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IL-12 protects from psoriasiform skin inflammation
Paulina Kulig1, Stephanie Musiol2, Sandra Nicole Freiberger3, Bettina Schreiner1, Gabor Gyülveszi4,

Giancarlo Russo5, Stanislav Pantelyushin1, Kenji Kishihara6, Francesca Alessandrini2, Thomas Kündig3,

Federica Sallusto4, Günther F.L. Hofbauer3, Stefan Haak2,* & Burkhard Becher1,*

Neutralization of the common p40-subunit of IL-12/23 in psoriasis patients has led to a

breakthrough in the management of moderate to severe disease. Aside from neutralizing

IL-23, which is thought to be responsible for the curative effect, anti-p40 therapy also

interferes with IL-12 signalling and type 1 immunity. Here we dissect the individual

contribution of these two cytokines to the formation of psoriatic lesions and understand the

effect of therapeutic co-targeting of IL-12 and IL-23 in psoriasis. Using a preclinical model for

psoriatic plaque formation we show that IL-12, in contrast to IL-23, has a regulatory function

by restraining the invasion of an IL-17-committed gdT (gdT17) cell subset. We discover

that IL-12 receptor signalling in keratinocytes initiates a protective transcriptional programme

that limits skin inflammation, suggesting that collateral targeting of IL-12 by anti-p40

monoclonal antibodies is counterproductive in the therapy of psoriasis.
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P
soriasis is a chronic relapsing-remitting inflammatory skin
disease that develops in genetically predisposed individuals
after an unknown initial environmental, pathogenic

or internal trigger. It is characterized by thickened epidermis
(acanthosis), a result of keratinocyte hyper-proliferation,
dysregulated keratinocyte differentiation (for example,
parakeratosis), increased vascularity and accumulation of
inflammatory infiltrates of T cells, neutrophils and dendritic
cells1. As T helper (TH)-17, TH22 and TH1 cells are found
in psoriatic lesions2, current understanding of the disease
pathogenicity proposes a model in which activated dendritic
cells and macrophages express IL-12 and IL-23, which
polarize autoreactive T cells into their subsequent
effector phenotype3. As IL-12 and IL-23 are detected in
psoriatic lesions4,5, targeting both cytokines concomitantly
(through neutralization of the common IL-12/23p40 subunit)
may have a synergistic therapeutic effect. Indeed, two anti-IL-12/
23p40 monoclonal antibodies (mAbs; ustekinumab and
briakinumab) have been effective in the treatment of psoriasis
vulgaris, and ustekinumab is now registered for clinical use6–9.

However, data from mouse models as well as clinical studies
demonstrates the IL-23/IL-17 axis to be the dominant pathway in
the pathogenesis of the disease10. Repeated intradermal injections
of IL-23 in mice led to development of a psoriasiform
inflammatory phenotype11, and IL-23-driven effector cytokines,
IL-17A, IL-17F and IL-22, have been described as important
factors in psoriatic plaque formation12,13. Moreover, genome-
wide associated studies point at several genes of the IL-23
pathway, such as IL23R, IL12b and IL23a, as risk factors for
psoriasis14. Although TH17 cells are implicated as effector cells in
psoriasis, data generated in the Aldara-induced psoriatic plaque
formation model show that psoriatic lesion development can be
independent of abT cells, but relies on the activity of a specific
subset of gdT17 cells discriminated by their Vg4þ T-cell receptor
(TCR) (nomenclature according to Heilig and Tonegawa)15.
In concert with type 3 innate lymphoid cells, gdT cells are the
major source of IL-17A, IL-17F and IL-22 in the inflamed skin16.
Innate-like lymphocytes constitutively express high levels of the
IL-23 receptor12,17, making them immediate responders to IL-23
and therefore suggesting a potential role in lesion formation.
IL-17A-neutralizing antibodies ixekizumab and secukinumab, as
well as an IL-17A receptor-blocking antibody, brodalumab, have
successfully been tested in psoriasis patients18–20. First published
results showed strong clinical improvement and strengthen the
notion that the IL-23/IL-17 axis is essential in the pathogenesis of
psoriasis. Moreover, a clinical study on anti-IL-23p19 mAb
(guselkumab) confirmed a pathogenic role for de-regulated IL-23
in psoriasis21.

Whereas IL-23p19 and IL-23p40 transcripts have been shown
to be increased in psoriatic lesions, IL-12p35 was not22. IL-12 and
IL-23 are structurally related and mainly expressed by activated
dendritic cells and macrophages. Despite their similarities, both
cytokines trigger vastly divergent immunological pathways. IL-12
is an important factor for the differentiation of naive T cells into
interferon-g (IFN-g)-producing TH1 cells, whereas IL-23 plays a
role in sustenance of TH17 responses23,24. It has been shown that
neutralization of IL-12 leads to the amelioration of psoriasis-like
skin disorder in mice. However, the antibody used was targeting
the common p40 subunit, thus neutralizing both IL-12 and IL-23
(ref. 25). The therapeutic activity of the p40-specific antibody is
possibly due to the inhibition of IL-23 signalling pathway and
not IL-12 (ref. 26). Nonetheless, the presence of IL-12 and
IL-12-induced factors has been reported in human psoriatic
lesions, which suggests their potential involvement in disease
pathology27,28. The collateral inhibition of IL-12 and its potential
affect on psoriasis is currently under discussion, but the actual

contribution of IL-12 to the formation of psoriasiform lesions has
never been addressed. Clinical studies suggest a superior efficacy
through neutralization of the IL-23/IL-17 axis over blockade of
IL-12/23p40 (refs 29–31). The aim of this study is to compare the
individual roles of IL-12 and IL-23 in the pathophysiology of
psoriatic plaque formation in vivo. We show that IL-12 opposes
the pathogenic function of IL-23 in psoriatic plaque formation by
signalling to the local stroma thereby restricting the cellular
niche for type 17 T-cell accumulation. Our findings correct the
prevailing view that IL-12 serves a primarily pro-psoriatic
function during psoriatic plaque formation.

Results
Divergent roles of IL-12 and IL-23 in psoriatic inflammation.
Equally to the human disease, psoriatic lesions induced by topical
Aldara treatment of mice can be reduced by application of
neutralizing anti-p40 mAbs16. Psoriatic plaque formation is also
greatly decreased in mice deficient in p40 (Il12b� /� )
(Supplementary Fig. 1). Correspondingly, critical markers of
psoriasiform inflammation in this model, such as neutrophil
invasion and the accumulation of IL-17A-secreting Vg4þ gdT
cells in the lesions were reduced (Supplementary Fig. 2).
To clarify the individual contributions of IL-12 and IL-23 to
plaque formation we monitored the clinical disease course in
mice deficient in the subunit specific to IL-12 (p35, Il12a� /� ), its
receptor (Il12rb2� /� ) and IL-23 (p19, Il23a� /� ). Whereas
IL-12 is critical for type 1 immune responses, which in turn
are thought to contribute to plaque formation, Il12a� /� mice
(unaltered IL-23 signalling) developed significantly more severe
inflammation compared with wild-type (WT) mice (Fig. 1a).
Mice lacking the IL-12-specific receptor subunit (Il12rb2� /� ),
likewise, developed more severe lesions (Fig. 1b and
Supplementary Fig. 1), pointing towards a regulatory role of
IL-12 in psoriasiform lesion formation. Of note, when we
compared the skin pathology of IL-23-deficient mice, Il12b� /�

(lacking IL-12 and IL-23) and Il23a� /� (only lacking IL-23), we
also observed a trend towards a protective effect of IL-12
(Supplementary Fig. 1).

The aggravated psoriatic plaque formation in mice defective in
IL-12 signalling encompassed accelerated disease progression as
well as more severe scaling and erythema, which suggested a
compromised skin barrier function (Fig. 1c). For quantification of
barrier integrity we measured trans-epithelial water loss
(TEWL)32 confirming that in the absence of IL-12 signalling
Aldara treatment resulted in a more pronounced breach of
epithelial barrier (Fig. 1d). Histopathologic features were also
more pronounced, and we observed increased frequencies of
micro-abscesses, mostly consisting of neutrophils in the stratum
corneum, and increased acanthosis, when IL-12 was absent
(Fig. 1c,e,f). Cytofluorometric quantification validated the
amplified recruitment of neutrophils into the skin of Il12a� /�

mice (Supplementary Fig. 3). The data collectively suggest that
collateral targeting of IL-12 signalling in psoriasis could impede
the therapeutic efficacy of targeting IL-23.

The prototype function of IL-12 is to induce type 1 responses
and to determine whether the regulatory effect of IL-12 in plaque
formation is mediated through IFN-g, we induced Aldara lesions
in Ifng� /� mice (Supplementary Fig. 4). In contrast to Il12a� /�

mice, Ifng� /� mice had a slightly less severe course of disease.
This demonstrates two points: (a) the protective role of
IL-12 works independent of IFN-g; and (b) IFN-g itself is
pro-inflammatory and promotes plaque formation.

To understand the molecular processes involved in the
exaggeration of the psoriatic inflammatory response in IL-12
signalling-deficient compared with WT mice, transcript analysis
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Figure 1 | Psoriatic plaque formation in Aldara-treated IL-12- and IL-23-deficient mice. (a,b) WT, Il12a� /� , Il23a� /� and Il12rb2� /� mice were

treated with Aldara for 6 days. Back skin lesions during peak disease (day 4) represented as per cent change in skin thickness compared with untreated skin

on day 0. Cumulative representation of (a) four independent experiments, (n¼ 12 per WT, 13 per Il12a� /� and 7 per Il23a� /� , average mean±s.e.m.)

and (b) nine independent experiments (n¼ 26 per WT and 27 per Il12rb2� /� , average mean±s.e.m.). (c) Representative photos taken on day 3 post

Aldara treatment. (d) Measurement of TEWL in Aldara-treated back skin. Cumulative graph of four independent experiments (n¼9 per WT and 10 per

Il12rb2� /� , average mean±s.e.m.). (e) Back skin sections stained with haematoxylin and eosin on day 4 post treatment; scale bar, 200mm.

(f) Quantification of mouse skin histology: total counts of epidermal layers and skin abscesses. Cumulative graph of 2–3 independent experiments

(n¼ 7–9 per WT, 4 per Il12a� /� and 7–11 per Il12rb2� /� , average mean±s.e.m.). (g) Real-time quantitative PCR analysis of the whole skin on day 5 post

treatment. Cumulative graphs of three independent experiments representing fold changes relative to the average WT expression levels of independent

experiments (n¼ 10–18 per WT and 10–15 per Il12rb2� /� ). Data shown as box plots visualizing the distribution by min and max (whiskers) the 25th–75th

percentile (box) and median (band). Each data point represents an individual mouse. *Po0.05, **Po0.01, ***Po0.001 (a,b) one way analysis of variance

(ANOVA) with Bonferroni post test, (d) two-way ANOVA with Bonferroni post test, (f–i) unpaired two-tailed t-test). NS, not significant.
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of the respective lesional skin was performed (Fig. 1g–i).
Hallmark pathways of psoriasis were analysed and among the
cytokines IL-17A and IL-17F were elevated in the absence of IL-
12Rb2 (Fig. 1g). As expected, the inflamed skin of Il12rb2� /�

mice also showed a marked decrease of IFN-g. We thus
interrogated downstream transcripts relevant to psoriasiform
inflammation induced by type 17 cytokines and found a range of
antimicrobial peptides to be significantly upregulated (Fig. 1h). At
the same time lipocalin 2 (Lcn2) revealed increased neutrophil
activity in Il12rb2� /� lesions, also indicative of an increased type
17 bias. Amongst relevant chemokines, CXCL9, which is
dominantly controlled by IFN-g, was found to be decreased
(Fig. 1i). We found CCL20 to be significantly increased in the
lesion of Il12rb2� /� mice (Fig. 1i). CCL20 is the ligand of CCR6,
a marker of dermato-tropic type 17 effector T cells, like gdT17
and TH17 cells.

IL-12 controls invasion of Vc6Vd1þ cdT17 cells into the skin.
IL-17A-producing Vg4þ gdT cells are the main drivers of the
psoriasiform inflammatory processes in the skin and an
established marker for disease severity16. However, the skin of
Aldara-treated Il12rb2� /� mice had a distinct decrease in the
frequency of these cells (Fig. 2a and Supplementary Fig. 5). The
increase in total gdT cell infiltration was attained by the
appearance of another gdT cell subpopulation. Those cells
neither expressed the Vg4 (characteristic for highly mobile
IL-17A-secreting, skin-invading T cells) nor the Vg5 chain of
skin-resident dendritic epidermal T cells (DETCs). Whereas
Vg4�Vg5� gdT cells can be found in low numbers in psoriatic
lesion of WT mice, they accumulated in the inflamed skin of mice
deficient in IL-12Rb2 (Fig. 2a). We identified the Vg4�Vg5�

gdT cell population as the invariant gdT cell subset expressing
Vg6Vd1þ TCR chains (Fig. 2b,c). This finding corresponds with
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the recent report33, in which Vg6þ T cells were described as an
IL-17-secreting effector subset with skin-homing capacity. The
overall levels of IL-17A in Il12a� /� and Il12rb2� /� mice were
increased with Vg6þ gdT cells being main producers of IL-17A
(Fig. 3a). To determine whether the elevated levels of IL-17A
are responsible for the exacerbated psoriasiform response of
Il12rb2� /� animals, we found that neutralization of IL-17A led
to the reduction in skin thickness, improved epidermal integrity
and reduced neutrophil invasion (Fig. 3b,c and Supplementary
Fig. 6). Of note, the overall cell numbers of effector Vg4 and
Vg6 gdT cells were not altered (Supplementary Fig. 6).

To address if Vg6þ T cell accumulation in the skin is directly
coupled to IL-12 deficiency or rather a consequence of the
exaggerated inflammation in the mutant mice (Il12rb2� /� and
Il12a� /� ), we went back to the Aldara-treated Il12b and Il23a
deficient mice, which both lack IL-23 and only differ in their
deficiency and sufficiency of IL-12, respectively. Interestingly, we
noticed that even in mice lacking IL-23 and thus, full-blown
inflammation, we observed differences in Vg6þ T-cell
accumulation suggesting that IL-12 regulates the gdT17 cells in
the skin (Supplementary Fig. 7). To test if Vg6þ gdT17 cell
accumulation is causative in the aggravation of the disease when
IL-12 is absent, we bred Vd1� /� mice, which selectively lack
functional Vg6Vd1þ T cells34,35, on to Il12rb2� /� background.
Lack of Vg6Vd1þ cells consistently reduced the exaggerated
disease phenotype in IL-12R mutants (Fig. 3d), suggesting a
pivotal role of the Vg6þ gdT17 cell subset in pathogenesis under
the control of IL-12. This hyper-pathogenic potential of Vg6þ

effector cells extends its biological relevance to non-mutant WT
mice, as we noted a positive correlation between skin
thickening—a robust clinical parameter of psoriatic plaque
formation—and the ratio of Vg6þ effectors amongst the pool
of dermal gdT cells in WT mice (Pearson’s r¼ 0.615, P¼ 0.0086;
Fig. 3e).

The p35 subunit is shared between two members of the IL-12
superfamily, IL-12 (p35/p40) and IL-35 (p35/EBI3). Although
IL-35 has been demonstrated to have predominantly regulatory
functions36, Ebi3� /� mice did not phenocopy the aggravated
pathology of IL-12 mutants, demonstrating that IL-12 and not
IL-35 exerts protective functions in psoriasis (Supplementary
Fig. 8). This was confirmed by local IL-12 administration,
which reduced inflammation in Il12a� /� mice (Fig. 4a) but
not in Il12rb2� /� mice (Fig. 4b). Correspondingly, IL-12
administration directly to the lesion diminished the invasion by
gdT17 cells (Fig. 4c). We also treated WT mice with anti
IL-12p70 heterodimer-specific neutralizing antibody, and
observed increased skin thickness as well as decreased skin
integrity (Fig. 4d,e). The absolute numbers of inflammatory
infiltrates, including neutrophils, effector gdT cells and IL-17A-
producing cells were also enhanced (Fig. 4f). The combination of
these loss- and gain-of-function in vivo experiments led us to
conclude that IL-12, which is produced within the inflammatory
lesion, limits inflammation by restricting the numbers of
pathogenic gdT17 cells.

IL-12 elicits a protective programme in keratinocytes. The
IL-12R complex is expressed on certain subsets of natural killer
(NK) cells, NK T cells, gdT cells and activated abT cells37. Here
we show the regulation of gdT17 cell accumulation in the skin
mediated by IL-12 signalling. Accordingly, we hypothesized a
direct response of gdT17 cells to IL-12. For this, we determined
Il12rb2 expression directly on skin-associated gdT cells (Vg4þ ,
Vg6þ and Vg5þ subsets) sorted from psoriatic WT and
Il12rb2� /� skin. As expected, we found high levels of Il12rb2
RNA in Vg5þ DETCs. However, we failed to detect Il12rb2

transcripts in the dermal Vg4þ and Vg6þ cell populations
(Fig. 5a). IL-12 stimulation of DETC, similarly to TH1 effector
cells, induces a type 1 cytokine responses dominated by IFN-g
(ref. 38), which however did not mediate a protective effect of
IL-12 in psoriatic plaque formation (Supplementary Fig. 4).
Furthermore, DETC have been excluded from contributing
to psoriatic plaque formation by a comprehensive study of
Stockinger and colleagues using aryl hydrocarbon receptor
mutant mice39, based on the observation that cell intrinsic
aryl hydrocarbon receptor deficiency in gdT cells leads to an
almost complete absence of skin-resident DETCs while other
dermal gdT cell populations are not affected40,41. As we did not
find a possible direct link between IL-12 and its effect on gdT
cells, we screened the skin for alternative IL-12 responders.
Keratinocytes actively participate in the regulation of immune
responses in the psoriatic skin42,43, and there are several
reports demonstrating that keratinocytes are responsive to
IL-12 (refs 44–46) and that IL-12R engagement activates both
STAT-3 and STAT-4 in keratinocytes, which protects against
ultraviolet-mediated skin damage47.

We thus sorted CD49fhigh keratinocytes from naive WT and
Il12rb2� /� mice (Supplementary Fig. 9) and detected Il12rb2
transcripts (Fig. 5a). To determine whether the IL-12R expression
by keratinocytes would explain the exacerbated disease phenotype
of IL-12R-deficient mice, we generated bone marrow chimeras
by transferring WT (together with neonatal thymocytes to
provide gdT17 cells)17 into either WT or Il12rb2� /� recipients
(Supplementary Fig. 10a). Aldara treatment resulted in increased
skin inflammation when IL-12R was missing from the skin
stroma (Fig. 5b). The majority of effector T cells present in the
Aldara-treated skin were indeed of donor origin (Supplementary
Fig. 10b). Again, we observed increased inflammation and
leukocyte skin invasion by neutrophils and IL-17-producing T
cells in the mice, where IL-12R was lacking in keratinocytes
(Supplementary Fig. 10c).

These data open the possibility that in the context of
psoriasiform lesion formation, not only lymphocytes but also
the epidermal stroma has the capacity to directly respond to
IL-12. To further elaborate on this important link and to translate
our findings to the human skin, we examined clinical biopsies and
found ample expression of IL-12Rb2 protein in human epidermis
(Fig. 5c). Confocal microscopy further confirmed IL-12Rb2
co-localization with the keratinocyte marker K14 (Fig. 5d). To
further ascertain the cellular identity of the IL-12Rb2-bearing
stroma, we expanded human primary keratinocytes in vitro
and performed immunoblotting of the IL-12Rb2 protein.
Keratinocytes had abundant IL-12Rb2 levels comparable to
activated peripheral blood mononuclear cells (PBMCs), whereas
no signal was detected in unstimulated human PBMCs or
monocytes (Fig. 5e and Supplementary Fig. 11). Of note,
we also found IL-12Rb2 expression in human psoriatic skin
(Supplementary Fig. 12).

To gain unbiased insights into the molecular processes induced
by IL-12 signalling in keratinocytes, we performed transcriptomic
analysis by next-generation sequencing (NGS) of sorted
keratinocytes from Aldara-treated WT and Il12rb2� /� animals,
at a time point before the mice display differential disease
development. We identified 41,000 significantly altered
expression features between the groups, conforming to a stringent
significance threshold (Po0.001; Fig. 6a). Amongst the top 100
most significant differences between Il12rb2� /� (Aldara) and
WT (Aldara), we found a broad range of factors closely associated
with human psoriasis48,49 as well as mouse models of the disease,
for example, involucrin (Ivl), late cornified envelope 3D (Lce3d),
b14 defensin (Defb14), matrix metallopeptidase 12 (Mmp12),
IL-24 (Il24), serum amyloid A (Saa3), transforming growth
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Figure 3 | Vc6þ cdT17 exacerbate psoriasiform inflammation. WT, Il12a� /� , Il12rb2� /� and Il12rb2� /�Vd1� /� mice were treated with Aldara for 6

days. (a) Representative plots and cumulative graphs of two independent experiments depicting flow cytometry analysis of inflamed skin; cells were gated

on CD45þCD11b� leukocytes and analysed for the expression of IL-17A (n¼ 7 per WT, 6 per Il12rb2� /� and 8 per Il12a� /� , average mean±s.e.m.).

(b,c) Representative experiment out of three depicting psoriatic plaque formation in animals treated with neutralizing antibody against IL-17A. (b) Change

in skin thickness compared with untreated skin on day 0 (n¼ 3 per WT, 4 per Il12rb2� /� isotype and 5 per Il12rb2� /� anti-IL-17A, average mean±s.e.m.)

and (c) measurement of TEWL in Aldara-treated back skin (n¼ 3 per WT, 4 per Il12rb2� /� isotype and 5 per Il12rb2� /� anti-IL-17A, average

mean±s.e.m.). (d) Back plaque formation represented as per cent change in skin thickness compared with untreated skin on day 0. Cumulative graph of

five independent experiments (n¼ 17 per WT, 15 per Il12rb2� /� and 12 per Il12rb2� /�Vd1� /� , average mean±s.e.m.). (e) Pearson’s correlation analysis

of Vg6þ gdT cells in inflamed back skin calculated as per cent of all dermal gdT cells and per cent change in epidermal thickening in WT mice (n¼ 17).

Each data point represents an individual mouse. **Po0.01, ***Po0.001 ((a) unpaired two-tailed t-test, (b–d) two-way ANOVA with Bonferroni

post test).
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factor b2 (Tgfb2) and different serin peptidase inhibitors (Serpin).
Figure 6b summarizes an excerpt of factors typically associated
with psoriasis overlapping with those detected here.

The majority of transcriptional changes found in the
comparison Il12rb2� /� (Aldara) versus WT(Aldara) were in

gene families typically involved in tissue structure
(Supplementary Fig. 13a), keratinocyte differentiation and
basement membrane integrity (Supplementary Fig. 13b).
Direct immune-related changes were smaller in number but
highly significant. Besides inflammatory pathways generally active
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in skin inflammation like arachidonic acid metabolism and
transforming growth factor-b an over-representation of
inflammatory elements of the IL-17 tissue response (granulocyte
colony-stimulating factor, antimicrobial peptides, IL-19/24 and
IL-6) as well as a response modulator (IL-17RD) enhancing
neutrophil engagement were found enhanced in Il12rb2� /�

lesions (Supplementary Fig. 13c).
We next analysed the top 10% genes selected on high variance

between the Aldara-treated groups (WT versus Il12rb2� /� ) and
performed cluster- followed by Metacore analysis to determine
the functional alterations elicited by IL-12 signalling (Fig. 6c and
Supplementary Fig. 14). The result can be classified into three
categories: transcripts (a) downregulated (clusters 5 and 6); (b)
enhanced uniformly between the genetic groups (cluster 3); and
(c) differentially regulated between the genetic groups (clusters 1,
2 and 4). Genes related to general cell metabolism and cell
cycle (cluster 3) were hardly affected by IL-12 signalling in
keratinocytes. Processes related to type 17 inflammation are
drastically enhanced in the absence of IL-12 receptor (enriched in
cluster 4; Supplementary Fig. 14), which is in agreement with the
increased disease severity observed in these animals. Also, cell
trafficking as well as tissue structure and remodelling (clusters 1
and 2; Supplementary Fig. 14) are affected. Unique to cluster 2 is
that changes are confined to Il12rb2� /� keratinocytes (Fig. 6c).
This is of interest since the affected pathways/processes could be
involved in opening and closing a cellular niche for gdT17 cell
accumulation and consequentially elevated levels IL-17A within
the psoriatic lesion.

We next tested if IL-12 elicits a response in primary human
keratinocytes. As described previously, IL-12 alone does not
significantly change the transcriptional profile of epidermal
keratinocytes47, hence we pre-activated them to simulate the
inflammatory context in vitro. We found 942 genes to be
differentially expressed when IL-12 was applied to keratinocytes
pre-activated with TNF (Po0.05, log2FC40.5 ando� 0.5). A
response to IL-12 was consistently found across donors (Fig. 6d).
Enrichment analysis for biological processes regulated by IL-12
revealed several processes such as multicellular organismal
development, system development or cytoskeleton rearrangement
to be most prominently enhanced, which are processes typical
downregulated in human psoriatic skin compared with healthy49

(Fig. 6e). Interestingly, the processes found in this human
Metacore analysis were similar to the ones found in clusters 2
and 4 of the mouse transcriptome (Supplementary Fig. 14),
indicating that IL-12, indeed, could counter-regulate changes
induced in the epidermal stroma inflicted by inflammatory stimuli.

To permit a deeper statistical analysis, we performed RNAseq
on three samples of primary human keratinocytes per group
(TNF versus TNFþ IL-12) stimulated independently. It has been
previously shown that in vitro stimulation of human keratino-
cytes mimics the transcriptional profile of the psoriatic epidermal
stroma to some extent50, however, the changes induced by IL-12

in this in vitro model were not comparable in strength to the
ex vivo analysis of keratinocytes in the psoriatic lesion of
the mouse model. Despite this limitation there was a clear
counter-modulation of the psoriasiform transcriptional pattern
induced by TNF (refs 49,50; Fig. 6f).

Discussion
Treatment of most chronic inflammatory diseases used to imply
broad immunosuppression. For the treatment of plaque-like
psoriasis this has categorically changed in the last 10 years, as we
are currently experiencing a rapid evolution of cytokine-blocking
drugs. The initial milestone achievement was blocking of TNF,
set-up to counter a number of different auto-inflammatory
disorders, psoriasis being one of them51. Whilst effective,
drug-induced TNF depletion retains to some extend the
disadvantage of former approaches of a generalized
immunosuppression, as well as a quota of one-third of eventual
non-responders. A critical step towards better therapeutic
specificity was led by early preclinical data showing that
targeting of IL-12p40 successfully prevents or curbs pathology
in numerous models of chronic inflammatory disease, which
resulted in the development of neutralizing mAbs for clinical
application25,52. Shortly after the discovery of IL-23 in 2003,
however, it became apparent that the anti-p40 therapeutic
approach inadvertently counteracted two major inflammatory
pathways in parallel, IL-12 and IL-23. The predominant role of
IL-23 in the pathogenesis of some chronic inflammatory disease,
which was formerly claimed by IL-12, was first discovered in
experimental autoimmune encephalomyelitis (EAE) a disease
model for multiple sclerosis53–55. Nonetheless, anti-p40 mAb
therapy performed with unprecedented efficacy in treatment of
plaque-like psoriasis for which it became FDA approved in 2009
(ustekinumab). For the treatment of psoriasis there is an on-going
effort to increase the focus on the blockade of the type 17
inflammatory response, for example, by inhibition of IL-23p19
(refs 21,56) or IL-17 (refs 18–20), which in recent clinical trials
exhibiting even higher efficacy than ustekinumab30. As predicted
from the findings in preclinical models, all clinical data
available to date point towards a particularly monomorphic
patho-mechanism behind psoriatic plaque formation dominated
by an unrestrained IL-23/17 effector response in the skin.
Consequentially, it seems that blocking IL-23 or even single
IL-23 downstream effector molecules should be sufficient to
effectively treat psoriatic lesions.

However, at present, anti-p40, inhibiting IL-12 and IL-23
signalling, is applied as standard care (ustekinumab) for moderate
to severe psoriasis vulgaris in adults. Therapeutic blocking of
IL-12/23p40 is well studied, and corresponding indications have
been monitored in the clinical studies of the two anti-p40
mAbs, ustekinumab and briakinumab57–59. Taken the long-term
treatment perspective of those patients and in general the delicate

Figure 4 | IL-12 limits skin inflammation. (a–c) WT, Il12a� /� and Il12rb2� /� mice were treated with Aldara, 200 ng of IL-12Fc or PBS was injected every

second day starting on day � 1. (a,b) Ear skin inflammation on day 5 represented as a per cent change in skin thickness compared with untreated skin on

day � 1. Cumulative graphs of (a) four and (b) two independent experiments (n¼ 20 per Il12a� /� and 8 per Il12rb2� /� , average mean±s.e.m.). (c) Flow

cytometry analysis of inflamed back skin; absolute numbers of skin-infiltrating CD45þ leukocytes, Vg4�Vg5� gdT, Vg4þ gdT cells and CD45þ IL-17Aþ

leukocytes. Cumulative graphs of three independent experiments (n¼6 per Il12a� /� and 4 per WT, average mean±s.e.m.). (d–f) WT and Il12rb2� /�

mice were treated with Aldara, 200mg of anti-IL-12p70 antibody or isotype control was injected every second day starting on day � 1. (d,e) Cumulative

graphs of four independent experiments depicting (d) per cent change in skin thickness compared with untreated skin on day 0 (n¼ 8 per WT isotype, 13

per WT anti-IL12p70 and 10 per Il12rb2� /� , average mean±s.e.m.) and (e) measurement of TEWL in Aldara-treated back skin (n¼ 8 per WT isotype, 14

per WT anti-IL12p70 and 10 per Il12rb2� /� , average mean±s.e.m.). (f) Flow cytometry analysis of inflamed back skin; absolute numbers of skin-

infiltrating neutrophils, Vg4þ gdT cells, Vg6þ gdT cells and CD45þ IL-17Aþ leukocytes. Cumulative graphs of three independent experiments (n¼ 13 per

WT isotype, 12 per WT anti-IL12p70 and 4 per Il12rb2� /� , average mean±s.e.m.). Each data point represents an individual (a,b) ear or (c,f) mouse.

*Po0.05, **Po0.01, ***Po0.001 ((a–c,e,f) unpaired two-tailed t-test, (d) two-way ANOVA with Bonferroni post test). NS, not significant.
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Figure 5 | IL-12 responding cells in psoriatic skin. (a) WT and Il12rb2� /� mice were treated with Aldara for 6 days. Vg4þ , Vg5þ and Vg6þ gdT cells

were sorted by flow cytometry from WT and Il12rb2� /� Aldara-treated skin, and real-time quantitative PCR analysis for Il12rb2 expression was performed.

Polr2a was used as a house-keeping gene. Cumulative graph of four independent experiments (n¼4 per WT and Il12rb2� /� , average mean±s.e.m.).

Keratinocytes were sorted from naive WT and Il12rb2� /� animals, and Il12rb2 expression analysis was performed. Cumulative graph of three independent

experiments (n¼ 3 per WT and Il12rb2� /� , average mean±s.e.m.). (b) Bone marrow chimeras were treated with Aldara for 7 days. Ear skin inflammation

represented as a per cent change in ear thickness compared with untreated ear on day 0. Cumulative graph of four independent experiments (n¼ 17 per

WT into WT and 16 per WT into Il12rb2� /� , average mean±s.e.m.). (c,d) Skin sections from healthy human donors were stained with antibodies against

(c) human IL-12Rb2 or total rabbit IgG for immunohistochemistry; scale bar, 50mm, and (d) human IL-12Rb2 or total rabbit IgG (green), K14 (red) and

4,6-diamidino-2-phenylindole (DAPI; blue) for immunofluorescent staining; scale bar, 50mm. (e) Immunoblot analysis of IL-12Rb2 in human primary

keratinocytes. Human monocytes, naive and activated PBMCs were used as negative and positive controls; please find Supplementary Fig. 11 showing

uncropped western blot data. Each data point represents an individual (a) sort of pooled material of two mice (b) mouse. ***Po0.001 ((b) two-way

ANOVA with Bonferroni post test).
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line between beneficial immune-modulation and detrimental
immunosuppression it is imperative to delineate all aspects of the
drugs’ biological effect. One concern of particular importance,
considering the continuous treatment regime in psoriasis, is the

prominent role of IL-12 in tumour control60,61. Indeed,
briakinumab, although very effective and overall positively
evaluated, showed a conspicuously increased rate of cancer in
different clinical studies6,62. So far, it was hypothesized that

ca

d

TNF

HD1 HD2 HD1 HD2

TNF+IL-12

e GO processes and process networks categories
for upregulated genes 

GO processes and process networks categories 
for downregulated genes

Term Count P value FDR
Anatomical structure development 338 2.753×10

–8
1.903×10

–4

Regulation of cellular component organization 175 6.941×10
–8

2.399×10
–4

System development 293 1.466×10
–7

2.849×10
–4

Single-organism process 725 1.649×10
–7

2.849×10
–4

Regulation of signalling 207 4.165×10
–7

5.088×10
–4

Multicellular organismal development 324 4.773×10
–7

5.088×10
–4

Developmental process 363 5.153×10
–7

5.088×10
–4

Cellular component organization or biogenesis 326 8.801×10
–7

7.189×10
–4

Cellular component organization 319 9.552×10
–7

7.189×10
–4

Regulation of signal transduction 184 1.040×10
–6

7.189×10
–4

Cell adhesion, cell matrix interaction 21 4.887×10
–4

3.812×10
–2

Cell adhesion, integrin-mediated cell matrix adhesion 19 3.401×10
–3

1.769×10
–1

Signal transduction NOTCH signaling 19 9.635×10
–3

2.257×10
–1

Cytoskeleton, regulation of cytoskeleton rearrangement 15 1.746×10
–2

3.027×10
–1

Term Count P value FDR
Regulation of phosphatidylinositol dephosphorylation 4 1.869×10

–9
3.663×10

–6

Regulation of blood circulation 16 2.116×10
–9

3.663×10
–6

Regulation of system processes 20 2.721×10
–8

1.570×10
–5

Development, blood vessel morphogenesis 8 1.001×10
–3

3.300×10
–2

Calcium transport 5 2.997×10
–2

5.095×10
–1

Inflammation, interefron signalling 3 7.820×10
–2

8.316×10
–1

Inflammation, kallikrein–kinin system 4 8.726×10
–2

8.316×10
–1

Proteolysis, connective tissue degradation 3 9.377×10
–2

8.316×10
–1

–1 0 1

f

–1 0 1

LCE3E

S100A8

S100A7

ACSBG1

SERPINB5

HSPB1

LCE3D

KRT1

KRT16 P=0.071

***

***

***

**

**

**

**

**

SPRR2A P=0.078

SERPINB3 P=0.083

SERPINB1 P=0.094

SERPINB13 P=0.094

GAL P=0.13

IL36RN P=0.14

CDSN P=0.17

PI3 P=0.38

SPRR2G P=0.48

KYNU P=0.63

OAS2 P=0.63

S100A9 P=0.97

W
T

–4 –2 0 2 4

W
T

Il1
2r

b2
–/

–

Il1
2r

b2
–/

–

W
T

W
T

W
T

Il1
2r

b2
–/

–

Il1
2r

b2
–/

–

Il1
2r

b2
–/

–

Control Aldara

Log2 ratio

–L
og

10
 (

F
D

R
)

0

2

4

6

8

10

–2 0 2 4

Significant

–4

TNF+IL-12 over TNF

Il12rb2–/– over WT Clustering of high variant genes

b

Saa1

Saa2

Defb14

Lce3d

Mmp12

Ivl

Saa3

Il24

Krt15

S100a9

Il1f6(Il36a) 

Hspb1

S100a7

Nos2

Cdsn

Sox9

Il1f5(Il36rn) 

Fabp4

***

***

*

*

**

**

**

**

**

***

***

***

***

***

***

***

***

***

Il12rb2–/– over WT

−3 0 3

1

2

3

5

6

4

Figure 6 | NGS of mouse and human keratinocytes. (a–c) NGS was performed on RNA extracted from mouse keratinocytes sorted from naive and Aldara-

treated skin of WT and Il12rb2� /� animals. (a) Volcano plot showing log2ratio versus –log10(FDR) (Il12rb2� /� versus WT). (b) Heatmaps showing

representative psoriasis-related genes regulated by IL-12 pathway. Significance is shown alongside. (c) Heatmap image of rank based top 2,000 genes with

highest s.d. of log2 signal across samples. (d–f) NGS of human primary keratinocytes activated with TNF in the presence or absence of IL-12.

(d) Differentially regulated transcripts between cells stimulated with TNF and IL-12 versus TNF stimulation alone are shown in a heatmap image for two

individual healthy donors (HD; n¼ 2). The blue colour represents low expression level while red indicates high expression levels. In all, 942 genes were

significantly altered with Po0.05. (e) The enriched gene ontology and process network categories for up- and downregulated transcripts based on the

differentially expressed genes. (f) Heatmap showing representative psoriasis-related genes regulated by IL-12 stimulation. Significance is shown alongside.

*Po0.05, **Po0.01, ***Po0.001 ((b,f) unpaired two-tailed t-test). FDR, false discovery rate.
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blocking of IL-12 could extend the drug’s anti-inflammatory
effectiveness, as presence of TH1 cells and IFN-g in psoriatic
lesions has been reported27. But data on a causal relationship of
either IL-12 or IFN-g and psoriasis was—until now—missing. At
the same time data presented from past and on-going
comparative clinical studies of mAbs targeting solely the
IL-23/IL-17 axis versus the share subunit of IL-23 and IL-12
attested a higher efficacy to the formed approach29,30, which is in
conflict with the notion of a dominant pro-psoriatic role of IL-12
in the skin. Concordant with the correlative data from patient
skin biopsies we found IFN-g to be produced within the Aldara-
induced psoriatic lesions (data not shown) and confirmed the
pro-psoriatic function of IFN-g. Here we found IL-12, which
generally drives type 1 immune responses, to not only act
independent of IFN-g, but instead to suppress inflammation in
the skin. Although surprising at first sight, a protective role of
IL-12 in an inflammatory condition has been observed in other
tissues, for example, in organ-specific autoimmune inflammation
of the central nervous system. There, likewise to the clinical
findings in our psoriasis model, IL-12 restrains part of the
inflammatory response53,54. Also in EAE a dual role of IL-12 is
debated, as type 1 immunity is partially considered to be
instrumental in disease progression and central nervous system
pathology, but on the other hand the net effect of IL-12 is clearly
anti-inflammatory. The mechanistic underpinning of this in EAE,
however, remains largely unclear.

It is only in the past few years that the significant contribution
of gdT cells in type 17-driven diseases has been explored. Also
in psoriatic lesions their contribution has been noted12,63–65, but
the precise nature of their action in human inflammatory disease,
as well as the translation of functional gdT cell subset identities
remains unclear. Invariant gdT cells, like any innate lymphoid cell
type, are low in frequency and their analysis in humans is
hampered by the typically small sizes of tissue biopsies. With the
data available to date it is hard to predict whether a homologue or
functional orthologue of Vg6þ gdT17 cells exists in humans and
if accumulation of such cells is affected by IL-12. In mice, the
presence of IL-12 prevents the unbridled accumulation of Vg6þ

type 17 cells, independent of Vg4þ gdT17 cells, resulting in a net
surplus of IL-17. Importantly, IL-12 did not affect skin-invading
gdT17 cells directly.

Whereas TNF or IL-1b have long been recognized to interact
with both haematopoietic and stromal cells, here we describe that
IL-12 too can directly communicate with the stromal micro-
environment, independent of its function in immune cells. In
contrast to mediators such as TNF or IL-1b, which exacerbate
epithelial inflammation66, IL-12 initiates a tissue-protective
response in keratinocytes. Moreover, IL-12 counter-regulated
the psoriatic transcriptional signature in both murine and
human keratinocytes. IL-12 specifically modifies transcriptional
programmes affecting tissue structure remodelling, which in turn
could affect immune cell accumulation and recruitment allowing
available pathogenic lymphocytes to populate the tissue. In the
Aldara-induced psoriasis model, the cells accumulating in IL-12-
deficient tissue are predominantly Vg6þ type 17 cells. The
increase in net IL-17 activates the local stroma (for example,
keratinocytes) amplifying the type 17 signature in the tissue,
which can explain the drastic increase in neutrophil influx and
epidermal micro-abscesses in Il12a� /� mice.

Thus, while our data causally relate psoriasis to be a bona fide
type 17 inflammatory disorder with minor contribution of type 1
effector response, we additionally demonstrate that IL-12
mediates an autonomous regulatory programme in the skin.
Whether these preclinical findings can be fully translated to
human patients remains to be established, however, it does offer a
lead towards understanding the higher clinical efficacy of

anti-p19 and anti-IL-17 drugs compared with ustekinumab
(anti-p40) in psoriasis vulgaris patients. The observed
anti-psoriatic effect of IL-12 may not be exclusively mediated
through its impact on the keratinocyte compartment, and
additional IL-12-responsive cell types may contribute.
Nonetheless, we conclude that collateral targeting of IL-12 with
anti-p40 mAbs in the treatment of psoriasis might carry more
risk than benefit and even be counterproductive, which warrants
further translational investigation.

Methods
Mice. C57BL/6 were purchased from Janvier (Saint Berthevin, France).
Il12rb2� /� , Il12a� /� , Ebi3� /� , Ifng� /� and Il23a� /� were purchased from
Jackson Laboratory (Bar Harbor, ME, USA) and Regeneron (Tarrytown, NY,
USA), respectively. Il12b� /� mice were purchased from Jackson Laboratory or
provided by E. von Stebut and K. Schwonberg (Mainz, Germany). Vd1� /�

animals were provided by K. Kishihara (Nagasaki, Japan). Mice were kept in house
under specific pathogen-free conditions. Animal experiments were approved by the
Swiss Cantonal Veterinary Office (33/2010 and 68/2013).

Aldara treatment. The 7- to 11-week-old female mice (cf. figure legends) of
similar body weight and synchronized hair cycle were used for all experiments.
Back skin of mice was shaved and depilated, and 48 h later 55 mg of Aldara cream
(5% IMQ; 3M Pharmaceuticals, Maplewood, MN, USA) was applied daily for 2 or
5–6 constitutive days. When ear skin was used 7 mg of Aldara was applied on each
ear for 6–7 constitutive days. Back skin or ear thickness was measured daily with a
digital calliper. Skin inflammation is represented as a per cent change in the skin
thickness compared with untreated skin on day 0. IL-12Fc/PBS treatment was
performed by local subcutaneous injection of 200 ng of IL-12Fc (ref. 67) or PBS per
each ear. Mice were injected every second day starting on day � 1. Anti-IL-17A
(17F3, BioXcell, West Lebanon, NH, USA) or isotype control (MOPC-21,
BioXcell), anti-IL12p75 (R2-9A5, BioXcell) or isotype control (LTF-2, BioXcell)
antibodies were injected intraperitoneally. Mice received 200 mg of antibodies every
second day starting on day� 1.

Group sizes were at least two experimental versus two control mice, but most of
the time three versus three or more. Mouse numbers and experiment numbers are
stated in the individual figure legends. All individual experiments showed the
phenotypes depicted by the cumulative graphs. Mice of different experimental
groups were mixed in the cages and the order in which individual mice were picked
for Aldara treatment or any measurements was random. All experiments were
blinded for disease induction and experimental read-outs.

TEWL measurement. TEWL of dorsal skin was measured during the course of
Aldara-induced plaque formation by use of an evaporimeter equipped with a closed
chamber probe (Aquaflux AF200, Biox System Ltd, London, UK).

Mouse skin leukocyte isolation. Back skin or ears were cut into small pieces and
digested for 1 h at 37 �C in RPMI 1640 (PAN-Biotech, Aidenbach, Germany)
medium containing 1 mg ml� 1 collagenase type IV (Sigma-Aldrich, St Louis, MO,
USA), 25 mM HEPES (Gibco, Thermo Fisher Scientific, Waltham MA, USA) and
0.1 mg ml� 1 DNase (Sigma-Aldrich). Cells were filtered with a 70 mm cell strainer
to receive single-cell suspension.

Mouse keratinocyte isolation. For real-time quantitative PCR analysis, as well as
NGS back skin was incubated for 2 h at 37 �C in HBSS buffer (Gibco) containing
2.4 mg ml� 1 of dispase (Roche, Switzerland), next cut into small pieces and digested
for another hour at 37 �C in HBSS buffer containing 10% FCS, 0.4 mg ml� 1

collagenase type IV (Sigma-Aldrich) and 0.1 mg ml� 1 DNase (Sigma-Aldrich). Cells
were filtered with a 70mm cell strainer to receive single-cell suspension.

Bone marrow/neonatal thymocyte chimeras. Host animals received split dose
(2� 550 rad with 24 h interval) before receiving 5� 106 donor bone marrow
together with 2� 106 donor neonatal thymocytes. Mice were kept for another 8
weeks to allow immune system reconstitution.

Human skin biopsies and primary keratinocyte cell isolation. All donors signed
written informed consent forms in accordance with the Code of Ethics of the
World Medical Association (Declaration of Helsinki) for experiments involving
humans (ethical approval number EK647). All samples were obtained from the
University Hospital Zurich. Healthy human skin pieces (B0.5–1 cm2) were
incubated overnight at 4 �C in CnT07 (CELLnTEC) medium complemented with
1% penicillin (Gibco), 1% streptomycin (Gibco), 1% amphotericin B (Gibco) and
10 mg ml� 1 dispase (Roche). Afterwards, the epidermis was separated manually
and incubated in pre-warmed 0.25% trypsin-EDTA (Gibco) for B5 min.
Keratinocytes were scratched off the epidermis and centrifuged at 1,500 r.p.m. for
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5 min. The pellet was re-suspended in CnT07 medium complemented with
antibiotics and antimycotic, and transferred to a culture flask. Medium was
changed every 2 days until the cells reached 80–90% confluence and could be split
for the first time.

Human PBMC isolation. Blood samples from healthy volunteers were recruited
via the blood donation centre, Zurich, Switzerland, with approval of the Cantonal
Ethics Committee, Zurich. PBMCs were isolated by density gradient centrifugation
using Lympholyte-H (Cedarlanes, Burlington, NC, USA). Cells were cultured for 3
days in RPMI 1640 (PAN-Biotech) with 10% FCS, 10 ng ml� 1 IL-2 (PeproTech,
Rocky Hill, NJ, USA), 10 ng ml� 1 IL-12 (PeproTech), 1 mg ml� 1 anti-human
CD28 antibody (CD28.2, BD Pharmingen, San Diego, CA, USA) and 1 mg ml� 1

plate-bound anti human CD3 antibody (OKT3, BioXcell). Next, cells were washed
and lysed for protein extraction. Human monocytes were enriched using
magnetically labelled anti-CD14 MicroBeads in combination with the AutoMACS
system (both Miltenyi Biotec, Auburn, CA, USA). CD14-positive cells were
collected, washed and lysed for protein extraction.

Cell lines. 17D1 hybridoma (anti-mouse Vg5/Vd1, Vg6/Vd1 and Vg1/Vd1; rat
immunoglobulin IgM) was kindly provided by Robert R Tigelaar. Cells were
cultured in RPMI 1640 medium supplemented with 10% fetal bovine serum
(Biochrome AG, Berlin, Germany), 10 mM HEPES, penicillin (Gibco),
streptomycin (Gibco), glutamine (Gibco), sodium pyruvate (Gibco) and
non-essential amino acids (Gibco). After 3 and 6 days of culture supernatant was
collected, centrifuged, filtered and used for staining.

Flow cytometry. For surface and intracellular staining following antibodies
coupled to the appropriate fluorochromes were titrated and used in saturating
concentration: rat anti-mouse CD45 (30-F11, BD, Franklin Lakes, NJ, USA, 1:800);
rat anti-mouse CD3 (17A2, eBioscience, San Diego, CA, USA, 1:100); rat anti-
mouse CD11b (M1/70, BioLegend, San Diego, CA USA, 1:400); rat anti-mouse
Ly6G (1A8, BD, 1:400); armenian hamster anti-mouse gd TCR (GL3, eBioscience,
1:400); armenian hamster anti-mouse Vg4 TCR (UC3-10A6, BioLegend, 1:400);
syrian hamster anti-mouse Vg5 TCR (536, BioLegend, 1:400); rat anti-mouse
IL-17A (TC11-18H10, BioLegend, 1:200); rat anti-mouse/-human CD49f (GoH3,
BioLegend, 1:300); and rat anti-mouse CD34 (RAM34, eBioscience, 1:100). Cells
were incubated for 10 min at 4 �C with 1 mg of rat anti-mouse CD16/CD32
(93, eBioscience) antibodies, followed by 25 min surface staining at 4 �C. For
intracellular staining, mouse cells were stimulated with 50 ng ml� 1 phorbol
12-myristate 13-acetate (Applichem, Darmstadt, Germany) and 500 ng ml� 1

ionomycin (Invitrogen, Thermo Fisher Scientific, Carlsbad, CA USA) in the
presence of GolgiPlug (BD Biosciences) for 2 h. After surface staining cells were
fixed and permeabilized according to the manufacturer’s (BD Biosciences)
recommendations and next stained intracellularly. For 17D1 staining of Vg5/
Vd1þ and Vg6/Vd1þ cells, cells were first preincubated with rat anti-mouse gd
TCR antibody (GL3, eBioscience, 1:400) for 20 min in 4 �C, next washed and
incubated with 100 ml of 17D1 hybridoma supernatant for the next 20 min followed
by washing and 20 min incubation with fluorochrome-conjugated secondary
antibody goat anti-rat IgM (Jackson ImmunoResearch Laboratories, West Grove,
PA, USA, 1:200). Samples were analysed with a BD FACS LSR II Fortessa. Post-
acquisition analysis was done with FlowJo (Tree Star, Ashland, OR, USA) software.

Cell sorting. gdT cells were isolated from the back skin of Aldara-treated WT or
Il12rb2� /� mice on day 6 post treatment. The whole-cell suspension was stained
with the following: rat anti-mouse CD45 (30-F11, BD, 1:800); rat anti-mouse
CD11b (M1/70, BioLegend, 1:400); rat anti-mouse CD3 (17A2, eBioscience, 1:100);
rat anti-mouse gd TCR (GL3, eBioscience, 1:400); rat anti-mouse Vg5 (536,
BioLegend, 1:400); rat anti-mouse Vg4 (UC3-10A6, BioLegend, 1:400) or 17D1
antibodies. Cells were sorted with BD FACS Aria III using 70 mm nozzle. Murine
keratinocytes were isolated from naive skin or treated with Aldara for 2 days. The
whole-cell suspension was stained with rat anti-mouse CD45 (30-F11, BD, 1:800),
rat anti-mouse CD34 (RAM34, eBioscience, 1:100) and rat anti-mouse/-human
CD49f (GoH3, BioLegend, 1:300) antibodies. Cells were sorted with BD FACS Aria
III using 100mm nozzle.

RNA extraction and real-time quantitative PCR. Total RNA was isolated from
the back skin of Aldara-treated animals, mouse skin-sorted leukocytes or kerati-
nocytes, with a Pure Link RNA Micro Kit (Invitrogen) or RNeasy Plus Micro Kit
(QIAGEN, Valencia, CA, USA). cDNA was prepared using SuperScript III reverse
transcriptase (Invitrogen). Mouse gene expression was measured by real-time
quantitative PCR analysis using the CFX 384 Real-Time detection system
(Bio-Rad, Hercules, CA, USA) with SYBR Green Supermix (Bio-Rad). Sequences
for PCR primers can be found in Supplementary Table 1. Transcript expression
was normalized to the Polr2a or Gapdh house-keeping gene and represented
as either 2�DC

T, (DCT¼CT gene of interest�CT house-keeping gene) in the
case of Il12rb2 expression or 2�DDC

T (DDCT¼DCT�DCControl), for all other
transcripts.

Histochemistry. Skin tissue samples were fixed in 4% paraformaldehyde and
embedded in paraffin. Mouse skin sections were stained with haematoxylin and
eosin according to standard protocols. Deparaffinized human skin sections were
submitted to antigen retrieval with citrate buffer pH 6 (DAKO, Hamburg,
Germany) followed by blocking and staining with polyclonal rabbit anti-human
IL-12Rb2 antibody (Novus Biologicals, Littleton, CO, USA; 0.7 mg ml� 1) or total
rabbit IgG (Sigma, 0.7 mg ml� 1) using Dako EnvisionþDual Link System-HRP
(DABþ ) staining (DAKO) and following the manufacturer’s procedure. We
recorded digital images of tissue sections using an Olympus BX41 light microscope
with an Olympus ColorView IIIu camera and Olympus Cell B image acquisition
software. For immunofluorescence staining of human skin sections we co-stained
with monoclonal mouse anti-human cytokeratin 14 (K14) antibody (LL002,
Abcam, Cambridge, UK, 1:300). Secondary antibodies were Alexa Fluor
546-conjugated goat anti-rabbit IgG or Alexa Fluor 633-conjugated goat
anti-mouse IgG (Invitrogen, 1:500). Specimens were mounted in 4,6-diamidino-2-
phenylindole-containing mounting medium (Invitrogen) and analysed with a
SP5 Leica confocal laser scanning microscope (SP5; Leica, Wetzlar, Germany)
using an argon and a helium laser with a � 20 objective (oil immersion,
numerical aperture 0.7, Leica) and Imaris imaging software (version 7.5.1; Bitplane,
Zurich, Switzerland).

Western blot analysis of human IL-12Rb2. Human primary keratinocyte
monolayers, monocytes and PBMCs were lysed with the cell lysis buffer
(Cell Signalling, Danvers, MA USA), complemented with complete EDTA-free
protease inhibitor cocktail (Roche) and phosphatase inhibitor cocktail (Roche).
Lysates were incubated for 15 min on ice followed by centrifugation at 4 �C for
15 min at maximum speed. Supernatants were collected and total protein content
was measured using bicinchoninic acid protein assay (Thermo Scientific, Waltham,
MA USA). Equal amounts of cell lysates were separated by 10% SDS–PAGE and
transferred to nitrocellulose (Bio-Rad) by wet blotting. Next, membranes were
stained with polyclonal rabbit anti-human IL-12Rb2 antibodies (Novus Biologicals,
1:1,000) or monoclonal rabbit anti-mouse/human b-actin antibodies
(13E5, Cell Signalling, 1:2,000) followed by staining with peroxidase-conjugated
mouse antibodies against rabbit IgG (Jackson ImmunoResearch, 1:50,000).
The signal was visualized using SuperSignal West Pico chemiluminescent substrate
(Thermo Scientific).

NGS of human samples. Two independent NGS analysis were performed for
human primary keratinocytes. For the first sequencing analysis, cells were isolated
from two healthy donors and stimulated for 16 h with 25 ng ml� 1 of TNF
(PeproTech) followed by 6 h stimulation with 100 ng ml� 1 IL-12 (PeproTech). For
the second sequencing analysis cells were isolated from one healthy donor and
stimulated in triplicates for 16 h with 25 ng ml� 1 of TNF (PeproTech) followed by
12 h stimulation with 100 ng ml� 1 IL-12 (PeproTech). Total RNA was isolated
with RNeasy Plus Micro Kit (QIAGEN) according to the manufacturer’s instruc-
tions. NGS was performed by the Functional Genomics Center in Zurich or by the
Quantitative Genomics Facility in Basel. Reads were quality-checked with FastQC.
Low-quality ends were clipped (3 bases from the start and 10 bases from the end).
Trimmed reads were aligned to the reference genome and transcriptome (FASTA
and GTF files, respectively, downloaded from the Ensembl GRCm38) with STAR
version 2.3.0e_r291 (ref. 68) with default settings. Distribution of the reads across
genomic isoform expression was quantified using the R package GenomicRanges69

from Bioconductor Version 3.0. Differentially expressed genes were identified using
the R package edgeR (ref. 70) from Bioconductor Version 3.0. Only transcripts with
a read count above 10 in at least 50% of at least one of the two groups were retained
in the two-group comparisons. Pathway analysis was performed with Metacore
from Thomson Reuters (New York, NY, USA).

NGS of mouse samples. WT and Il12rb2� /� keratinocytes were isolated from
naive animals or treated for 2 days with Aldara. Cells were sorted and total RNA
was isolated with RNeasy Plus Micro Kit (QIAGEN) according to the manu-
facturer’s instructions. NGS was performed by the Quantitative Genomics Facility
in Basel.

Statistics. Differences between Z3 groups were evaluated with one-way or
two-way analysis of variance (ANOVA) with Bonferroni’s post test. Differences
between two sets of data were evaluated using unpaired two-tailed t-test. Corre-
lation calculation between two parameters has been performed using Pearson’s r
(comparable distribution was confirmed via quantile–quantile plots); *Po0.05,
**Po0.01, ***Po0.001, NS (not significant). Data were analysed using Prism
software (GraphPad Software, Inc.).

Data availability. Sequence data that support the findinfgs of this study have
been deposited in the European Nucleotide Archive with the primary accession
code PRJEB15422. The authors declare that all other data supporting the
findings of this study are available within the article and its Supplementary
Information files.
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