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Abstract

Objective: Recently, we have shown that Bezafibrate (BBZ,gan-PPAR (peroxisome
proliferator-activated receptor) activator, amedted diabetes in insulin deficient
streptozotocin treated diabetic mice. In orderttolg whether BEZ can also improve glucose
metabolism in a mouse model for fatty liver andetypdiabetes, the drug was applied to
TallyHo mice.

Methods: TallyHo mice were divided into an early (ED) date (LD) diabetes progression
group and both groups were treated with 0.5% BEZZBroup) or standard diet (SD group)
for 8 weeks. We analyzed plasma parameters, paicbeda-cell morphology, and mass as
well as glucose metabolism of the BEZ-treated androl mice. Furthermore, liver fat
content and composition as well as hepatic glucgeeesis and mitochondrial mass were
determined.

Results: Plasma lipid and glucose levels were markedlyced upon BEZ treatment, which
was accompanied by elevated insulin sensitivitgxds well as glucose tolerance,
respectively. BEZ increased islet area in the peascrFurthermore, BEZ treatment improved
energy expenditure and metabolic flexibility. Iretver, BEZ ameliorated steatosis,
modified lipid composition and increased mitochaealkdmass, which was accompanied by
reduced hepatic gluconeogenesis.

Conclusions: Our data showed that BEZ ameliorates diabetdsatly via reduced steatosis,
enhanced hepatic mitochondrial mass, improved roétatbexibility and elevated hepatic
insulin sensitivity in TallyHo mice, suggesting tl2EZ treatment could be beneficial for

patients with NAFLD and impaired glucose metabolism
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1. Introduction

Bezafibrate (BEZ) is a member of the fibrate grthat possesses the unique feature of
activating all known peroxisome proliferator-acte receptors (PPARs, PPARPPAR/

and PPARY/9) [1]. PPARs are transcription factors regulatingctal genes involved in fatty
acid metabolism and insulin sensitivity [1]. BEZsyarimarily used to treat patients with
hyperlipidemia [2]; however, it was also shownngrove glucose metabolism in rodents [3]
and humans [4]. Recently, we have shown that BExtawes glucose metabolism and
diabetes in the insulin deficient streptozotociker5s]. To study whether BEZ could also
ameliorate conditions associated with fatty lived aype 2 diabetes, we used the TallyHo
mouse model. TallyHo mice were described in 20@lLare characterized by elevated plasma
lipid levels and body weight, high fat mass, steitcand intermediate to severe diabetes [6,
7]. Compared to the classical monogenic diabetegeisdike ob/ob or db/db mice, the
polygenic nature of TallyHo mice add a clear bdrtefthese models by better resembling the
human disease state of T2D [7]. Recent studiegifaihseveral diabetes loci (Tanidd1-4,
Tabw3-4), which act in concert to promote diabesesi male TallyHo mice show reduced
peripheral glucose uptake and enlarged pancredits i[8]. Our data demonstrated that BEZ
ameliorates impaired glucose metabolism in Tallyiloe via decreased hepatic fat content
and suppressed hepatic gluconeogenesis in assacrth increased mitochondrial mass

and elevated metabolic flexibility.

2. Materials and methods

2.1 Materials
All chemicals were purchased from Sigma-Aldrich (i@any) unless otherwise stated.

2.2 Animal studies



TallyHo mice were purchased from Jackson Laborascaind were bred in our animal
facility. Only male mice were used in our studydanice received a standard diet (SD)
(R/M-H, Ssniff, Germany), which was supplementethvd.5% (w/w) Bezafibrate (BEZ,
B7273, Sigma-Aldrich) for the BEZ groups for 8 weeknimals were killed by isoflurane
overdose, and dissected tissues were preparedtad below. All data represent samples
taken after 8 weeks of BEZ (or SD) treatment unt#bsrwise stated. All animals received
human care, and mouse studies were approved bygacarnment authorities and
performed according to GV-SOLAS (Society for Laliorg Animal Science) in accordance
with the German Animal Welfare Act.

Plasma triglyceride (TG), non-esterified fatty a@MEFA), glycerol, glucose, and C-reactive
protein (CRP) levels were quantified using an AU4BOical chemistry analyzer (Beckman
Coulter, Germany) [9]. Blood glucose levels wereamged in tail blood samples using a
point of care glucometer (Contour, Bayer, Germamng plasma insulin levels were
determined using ELISA or Multi-Spot electrochemiinescence Assay System (Mesoscale,
Rockville, USA). Intraperitoneal glucose toleranests were performed 7 weeks after BEZ
treatment with 1 g/kg glucose, and, since mosheftail blood values were higher than the
upper limit of glucometer (>600 mg/dl), plasma gise levels were determined by LabAssay
Glucose Kit (Wako, Richmond, USA). Homeostatic nmaesessment of insulin resistance
(HOMA-IR) value was calculated as: ((fasting gluef@sg/dl] x fasting insulin
[L1U/mI])/405). Body composition and indirect caloetry was studied 5 weeks after BEZ
treatment as described previously [5].

2.3 Euglycemic-hyperinsulinemic clamps

Euglycemic-hyperinsulinemic clamp studies were graned 6-7 weeks after BEZ treatment
as previously published [10]. To initiate the ewglsnic-hyperinsulinemic clamp, a

continuous insulin infusion (6 mU/kg mtnHumulin R, Lilly, Indianapolis, USA) was



started and continued for 120 minutes. Betweem@0120 min, four blood samples were
collected for calculation of insulin-mediated sugg®ion of endogenous glucose appearance
rates (EndoRa), a marker of hepatic glucose promtucht 120 min, 2-deoxy-D-[1-
“Clglucose was injected intravenously (370 kBq), additional blood samples were
collected. Basal EndoRa was calculated as the o&fi®-*H]glucose infusion rate and plasma
[3-*H]glucose specific activity. The EndoRa during ifssstimulated conditions was
determined by subtracting the Glucose Infusion R@t&lF) from rate of disappearance
(Rd). Tissue 29'C]deoxyglucose-6-phosphate was extracted, and sgugptake rates (Rg)
were calculated as previously described [11]. Wholgy glycolysis rates were calculated
from the increase in plasnie,O concentration, the latter referring to the diffeze between
®H counts before and after drying, divided by thecsiic activity of plasma [3H]glucose

and the plasmH,0 concentration.

2.4 Immunofluor escence staining

Pancreata were fixed in 4% paraformaldehyde, ayakections were stained with anti-
insulin or anti-glucagon antibodies as describeipusly [5].

2.5 Histochemistry

Liver tissues were fixed in 4% paraformaldehydel paraffin sections were stained with
hematoxylin and eosin as described previously [5].

2.6 Hepatic lipid levels

Liver samples were homogenized in PBS containingr'tion X-100 using a TissueLyser
(Qiagen, Hilden, Germany). Triglyceride (TG) levelsre quantified in the homogenates
using the ADVIA XPT clinical chemistry analyzer édnens Healthcare Diagnostics,
Eschborn, Germany). Trans-esterification of thgyfatids and quantification by gas
chromatography with flame ionization detection \wasformed as described previously [12].

2.7 Real-time PCR



Mouse livers were pulverized in liquid nitrogen aothl RNA was prepared using an
RNeasy Mini kit (Qiagen). cDNA was prepared by msegranscription (Thermo Fischer
Scientific, Waltham, USA), and real-time PCR assagse carried out with a LC480 Light
Cycler (Roche, Mannheim, Germany) witcdl, Scd2, Fasn andGapdh) or without CS
Ndufabl, COX19, CPT2, Hadha andRps2) universal probe library (Roche). Calculations
were done by a comparative method{2) and normalized tGapdh (for Scdl, Scd2 and
Fasn) or Rps2 (for CS, Ndufabl, COX19, CPT2 andHadha) as housekeeping gendse
applied primer sequences are shown in Suppl. Table

2.8 Transmission electron microscopy

Liver and quadriceps samples were fixed in 2.5%agaldehyde in 0.1 M sodium cacodylate
buffer and were analyzed as described previoudy [1

2.9 Western blot

Liver homogenates were loaded to an acrylamideuggwestern blots were performed as
described earlier [5h/B-tubulin antibody was purchased from Cell Signallreghnology
(Cambridge, UK), citrate synthase antibody from &ing(Cambridge, UK), and secondary
antibody was purchased from Santa Cruz Biotechiyq|8gnta Cruz, USA).

2.10 Statistics

Statistical evaluations were performed using GraphPrism 6.07. ANOVA with post hoc
Holm-Sid&k’s multiple comparison tests were useckloulate statistical significance
comparing four groups or two-tailed, unpaired Stidetests were applied with unequal

distribution when two groups were compared. Staksignificance was assumed at p<0.05.

3. Results

3.1 TallyHo mice



TallyHo mice represent a polygenic mouse modetlfabetes with mild steatosis and insulin
resistance. However, the mice display individuaeairof diabetes on standard diet; thus fast
and slow progressors can be identified among thewrder to study the effect of
Bezafibrate (BEZ) in different stages of diabetfies|yHo mice were divided into two groups
at 9 weeks of age. Mice with fasting blood gluce280 mg/dl were defined as late onset of
diabetes (LD) group, whereas mice with blood glecesues >200 mg/dl were classified as
early onset of diabetes (ED) group (Fig. 1A). THL3,mice represented a preventive group,
in which we studied whether BEZ could protect mita prediabetic stage from diabetes
progression; whereas ED mice served as a therapgotip, in which we investigated
whether BEZ treatment could revert establishedeteh

3.2 BEZ amédliorates diabetes, reduces plasma lipid levels, and improves glucose

tolerance.

In order to study whether BEZ has a beneficialctfte prevent the development of (LD
group) or ameliorate T2D (ED group), both TallyHowgps were treated for 8 weeks with the
BEZ containing diet (BEZ group) or with standarétdiSD). At 9 weeks of age, ED, SD
mice already showed higher BG levels compared tpSID mice (Suppl. Fig. 1A), although
both untreated groups developed diabetes by thefagéweeks (Fig. 1D). Compared to the
SD groups, BEZ reduced plasma lipid and glycenatle (Fig. 1B-C and Suppl. Fig. 1B),
suggesting reduced lipolysis. Furthermore, thelleV€RP, which is an inflammatory
marker, tended to decrease upon BEZ treatment (Stigp 1C), indicating a possible
amelioration of inflammatory processes. BEZ markelicreased blood glucose levels
measured by a glucometer (Fig. 1D), which was astied by plasma glucose
measurements using glucose assay (Suppl. Fig.dgin levels were lower (LD, BEZ vs
LD, SD) or remained unchanged (ED, BEZ vs ED, Stthe BEZ groups (Fig. 1E). As a

consequence, HOMA-IR values were normalized in IB#®Z groups (Fig. 1F). Furthermore,



BEZ attenuated the impaired glucose tolerance tyHa mice (Fig. 1G-H) without
increasing insulin levels during the glucose talemtest (Suppl. Fig. 1E-F). These results
suggest that BEZ improved insulin sensitivity atatcgse metabolism, which in turn resulted
in the normalization of blood glucose levels indegently of plasma insulin levels.

3.3 BEZ increases beta-cell mass.

Next, we studied the pancreatic architecture of Beated animals. BEZ elevated the
content of insulin producing beta-cells in thetisl@=ig. 2A-B) as it also increased total
insulin area in the pancreas as well as total mletber (Fig. 2C-D). Glucagon area
normalized to islets was higher in the ED, SD groompared to LD, SD mice, whereas total
glucagon area remained unchanged (Suppl. Fig. 2).

3.4 BEZ elevates ener gy expenditure and metabolic flexibility.

BEZ treatment resulted in lower body weight in L2 group; however, there was an
opposite effect in ED group (Fig. 3A). BEZ incredselative lean and decreased fat mass in
LD mice (Fig. 3B-C and Suppl. Fig. 3A-B), the lattemained significant, when normalized
to body weight (Suppl. Fig. 3C-D). BEZ increasedd@onsumption in LD group, but water
intake remained unaltered upon drug treatment (S&pp 3E-F). BEZ elevated carbon
dioxide production and oxygen consumption (Sup. #A-D); the latter remained
significant when normalized to body weight (Fig.)3ihd used as a marker for energy
expenditure. Respiratory exchange ratio (RER) aathbolic flexibility assessed as delta
RER were also higher in BEZ-treated animals (FErF3. Rearing and run distance were not
altered upon BEZ application (Suppl. Fig. 4E-H)e$& data suggest that improved
metabolic flexibility and energy expenditure coblkelinvolved in the beneficial role of BEZ.
3.5 BEZ reduces hepatic gluconeogenesisin LD mice.

In order to assess whether BEZ improves hepatidimsensitivity, we performed

euglycemic-hyperinsulinemic clamps in LD mice. Bach normoglycemia at the applied
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insulin dose (Fig. 4A), a higher glucose infusiaterwas needed in the BEZ group (Fig. 4B),
suggesting elevated insulin sensitivity. Endogerglusose production (EGP), which mainly
consists of hepatic gluconeogenesis [14], was itgdbn both groups with a significantly
stronger effect in the BEZ group (Fig. 4C). Gluctiag analysis showed an elevated whole
body glucose uptake in the BEZ group (Fig. 4D), bear glucose uptake was not increased
in M. quadriceps or epididymal fat tissues (Sup- 5A). Glucosuria was normalized under
BEZ treatment, suggesting the absence of diabatiany glucose loss (Suppl. Fig. 5B).
These results suggest that BEZ improved the hepastidin sensitivity via reduced
gluconeogenesis, which is involved in the ameliorabf diabetes.

3.6 BEZ reduces hepatic lipid contentsin LD mice and elevates relative MUFA contents

in ED mice.

To study the underlying mechanisms of the imprdwvepiatic gluconeogenesis, the hepatic
lipid content of BEZ-treated mice was assessedoldigical staining showed reduced
steatosis in LD mice upon BEZ treatment (Fig. 5#jch was associated with reduced total
hepatic TG content (Fig. 5B). Since fatty liveaikey component of the metabolic syndrome
and strongly associated with insulin resistancg, [ttfese data suggest that BEZ improves
insulin sensitivity in LD TallyHo mice possibly thmgh reduced hepatic steatosis. Lipotoxic
effects of FA and lipid intermediates counterasulm signaling, and these effects are
implicated in the pathogenesis of fatty liver anglulin resistance. Since chain lengths and
saturation state have major impact on lipotoxicoast of FA, and monounsaturated FAs
(MUFASs) have beneficial effects on patients witiDT[A6], we determined the exact FA
composition of hepatic triglycerides. As expectahf the reduced total hepatic TG content
(Fig. 5B), most of the TGs (normalized to liver giat) were lower in LD, BEZ animals
compared to LD, SD mice; ED, SD mice also showeglolr Gs compared to LD, SD group

(Suppl. Table 1). The total TG content is knowimtituence the relative composition of TGs
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with various FA lengths and saturation state [TRerefore, we compared the relative FA
composition only between ED, BEZ and ED, SD groupsvhich the total TG contents were
comparable (Fig. 5B). BEZ increased the relativaeteot of C14:0 and C16:0 FAs and
decreased C18:0 and C20:0 FA contents (Fig. 5Cpéetfel). C16:1 and C18:1 MUFAS were
markedly increased upon BEZ treatment (Fig. 5C dheighanel); however, the precursor n-3
and n-6 polyunsaturated FAs (PUFASs) as well as nadingr PUFAS were decreased (Fig.
5C, right panel and Suppl. Fig. 5C-D). BEZ elevatddl MUFA but reduced total PUFA
content (Fig. 5D). More importantly compared to Ei2, SD group, ED, BEZ mice showed
higher MUFA/SFA ratio (0.614+0.176 vs 0.340£0.1890.0121), elevated stearoyl-CoA-
desaturase (SCD) activity index (cis-C16:1n-7/C16:088+0.032 vs 0.019+0.012,
p=0.0003), and increaseld-novo lipogenesis index (C16:0/C18:2n-6; 4.66x1.95 vs
1.76+0.42, p=0.0011). In order to investigate tle of SCDs and FA synthesis the transcript
levels ofScdl and2 as well as the fatty acid synthaS@&8N) were studied by real-time PCR.
BEZ elevated the mRNA level of both SCDs &#bBN (Fig. 5E). These results suggest that
BEZ increases hepatic lipogenesis and SCD actmitych, in turn, elevates the content of
MUFAs. On the other hand, the reduced PUFA preecar&18:3n-3 and C18:2n-6) and
PUFAs suggest that BEZ also elevates FA oxidation.

3.7 BEZ increases mitochondrialmassin TallyHo mice.

Since mitochondria play a crucial role in FA oxidat we studied mitochondrial mass using
different approaches. Transmission EM revealedjadrimitochondrial number in the BEZ
groups compared to untreated controls (Fig. 6AcEYate synthase (CS) is usually used as a
marker for mitochondrial mass, and protein as a&IMRNA level of CS were elevated in
BEZ-treated animals (Fig. 6C-D and Suppl. Fig. @Aigher transcript levels of other
mitochondrial genes were also found (Suppl. FigE§BThese results indicate that BEZ

induces mitochondrial biogenesis in the liver ofiyirdo mice. The elevated mitochondrial
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mass and decreased lipid and PUFA precursor comtéme liver of LD, BEZ mice suggest
increased hepatic fatty acid oxidation, which cdugdnvolved in the attenuated hepatic
gluconeogenesis. Moreover, BEZ increased hepati€Mtbntents, which is possibly
involved in the amelioration of glucose metabolisntED, BEZ group. Skeletal muscle of

BEZ-treated animals showed normal mitochondrials1{&sippl. Fig. 7).

4. Discussion

The major finding of our study was that BEZ-treateddw progressor (late onset of
diabetes) LD TallyHo mice were protected againabdies, but, more importantly, the
established diabetes in early onset of diabeteg giup was reverted upon drug
application. The anti-diabetic potential of BEZ wedso reported in rodent models for T1D
[5] and T2D [3, 17] as well as in patients with TRD 18, 19]. Furthermore, diabetes
prevalence in patients with coronary artery dispas® showed impaired glucose tolerance,
was also attenuated after BEZ application [20].sEhesults indicate that BEZ could indeed
prevent the progression of a prediabetic statéinaal diabetes and even revert an
established diabetic state in rodents and humangever, the underlying mechanisms are
currently poorly understood.

The anti-diabetic effect of the drug is probablyibtited to its insulin sensitizing
capacity indicated by stronger inhibition of endoges glucose production and decreased
HOMA-IR index. Tenenbaum et al. also reported BIBZ treatment was indeed efficient to
prevent the increase of HOMA-IR index during twayé&llow up in patients with coronary
artery disease [21]. Although fenofibrate did nleaisgge HOMA-IR in patients with impaired
glucose tolerance or diabetes, BEZ did signifigaddcrease HOMA-IR compared to
placebo group after 8 weeks of treatment [22] herastudies also reported lower HOMA-IR

in BEZ-treated patients [19, 23].
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In our euglycemic-hyperinsulinemic clamp experinsemsulin stimulus of BEZ-
treated animals caused negative endogenous glpcodection (EGP) values. Negative or
“zero” values for EGP were also reported in rodantels by us [10] and others [14, 24-26]
and could be attributed to the high glucose infusate [27] in the BEZ group due to the big
difference in insulin sensitivity between BEZ ard §oups. Therefore, the negative values
of the BEZ-treated mice are assumed to correspmfuketo” as also reported by others [14].
Despite the negative EGP values, our results gisaidwed that BEZ treatment led to a
pronounced reduction in EGP reflecting improvedatiegnsulin sensitivity. There are only a
few studies reporting insulin sensitivity from eygmic-hyperinsulinemic clamp
experiments in patients, and BEZ treatment shoveealteration in insulin sensitivity in
patients with high lipid levels [28] or diabete®]2while others found an improved insulin
sensitivity [30, 31]. These results indicate thatter studies are needed to investigate the
role of BEZ in insulin sensitivity in human subjecHowever, dual PPARRand PPAR
activation was recently shown to improve hepatsulim sensitivity in patients with insulin
resistance [32].

In contrast to the low insulin levels of BEZ-tredtmice, these animals showed an
increased beta-cell area compared to untreatedot®BEZ has been shown to improve islet
architecture in diabetic mice with type 1 diabd&es33], and, compared to the PPAR
activator fenofibrate or PPARactivator rosiglitazone, it was the only PPAR \aattior, which
prevented the compensatory islet hypertrophy ih Bigcrose, high fat diet treated mice [34],
pointing to its unique attribute. PPAR activatiauld directly improve beta-cell function
[35] or could also occur as a secondary consequaibe amelioration of gluco- and
lipotoxicity.

Metabolic flexibility is assumed as the abilitydbange substrate oxidation from fat

to carbohydrate and its malfunction is intimatediated to insulin resistance and ectopic lipid
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accumulation [36]. Since mitochondria play a cruoaée in substrate oxidation [37],
mitochondrial dysfunction was reported in skeletalscle of insulin resistant mouse models
[38] and patients [39] as well as in patients wyhe 2 diabetes, and it was associated with
metabolic inflexibility [40]. Furthermore, impairaditochondrial beta-oxidation was
postulated to contribute to hepatic steatosis [#agrefore, the elevated mitochondrial mass
found in the liver of BEZ-treated animals couldibveolved in the improved metabolic
flexibility. In TallyHo mice, BEZ elevated respim@ly exchange ratio (RER), which reflects
higher carbohydrate oxidation, and the higher dRE&R upon BEZ treatment indicates better
metabolic flexibility. BEZ treatment of patientstwPNPLA2 mutation indeed improved
metabolic flexibility, which was associated withttee insulin sensitivity [31], suggesting an
overall effect of BEZ in mice and humans. In aduditithe enhanced energy expenditure
observed in BEZ-treated TallyHo mice is postuldtete beneficial in the prevention of lipid
accumulation and insulin resistance [42].

Compared to LD, SD animals, ED, SD mice exhibitedrdased hepatic fat content,
which is probably attributed to the long lastingluitic and insulin deficient state since the
diminished insulin level could impair fat storag¥ the other hand, LD, SD mice are a good
model for non-alcoholic fatty liver disease (NAFLB)nce they showed hepatic steatosis and
insulin resistance, which are hallmarks for NAFL4L3]. The precursors of PUFAS, which
cannot be endogenously synthesized but only suppiieghe food, showed lower hepatic
contents in BEZ-treated animals in association wattuced content of other PUFAs. These
data indicate the BEZ elevated FA oxidation and asnsequence decreased hepatic lipid
levels. The lower hepatic TG level and the incrdaséochondrial mass observed in the
BEZ-treated LD TallyHo mice suggest an improvedrétabolism, which could lead to less
lipid intermediates attenuating insulin resistaand enhancing the inhibitory effect of

insulin on endogenous glucose production (Fig. GExddition to reducing lipid levels in
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LD mice, BEZ also changed the fatty acid compositb ED mice. PPAR knock-out mice
are characterized by lower C16:1n-7 fatty acid lavéepatic TG fraction compared to wild-
type controls [44]. Thus, the 5.7-times higher @hé7 level upon BEZ treatment in ED mice
suggests that PPARplays an important role in elevating MUFAs. A digtriched in

MUFAs was shown to significantly decrease HbAlaspia glucose levels, and HOMA-IR
index in patients with T2D [16]. Thus, the elevalegbatic MUFAS in the BEZ-treated
animals could also participate in ameliorating limsgsensitivity and diabetes. Stearoyl-CoA-
desaturase (SCD) is the corresponding enzyme, visnig@sponsible for the production of
C16:1n-7 and C18:1n-9. In BEZ-treated ED animaltghér mRNA levels of both SCD
isoform and elevated SCD activity index were obsdnsince high hepatic SCD1 activity
was associated with low hepatic fat content andlimnsensitivity in human subjects [45-47],
an increased SCD activity in BEZ-treated mice caddtribute to the improved hepatic
insulin sensitivity.

Although the combined treatment of NAFLD, obes#tgd T2D is intensively studied,
currently there are only limited drugs availabl8][4n the recent years, novel dual PRAR
and PPAR agonists were studied; however, most of the newlidates showed undesirable
effects [49]. In contrast to them, BEZ is alrea@yy#ars on the market, it activates all three
PPARs, and it has a good safety [20]. RecentlpweinPPARY and PPAR activator,
Elafibranor (GFT505) was shown to have benefidi@ats improving endogenous glucose
production, blood glucose levels, and steatospatrents with insulin resistance or NASH,
respectively [32, 50]. These observations and atat duggest that the activation of PPARs

may represent a good treatment option for subjeitksdiabetes and NAFLD.
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Figurelegends

Fig. 1 Levelsof blood glucose, plasma lipid, insulin, and glucose tolerance test

A The figure represents the averages of weekly medduood glucose values (values for
week 9 are also showed as Suppl. Fig. 1A). Tallyhice were split into two groups
according to the 9 weeks old blood glucose valaagy{ onset of diabetes (ED) group:>200
mg/dl, late onset of diabetes (LD) group:<200 mgMEZ (or SD) feeding was started at 9
weeks of age and lasted for 8 weeks. Standarq$li&Yt, BEZ diet (BEZ)B Plasmanon-
esterified fatty acids (NEFA) ard triglyceride (TG) levelsD Fasted blood glucose (BG)
values E Plasma insulin level$: Homeostatic model assessment of insulin resistance
(HOMA-IR) values.G Glucose tolerance test (GTT) aHdarea under the curve (AUC)
evaluation. Columns represent averages * standadtibns; n=6-12* denotes significant
differences between ED, BEZ vs. ED, SD; **p<0.0%px0.001; #denotes significant
differences between ED, SD vs. LD, SD; ##p<0.0¥p#®.001;8denotes significant
differences between LD, BEZ vs. LD, SD; 888p<0.001.

Fig. 2 Pancreas ar chitecture

A Pancreata were stained with anti-insulin (greexd)anti-glucagon (red) antibodies and
visualized by fluorescence microscopy. Cell nualere stained with DAPI (blue). The white
bar represents 50 um. Representative areas aresBdmsulin area normalized to islet area
andC total insulin area normalized to pancreas are& walculated using Architect software.
D Islet number was manually counted and values wenaalized to total pancreas area.
Columns represent averages + standard deviatie®s; denotes significant differences
between ED, BEZ vs. ED, SD; *p<0.05, **p<0.@&}enotes significant differences between
ED, SD vs. LD, SD; ##p<0.0Bdenotes significant differences between LD, BEZ\3,

SD; §8p<0.01.

Fig. 3 Body composition and indirect calorimetry
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A Body weight.B Fat andC leanmass were measured by gNMR (Suppl. Fig. 3A-B) and
normalized to body weights in 9. Average energy expenditure normalized to body
weights.E Respiratory exchange ratios (RERs) were calculayadividing carbon dioxide
production (VCQ) by oxygen consumption (\VP(Suppl. Fig. 4A-D). The gray rectangle
represents 12-hour dark phase (0-time point reptedep.m.)F ARER was calculated as
RERnaxRERin. Columns represent averages + standard deviatie@s12.*denotes
significant differences between ED, BEZ vs. ED, &50.05, **p<0.01, ***p<0.001;
#denotes significant differences between ED, SOL5.SD; #p<0.05, ###p<0.001;
8denotes significant differences between LD, BEZL\, SD; §8p<0.01, §88p<0.001.

Fig. 4 Euglycemic-hyperinsulinemic clamp

A Steady state BG levels during the clamslucose infusion rate (GINFE Endogenous
glucose production (EGP Whole body glucose uptake. Columns represent agsrag
standard deviations; n=8 animadgenotes significant differences between LD, BEZL\3,
SD; §p<0.05, §§8§p<0.001.

Fig. 5 Hepatic lipid content

A Hematoxylin and eosin staining of the liver, thadi bar represents 50 pum. Representative
areas are show. Liver total TGlevels andC relative liver TG fatty acid (FA) composition.
n- “number” denotes the position of double bounmisnted from the omega carbon.
Saturated FA (SFA), monounsaturated FA (MUFA) aalyynsaturated FA (PUFA),
pre:precursorD The relative content of total SFA, MUFA and PUFATIG fraction denoted
as % of total FAE ED, SD group normalized relative mRNA levels c# thdicated
transcriptsScd: Stearoyl-CoA-desaturadeasn: fatty acid synthase. Columns represent
averages + standard deviations; A, C, D and E semiten=4-7; B represents n=8-9 animals.

*denotes significant differences between ED, BEZBI3, D; *p<0.05, **p<0.01,
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***n<0.001. #denotes significant differences between ED, SOLi5.SD; ###p<0.001,
8denotes significant differences between LD, BEZL¥3, SD; §88p<0.001.

Fig. 6 Hepatic mitochondrial mass

A Liver mitochondrial mass and architecture wer@sssd by transmission EM, the black
bar denotes 2 um. Representative areas are sBoMiitochondrial number was quantified in
five independent regions and normalized to theyaeal area (LA). C Hepatic citrate
synthase (CS) protein level was analyzed usingese$tiot, and the intensity of the bands
was normalized to tubulin and depicted as ratibDp SD group. Representative pictures are
shown in Suppl. Fig. 6AD Hepatic gene expression was studied using rea-MOR and
depicted as ratio to LD, SD groupS. citrate synthasé Our data demonstrated that BEZ
improves glucose metabolism in TallyHo mice. Irstbctheme, the possible underlying
mechanisms observed in LD mice are depicted, wénielprobably involved in the beneficial
effects of BEZ. Columns represent averages + stdrdizviations; A-B represent n=4; C-D
represent n=7-9 animatglenotes significant differences between ED, BEZBI3, SD;
**p<0.01, ***p<0.001; 8denotes significant differences between LD, BEZL\3, SD;

§p<0.05, §8§p<0.001.
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Highlights
» Bezafibrate treatment reduced steatosis and ameliorated hepatic insulin resistance.
» Bezafibrate treatment enhanced hepatic mitochondrial mass and metabolic flexibility.
» Bezdfibrate trestment elevated beta-cell mass.
» Bezdfibrate treatment protected mice from developing diabetes.

» Bezafibrate treatment normalized hyperglycemiain the manifest diabetic state.



