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High concentrations of particulate matter (PM10) weremeasured in
classrooms. This study addresses the hazard of indoor particles in
comparison to the better-studied outdoor particles. Samples were
taken from six schools during teaching hours. Genome-wide gene
expression in human BEAS-2B lung epithelial cells was analyzed and
verified by quantitative PCR. Polycyclic aromatic hydrocarbons, en-
dotoxin, and cat allergen (Fel d 1) were analyzed by standardmeth-
ods. Enhancement of allergic reactivity by PM10 was confirmed in
humanprimary basophils. Acceleration of humanblood coagulation
was determinedwith supernatants of PM10-exposed human periph-
eral blood monocytes. Indoor PM10 induced serine protease inhibi-
torB2(involved inbloodcoagulation)and inflammatorygenes (such
as CXCL6, CXCL1, IL6, IL8; all P , 0.001). Outdoor PM10 induced
xenobiotic metabolizing enzymes (cytochrome P450 [CYP] 1A1,
CYP1B1, TIPARP; allP,0.001). The inductionof inflammatorygenes
by indoorPM10wasexplainedbyendotoxin(indoor128.5642.2EU/mg
versus outdoor 13.4 6 21.5 EU/mg; P , 0.001), the induction of
CYP by outdoor polycyclic aromatic hydrocarbons (indoor 8.3 6

4.9ng/mgversusoutdoor16.7615.2ng/mg;P,0.01).The induction
of serine protease inhibitor B2was confirmedby amore rapid human
blood coagulation (P , 0.05). Indoor PM10 only affected allergic
reactivity from human primary basophils from cat-allergic individu-
als. This was explained by varying Fel d 1 concentrations in indoor
PM10 (P , 0.001). Indoor PM10, compared with outdoor PM10, was
six times higher and, on an equal weight basis, inducedmore inflam-
matory and allergenic reactions, and accelerated blood coagulation.
Outdoor PM10 had significantly lower effects, but induced detoxify-
ing enzymes. Therefore, preliminary interventions for the reduction
of classroom PM10 seem reasonable, perhaps through intensified
ventilation.
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Indoor air of school classrooms contains large amounts of air-
borne particulate matter (PM10), much greater than outdoor
or home air (1–5). In Germany, children spend z5–6 hours
per day inside classrooms, and time multiplied by exposure
shows that .60% of PM10 exposure in children stems from
school indoor air (4). Children therefore experience a major
part of their exposure to PM in this specific indoor environment.
Because children are developing, they are therefore especially
vulnerable to the effects of air pollution (6). Much is known
about adverse health effects of outdoor PM10, such as its influ-
ence on respiratory, cardiovascular, and allergic diseases (7–9),
but the effects of indoor PM10 are widely unknown (10). We
therefore addressed the question whether school indoor par-
ticles constitute a health hazard.

Inflammation, oxidative stress, and blood coagulation are dis-
cussed as major mechanisms for PM-induced health effects.
Inflammation-associated injury may be a predominant mechanism
directing PM-induced cardiopulmonary health effects, including
the exacerbation of inflammatory disease and increased hospi-
talization for lung infections (11–13). Oxidative stress medi-
ated by reactive oxygen species is an important contributor to
PM-induced lung inflammation (13). Inflammation promotes
the development of a prothrombotic state, leading to en-
hanced blood coagulation (14). PM-induced proinflammatory
mediators can elicit local and systemic inflammations in
healthy individuals, and can promote ongoing inflammation in
the lungs of patients suffering from chronic obstructive pulmo-
nary disease (15). Furthermore, airway inflammation plays an
etiologic role in the pathogenesis of childhood asthma and al-
lergic airway disease (16), and can be associated with PM10

concentrations (17).
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CLINICAL RELEVANCE

Our investigation shows that school indoor air particulate
matter is not devoid of biological effects. Indeed, the effects
are stronger for indoor particles than for the concomitantly
collected outdoor particles. Thus, more attention should be
given to the health effects of school indoor air particulate
matter. In the meantime, increased ventilation seems a sen-
sible option.
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Adverse health effects of PM depend on the particle size, sur-
face, number, and chemical composition (18–21). Thus, higher
PM mass concentration does not necessarily mean a higher
health risk. Indoor PM10 is chemically very different from out-
door PM10, and is characterized by high concentrations of inhal-
able organic and silicate particles, reported previously to be
biologically more active (and cytotoxic) than outdoor PM10

(4, 5, 22).
To get a more detailed picture of the effects of classroom versus

outdoor PM10, we investigated, within the project Particulate
Matter in Indoor and Ambient Environments, genome-wide gene
expression in human lung epithelial cells. The differential indoor/
outdoor PM10 effects were correlated with particle-bound envi-
ronmental substances (allergen, endotoxin and polycyclic aro-
matic hydrocarbons [PAHs]) and then confirmed with functional
assays, such as blood coagulation and allergic reactions, to assess
whether classroom particles evoke health hazards compared with
outdoor particles.

MATERIALS AND METHODS

Sampling

Sampling and recovery of PM is described elsewhere (see MATERIALS

AND METHODS in the online supplement) (4). Particles were recovered
from filters after wetting with 0.0125 ml/cm2 ethanol and 1.7 ml/cm2

purified water, and sonicated. The particle suspensions were lyophi-
lized and resuspended in water at 1 mg/ml. Motor vehicle traffic density
was obtained from the city development department of the city of
Munich (Referat für Stadtplanung).

Cell Culture Conditions

Exponentially growing human immortalized bronchial epithelial BEAS-
2B cells were cultured in bronchial epithelial cell basal medium accord-
ing to the suppliers instructions (Lonza Inc., Walkersville, MD; see
supplemental MATERIALS AND METHODS) at 378C, 90% relative humid-
ity, and 5% CO2.

Genome-Wide Gene Expression Analysis

Affymetrix HG U133A 2.0 GeneChips (Affymetrix, Santa Clara, CA)
were used to analyze BEAS-2B cells genome wide after being incubated
with 10 mg/ml PM10 (school 4, indoor and outdoor) for 4, 10, or 24 hours,
all in triplicate (see supplemental MATERIALS AND METHODS). The micro-
array data have been deposited in the Gene Expression Omnibus data-
base (http://www.ncbi.nlm.nih.gov/geo/).

Gene expression values of regulated genes were then validated by
quantitative RT-PCR on TaqMan Micro Fluidic Cards (Applied Bio-
systems, Carlsbad, CA). Using this system, gene expression analysis at
4-, 10-, and 24-hour exposure was extended to all available samples (12
classrooms and 6 outdoor sites, pooled from independent triplicates).
cDNA was synthesized with the High Capacity cDNA Reverse Tran-
scription Kit (Applied Biosystems). Fold regulation was calculated by
the 2DDCT method. Glyceraldehyde 3-phosphate dehydrogenase and
HPRT were used as housekeeping genes.

Analysis of PM-Adsorbed Substances (Endotoxin,

PAH, Cat Allergen)

Endotoxin content of PM10 suspensions was determined by a kinetic
limulus amoebocyte lysate assay (QCL; Lonza Inc.) (23). We applied
three dilutions and spiked replicates of all samples. Results were valid
if spike recovery was between 50 and 200%. PAHs were measured using
high-performance liquid chromatography with fluorescence detection
(24) (for details see the online supplement). The presence of the cat,
dog, cockroach, rat, house dust mite, and mouse allergens (Fel d 1,
Can f 1, Bla g 2, Der p 1, Der f 1, Mite group 2, Rat n 1, and Mus m
1, respectively) in PM10 was determined with a multiplex allergen-
specific ELISA (Indoor Biotechnologies Inc., Charlottesville, VA).

Blood Coagulation Assay

Human peripheral blood monocytes were isolated from healthy volun-
teers by density gradient centrifugation. After 24 hours of cell culturing,
monocytes were exposed to 1, 5, 10, and 50 mg/ml PM10 for another
24 hours. Supernatants were tested in a blood coagulation assay that
measures the kinetics of thrombin activity colorimetrically via the sub-
strate H-Sar-Pro-Arg-pNA, HCl (no. 539518; Calbiochem, Boston,
MA) (25). The time until the half maximal reaction was assessed and
related to untreated controls.

Basophil Activation Test

Basophils in whole blood from birch-, grass-, and cat-allergic volunteers
(radio allergen sorbent test class . 3 and positive skin prick test) were
tested for activation with Basotest (FK-BAT; Bühlmann, Schönebuch,
Switzerland) (see also supplemental MATERIALS AND METHODS) (26).

Statistical Analysis

Differences were analyzed with a paired Student’s t test unless stated
otherwise (27). The strength of the relationship between parameters
was expressed by the Pearson coefficient of correlation for Gauss-
distributed values (r2) from linear regression (28). A P value less than
0.05 was considered statistically significant.

RESULTS

Sampling

The results and details from sampling of school indoor and out-
door PM10 have been published previously (see supplemental
MATERIALS AND METHODS) (4, 22). School indoor air contained
117 6 48 mg/m3 PM10, whereas concomitantly sampled outdoor
air contained 21 6 15 mg/m3 (5.6 times less; P , 0.001). The
characteristics of the schools and time of sampling are given in
Table 1. No vermin infestation (rat, cockroach) was detected by
their allergen as a proxy. The ubiquitous detection of mouse
allergen is probably due to ubiquitous mouse presence in com-
bination with the high sensitivity of the ELISA.

Genome-Wide Regulation of Gene Expression by PM10

PM10 exposure in the concentration of 10 mg/ml caused rela-
tively small changes in gene expression in BEAS-2B human
lung epithelial cells. For most regulated genes, the highest in-
duction was after 4 hours of incubation and decreased at later
time points. A total of 153 genes were significantly over 1.5-fold
regulated. The highest regulation observed was the 8.6-fold in-
crease in serine protease inhibitor (SERPIN) B2 and CCL20
gene expression, followed by the 8.5-fold up-regulation of cyto-
chrome P450 (CYP) 1A1 gene expression; 95 genes were in-
duced over 1.5-fold (36 of them over twofold), and 58 genes
were inhibited (two of them over twofold). As determined by
the online resource, DAVID (Database for Annotation, Visu-
alization, and Integrated Discovery; National Institute of Al-
lergy and Infectious Diseases, National Institutes of Health,
Bethesda, MD), gene ontology terms concerning inflammation
were significantly enriched. The highest induced inflammatory
genes were CCL20, CXCL1, CXCL2, CXCL3, CXCL5, CXCL6,
IL1A, IL1B, IL6, IL8, LIF, and PTX3. Other gene functions were
represented only by single genes or small groups of genes. Five
genes of the metabolism of xenobiotics were induced: CYP1A1,
CYP1B1, ALDH1A3, NQO1, and TIPARP. Four genes were
induced that play a role in tissue processes: MMP1 (degradation
of extracellular matrix [29]), GREM1 (induced in cystic fibrosis
[30]), IL24 (wound healing [31]), and SERPINB3 (decrease of
barrier function [32]). Single regulated gene functions were
blood coagulation (SERPINB2 [33]), response to oxidative stress
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(SOD2 [34]), ectoderm development (KRT6B; GO term from
UniProtKB-GOA database), inhibition of apoptosis (BIRC3;
GOA database), toxin binding (NPTX1), calcium homeostasis
(STC1), growth inhibition (STC2), stress response (NDRG1;
GOA database), epidermal growth factor (EREG; GOA data-
base), calcium signaling (CAMK2B; GOA database), tight junc-
tions (CLDN1; GOA database). Inflammation-related genes were
much stronger induced by indoor PM10 than by outdoor PM10. For
genes of the xenobiotic metabolism, this was the other way round:
especially CYP1A1 was more strongly induced by outdoor PM10.

We selected 36 genes that showed the highest regulation in
the genome-wide analysis and two housekeeping genes (glycer-
aldehyde 3-phosphate dehydrogenase, HPRT1). Eight genes
were added that were hypothesized to be influenced by environ-
mental particles. These genes were then tested and analyzed with
all indoor and outdoor samples using a Taqman low-density ar-
ray (see MATERIALS AND METHODS) at 4-, 10-, and 24-hour incu-
bation in BEAS-2B epithelial cells. All genes found to be
positive on the genome-wide array were confirmed with quan-
titative PCR (data not shown). As was the case with the
genome-wide array, indoor PM10 preferentially induced SER-
PINB2 and inflammatory genes and outdoor PM10 genes of the
xenobiotic metabolism (see Figures 1 and 2).

Analysis of PM10

To understand whether specific components of indoor PM10 caused
different effects than those of outdoor PM10, targeted analyses
were performed. General chemical composition of Bavarian school
indoor PM10 has previously been published (4, 5), but did not ex-
plain the observed effects at the genome level (data not shown).

Therefore, further analysis focused on specific organics, such as
PAH, endotoxin, and allergens attached to environmental particles.

The following PAHs were detected in indoor and outdoor
PM10 samples: benzo[a]anthracene, chrysene, benzo[e]pyrene,
benzoic[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene,
dibenzo[a,h]anthracene, benzo[g,h,i]perylene, indeno[1,2,3-c,d]
pyrene, and coronene. The sum of these PAHs in indoor PM10

was 8.3 6 4.9 ng/mg and in outdoor PM10 16.7 6 15.2 ng/mg
(P , 0.01). Samples taken in winter (schools 1–3) contained
significantly more PAH than summer samples (schools 4–6;
P , 0.01) (Figure 3a). The concentration of indoor PAH per
milligram PM10 was about half of outdoors. However, because
ambient particles indoors are 5.6 times the outdoor concentration
per cubic meter, the indoor air concentration of PAH was about
double that of the of outdoor, indicating an indoor source of PAH.

For endotoxin, our recoveries were 796 15%. There was also
a very good correlation between the 1:50 and 1:250 dilutions of
the same samples (y ¼ 0.86x; r2 ¼ 0.97). Endotoxin concentra-
tions were considerably higher in classroom samples (128.56 42.2
EU/mg PM10) than in outdoor samples (13.46 21.5 EU/mg PM10;
P , 0.001). A difference between winter and summer samples in
endotoxin content was not found (Figure 3b). The high outdoor
endotoxin concentration at school 6 was not explained by deviat-
ing land use compared with the other schools.

Correlation of Gene Expression with Endotoxin and PAH

For each of the 18 samples (12 indoor, 6 outdoor), the content of
PAH and that of endotoxin was compared with its ability to reg-
ulate the expression of each of the 46 analyzed genes. Significant
correlations were found for the induction of inflammatory genes

TABLE 1. CHARACTERISTICS OF THE ELEMENTARY SCHOOLS

School 1 School 2 School 3 School 4 School 5 School 6

Sampling date December 2007 February 2008 March 2008 October 2007 June 2008 July 2007

Distance to nearest road, m 80 75 450 460 435 860

Vehicles/day* 15,700 22,000 9,000 23,000 41,000 21,000

Surrounding land use Countryside Inner city Suburban Suburban Suburban Suburban

Heating fuel source Community† Community Gas Gas Gas Gas

Air conditioning No No No No No No

Allergen/location

Rat n 1‡, ng/m3

Indoor ,x , , , , ,

Outdoor , , , , , ,

Mus m 1, ng/m3

Indoor 22.1 27.4 30.2 17.8 19.7 20.5

Outdoor 0.4 2.1 1.4 0.9 10.6 5.0

Feld 1, ng/m3

Indoor 42.7 94.2 19.6 34.1 6.8 24.9

Outdoor , 3.1 1.0 , , ,

Can f 1, ng/m3

Indoor 52.2 18.9 54.3 , 14.4 ,

Outdoor , , , , , ,

Bla g 2, ng/m3

Indoor , , , , , ,

Outdoor , , , , , ,

Der p 1, ng/m3

Indoor , , , , , ,

Outdoor , , , , , ,

Der f 1, ng/m3

Indoor , , , , , ,

Outdoor , , , , , ,

Der f/p 2, ng/m3

Indoor , , , , , ,

Outdoor , , , , , ,

*On the nearest road.
y From a district heating network, delivered by hot water. All schools had central heating.
zDetermined by multiplex ELISA (Indoor Biotechnologies) according to the manufacturer’s instructions.

, indicates below detection.
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and endotoxin (r2 ¼ 0.69 for CXCL6; P, 0.001) content and the
induction of xenobiotic metabolizing genes and PAH content
(r2 ¼ 0.75 for CYP1A1; P , 0.001) (Figure 4). Thus, the inflam-
matory effects of indoor PM10 can be at least partly ascribed
to the microbiological burden of these samples. On the other
hand, the induction of the xenobiotic metabolism seems to be

dependent on PAH, attached to a greater extent to outdoor
particles than indoor particles. Selective inhibition of Toll-
like receptors to inhibit the effects of LPS or selective extrac-
tion of PAH might be a possible way to further substantiate
our findings.

PM10 Accelerated Blood Coagulation

Indoor and outdoor PM10 caused an acceleration of blood co-
agulation in a functional assay (Figure 5). After exposure of
human peripheral blood monocytes to indoor PM10, the accel-
eration was significant already at 5 mg/ml (P , 0.005 in
Newman-Keuls test), whereas outdoor PM10 caused a significant
acceleration only at 10 times higher concentrations (50 mg/ml,
P , 0.05). The regression of the curves of indoor and outdoor
PM10 was statistically different (P , 0.05), with a more rapid
coagulation for indoor PM10.

PM10 Induced Activation of Human Basophil Granulocytes

Using fluorescence-activated cell sorting (FACS), activation of
human primary basophils could be tested within the complex
mixture of all human leukocytes without previous stressful puri-
fication of these cells. When basophils are activated, they in-
crease the amount of CD63 on their surfaces, as described
previously (35, 36). Incubation of human basophils of birch
and grass pollen–allergic individuals with their respective aller-
gen caused an activation of basophils (positive control reac-
tion). Neither classroom nor outdoor PM10 enhanced the
number of activated basophils (see Figure 6a, n.s.).

Using basophils of six cat-allergic individuals in the same setup
but without addition of any further allergen, we could show baso-
phil activation by indoor, but not outdoor PM, already without al-
lergen coincubation. The sample tested (school 1, classroom 2)with
all donors was among the lowest Fel d 1 concentrations of all
schools. Still, basophil activation was clear (P , 0.05; Figure
6b). ELISA measurements of Fel d 1 confirmed that the applied
PM10 sample (school 1, classroom 2) contained cat allergen. Alto-
gether, in 6 out of 12 tested classroom PM10 samples and 1 out of 6
outdoor PM10 samples, Fel d 1 could be detected by ELISA (data
not shown). On average, Fel d 1 was present in indoor classroom
PM10 at 1.06 6 1.81 ng/mg. In outdoor PM10, 0.04 6 0.10 ng
Fel d 1/mg (P , 0.001) was found, which is close to the limit of
detection of the assay. Thus, indoor air contained immunologically
relevant concentrations of the major cat allergen, Fel d 1.

Testing all indoor PM10 samples with basophils of a cat-only–
allergic individual showed that CD63 up-regulation was parallel

Figure 1. Quantitative PCR confirmed data of only those genes with

the highest genome-wide particulate matter 10 less than or equal to

10 mm in diameter (PM10)–induced expression; relative expression
(22DDCT) related to untreated control; housekeeping genes, glycer-

aldehyde 3-phosphate dehydrogenase (GAPDH) and HPRT (means

of 18 PM10 samples). Darker shades of red indicate higher induction.

Figure 2. Specificity of indoor

and outdoor PM10-induced gene
expression; ratio of regulation by

indoor over outdoor PM10 (aver-

age of time points).
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to the measured Fel d 1 (r2 ¼ 0.596; P , 0.001). Some samples
showed basophil degranulation in the absence of Fel d 1, which
we suspect to be due to the higher sensitivity of the bioassay
over ELISA (data not shown).

DISCUSSION

On a genome-wide level, we compared the effects of PM10 from
one elementary school classroom with those of PM10 from con-
comitantly sampled outdoor air. The 48 most regulated genes
were selected and confirmed with all available samples with
quantitative PCR. Gene expression was correlated with PM10-
adsorbed environmental substances to explain the observed
effects. Expression analysis indicated up-regulation of genes
involved in blood coagulation, which we confirmed with a func-
tional blood coagulation assay with supernatants from PM10-
exposed primary human monocytes. Furthermore, the influence
on the elicitation phase of allergic reaction was tested by a ba-
sophil activation assay (bioassay), and the allergen that caused
positive test results was identified by ELISA.

In all tests, equal amounts of classroom PM10 had stronger
and different effects compared with outdoor PM10 (4). This is in
addition to the six-times higher indoor PM10 concentrations
compared with outdoor PM10. Indoor PM10 induced inflamma-
tory genes much more strongly, blood coagulation was more
accelerated, and basophils were activated only by indoor
PM10. The only effect of outdoor PM10 was the induction of
genes of the xenobiotic metabolism that are regulated by the

aryl hydrocarbon (Ah) receptor (37, 38) and which correlated with
the measured PAH content. Indeed, not only CYP1A1, but also
other genes under control of the Ah receptor (CYP1B1, NQO1,
ALDH1A3), were induced, corroborating our findings. A correla-
tion of CYP1A1 induction and diesel exhaust particles or organic
PM constituents was found in many previous studies (39–42). Ele-
mental carbon particles with absorbed PAH stemming from anthro-
pogenic combustion, such as diesel particles, constitute z8% of
outdoor PM10, and are a likely source of the observed effects (43).

The inflammatory effect of PM has been shown in many stud-
ies (39, 44–47), and was found to be correlated with endotoxin
content (1). The much higher inflammatory effects of indoor
PM10 compared with outdoor PM10 is of special importance, as
inflammation-associated injury may be a predominant mechanism
directing PM-induced cardiopulmonary health effects, including
the exacerbation of inflammatory disease and increased hospital-
ization for lung infections (11–13), promotion of chronic obstruc-
tive pulmonary disease (15), and the pathogenesis of childhood
asthma and allergic airway disease (16).

The acceleration of blood coagulation after exposure of
monocytes to PM10 is in agreement with studies that showed
that PM exposure alters hemostasis by promoting clot forma-
tion and impeding clot resolution (14, 48–50). PM-induced
blood coagulation is often associated with an increase of the
plasminogen activator (PA) inhibitor (PAI)-1 in plasma and
lung tissue (14, 48, 49). PAI-1 is the major regulator of fibrino-
lysis (51), and is a member of the SERPIN family. This protein
family also contains PAI-2 (SERPINB2), which was the highest
induced gene in our study. SERPINB2 was first discovered in
the placenta of pregnant women, and is today known to be
acutely induced at sites of inflammation or infection (33). In
addition to its regulatory role in fibrinolysis, it also has intracel-
lular functions, including immune modulation (suppression of T
helper type 1 immunity) (52). Its extracellular activity as PA
inhibitor is lower than that of PAI-1 (52), but at sites of inflam-
mation it seems to be the primary PAI (33). The fact that gene
expression of SERPINB2 is inducible, on the one hand, by Ah
receptor ligation (53, 54), and, on the other hand, by endotoxins
(55) might explain why, in our experiments, it was highly in-
duced by both PAH containing outdoor PM10 and endotoxin
containing indoor PM10 (see Figures 1 and 4). Thus, in future
studies, gene expression of SERPINB2 could be used as
a marker for blood coagulation, accelerated by various compo-
nents of environmental PM.

Organic extracts of urban aerosol particles were reported
to influence IgE-mediated allergic diseases by enhancing the
allergen-induced activation of human basophils (56). Such ad-
juvant effect could not be detected with our school indoor and
outdoor PM samples. This could be due to the use of organic
extracts of outdoor PM, higher in organic compounds in the
literature, whereas this study used the PM resuspended in wa-
ter, with consequently lower amounts of the lipophilic PAH.
Alternatively, allergy-inducing effects were reported for diesel
exhaust particles (57), which could have been low in our school
samples compared with other studies (56). Carbon black, as
a marker for combustion particles, was not measured. Although
we could show no aggravating effect of school PM on allergic
reactions, the assay did function as bioassay for Fel d 1, the
major cat allergen, as some classroom PM samples induced
basophil activation without additional allergen exposure (see
Figures 6A and 6B). This activation was only found in cat-
allergic individuals, and only with PM samples proven by
ELISA to contain the major cat allergen, Fel d 1. Both ELISA
and the basophil test were positive, the basophil assay being
more sensitive (data not shown). Other studies detected
Fel d 1 in settled school dust, but dust is not necessarily inhalable

Figure 3. Analysis of particle-adsorbed substances in the PM10 suspen-

sions. (A) Polycyclic aromatic hydrocarbons (PAH); concentration of

Baa, benzo[a]anthracene; Bap, benzo[a]pyrene; Bep, benzo[e]pyrene;

Bgh, benzo[g,h,i]perylene; Bkf, benzo[k]fluoranthene; Bpf, benzoic[b]flu-
oranthene; Cor, coronene; Cry, chrysene; Dba, dibenzo[a,h]anthracene;

Ind, indeno[1,2,3-c,d]pyrene. (B) Endotoxin.
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(58, 59). We found Fel d 1 in airborne and the inhalable
fraction of ambient air (PM10) of classrooms, but not in outdoor
air, at concentrations that were able to activate human basophils,
and thus could provoke allergic reactions. In Germany, animals
are not allowed in schools, and the allergen must stem from cat
skin flakes or hairs—the source of Fel d 1 (60)—brought in.
Fel d 1 is a stable protein, and survives longer periods in the
environment (61).

On an equal weight basis, indoor PM10 induced more inflam-
matory genes, SERPINB2, a shorter blood coagulation time,

and allergic reactions compared with outdoor PM10. Indoor
PM10 is, in addition, six-times higher than outdoor PM10, and,
on an equal respirated air volume (which is the case in humans),
the reported differences will be even more dramatic.

CONCLUSIONS

We have shown that school indoor PM during teaching hours, on
an equal weight basis, is different from outdoor PM in particle-
adsorbed environmental substances, with a lower PAH and

Figure 4. Correlation of gene expression with endotoxin (upper panel, 4 h) and PAH (lower panel, 24 h) content of the 18 PM10 samples. In each

case, the three genes with the highest coefficient of determination (r2) for correlation are shown. Symbols represent outdoor (triangles), indoor
(squares), or both (diamonds).

Figure 5. Blood coagulation time after exposure to

indoor and outdoor PM10 (mean results of 12 in-

door and 6 outdoor samples). Both curves were
analyzed by repeated-measures ANOVA and post

hoc tests according to Newman-Keuls: *P , 0.05,

**P , 0.01 against zero effect for the single con-

centrations. Moreover, curves were compared with
each other by ANOVA with the result: P, 0.001 for

difference in mean level and P , 0.05 for a nonpar-

allel course.
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a higher endotoxin content. Human lung epithelial cells espe-
cially reacted to indoor particles by expressing genes involved
in inflammation, blood coagulation, and xenobiotica metabo-
lism, among others. Endotoxins could partly explain the inflam-
matory effects, and PAH could partly explain the CYP1A1
induction. Blood coagulation was more strongly induced by in-
door PM10. In addition, the major cat allergen, Fel d 1, was
demonstrated in the respirable fraction at concentrations that
induced basophil degranulation. Our results show that indoor
air PM10 contains a different biological activity than outdoor air
PM10, and that the chemical composition of environmental PM
should always be taken into consideration when its health
effects are discussed.

These in vitro data are only suited to describing a biological
activity of classroom PM10 and to comparing it with that of
outdoor PM10 as a known risk factor. The health effects of
outdoor air are well known, and this study shows that indoor
air could be even more biologically active.

Whether these hazards result in health effects needs to be
confirmed in the children themselves. As a first practical impli-
cation, we suggest improving ventilation with outdoor air in
schools, because outdoor PM10 is less concentrated and less
biologically active than indoor PM10.
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