollution (6). Much is known about adverse health effects of outdoor PM_{10} , such as its influence on respiratory, cardiovascular, and allergic diseases (7–9), but the effects of indoor PM_{10} are widely unknown (10). We therefore addressed the question whether school indoor particles constitute a health hazard.

Inflammation, oxidative stress, and blood coagulation are discussed as major mechanisms for PM-induced health effects. Inflammation-associated injury may be a predominant mechanism directing PM-induced cardiopulmonary health effects, including the exacerbation of inflammatory disease and increased hospitalization for lung infections (11-13). Oxidative stress mediated by reactive oxygen species is an important contributor to PM-induced lung inflammation (13). Inflammation promotes the development of a prothrombotic state, leading to enhanced blood coagulation (14). PM-induced proinflammatory mediators can elicit local and systemic inflammations in healthy individuals, and can promote ongoing inflammation in the lungs of patients suffering from chronic obstructive pulmonary disease (15). Furthermore, airway inflammation plays an etiologic role in the pathogenesis of childhood asthma and allergic airway disease (16), and can be associated with PM₁₀ concentrations (17).

Adverse health effects of PM depend on the particle size, surface, number, and chemical composition (18–21). Thus, higher PM mass concentration does not necessarily mean a higher health risk. Indoor PM_{10} is chemically very different from outdoor PM_{10} , and is characterized by high concentrations of inhalable organic and silicate particles, reported previously to be biologically more active (and cytotoxic) than outdoor PM_{10} (4, 5, 22).

To get a more detailed picture of the effects of classroom versus outdoor PM_{10} , we investigated, within the project Particulate Matter in Indoor and Ambient Environments, genome-wide gene expression in human lung epithelial cells. The differential indoor/outdoor PM_{10} effects were correlated with particle-bound environmental substances (allergen, endotoxin and polycyclic aromatic hydrocarbons [PAHs]) and then confirmed with functional assays, such as blood coagulation and allergic reactions, to assess whether classroom particles evoke health hazards compared with outdoor particles.

MATERIALS AND METHODS

Sampling

Sampling and recovery of PM is described elsewhere (see MATERIALS AND METHODS in the online supplement) (4). Particles were recovered from filters after wetting with 0.0125 ml/cm² ethanol and 1.7 ml/cm² purified water, and sonicated. The particle suspensions were lyophilized and resuspended in water at 1 mg/ml. Motor vehicle traffic density was obtained from the city development department of the city of Munich (Referat für Stadtplanung).

Cell Culture Conditions

Exponentially growing human immortalized bronchial epithelial BEAS-2B cells were cultured in bronchial epithelial cell basal medium according to the suppliers instructions (Lonza Inc., Walkersville, MD; see supplemental Materials and Methods) at 37°C, 90% relative humidity, and 5% $\rm CO_2$.

Genome-Wide Gene Expression Analysis

Affymetrix HG U133A 2.0 GeneChips (Affymetrix, Santa Clara, CA) were used to analyze BEAS-2B cells genome wide after being incubated with 10 µg/ml PM₁₀ (school 4, indoor and outdoor) for 4, 10, or 24 hours, all in triplicate (*see* supplemental MATERIALS AND METHODS). The microarray data have been deposited in the Gene Expression Omnibus database (http://www.ncbi.nlm.nih.gov/geo/).

Gene expression values of regulated genes were then validated by quantitative RT-PCR on TaqMan Micro Fluidic Cards (Applied Biosystems, Carlsbad, CA). Using this system, gene expression analysis at 4-, 10-, and 24-hour exposure was extended to all available samples (12 classrooms and 6 outdoor sites, pooled from independent triplicates). cDNA was synthesized with the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems). Fold regulation was calculated by the $2^{\Delta\Delta CT}$ method. Glyceraldehyde 3-phosphate dehydrogenase and HPRT were used as housekeeping genes.

Analysis of PM-Adsorbed Substances (Endotoxin, PAH, Cat Allergen)

Endotoxin content of PM_{10} suspensions was determined by a kinetic limulus amoebocyte lysate assay (QCL; Lonza Inc.) (23). We applied three dilutions and spiked replicates of all samples. Results were valid if spike recovery was between 50 and 200%. PAHs were measured using high-performance liquid chromatography with fluorescence detection (24) (for details see the online supplement). The presence of the cat, dog, cockroach, rat, house dust mite, and mouse allergens (Fel d 1, Can f 1, Bla g 2, Der p 1, Der f 1, Mite group 2, Rat n 1, and Mus m 1, respectively) in PM_{10} was determined with a multiplex allergenspecific ELISA (Indoor Biotechnologies Inc., Charlottesville, VA).

Blood Coagulation Assay

Human peripheral blood monocytes were isolated from healthy volunteers by density gradient centrifugation. After 24 hours of cell culturing, monocytes were exposed to 1, 5, 10, and 50 μ g/ml PM₁₀ for another 24 hours. Supernatants were tested in a blood coagulation assay that measures the kinetics of thrombin activity colorimetrically via the substrate H-Sar-Pro-Arg-pNA, HCl (no. 539518; Calbiochem, Boston, MA) (25). The time until the half maximal reaction was assessed and related to untreated controls.

Basophil Activation Test

Basophils in whole blood from birch-, grass-, and cat-allergic volunteers (radio allergen sorbent test class > 3 and positive skin prick test) were tested for activation with Basotest (FK-BAT; Bühlmann, Schönebuch, Switzerland) (see also supplemental MATERIALS AND METHODS) (26).

Statistical Analysis

Differences were analyzed with a paired Student's t test unless stated otherwise (27). The strength of the relationship between parameters was expressed by the Pearson coefficient of correlation for Gauss-distributed values (r^2) from linear regression (28). A P value less than 0.05 was considered statistically significant.

RESULTS

Sampling

The results and details from sampling of school indoor and outdoor PM_{10} have been published previously (see supplemental MATERIALS AND METHODS) (4, 22). School indoor air contained $117 \pm 48 \ \mu g/m^3 \ PM_{10}$, whereas concomitantly sampled outdoor air contained $21 \pm 15 \ \mu g/m^3$ (5.6 times less; P < 0.001). The characteristics of the schools and time of sampling are given in Table 1. No vermin infestation (rat, cockroach) was detected by their allergen as a proxy. The ubiquitous detection of mouse allergen is probably due to ubiquitous mouse presence in combination with the high sensitivity of the ELISA.

Genome-Wide Regulation of Gene Expression by PM₁₀

PM₁₀ exposure in the concentration of 10 μg/ml caused relatively small changes in gene expression in BEAS-2B human lung epithelial cells. For most regulated genes, the highest induction was after 4 hours of incubation and decreased at later time points. A total of 153 genes were significantly over 1.5-fold regulated. The highest regulation observed was the 8.6-fold increase in serine protease inhibitor (SERPIN) B2 and CCL20 gene expression, followed by the 8.5-fold up-regulation of cytochrome P450 (CYP) 1A1 gene expression; 95 genes were induced over 1.5-fold (36 of them over twofold), and 58 genes were inhibited (two of them over twofold). As determined by the online resource, DAVID (Database for Annotation, Visualization, and Integrated Discovery; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD), gene ontology terms concerning inflammation were significantly enriched. The highest induced inflammatory genes were CCL20, CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, IL1A, IL1B, IL6, IL8, LIF, and PTX3. Other gene functions were represented only by single genes or small groups of genes. Five genes of the metabolism of xenobiotics were induced: CYP1A1, CYP1B1, ALDH1A3, NQO1, and TIPARP. Four genes were induced that play a role in tissue processes: MMP1 (degradation of extracellular matrix [29]), GREM1 (induced in cystic fibrosis [30]), IL24 (wound healing [31]), and SERPINB3 (decrease of barrier function [32]). Single regulated gene functions were blood coagulation (SERPINB2 [33]), response to oxidative stress

TABLE 1. CHARACTERISTICS OF THE ELEMENTARY SCHOOLS

	School 1	School 2	School 3	School 4	School 5	School 6
Sampling date Distance to nearest road, m Vehicles/day*	December 2007 80 15,700	February 2008 75 22,000	March 2008 450 9,000	October 2007 460 23,000	June 2008 435 41,000	July 2007 860 21,000
Surrounding land use	Countryside	Inner city	Suburban	Suburban	Suburban	Suburban
Heating fuel source	Community [†]	Community	Gas	Gas	Gas	Gas
Air conditioning	No	No	No	No	No	No
Allergen/location						
Rat n 1 [‡] , ng/m ³						
Indoor	<§	<	<	<	<	<
Outdoor	<	<	<	<	<	<
Mus m 1, ng/m ³						
Indoor	22.1	27.4	30.2	17.8	19.7	20.5
Outdoor	0.4	2.1	1.4	0.9	10.6	5.0
Feld 1, ng/m³						
Indoor	42.7	94.2	19.6	34.1	6.8	24.9
Outdoor	<	3.1	1.0	<	<	<
Can f 1, ng/m³						
Indoor	52.2	18.9	54.3	<	14.4	<
Outdoor	<	<	<	<	<	<
Bla g 2, ng/m³						
Indoor	<	<	<	<	<	<
Outdoor	<	<	<	<	<	<
Der p 1, ng/m³						
Indoor	<	<	<	<	<	<
Outdoor	<	<	<	<	<	<
Der f 1, ng/m³						
Indoor	<	<	<	<	<	<
Outdoor	<	<	<	<	<	<
Der f/p 2, ng/m ³						
Indoor	<	<	<	<	<	<
Outdoor	<	<	<	<	<	<

^{*}On the nearest road.

(SOD2 [34]), ectoderm development (KRT6B; GO term from UniProtKB-GOA database), inhibition of apoptosis (BIRC3; GOA database), toxin binding (NPTX1), calcium homeostasis (STC1), growth inhibition (STC2), stress response (NDRG1; GOA database), epidermal growth factor (EREG; GOA database), calcium signaling (CAMK2B; GOA database), tight junctions (CLDN1; GOA database). Inflammation-related genes were much stronger induced by indoor PM₁₀ than by outdoor PM₁₀. For genes of the xenobiotic metabolism, this was the other way round: especially CYP1A1 was more strongly induced by outdoor PM₁₀.

We selected 36 genes that showed the highest regulation in the genome-wide analysis and two housekeeping genes (glyceraldehyde 3-phosphate dehydrogenase, HPRT1). Eight genes were added that were hypothesized to be influenced by environmental particles. These genes were then tested and analyzed with all indoor and outdoor samples using a Taqman low-density array (see MATERIALS AND METHODS) at 4-, 10-, and 24-hour incubation in BEAS-2B epithelial cells. All genes found to be positive on the genome-wide array were confirmed with quantitative PCR (data not shown). As was the case with the genome-wide array, indoor PM₁₀ preferentially induced SER-PINB2 and inflammatory genes and outdoor PM₁₀ genes of the xenobiotic metabolism (see Figures 1 and 2).

Analysis of PM₁₀

To understand whether specific components of indoor PM_{10} caused different effects than those of outdoor PM_{10} , targeted analyses were performed. General chemical composition of Bavarian school indoor PM_{10} has previously been published (4, 5), but did not explain the observed effects at the genome level (data not shown).

Therefore, further analysis focused on specific organics, such as PAH, endotoxin, and allergens attached to environmental particles.

The following PAHs were detected in indoor and outdoor PM_{10} samples: benzo[a]anthracene, chrysene, benzo[e]pyrene, benzoic[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a,h]anthracene, benzo[g,h,i]perylene, indeno[1,2,3-c,d] pyrene, and coronene. The sum of these PAHs in indoor PM_{10} was 8.3 ± 4.9 ng/mg and in outdoor PM_{10} 16.7 ± 15.2 ng/mg (P < 0.01). Samples taken in winter (schools 1–3) contained significantly more PAH than summer samples (schools 4–6; P < 0.01) (Figure 3a). The concentration of indoor PAH per milligram PM_{10} was about half of outdoors. However, because ambient particles indoors are 5.6 times the outdoor concentration per cubic meter, the indoor air concentration of PAH was about double that of the of outdoor, indicating an indoor source of PAH.

For endotoxin, our recoveries were $79 \pm 15\%$. There was also a very good correlation between the 1:50 and 1:250 dilutions of the same samples (y = 0.86x; $r^2 = 0.97$). Endotoxin concentrations were considerably higher in classroom samples (128.5 ± 42.2 EU/mg PM₁₀) than in outdoor samples (13.4 ± 21.5 EU/mg PM₁₀; P < 0.001). A difference between winter and summer samples in endotoxin content was not found (Figure 3b). The high outdoor endotoxin concentration at school 6 was not explained by deviating land use compared with the other schools.

Correlation of Gene Expression with Endotoxin and PAH

For each of the 18 samples (12 indoor, 6 outdoor), the content of PAH and that of endotoxin was compared with its ability to regulate the expression of each of the 46 analyzed genes. Significant correlations were found for the induction of inflammatory genes

[†] From a district heating network, delivered by hot water. All schools had central heating.

[‡] Determined by multiplex ELISA (Indoor Biotechnologies) according to the manufacturer's instructions.

< indicates below detection.

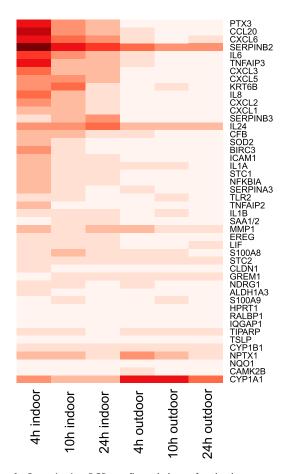


Figure 1. Quantitative PCR confirmed data of only those genes with the highest genome-wide particulate matter 10 less than or equal to 10 μm in diameter (PM₁₀)-induced expression; relative expression ($2^{-\Delta \Delta CT}$) related to untreated control; housekeeping genes, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and HPRT (means of 18 PM₁₀ samples). Darker shades of *red* indicate higher induction.

and endotoxin ($r^2 = 0.69$ for CXCL6; P < 0.001) content and the induction of xenobiotic metabolizing genes and PAH content ($r^2 = 0.75$ for CYP1A1; P < 0.001) (Figure 4). Thus, the inflammatory effects of indoor PM₁₀ can be at least partly ascribed to the microbiological burden of these samples. On the other hand, the induction of the xenobiotic metabolism seems to be

dependent on PAH, attached to a greater extent to outdoor particles than indoor particles. Selective inhibition of Toll-like receptors to inhibit the effects of LPS or selective extraction of PAH might be a possible way to further substantiate our findings.

PM₁₀ Accelerated Blood Coagulation

Indoor and outdoor PM_{10} caused an acceleration of blood coagulation in a functional assay (Figure 5). After exposure of human peripheral blood monocytes to indoor PM_{10} , the acceleration was significant already at 5 µg/ml (P < 0.005 in Newman-Keuls test), whereas outdoor PM_{10} caused a significant acceleration only at 10 times higher concentrations (50 µg/ml, P < 0.05). The regression of the curves of indoor and outdoor PM_{10} was statistically different (P < 0.05), with a more rapid coagulation for indoor PM_{10} .

PM₁₀ Induced Activation of Human Basophil Granulocytes

Using fluorescence-activated cell sorting (FACS), activation of human primary basophils could be tested within the complex mixture of all human leukocytes without previous stressful purification of these cells. When basophils are activated, they increase the amount of CD63 on their surfaces, as described previously (35, 36). Incubation of human basophils of birch and grass pollen–allergic individuals with their respective allergen caused an activation of basophils (positive control reaction). Neither classroom nor outdoor PM₁₀ enhanced the number of activated basophils (see Figure 6a, n.s.).

Using basophils of six cat-allergic individuals in the same setup but without addition of any further allergen, we could show basophil activation by indoor, but not outdoor PM, already without allergen coincubation. The sample tested (school 1, classroom 2) with all donors was among the lowest Fel d 1 concentrations of all schools. Still, basophil activation was clear (P < 0.05; Figure 6b). ELISA measurements of Fel d 1 confirmed that the applied PM₁₀ sample (school 1, classroom 2) contained cat allergen. Altogether, in 6 out of 12 tested classroom PM₁₀ samples and 1 out of 6 outdoor PM₁₀ samples, Fel d 1 could be detected by ELISA (data not shown). On average, Fel d 1 was present in indoor classroom PM₁₀ at 1.06 \pm 1.81 ng/mg. In outdoor PM₁₀, 0.04 \pm 0.10 ng Fel d 1/mg (P < 0.001) was found, which is close to the limit of detection of the assay. Thus, indoor air contained immunologically relevant concentrations of the major cat allergen, Fel d 1.

Testing all indoor PM_{10} samples with basophils of a cat-only–allergic individual showed that CD63 up-regulation was parallel

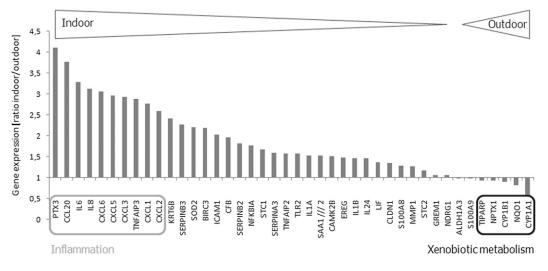
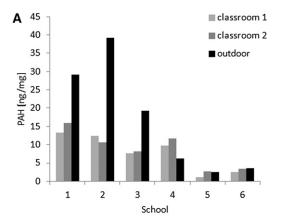
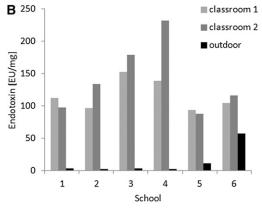




Figure 2. Specificity of indoor and outdoor PM_{10} -induced gene expression; ratio of regulation by indoor over outdoor PM_{10} (average of time points).

Figure 3. Analysis of particle-adsorbed substances in the PM₁₀ suspensions. (*A*) Polycyclic aromatic hydrocarbons (PAH); concentration of Baa, benzo[a]anthracene; Bap, benzo[a]pyrene; Bep, benzo[e]pyrene; Bgh, benzo[g,h,i]perylene; Bkf, benzo[k]fluoranthene; Bpf, benzoic[b]fluoranthene; Cor, coronene; Cry, chrysene; Dba, dibenzo[a,h]anthracene; Ind, indeno[1,2,3-c,d]pyrene. (*B*) Endotoxin.

to the measured Fel d 1 ($r^2 = 0.596$; P < 0.001). Some samples showed basophil degranulation in the absence of Fel d 1, which we suspect to be due to the higher sensitivity of the bioassay over ELISA (data not shown).

DISCUSSION

On a genome-wide level, we compared the effects of PM_{10} from one elementary school classroom with those of PM_{10} from concomitantly sampled outdoor air. The 48 most regulated genes were selected and confirmed with all available samples with quantitative PCR. Gene expression was correlated with PM_{10} -adsorbed environmental substances to explain the observed effects. Expression analysis indicated up-regulation of genes involved in blood coagulation, which we confirmed with a functional blood coagulation assay with supernatants from PM_{10} -exposed primary human monocytes. Furthermore, the influence on the elicitation phase of allergic reaction was tested by a basophil activation assay (bioassay), and the allergen that caused positive test results was identified by ELISA.

In all tests, equal amounts of classroom PM_{10} had stronger and different effects compared with outdoor PM_{10} (4). This is in addition to the six-times higher indoor PM_{10} concentrations compared with outdoor PM_{10} . Indoor PM_{10} induced inflammatory genes much more strongly, blood coagulation was more accelerated, and basophils were activated only by indoor PM_{10} . The only effect of outdoor PM_{10} was the induction of genes of the xenobiotic metabolism that are regulated by the

aryl hydrocarbon (Ah) receptor (37, 38) and which correlated with the measured PAH content. Indeed, not only CYP1A1, but also other genes under control of the Ah receptor (CYP1B1, NQO1, ALDH1A3), were induced, corroborating our findings. A correlation of CYP1A1 induction and diesel exhaust particles or organic PM constituents was found in many previous studies (39–42). Elemental carbon particles with absorbed PAH stemming from anthropogenic combustion, such as diesel particles, constitute ~8% of outdoor PM₁₀, and are a likely source of the observed effects (43).

The inflammatory effect of PM has been shown in many studies (39, 44–47), and was found to be correlated with endotoxin content (1). The much higher inflammatory effects of indoor PM_{10} compared with outdoor PM_{10} is of special importance, as inflammation-associated injury may be a predominant mechanism directing PM-induced cardiopulmonary health effects, including the exacerbation of inflammatory disease and increased hospitalization for lung infections (11–13), promotion of chronic obstructive pulmonary disease (15), and the pathogenesis of childhood asthma and allergic airway disease (16).

The acceleration of blood coagulation after exposure of monocytes to PM₁₀ is in agreement with studies that showed that PM exposure alters hemostasis by promoting clot formation and impeding clot resolution (14, 48-50). PM-induced blood coagulation is often associated with an increase of the plasminogen activator (PA) inhibitor (PAI)-1 in plasma and lung tissue (14, 48, 49). PAI-1 is the major regulator of fibrinolysis (51), and is a member of the SERPIN family. This protein family also contains PAI-2 (SERPINB2), which was the highest induced gene in our study. SERPINB2 was first discovered in the placenta of pregnant women, and is today known to be acutely induced at sites of inflammation or infection (33). In addition to its regulatory role in fibrinolysis, it also has intracellular functions, including immune modulation (suppression of T helper type 1 immunity) (52). Its extracellular activity as PA inhibitor is lower than that of PAI-1 (52), but at sites of inflammation it seems to be the primary PAI (33). The fact that gene expression of SERPINB2 is inducible, on the one hand, by Ah receptor ligation (53, 54), and, on the other hand, by endotoxins (55) might explain why, in our experiments, it was highly induced by both PAH containing outdoor PM₁₀ and endotoxin containing indoor PM₁₀ (see Figures 1 and 4). Thus, in future studies, gene expression of SERPINB2 could be used as a marker for blood coagulation, accelerated by various components of environmental PM.

Organic extracts of urban aerosol particles were reported to influence IgE-mediated allergic diseases by enhancing the allergen-induced activation of human basophils (56). Such adjuvant effect could not be detected with our school indoor and outdoor PM samples. This could be due to the use of organic extracts of outdoor PM, higher in organic compounds in the literature, whereas this study used the PM resuspended in water, with consequently lower amounts of the lipophilic PAH. Alternatively, allergy-inducing effects were reported for diesel exhaust particles (57), which could have been low in our school samples compared with other studies (56). Carbon black, as a marker for combustion particles, was not measured. Although we could show no aggravating effect of school PM on allergic reactions, the assay did function as bioassay for Fel d 1, the major cat allergen, as some classroom PM samples induced basophil activation without additional allergen exposure (see Figures 6A and 6B). This activation was only found in catallergic individuals, and only with PM samples proven by ELISA to contain the major cat allergen, Fel d 1. Both ELISA and the basophil test were positive, the basophil assay being more sensitive (data not shown). Other studies detected Fel d 1 in settled school dust, but dust is not necessarily inhalable

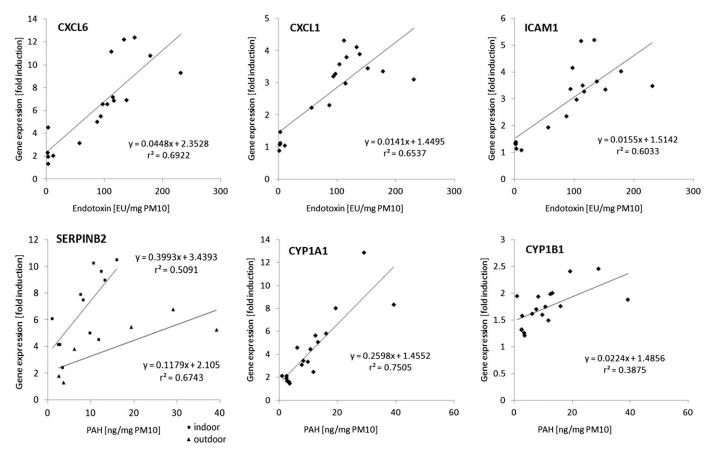


Figure 4. Correlation of gene expression with endotoxin (upper panel, 4 h) and PAH (lower panel, 24 h) content of the 18 PM₁₀ samples. In each case, the three genes with the highest coefficient of determination (r^2) for correlation are shown. Symbols represent outdoor (triangles), indoor (squares), or both (diamonds).

(58, 59). We found Fel d 1 in airborne and the inhalable fraction of ambient air (PM_{10}) of classrooms, but not in outdoor air, at concentrations that were able to activate human basophils, and thus could provoke allergic reactions. In Germany, animals are not allowed in schools, and the allergen must stem from cat skin flakes or hairs—the source of Fel d 1 (60)—brought in. Fel d 1 is a stable protein, and survives longer periods in the environment (61).

On an equal weight basis, indoor PM₁₀ induced more inflammatory genes, SERPINB2, a shorter blood coagulation time,

and allergic reactions compared with outdoor PM_{10} . Indoor PM_{10} is, in addition, six-times higher than outdoor PM_{10} , and, on an equal respirated air volume (which is the case in humans), the reported differences will be even more dramatic.

CONCLUSIONS

We have shown that school indoor PM during teaching hours, on an equal weight basis, is different from outdoor PM in particleadsorbed environmental substances, with a lower PAH and

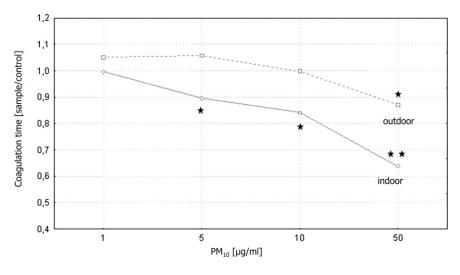
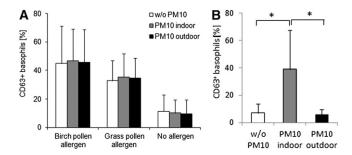



Figure 5. Blood coagulation time after exposure to indoor and outdoor PM₁₀ (mean results of 12 indoor and 6 outdoor samples). Both curves were analyzed by repeated-measures ANOVA and post hoc tests according to Newman-Keuls: *P < 0.05, **P < 0.01 against zero effect for the single concentrations. Moreover, curves were compared with each other by ANOVA with the result: P < 0.001 for difference in mean level and P < 0.05 for a nonparallel course.

Figure 6. Activation of human primary basophils by indoor/outdoor PM_{10} (school 1). (A) Basophils from four birch and grass pollen–allergic individuals. (B) Basophils from six cat-monosensitized allergic individuals. Means \pm SD are presented. *P < 0.05.

a higher endotoxin content. Human lung epithelial cells especially reacted to indoor particles by expressing genes involved in inflammation, blood coagulation, and xenobiotica metabolism, among others. Endotoxins could partly explain the inflammatory effects, and PAH could partly explain the CYP1A1 induction. Blood coagulation was more strongly induced by indoor PM_{10} . In addition, the major cat allergen, Fel d 1, was demonstrated in the respirable fraction at concentrations that induced basophil degranulation. Our results show that indoor air PM_{10} contains a different biological activity than outdoor air PM_{10} , and that the chemical composition of environmental PM should always be taken into consideration when its health effects are discussed.

These *in vitro* data are only suited to describing a biological activity of classroom PM_{10} and to comparing it with that of outdoor PM_{10} as a known risk factor. The health effects of outdoor air are well known, and this study shows that indoor air could be even more biologically active.

Whether these hazards result in health effects needs to be confirmed in the children themselves. As a first practical implication, we suggest improving ventilation with outdoor air in schools, because outdoor PM_{10} is less concentrated and less biologically active than indoor PM_{10} .

Author disclosures are available with the text of this article at www.atsjournals.org.

Acknowledgments: This work would not have been possible without the excellent technical assistance of Franziska Nachtmann, Ingrid Kronseder, Angela Servatius, and Sylvia Weidner. Some of the data has led to the development of the Helmholtz Virtual Institute for Complex Environmental Mixtures (HICE). Additional thanks goes to the teachers and school managers for their valuable support.

References

- Monn C, Becker S. Cytotoxicity and induction of proinflammatory cytokines from human monocytes exposed to fine (PM_{2.5}) and coarse particles (PM_{10-2.5}) in outdoor and indoor air. *Toxicol Appl Phar*macol 1999;155:245–252.
- Stranger M, Potgieter-Vermaak SS, Van Grieken R. Comparative overview of indoor air quality in Antwerp, Belgium. *Environ Int* 2007; 33:789–797.
- Keeler GJ, Dvonch T, Yip FY, Parker EA, Isreal BA, Marsik FJ, Morishita M, Barres JA, Robins TG, Brakefield-Caldwell W, et al. Assessment of personal and community-level exposures to particulate matter among children with asthma in Detroit, Michigan, as part of community action against asthma (CAAA). Environ Health Perspect 2002;110:173–181.
- Oeder S, Dietrich S, Weichenmeier I, Schober W, Pusch G, Jorres RA, Schierl R, Nowak D, Fromme H, Behrendt H, et al. Toxicity and elemental composition of particulate matter from outdoor and indoor air of elementary schools in Munich, Germany. *Indoor Air* 2012;22: 148–158.
- Fromme H, Twardella D, Dietrich S, Heitmann D, Schierl R, Liebl B, Rüden H. Particulate matter in the indoor air of classrooms—exploratory

- results from Munich and surrounding area. Atmos Environ 2007;41: 854-866
- Gilliland FD. Outdoor air pollution, genetic susceptibility, and asthma management: opportunities for intervention to reduce the burden of asthma. *Pediatrics* 2009;123:S168–S173.
- Pope CA III, Dockery DW. Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc 2006;56:709–742.
- Brunekreef B, Holgate ST. Air pollution and health. *Lancet* 2002;360: 1233–1242.
- Morgenstern V, Zutavern A, Cyrys J, Brockow I, Koletzko S, Kramer U, Behrendt H, Herbarth O, von Berg A, Bauer CP, et al. Atopic diseases, allergic sensitization, and exposure to traffic-related air pollution in children. Am J Respir Crit Care Med 2008;177:1331–1337.
- Simoni M, Annesi-Maesano I, Sigsgaard T, Norback D, Wieslander G, Nystad W, Canciani M, Sestini P, Viegi G. School air quality related to dry cough, rhinitis and nasal patency in children. *Eur Respir J* 2010; 35:742–749.
- Dick CA, Singh P, Daniels M, Evansky P, Becker S, Gilmour MI. Murine pulmonary inflammatory responses following instillation of size-fractionated ambient particulate matter. *J Toxicol Environ Health A* 2003;66:2193–2207.
- Sawyer K, Mundandhara S, Ghio AJ, Madden MC. The effects of ambient particulate matter on human alveolar macrophage oxidative and inflammatory responses. J Toxicol Environ Health A 2010;73:41–57.
- Tao F, Gonzalez-Flecha B, Kobzik L. Reactive oxygen species in pulmonary inflammation by ambient particulates. Free Radic Biol Med 2003;35:327–340.
- Budinger GR, McKell JL, Urich D, Foiles N, Weiss I, Chiarella SE, Gonzalez A, Soberanes S, Ghio AJ, Nigdelioglu R, et al. Particulate matter-induced lung inflammation increases systemic levels of PAI-1 and activates coagulation through distinct mechanisms. PLoS ONE 2011:6:e18525.
- Ling SH, van Eeden SF. Particulate matter air pollution exposure: role in the development and exacerbation of chronic obstructive pulmonary disease. *Int J Chron Obstruct Pulmon Dis* 2009;4:233–243.
- Bastain TM, Islam T, Berhane KT, McConnell RS, Rappaport EB, Salam MT, Linn WS, Avol EL, Zhang Y, Gilliland FD. Exhaled nitric oxide, susceptibility and new-onset asthma in the Children's Health Study. Eur Respir J 2011;37:523–531.
- Berhane K, Zhang Y, Linn WS, Rappaport EB, Bastain TM, Salam MT, Islam T, Lurmann F, Gilliland FD. The effect of ambient air pollution on exhaled nitric oxide in the Children's Health Study. Eur Respir J 2011;37:1029–1036.
- Costa DL, Dreher KL. Bioavailable transition metals in particulate matter mediate cardiopulmonary injury in healthy and compromised animal models. *Environ Health Perspect* 1997;105:1053–1060.
- Ghio AJ. Biological effects of Utah valley ambient air particles in humans: a review. J Aerosol Med 2004:17:157–164.
- Guthrie GD Jr. Mineral properties and their contributions to particle toxicity. Environ Health Perspect 1997;105:1003–1011.
- Prahalad AK, Soukup JM, Inmon J, Willis R, Ghio AJ, Becker S, Gallagher JE. Ambient air particles: effects on cellular oxidant radical generation in relation to particulate elemental chemistry. *Toxicol Appl Pharmacol* 1999;158:81–91.
- Fromme H, Heitmann D, Dietrich S, Schierl R, Korner W, Kiranoglu M, Zapf A, Twardella D. Air quality in schools—classroom levels of carbon dioxide (CO₂), volatile organic compounds (VOC), aldehydes, endotoxins and cat allergen [article in German]. Gesundheitswesen 2008;70:88–97.
- Waser M, Schierl R, von Mutius E, Maisch S, Carr D, Riedler J, Eder W, Schreuer M, Nowak D, Braun-Fahrlander C. Determinants of endotoxin levels in living environments of farmers' children and their peers from rural areas. Clin Exp Allergy 2004;34:389–397.
- Lintelmann J, Fischer K, Karg E, Schroppel A. Determination of selected polycyclic aromatic hydrocarbons and oxygenated polycyclic aromatic hydrocarbons in aerosol samples by high-performance liquid chromatography and liquid chromatography-tandem mass spectrometry. *Anal Bioanal Chem* 2005;381:508–519.
- Duncan A, Bowie EJ, Owen CA Jr, Fass DN. A clinical evaluation of automated chromogenic tests as substitutes for conventional prothrombin time and activated partial thromboplastin time tests. Clin Chem 1985;31:853–855.

- Eberlein B, Leon Suarez I, Darsow U, Rueff F, Behrendt H, Ring J. A new basophil activation test using CD63 and CCR3 in allergy to antibiotics. *Clin Exp Allergy* 2010;40:411–418.
- 27. Livingston EH. Who was student and why do we care so much about his *t*-test? *J Surg Res* 2004;118:58–65.
- Lorenz RJ. Biometrie. Grundbegriffe der biometrie. Stuttgart: Gustav Fischer Verlag; 1989.
- Gosselink JV, Hayashi S, Elliott WM, Xing L, Chan B, Yang L, Wright C, Sin D, Pare PD, Pierce JA, et al. Differential expression of tissue repair genes in the pathogenesis of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2010;181:1329–1335.
- Myllarniemi M, Lindholm P, Ryynanen MJ, Kliment CR, Salmenkivi K, Keski-Oja J, Kinnula VL, Oury TD, Koli K. Gremlin-mediated decrease in bone morphogenetic protein signaling promotes pulmonary fibrosis. Am J Respir Crit Care Med 2008;177:321–329.
- Wang M, Liang P. Interleukin-24 and its receptors. *Immunology* 2005; 114:166–170.
- Katagiri C, Iida T, Nakanishi J, Ozawa M, Aiba S, Hibino T. Upregulation of SERPIN SCCA1 is associated with epidermal barrier disruption. J Dermatol Sci 2010;57:95–101.
- Lee JA, Cochran BJ, Lobov S, Ranson M. Forty years later and the role
 of plasminogen activator inhibitor type 2/SERPINB2 is still an
 enigma. Semin Thromb Hemost 2011;37:395–407.
- Chen Y, Zhang J, Lin Y, Lei Q, Guan KL, Zhao S, Xiong Y. Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ros. EMBO Rep 2011;12:534–541.
- Eberlein-König B, Rakoski J, Behrendt B, Ring J. Use of CD63 expression as marker of *in vitro* basophil activation in identifying the culprit in insect venom allergy. *J Investig Allergol Clin Immunol* 2004;14:10–16.
- Lubitz S, Schober W, Pusch G, Effner R, Klopp N, Behrendt H, Buters JT.
 Polycyclic aromatic hydrocarbons from diesel emissions exert proallergic effects in birch pollen allergic individuals through enhanced mediator release from basophils. *Environ Toxicol* 2010;25:188–197.
- Kim S, Dere E, Burgoon LD, Chang CC, Zacharewski TR. Comparative analysis of AHR-mediated TCCD-elicited gene expression in human liver adult stem cells. *Toxicol Sci* 2009;112:229–244.
- 38. Ma Q. Induction and superinduction of 2,3,7,8-tetrachlorodibenzodioxin-inducible poly(ADP-ribose) polymerase: role of the aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator transcription activation domains and a labile transcription repressor. *Arch Biochem Biophys* 2002;404:309–316.
- Omura S, Koike E, Kobayashi T. Microarray analysis of gene expression in rat alveolar epithelial cells exposed to fractionated organic extracts of diesel exhaust particles. *Toxicology* 2009;262:65–72.
- van Berlo D, Albrecht C, Knaapen AM, Cassee FR, Gerlofs-Nijland ME, Kooter IM, Palomero-Gallagher N, Bidmon HJ, van Schooten FJ, Krutmann J, et al. Comparative evaluation of the effects of shortterm inhalation exposure to diesel engine exhaust on rat lung and brain. Arch Toxicol 2010;84:553–562.
- 41. Ito T, Nagai H, Lin TM, Peterson RE, Tohyama C, Kobayashi T, Nohara K. Organic chemicals adsorbed onto diesel exhaust particles directly alter the differentiation of fetal thymocytes through arylhydrocarbon receptor but not oxidative stress responses. *J Immunotoxicol* 2006;3: 21–30.
- 42. Stiborová M, Dracinská H, Hájková J, Kaderábková P, Frei E, Schmeiser HH, Soucek P, Phillips DH, Arlt VM. The environmental pollutant and carcinogen 3-nitrobenzanthrone and its human metabolite 3-aminobenzanthrone are potent inducers of rat hepatic cytochromes P450 1A1 and -1A2 and NAD(P)H:quinone oxidoreductase. *Drug Metab Dispos* 2006;34:1398–1405.
- Sillanpaä M, Frey A, Hillamo R, Pennanen AS, Salonen RO. Organic, elemental and inorganic carbon in particulate matter of six urban environments in Europe. Atmos Chem Phys 2005;5:2869–2879.
- Watterson TL, Sorensen J, Martin R, Coulombe RA Jr. Effects of PM_{2.5} collected from Cache Valley Utah on genes associated with the

- inflammatory response in human lung cells. *J Toxicol Environ Health A* 2007:70:1731–1744
- Karoly ED, Li Z, Dailey LA, Hyseni X, Huang YC. Up-regulation of tissue factor in human pulmonary artery endothelial cells after ultrafine particle exposure. *Environ Health Perspect* 2007;115:535–540.
- Ovrevik J, Lag M, Holme JA, Schwarze PE, Refsnes M. Cytokine and chemokine expression patterns in lung epithelial cells exposed to components characteristic of particulate air pollution. *Toxicology* 2009;259:46–53.
- Sama P, Long TC, Hester S, Tajuba J, Parker J, Chen LC, Veronesi B.
 The cellular and genomic response of an immortalized microglia cell line (BV2) to concentrated ambient particulate matter. *Inhal Toxicol* 2007;19:1079–1087.
- Cozzi E, Wingard CJ, Cascio WE, Devlin RB, Miles JJ, Bofferding AR, Lust RM, Van Scott MR, Henriksen RA. Effect of ambient particulate matter exposure on hemostasis. *Transl Res* 2007;149:324–332.
- Chuang KJ, Chan CC, Su TC, Lee CT, Tang CS. The effect of urban air pollution on inflammation, oxidative stress, coagulation, and autonomic dysfunction in young adults. *Am J Respir Crit Care Med* 2007; 176:370–376.
- Peters A, von Klot S, Heier M, Trentinaglia I, Hormann A, Wichmann HE, Lowel H. Exposure to traffic and the onset of myocardial infarction. N Engl J Med 2004;351:1721–1730.
- Pope CA III, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD. Lung cancer, cardiopulmonary mortality, and longterm exposure to fine particulate air pollution. *JAMA* 2002;287: 1132–1141.
- Medcalf RL. Plasminogen activator inhibitor type 2: still an enigmatic SERPIN but a model for gene regulation. *Methods Enzymol* 2011; 499:105–134.
- Sekine H, Mimura J, Oshima M, Okawa H, Kanno J, Igarashi K, Gonzalez FJ, Ikuta T, Kawajiri K, Fujii-Kuriyama Y. Hypersensitivity of aryl hydrocarbon receptor-deficient mice to lipopolysaccharideinduced septic shock. *Mol Cell Biol* 2009;29:6391–6400.
- Gohl G, Lehmkoster T, Munzel PA, Schrenk D, Viebahn R, Bock KW. TCDD-inducible plasminogen activator inhibitor type 2 (PAI-2) in human hepatocytes, HepG2 and monocytic U937 cells. *Carcinogenesis* 1996;17:443–449.
- Suzuki T, Hashimoto S, Toyoda N, Nagai S, Yamazaki N, Dong HY, Sakai J, Yamashita T, Nukiwa T, Matsushima K. Comprehensive gene expression profile of LPS-stimulated human monocytes by SAGE. *Blood* 2000;96:2584–2591.
- 56. Schober W, Belloni B, Lubitz S, Eberlein-Konig B, Bohn P, Saritas Y, Lintelmann J, Matuschek G, Behrendt H, Buters J. Organic extracts of urban aerosol (≤pm2.5) enhance rBet v 1-induced upregulation of CD63 in basophils from birch pollen-allergic individuals. *Toxicol Sci* 2006:90:377-384.
- Diaz-Sanchez D, Garcia MP, Wang M, Jyrala M, Saxon A. Nasal challenge with diesel exhaust particles can induce sensitization to a neo-allergen in the human mucosa. *J Allergy Clin Immunol* 1999;104: 1183–1188.
- Instanes C, Hetland G, Berntsen S, Lovik M, Nafstad P. Allergens and endotoxin in settled dust from day-care centers and schools in Oslo, Norway. *Indoor Air* 2005;15:356–362.
- Kim JL, Elfman L, Norback D. Respiratory symptoms, asthma and allergen levels in schools—comparison between Korea and Sweden. *Indoor Air* 2007;17:122–129.
- Gronlund H, Saarne T, Gafvelin G, van Hage M. The major cat allergen, Fel d 1, in diagnosis and therapy. *Int Arch Allergy Immunol* 2010;151: 265–274.
- 61. Liccardi G, D'Amato G, Russo M, Canonica GW, D'Amato L, De Martino M, Passalacqua G. Focus on cat allergen (Fel d 1): immunological and aerodynamic characteristics, modality of airway sensitization and avoidance strategies. *Int Arch Allergy Immunol* 2003;132: 1–12.