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Abstract The multi-domain splicing factor RBM5 regulates the balance between antagonistic

isoforms of the apoptosis-control genes FAS/CD95, Caspase-2 and AID. An OCRE (OCtamer

REpeat of aromatic residues) domain found in RBM5 is important for alternative splicing regulation

and mediates interactions with components of the U4/U6.U5 tri-snRNP. We show that the RBM5

OCRE domain adopts a unique b–sheet fold. NMR and biochemical experiments demonstrate that

the OCRE domain directly binds to the proline-rich C-terminal tail of the essential snRNP core

proteins SmN/B/B’. The NMR structure of an OCRE-SmN peptide complex reveals a specific

recognition of poly-proline helical motifs in SmN/B/B’. Mutation of conserved aromatic residues

impairs binding to the Sm proteins in vitro and compromises RBM5-mediated alternative splicing

regulation of FAS/CD95. Thus, RBM5 OCRE represents a poly-proline recognition domain that

mediates critical interactions with the C-terminal tail of the spliceosomal SmN/B/B’ proteins in FAS/

CD95 alternative splicing regulation.

DOI: 10.7554/eLife.14707.001

Introduction
An essential step during the regulation of eukaryotic gene expression is the removal of non-coding

intron sequences from pre-mRNA transcripts through the process of pre-mRNA splicing. The cata-

lytic steps of pre-mRNA splicing are carried out by the spliceosome, a large and dynamic assembly

of five small nuclear ribonucleoprotein (snRNP) complexes and more than 150 additional splicing fac-

tor proteins (Wahl et al., 2009). Many splicing factors are involved in early steps of the assembly of

the spliceosome through the recognition of short regulatory RNA motifs and/or through protein-pro-

tein interactions. Alternative splicing is the mechanism by which particular intronic or exonic regions

are included or excluded to produce diverse mRNAs from the same gene (Blencowe, 2006). It is

thought that more than 90% of human multi-exon genes undergo alternative splicing (Pan et al.,

2008; Wang et al., 2008). The genomic diversity of eukaryotic gene expression is thus greatly

expanded by alternative splicing of mRNA transcripts. Often, the protein products of alternative

splicing have antagonistic roles in cellular functions and are implicated in human diseases

(Cooper et al., 2009). Notably, mutations in splicing factors that modulate alternative splicing deci-

sions have been implicated in cancer (David and Manley, 2010; Bonnal et al., 2012).
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A biologically important example of alternative splicing is found in the FAS gene (also known as

CD95 or APO-1). The FAS gene encodes a transmembrane signaling protein that stimulates a pro-

apoptotic signaling cascade upon binding of the FAS ligand at the cell surface (Krammer, 2000).

Alternatively spliced FAS transcripts that exclude exon 6 encode a soluble Fas isoform that lacks the

transmembrane domain. This soluble isoform can be secreted outside of the cell where it sequesters

the FAS ligand and inhibits downstream activation of apoptosis (Cheng et al., 1994; Cascino et al.,

1995). Thus, regulation of the alternative splicing of FAS can either stimulate or inhibit cell survival.

The pro-apoptotic Fas protein plays an important role during T-lymphocyte maturation (Liu et al.,

1995; Papoff et al., 1996; Van Parijs et al., 1998; Roesler et al., 2005) and additional evidence

implicates this isoform in the proliferation of cancer cells (Chen et al., 2010).

A number of splicing factors have been shown to modulate FAS alternative splicing, including

RBM5. The multi-domain RNA-binding protein 5 (RBM5) regulates FAS splicing by promoting skip-

ping of exon 6 (Bonnal et al., 2008). RBM5 is a 92 kDa, multi-domain protein with an arginine-serine

(RS)-rich region, two RNA Recognition Motifs (RRM1 and RRM2), two Zinc-Finger domains (ZF1 and

ZF2), a C-terminal OCtamer REpeat (OCRE) domain (Callebaut and Mornon, 2005) in addition to a

glycine patch, and KEKE (lysine/glutamate) repeats (Figure 1). It belongs to the family of RNA Bind-

ing Motif (RBM) proteins, including RBM6 and RBM10, which share a similar domain organization

with RBM5 and have 30% and 50% amino acid identity, respectively (Sutherland et al., 2005). The

RBM5 (also known as H37 and LUCA-15) and RBM6 genes are located in a chromosomal region

3p21.3, which is frequently deleted in heavy smokers and lung cancers (Oh et al., 2002;

Zabarovsky et al., 2002). RBM5 is known to regulate the alternative splicing of apoptosis–related

genes, such as FAS and Caspase-2 (Bonnal et al., 2008; Fushimi et al., 2008). It has also been

reported to suppress metastasis by modulating the expression of Rac1, b-catenin, collagen and

eLife digest The information required to produce proteins is encoded within genes. In the first

step of creating a protein, its gene is “transcribed” to form a pre-messenger RNA molecule (called

pre-mRNA for short). Both the gene and the pre-mRNA contain regions called exons that code for

protein, and regions called introns that do not. The pre-mRNA therefore undergoes a process called

splicing to remove the introns and join the exons together into a final mRNA molecule that is

“translated” to make the protein.

Many pre-mRNAs can be spliced in several different ways to include different combinations of

exons in the final mRNA molecule. This process of “alternative splicing” allows different versions of

a protein to be produced from the same gene. Changes that alter the pattern of alternative splicing

in a cell affect various cellular and developmental processes and have been linked to diseases such

as cancer.

The pre-mRNA transcribed from a gene called FAS can be alternatively spliced so that it either

does or does not contain an exon that enables the protein to embed itself in the cell membrane.

The protein produced from mRNA that includes this exon generates a cell response that leads to

cell death. By contrast, protein produced from mRNA that lacks this exon is released from cells and

promotes their survival. A splicing factor called RBM5 promotes the removal of this exon from FAS

pre-mRNA.

RBM5 binds to some of the proteins that make up the molecular machine that splices pre-mRNA

molecules. Mourão, Bonnal, Soni, Warner et al. have now used a technique called nuclear magnetic

resonance spectroscopy to solve the three-dimensional structure formed when RBM5 binds to one

of these proteins, called SmN. Further experiments introduced specific mutations to the proteins to

investigate their effects in human cells. This revealed that mutations that impaired the association

between RBM5 and SmN compromised the activity of RBM5 to regulate the alternative splicing of

FAS pre-mRNA molecules.

Future research could examine how RBM5 associates with pre-mRNAs and other components of

the splicing machinery, and investigate whether proteins that are closely related to RBM5 act in

similar ways.

DOI: 10.7554/eLife.14707.002
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laminin (Oh et al., 2010). However, RBM5 has also been found to be up-regulated in some aggres-

sive forms of breast and ovarian cancers (Oh et al., 1999; Rintala-Maki et al., 2007). The possible

dual role of RBM5 in cancer progression may be linked to its various activities as splicing regulator,

including differential recognition of its pre-mRNA targets.

In the regulation of FAS alternative splicing, RBM5 inhibits mature spliceosome formation by

blocking association of the U4/U6.U5 tri-snRNP complex (in complex B) after the splice sites flanking

exon 6 have been recognized by U1 and U2 snRNPs (Bonnal et al., 2008). RBM5 therefore appears

to influence the pairing between the splice sites after complex A formation and thus promote tri-

snRNP assembly at the distal splice sites, leading to exon 6 skipping (Bonnal et al., 2008).

β5

β6

β4

β3

β2β1

Tyr462

Tyr488

Tyr471

Tyr505
Tyr487

Tyr479

Tyr497

Tyr464

Tyr486

Tyr480

Pro457

N

Tyr470

Tyr454

Lys453
Glu503

C

RBM5

RBM6

A

(..)

G-patchZF2OCRE KEKEZF1ZF1ZF1RRM1RS RRM2

G-patchZF2OCREZF1ZF1RRM1 RRM2

G-patchZF2OCREZF1ZF1ZF1RRM1RS RRM2RBM10

C D

511
621
836

β2 β3 β4 β5 β6β1

RBM5
RBM10
RBM6

## # # # # # #

B

E

0

10

20

30

40

50

60

70

80

CTR WT DOCRE YD Y495AY497A E501K

******

******

**

%
in

c
lu

s
io

n
F

a
s

W
T

***

**

**

∆

OCRE
Y454A

D458R

Y495A
Y497A
E501K

. . . . . .460 470 480 490 500 510

Trp498

β5

β6

β4

β3

β2

β1

C

Tyr495

3
10

451

561
750

KEKE

KEKE

Figure 1. Structure and functional analysis of the RBM5 OCRE domain. (A) Domain composition of the related RBM5, RBM6 and RBM10 family

proteins. (B) Sequence alignment of OCRE domains of human RBM5, RBM10 and RBM6 proteins. (C,D) Two views in a cartoon presentation of the

RBM5 OCRE domain, showing side chains of conserved and exposed tyrosine residues, some of which were probed by mutational analysis. (C) At one

side of the b-sheet surface the N-terminal extension shields the tyrosines (orange) from solvent exposure, (D) on the opposite surface of the b-sheet,

numerous tyrosine residues (yellow) are solvent accessible. (E) Mutational analysis of conserved residues of the RBM5 OCRE domain. Specific mutations

of conserved and accessible residues of RBM5 OCRE domain impair the activity of the protein in FAS alternative splicing regulation ex vivo. HeLa cells

were co-transfected with a Fas wild type alternative splicing reporter (harbouring sequences between the 5’ end of exon 5 and the first 47 nucleotides

of exon 7) and T7-RBM5 expression plasmids. RNA and proteins were isolated 24 hr after transfection. Patterns of alternative splicing were studied by

RT-PCR using specific primers (PT1, PT2) and the percentage of inclusion was calculated and is presented in the histogram for a minimum of 16 replicas

of the experiment. T-test (two-tailed distribution, homoscedastic) results are mentioned (**<0,01; ***<0,001). Full quantification and T-test results are

provided in Figure 5—figure supplement 2.

DOI: 10.7554/eLife.14707.003

The following figure supplement is available for figure 1:

Figure supplement 1. NMR analysis of the RBM5 OCRE domain.

DOI: 10.7554/eLife.14707.004
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Moreover, it was shown that the OCRE domain of RBM5 interacts with components of the tri-snRNP

and is essential for the function of RBM5 in regulating FAS splicing (Bonnal et al., 2008).

OCRE domains, which are present in different proteins in various organisms (Xiao et al., 2013),

were identified by bioinformatic sequence analysis as a tandem of five imperfect octameric repeat

sequences with triplets of aromatic residues (Callebaut and Mornon, 2005), expected to predomi-

nantly adopt b-strand secondary conformation. Due to the presence of OCRE domain in RNA bind-

ing proteins such as RBM5, they were presumed to facilitate RNA binding (Callebaut and Mornon,

2005). However, at least in the case of RBM5, the OCRE domain appears to play a role in mediating

protein-protein interactions (Bonnal et al., 2008).

In order to provide molecular insights into the function of the OCRE domain in splicing regula-

tion, we have combined structural and biochemical experiments with mutational analyses in vitro

and in vivo. We show that the RBM5 OCRE domain directly binds to the spliceosomal SmN/B/B’ pro-

teins. Sm proteins are core components of most spliceosomal snRNPs and form a heptameric ring

composed of SmD1, SmD2, SmF, SmE, SmG, SmD3 and SmN/B/B’, which jointly recognize the uri-

dine-rich Sm site RNA motif in U1, U2, U4 and U5 snRNAs (Kambach et al., 1999; Will and Lühr-

mann, 2001; Pomeranz Krummel et al., 2009; Weber et al., 2010; Leung et al., 2011;

Matera and Wang, 2014; Kondo et al., 2015). SmB and SmB’ are encoded by two transcript var-

iants from the SNRPB gene, while a different gene, highly expressed in brain and heart, encodes the

homologous protein SmN (Schmauss et al., 1992). SmN/B/B’, SmD1, and SmD3 have C-terminal

extensions that include symmetrically dimethylated RG repeats (Brahms et al., 2001;

Tripsianes et al., 2011). The SmN/B/B’ C-terminal tails contain additional proline-rich sequences,

where these regions in SmN, SmB and SmB’ are 93% homologous (van Dam et al., 1989).

Here, we show that the RBM5 OCRE domain binds to the C-terminal proline-rich motifs present

in SmB and SmN. The structure of the RBM5 OCRE domain adopts a unique b-sheet fold that recog-

nizes the proline-rich C-terminal tails of the SmN/B/B’ proteins through aromatic-CH interactions.

We demonstrate that disruption of these interactions by mutations in the OCRE domain or in the

proline-rich motifs of its ligands decreases the affinity between SmN/B/B’ and RBM5 in vitro and

affects alternative splicing regulation of the FAS gene. Our results demonstrate that OCRE is a novel

protein-protein interaction domain that mediates interactions with the core spliceosome in alterna-

tive splicing regulation.

Results

The RBM5 OCRE domain adopts a unique b-sheet fold involved in
splicing regulation
To gain insights into the molecular functions of the RBM5 OCRE domain, we determined the three-

dimensional structure for the human RBM5 OCRE domain using solution NMR techniques. Previous

reports (Callebaut and Mornon, 2005) and a multiple sequence alignment of the related splicing

factors RBM5, RBM6, and RBM10 indicated that the OCRE domain spans amino acid residues 451–

511 of RBM5 (Figure 1A,B). NMR chemical shift and 15N relaxation analyses of a construct with a

C-terminal extension (451–532, including the KEKE region) did not reveal additional structural ele-

ments, suggesting that residues 451–511 indeed define the OCRE fold (Figure 1—figure supple-

ment 1A,B). An analysis of 13C secondary chemical shifts shows that the secondary structure of the

RBM5 OCRE domain comprises six b-strands between residues 460 and 505 (Figure 1B; Figure 1—

figure supplement 1C). Notably, residues 452–459 preceding b1, and the loops connecting the b-

strands are well-structured and not flexible (Figure 1—figure supplement 1B,C).

The solution structure of the RBM5 OCRE domain is shown in Figures 1C,D and Figure 1—figure

supplement 1D,E; structural statistics are provided in Table 1. Residues 462–465 (b1), 470–473 (b2),

478–481 (b3), 486–489 (b4), 494–498 (b5), and 504–506 (b6) make up six consecutive anti–parallel b-

strands. An N-terminal extension (residues 452–459) packs against one side of the b�sheet and is

connected to the b1 strand by a 310 helix (residues 459–461) (Figures 1C,D). The six b–strands form

a twisted b–sheet where aromatic side chains are exposed on opposite surfaces of the b–sheet

(Figure 1C,D). On one side, the aromatic side chains of Tyr464 (in strand b1), Tyr 471 (b2), Tyr480

(b3), Tyr487 (b4) form extended aromatic side chain interactions on the surface. Tyr487 forms an

additional hydrophobic cluster with Tyr462 and Pro457 from the N-terminal extension. Trp498 and
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Tyr505 from the C-terminal extension, and the N-terminal Tyr454 are also involved in this cluster

(Figure 1C). This forms a compact fold that is further stabilized by a salt bridge involving Lys453 and

Glu503 and thus brings the N- and C-terminal regions of the OCRE domain in close spatial proxim-

ity. Due to the interactions with residues from the N-terminal extension this aromatic surface of the

OCRE domain is shielded from the solvent. In contrast, on the other side of the b-sheet,

the interactions of the aromatic side chains of Tyr470 (b2), Tyr479 (b3), Tyr486, Tyr488 (b4), and

Tyr495, Tyr497 (b5) form an aromatic surface with the tyrosine hydroxyl groups exposed to the sol-

vent (Figure 1D). The N-terminal extension has an extended conformation consistent with secondary
13C chemical shifts (Figure 1—figure supplement 1C). Although the topology of the six antiparallel

b-strands is rather simple, the twisted b-sheet of the OCRE domain appears unique. Structural simi-

larity searches with Dali (Holm et al., 2008) and SSM (Krissinel and Henrick, 2004) did not reveal

any significant structural homologs (Z-scores <2), indicating that the OCRE domain represents a

unique fold. While the b-sheet fold is quite simple, the specific arrangement of the N-terminal exten-

sion represent the unique features of the OCRE fold. The electrostatic surface potential of the OCRE

domain is predominantly negatively charged with some hydrophobic patches (Figure 1—figure sup-

plement 1E), consistent with a potential role in protein–protein interactions and less likely for nucleic

acid binding.

Table 1. Structural statistics RBM5 OCRE and OCRE/SmN complex.

OCRE OCRE + SmN

NMR distance and dihedral restraints

Distance restraints

Total NOE 1171 1127

Intra-residue 220 419

Inter-residue

Sequential (|i-j| = 1) 292 118

Medium-range (|i-j| < 4) 156 114

Long-range (|i-j > 5) 503 329

Hydrogen bonds 20 11

Protein-peptide intermolecular N/A 109

Dihedral angle restraints

f 47 51

y 51 51

Structure statistics

Violations (mean and s.d.)

Distance restraints (>0.2 Å) 0.685 ± 0.363 0.324 ± 0.111

Dihedral angle restraints (>5 ˚) 0 ± 0 0 ± 0

Max. distance restraint violation (Å) 0.657 ± 0.470 0.587 ± 0.142

Max. dihedral angle restraint violation (˚) 0 0

Deviations from idealized geometry

Bond lengths (Å) 0.0038 ± 0.0002 0.0046 ± 0.0001

Bond angles (˚) 0.444 ± 0.026 0.616 ± 0.015

Impropers (˚) 1.230 ± 0.0681 1.737 ± 0.00889

Average pairwise r.m.s.d.* (Å)

Heavy 0.72 ± 0.05 0.71 ± 0.10

Backbone 0.38 ± 0.07 0.38 ± 0.09

*Pairwise r.m.s.d. was calculated among 10 refined structures for residues 455-508 (RBM5 OCRE) and 221-229

(SmN) after water refinement.

DOI: 10.7554/eLife.14707.005
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To get initial insights into functionally relevant residues and subdomains, we focused on surface-

exposed amino acids conserved between OCRE domains from different RBM proteins. These include

Tyr495, Tyr497 on one surface of the fold and Tyr454, Glu501 and Asp458 on the opposite side. To

assess the functional relevance of these residues, we generated triple and double point mutations

(Y495/Y497/E501(YYE)>AAK) and (Y454/458(YD)>AR), respectively. The mutants were expressed in

HeLa cells, co-transfected with a FAS alternative splicing reporter (Forch et al., 2000) and the pat-

tern of Fas exon 6 inclusion/skipping analyzed by RT-PCR. While the YD mutant had similar activity

as the WT protein in promoting Fas exon 6 skipping, the YYE mutation failed to induce significant

levels of FAS exon 6 skipping, similar to the effect of deleting the entire OCRE domain (Figure 1E).

To further investigate the importance of the residues in the YYE cluster, single point mutants were

generated (Y495A, Y497A, E501D/K) and tested by co-transfection. Replacement of the aromatic

tyrosines that are exposed on one surface of the b-sheet to alanine impaired the function of the pro-

tein in FAS alternative splicing regulation, arguing that the tyrosine residues in the surface of the b-

sheet are important for the function of the OCRE domain in splicing regulation (Figure 1E).

RBM5 OCRE domain binds to the C-terminal tails of SmN/B/B’
It was previously shown that the RBM5 OCRE domain mediates interactions with protein compo-

nents of the U5 snRNP complex, but the direct binding partners were not determined (Bonnal et al.,

2008). SmN, a core snRNP protein highly homologous to SmB/B’, was among proteins, identified by

mass-spectrometry, pulled down with GST-OCRE RBM5 from HeLa cell extracts (Bonnal et al.,

2008). We also found RBM5 as an interacting partner in a two-hybrid screen using the C-terminal

tail of human SmB as bait (unpublished results). SmN/B/B’ are components of the Sm core, a hep-

tamer of Sm proteins that associates with all spliceosomal snRNPs except U6. While SmB and SmB’

are ubiquitous, SmN is primarily found in neuronal and cardiac cells but has also been found to be

expressed in HeLa cells (Sharpe et al., 1990). The three SmN/B/B’ isoforms have a similar domain

architecture, comprising a small globular N-terminal Sm domain (Kambach et al., 1999) and a C-ter-

minal region that is expected to be intrinsically disordered. The C-terminal region starts with an argi-

nine-glycine (RG)-rich region at ~residue 90 that harbors symmetrically dimethylated arginine

residues, and additionally comprises a 60–70 residue proline-rich region of unknown function beyond

residue 167 (Figure 2A).

As the globular N-terminal Sm domain in SmN/B/B’ proteins participates in the formation of the

heptameric Sm core in the U snRNP complexes (Kambach et al., 1999; Pomeranz Krummel et al.,

2009) it seems unlikely that it could interact with the RBM5 OCRE domain. We thus considered the

possibility that, in particular, the C-terminal domain of SmN/B/B’ could directly bind to the RBM5

OCRE domain. As an initial test, we verified that recombinant purified GST-RBM5, or a derivative

containing the C-terminal (OCRE-containing) domain, pulled down in vitro translated SmB, while a

GST-fusion of the N-terminal domain of RBM5 did not (Figure 2B). Next we carried out pull-down

experiments using recombinant GST-tagged RBM5 OCRE domains (wild type and mutants where

surface-exposed tyrosine residues are replaced by alanine) and assessed the ability to pull down

purified recombinant N-terminal T7 epitope-tagged-SmN protein produced in mammalian cells

(Figure 2C; Figure 2—figure supplement 1A). These experiments demonstrate that recombinant

GST-tagged OCRE domain binds SmN in vitro and that the mutations Y479A, Y488A, or Y495A

diminish SmN binding (Figure 2C), consistent with the decrease in activity of Y495A in splicing regu-

lation (Figure 1E). The mutations Y486A, Y497A and E501K do not significantly impair the interac-

tion (Figure 2C). Interestingly, mutation of Y495 to tryptophan or phenylalanine did not compromise

binding, arguing that an aromatic residue at this position is required for the interaction (Figure 2—

figure supplement 1).

To further characterize these interactions by an independent method, we performed yeast-two-

hybrid assays and tested whether the C-terminal tail of SmB binds to different variants of RBM5.

These experiments demonstrate a robust interaction between RBM5 and the SmB tail, where the

OCRE domain is found to be necessary and sufficient for the interaction (Figure 2D). Moreover,

mutations of surface-exposed tyrosines to alanine reduce the interaction, while mutation to another

aromatic amino acid (phenylalanine) maintains the interaction (Figure 2E) as was observed for the

full-length SmN protein (Figure 2C; Figure 2—figure supplement 1).
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Figure 2. Interaction of RBM5 OCRE with SmN/B/B’ proteins. (A) Domain structure and multiple sequence alignment of the C-terminal tails of human

SmN/B/B’ proteins. (B) In vitro pull down assays of 35S-labeled SmB with GST-RBM5 full-length, N- and C-terminal halves of human RBM5. First lane

represents 20% of the input used in the pull down. (C) Conserved tyrosine residues in the RBM5 OCRE domain are important for the interaction with

SmN protein. GST-pull down assays were carried out with different variants of RBM5 comprising the OCRE and KEKE domains harboring the mutations

Figure 2 continued on next page
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RBM5 OCRE domain recognizes proline-rich motifs in the SmN/B/B’
tails
We next wished to identify the region in the Sm tails that mediates the OCRE interaction by using

NMR and isothermal titration calorimetry (ITC) experiments. We studied binding of different con-

structs of the C-terminal tail of SmN, which harbors a region comprising Arg-Gly motifs (residues

95–134, not shown) and a proline rich region (residues 167–240, up to the C-terminal end,

Figure 2A) (Weber et al., 2010). The interaction of the RBM5 OCRE domain was assessed by

monitoring NMR 1H, 15N chemical shifts of 15N-labeled OCRE domain during a titration with differ-

ent SmN-derived peptides (Figure 2—figure supplement 2). Titrations with two different SmN

fragments (residues 97–196 and 167–196) that both comprise parts of the proline-rich region gave

rise to significant and comparable chemical shift perturbations (CSPs) (Figure 2—figure supple-

ment 2A,B), suggesting that it is the proline-rich region, which is common to both peptides, that

mediates the interaction. A peptide comprising the complete proline-rich region (residues 167–

240) shows comparable chemical shift changes. SmN (167–196) and (167–240), both of which com-

prise about one half and the complete proline-rich region, bind to RBM5 OCRE with dissociation

Figure 2 continued

indicated. The detection of the protein was carried out by western blot with T7 epitope antibody and Ponceau staining was performed as a loading

control. Quantification is provided in Figure 2—figure supplement 1. (D) The C-terminal domain of human SmB binds to the OCRE domain of RBM5

in vivo. Yeast two hybrid plasmids encoding the C-terminal domain of human SmB (SmB C-tail) and the indicated RBM5 coding regions were

transformed into yeast. Serial dilutions of equivalent amounts of exponentially growing yeast were plated on double and triple dropout media. Growth

on -Leu -Trp -His is indicative of an interaction between the tested proteins: RBM5-FL: full length RBM5 protein; RBM5 DOCRE: deletion of the RBM5

OCRE domain (amino-acids 452–535); RBM5 OCRE: RBM5 OCRE domain (amino-acids 452–535). (E) Surface-exposed tyrosine residues are important

for SmB C-tail binding in vivo. RBM5-FL: full length RBM5 protein; RBM5 Y495F: RBM5-FL carrying a tyrosine to phenylalanine substitution at position

495; RBM5-FL Y495A: RBM5 carrying a tyrosine to alanine substitution at position 495. The two-hybrid assay was performed as described in panel d. (F)

NMR titrationof 15N-labeled RMB5 OCRE domain (0.2 mM- black) with SmN residues 219–229 (red) at two-fold molar excess. (G) Mapping of NMR

chemical shift perturbations upon titration of the OCRE domain with SmN (residues 219–229) onto a surface representation of the RBM5 OCRE domain

structure.

DOI: 10.7554/eLife.14707.006

The following figure supplements are available for figure 2:

Figure supplement 1. Aromatic residues in RBM5 OCRE are important for interaction with SmN.

DOI: 10.7554/eLife.14707.007

Figure supplement 2. Interaction of RBM5 OCRE with C-terminal regions of SmN and SmB.

DOI: 10.7554/eLife.14707.008

Table 2. Isothermal titration calorimetry data for the OCRE/SmN/B/B’ interaction.

RBM5_OCRE WT Y495A Y495T Y495F Y495W Y488A Y486A Y479A Y454A/D458K E501K

SmN_167-240 WT WT WT WT WT WT WT WT WT

KD (mM) 41 ± 2 172 ± 6 186 ± 12 87 ± 3 35 ± 3 220 ± 11 145 ± 5 111 ± 5 106 ± 15 48 ± 2

KD values were determined from replicate measurements, with standard deviations as indicated.

RBM5_OCRE WT WT WT WT WT WT

SmN_167-240 4Pfi4A 4P/3Pfi4A/3A 4P/3Pfi4G/3G R1fiE1 R2fiE2 R1/R2fiE1/E2

KD (mM) 29 ± 3 103 ± 16 192 ± 66 66.5 ± 6 74 ± 4 149.5 ± 46

RBM5_OCRE WT

SmN_167-196 WT

KD (mM) 195 ± 21

RBM5_OCRE WT WT WT

SmB_167-231 WT 4Pfi4A R1/R2fiE1/E2

KD (mM) 21 ± 3 20 ± 2 159 ± 8

DOI: 10.7554/eLife.14707.009
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constants of KD = 195 mM and 41 mM, respectively, as determined by ITC (Figure 2—figure sup-

plement 2F; Table 2).

SmB and SmN share a poly-proline-rich region in their C-terminal tails, with 80% sequence iden-

tity and 98% sequence similarity (Figure 2A). Upon titration of the SmB C-terminal region (residues

167–231) to 15N-labeled OCRE, significant NMR CSPs are observed (Figure 2—figure supplement

2E). Moreover, the observed CSPs are very similar to those seen with the SmN titration and affect

the same residues, indicating that SmB and SmN bind to the same site in the RBM5 OCRE domain

(Figure 2—figure supplement 2G). The binding affinity of the SmB and SmN peptides to OCRE,

determined by isothermal titration calorimetry (ITC) gave similar KD values of 21 mM and 41 mM,

respectively (Table 2). Considering the high sequence similarity between SmB, SmB’ and SmN, it is

expected that OCRE will interact with proline-rich sequences present in SmB and SmB’ as well.

It is interesting to note that the NMR CSPs observed for the OCRE domain when titrated with a

peptide comprising just one proline-rich motif (PRM, residues 219–229) (Figure 2F) or the larger

fragments of SmN are very similar (Figure 2—figure supplement 2A–D). This indicates that all SmN

fragments harboring PRMs utilize the same binding site on the OCRE domain. The strongest CSPs

are observed for the amides of Y470, Y488, and Y495, which map to the cluster of exposed aromatic

tyrosines on b2, b4, and b5 of the OCRE domain, respectively (Figure 2G). However, the short pep-

tide containing four consecutive proline residues induces comparable CSPs only at much higher pep-

tide:OCRE ratio compared to the longer Sm tail peptides, thus indicating higher binding affinity for

the longer Sm tail constructs (Figure 2—figure supplement 2). Nearly identical spectral changes are

induced by the peptide, suggesting that all PRMs contribute to the overall affinity for the OCRE

domain. Thus, the interaction with multiple motifs is enhanced by avidity, e.g., interaction of multiple

PRMs within the Sm tails provides increased local concentration of PRM ligand motifs and thereby

contributes to the significantly higher affinity of Sm-tails compared to a single PRM.

In order to assess the sequence requirements of PRMs for binding to the OCRE domain, we com-

pared the amino acid sequences of the SmN/B tails (Figure 3A). This analysis reveals the presence

of multiple (five to six) PRMs harboring three or four consecutive prolines in SmB or SmN, which are

flanked by conserved arginine residues within ±3 residues on either side of the poly-proline motif

(Weber et al., 2010). The role of these conserved sequence features was probed by compared bind-

ing affinities of wild type and variant Sm tails to the RBM5 OCRE domain using ITC experiments

(Figure 3A). Reducing the number or PRMs significantly decreases the binding affinity, consistent

with avidity effects and contribution to the overall affinity by the presence of multiple PRMs. Replac-

ing four prolines by four alanines has little effect. This observation is consistent with the fact that

consecutive stretches of alanines adopt a poly-proline type II (PPII) helical conformation, as con-

firmed by CD spectra (Figure 3—figure supplement 1). As the SmN/B/B’ PRMs adopt a PPII helical

conformation when bound to the OCRE domain (see below), the replacement by four alanines can

thus be tolerated to some extent. Notably, charge reversal of two arginines flanking the poly-proline

motif on either side significantly decreases the binding affinity. These data suggest that a PPII helical

conformation flanked by positively charged arginine residues is specifically recognized by the OCRE

domain.

The contribution of individual residues within the PRM motif was determined by comparing rela-

tive binding affinities of wild type and mutant 11-mer peptides that exhibit sequence features

observed in the Sm tails (Figure 3B). As the binding affinities of these peptides are beyond the

detection limit of ITC, we resorted to a semi-quantitative NMR CSP-based approach. We devised a

normalized CSP score for a set of seven amide signals surrounding the binding pocket showing sig-

nificant CSPs in the OCRE domain to obtain a proxy for the relative binding affinities (see

Materials and methods for details) (Figure 3B—figure supplement 2). As the comparison between

different peptides is based on the CSP score derived from the same set of residues, it indirectly

reflects their relative binding affinities. Several themes emerge from this comparison suggesting that

the OCRE domain has a preferred binding motif, but can also accommodate some sequence var-

iants. First, wild type peptides with three prolines induce smaller CSPs than those with four proline

motifs and binding saturation is achieved only at higher peptide concentration, indicating a lower

affinity. PRMs harboring only three consecutive proline residues show 2–3-fold reduced affinity rela-

tive to four proline motifs. Second, an APAP motif, which disrupts PPII conformations, has a strongly

reduced CSP score, suggesting that the structure and composition of the PPII are important for

interaction. Third, both arginines flanking the PRM motif are important for the interaction, as a
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double charge reversal (RfiE) strongly reduces the binding affinity. Neutralizing the charge with

RfiA mutations had a smaller effect, presumably because no charge clashes are introduced with the

negatively charged surface of the OCRE domain (Figure 1—figure supplement 1E) as is the case

for RfiE mutations. Taken together, the analysis shown in Figure 3 indicates that a PPII conforma-

tion mediated by four consecutive proline residues with flanking positively charged residues is opti-

mal for OCRE binding. Notably, the arginine residue preceding the PRM appears more important

for the interaction than the one located C-terminal to the PRM.
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QYPPGRGTAAAAVGRATAAAGIMAAAAGMRPPMGPPIGLPPARGTPIGMAAAGMRAAAAGIRGAAAAGMRPPRP
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Figure 3. Proline-rich motif sequence requirements for OCRE binding. (A) Sequence of the C-terminal tail of human SmN/B/B’ and mutations of

proline-rich-motifs (PRMs) tested. Conserved three or four-proline motifs and flanking arginine residues are highlighted. The binding affinities of these

tails to the RBM5 OCRE domain determined by ITC (Table 2) are indicated on the right. Note, that association constants are shown here. (B) Binding of

various PRM peptides to RBM5 OCRE monitored by NMR titrations. Relative binding affinities of PRM peptides to RBM5 OCRE based on a normalized

chemical shift perturbation score are shown.

DOI: 10.7554/eLife.14707.010

The following figure supplements are available for figure 3:

Figure supplement 1. Circular dichroism spectra of peptides used in the OCRE binding study.

DOI: 10.7554/eLife.14707.011

Figure supplement 2. Residues used for normalized CSP score calculation.

DOI: 10.7554/eLife.14707.012
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Solution structure of an RBM5 OCRE/SmN peptide complex
To determine molecular details of the recognition of SmN/B/B’ by the RBM5 OCRE domain, we

determined its structure in complex with a proline-rich peptide derived from the C-terminal region

of SmN (GMRPPPPGIRG) corresponding to SmN residues 219–229 (Figure 4; Figure 4—figure sup-

plement 1A). This motif is also found within residues 219–229 in SmB with only one amino acid dif-

ference (GMRPPPPGMRG). The structure of the complex is defined by numerous NOEs, and is

supported by 109 distance restraints derived from intermolecular NOEs (Figure 4—figure supple-

ment 1B, Table 2). The structure shows that the central proline stretch (SmN Pro222-Pro225) of the

bound peptide adopts a PPII helix (Figure 4). The PPII conformation is also indicated by the 13C

chemical shifts of the peptide. Considering the large excess of peptide, the chemical shifts largely

reflect the unbound state. This indicates that the PPII conformation is already preformed in the
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Figure 4. Structure of the RBM5 OCRE/SmN peptide complex. (A,B) Side and top views in a cartoon presentation of the RBM5 OCRE/SmN peptide

complex.The secondary structure and loops in the RBM5 OCRE domain are colored in green and grey, respectively, the proline-rich motif (PRM)

peptide corresponding to SmN residues 221–229 is shown in yellow. (C–E) Zoomed views of key interaction sites. (C) The SmN PRM adopts a proline-

type II helical conformation and is recognized by stacking with key tyrosine residues from the OCRE domain. The side chain of SmN Ile227 packs

against the hydrophobic surface of the PPII helix. (D) Recognition of SmN Arg221 by interactions with hydroxyl groups of Tyr472, Tyr479 and Ser490 (E)

Arg228 forms electrostatic contacts with the side chains of Asp481 and Ser484.

DOI: 10.7554/eLife.14707.013

The following figure supplements are available for figure 4:

Figure supplement 1. Structural analysis of the OCRE/SmN complex.

DOI: 10.7554/eLife.14707.014

Figure supplement 2. NMR spectra and ITC data for OCRE domain mutants.

DOI: 10.7554/eLife.14707.015
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absence of the OCRE domain, consistent with our CD data (Figure 3—figure supplement 1). The

central part of the proline-rich peptide interacts with conserved tyrosine residues in the OCRE

domain in strands b3 (Tyr470, Tyr479), b4 (Tyr486, Tyr488) and b5 (Tyr495) (Figure 4A–C). On one

side, Tyr488 stacks with SmN Pro222 and on the other with Tyr479, which itself contacts SmN

Pro224 by T-stacking. The Tyr486 side chain stacks with SmN Pro225 and interacts with Tyr495,

which in turn contacts Pro223 in the SmN peptide.

A unique binding orientation of the peptide is defined by a combination of the stacking interac-

tions with the PPII conformation of the peptide, and interactions with the arginine residues flanking

the proline-rich stretch on either side, as well as SmN Ile227. The side chain of SmN Arg221, preced-

ing the poly-proline stretch is poised to interact with the hydroxyl groups of OCRE Tyr472, Tyr479

and Ser490 in loop b1-b2 (Figure 4D). The side chain of SmN Arg228 can form potential hydrogen

bonds with the side chains of Asp481 and Ser484 in the OCRE domain (Figure 4E). Both residues

are conserved in loop b3-b4 in the OCRE domains of RBM5 and RBM10 (Figure 1B). In addition, the

hydrophobic side chain of SmN Ile227, located C-terminal of the proline-rich motif packs against

SmN Pro223, consistent with numerous intermolecular NOEs between the two side chains, and thus

shields the hydrophobic PPII helix from solvent exposure (Figure 4C). To enable these contacts

involving the Ile227 side chain, the presence of a preceding Gly226, enables a specific backbone

conformation by allowing unusual backbone torsion angles.

Considering the specific spacing of the arginine residues to the four-proline-stretch in the SmN

ligand, these interactions define a unique, unambiguous orientation of the peptide along the OCRE

b-sheet surface. The structure of the OCRE domain does not undergo significant conformational

changes upon binding to the SmN peptide, with a backbone coordinate r.m.s.d. of 1.7Å between

the free and SmN-bound OCRE domain. However, the tyrosine side chains involved in the SmN

interaction slightly rearrange to optimize contacts with the proline-rich SmN ligand.

To summarize, the RBM5 OCRE domain uses an array of tyrosine side chains that are exposed

from one side of its b-sheet to recognize a proline-rich motif in a PPII conformation. Additional spe-

cific interactions are mediated by two positively charged side chains flanking the N- and C-terminal

sides of the poly-proline helix in the bound SmN peptide, which in part involve the side chain

hydroxyl groups of the exposed tyrosines, thus consistent with the strong conservation of tyrosines

in the OCRE domain. These structural insights reveal that the OCRE domain represents a novel pro-

line-rich motif binding domain.

Structure-based mutation analysis in vitro and in vivo
To evaluate the importance of contacts observed in the OCRE-SmN structure we carried out a muta-

tional analysis of the OCRE domain. We compared the binding of wild-type and mutant OCRE

domains to SmN/B/B’ in vitro using GST pull-downs, ITC and NMR titrations, and analyzed the func-

tional activity of wild-type and OCRE domain mutants in alternative splicing regulation. We focused

on the effects of mutation of tyrosine residues located within the proline-rich motif binding pocket,

including Tyr470, Tyr479, Tyr486, Tyr488 and Tyr495 and control mutations of residues that are not

involved in the SmN interactions, i.e. Tyr497, Glu501 and Tyr454/Asp458.

To analyze whether the effects of the OCRE mutations could induce (partial) disruption of the

OCRE structure, recombinant OCRE proteins were expressed and purified and structural integrity

analyzed by NMR (Figure 4—figure supplement 2). The NMR spectra of the Y495F, Y495W and

E501K OCRE domains suggest that these proteins are globular folded. Small changes in position

and intensities of the NMR signals for the Y495F/W mutations likely reflect that aromatic side chains

have significant contributions to the chemical shifts of surrounding residues, but are still consistent

with the integrity of the overall fold. NMR spectra of the Y495A, Y495T, Y497A and the double

mutant Y454A/D458K suggest partial unfolding of strand b5 and the N-terminal extension, respec-

tively, even though the overall fold appears to remain intact. Larger changes observed for the

Y479A, Y486A or Y488A OCRE domains suggest more significant destabilization of the fold (Fig-

ure 4—figure supplement 2).

GST-pulldown experiments (Figure 2—figure supplement 1) performed with Tyr495 mutations in

the RBM5 OCRE domain confirm the importance of the aromatic side chain of Tyr495 for Sm bind-

ing. Next, we compared the binding affinities of wild type OCRE domains with Y495A, Y495F,

Y488A and of the double mutant Y454A/D458K using ITC (Table 2). Consistent with the structural

analysis and the observed effects in splicing regulation, the Y495A and Y488A mutants show strongly
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reduced binding to the SmN-derived proline-rich ligands, KD = 172 and 220 mM, respectively, com-

pared to the wild type OCRE domain (KD = 41 mM). The Y495F mutation does not strongly affect

the SmN interaction KD = 87 mM. The double mutant Y454A/D458K shows a slightly reduced affinity

to SmN KD = 106 mM, which, however, might reflect partial destabilization of the mutant OCRE fold

(Figure 4—figure supplement 2). Yeast two-hybrid assays confirmed the importance of an aromatic

residue at this position also for the interaction of the OCRE domain with SmB, as the Y495A muta-

tion reduced the interaction between RBM5 OCRE and SmB while the Y495F retained binding com-

petence (Figure 2E).

To probe the functional effects of the OCRE domain mutations, we tested the splicing activity of

full-length RBM5 harboring mutations in the ligand binding region of the OCRE domain (Figure 5;

Figure 5—figure supplements 1 and 2). As shown in Figure 1E, substitutions of conserved tyro-

sines that are involved in SmN interactions (Tyr495 and Tyr497) impair the activity of RBM5 in Fas

alternative splicing regulation (Figures 5A,C; Figure 5—figure supplement 2). Further mutations of

aromatic residues, including tyrosines 470, 479, 486 and 488 by alanine compromise the Fas exon 6

skipping activity of RBM5 to different extents, consistent with the reduced binding of these mutants

to SmN-derived proline-rich ligands (see above) and with the location of these residues in the bind-

ing pocket for the SmN poly-proline motif (Figures 4, 5A–C).

Substitution of the important Tyr495 residue by threonine or glutamate also compromised activ-

ity, while replacement by other aromatic residues (phenylalanine or tryptophan) retained full activity

in splicing assays (Figure 5A–C; Figure 5—figure supplement 2), consistent with sustained SmN

interaction (Figure 2; Figure 2—figure supplement 1). This argues that, in agreement with the

structural analysis, the aromatic nature of the tyrosine is a key feature of the splicing regulatory

properties of the OCRE domain. In contrast, mutations of residues, Tyr454, Asp458, Glu501

(Figure 1E) and Ser468 and Asn483 (Figure 5—figure supplement 1), which are remote from the

SmN binding site, had only moderate effects on the activity of RBM5 on FAS splicing. All the mutant

proteins accumulated to levels similar as the wild type (Figure 5B). These data further argue that

specific recognition of the proline-rich SmN peptide by a cluster of aromatic residues in the RBM5

OCRE domain is required for the function of RBM5 as a splicing regulator.

We next wished to probe the contributions of different regions in the SmN/B/B’ proteins for FAS

alternative splicing. Consistent with previous results (Saltzman et al., 2011), we observed that the

knock down of the SmN/B/B’ proteins by siRNA in HeLa cells led to an increase in the level of FAS

exon 6 skipping in endogenous transcripts or in transcripts derived from a Fas reporter (Figure 5—

figure supplement 3A,C). These effects were attenuated by strengthening FAS exon 6-associated 5’

splice site (Figure 5—figure supplement 3C), as has been previously reported (Saltzman et al.,

2011). Co-expression of SmN with a FAS alternative splicing reporter bearing a mutation (Fas

U-20C) that increases FAS exon 6 skipping (Izquierdo et al., 2005), led to increased levels of exon

inclusion, while neither expression of the amino terminal part nor of the C-terminal part of the pro-

tein did (Figure 5—figure supplement 3B). While expression of SmN variants harboring mutations

in the proline-rich stretches (either to glycine or to APAP motif) does not significantly compromise

exon inclusion, mutation of the arginines flanking stretches of four prolines does (Figure 5—figure

supplement 3D). However, the results of SmN/B/B’ overexpression experiments are highly variable

and difficult to interpret, perhaps because of additional complex effects of Sm protein overexpres-

sion on snRNP biogenesis/activity.

Taken together, the structural and functional analyses show that three tyrosine residues in the

RBM5 OCRE domain (Tyr479, Tyr488 and Tyr495) play crucial roles in the recognition of proline-rich

regions present in the conserved C-terminal tails of SmN/B/B’ and reveal a tight correlation between

this binding and the activity of RBM5 as a regulator of FAS alternative splicing.

We have previously shown that the alternative splicing activity RBM5 depends on the C-terminal

region of RBM5 and that recombinant RBM5 inhibits the transition from the pre-spliceosomal com-

plex A to spliceosomal complex B (Bonnal et al., 2008). To assess which region of the RBM5 protein

is required, we performed in vitro spliceosome assembly assays with AdML pre-mRNA, using the N-

and C-terminal halves of RBM5 as well as with a C-terminal version that lacks the OCRE domain or a

fragment that includes only the OCRE and KEKE domains (Figure 6—figure supplement 1). These

and additional transient transfection experiments (Figure 6—figure supplement 2) confirm that the

inhibition of complex B formation depends on the C-terminal region of RBM5 and reveal that the

OCRE domain is necessary but not sufficient for this activity. This is consistent with a key role for the
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Figure 5. Mutational analysis of the RBM5 OCRE – SmN/B/B’ interaction. Specific mutations of conserved residues in the RBM5 OCRE domain impair

the activity of the protein in FAS alternative splicing regulation ex vivo. HeLa cells were co-transfected with a FAS alternative splicing reporter and T7-

RBM5 expression plasmids (wild type or mutations of tyrosine residues as indicated). RNA and proteins were isolated 24 hr after transfection. Patterns

of alternative splicing were studied by RT-PCR using specific primers. (A) Inclusion and skipping products are annotated. (B) Protein expression was

Figure 5 continued on next page
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interaction of OCRE with the PRM in the spliceosomal tails in the tri-snRNP, but argues that addi-

tional interactions involving the C-terminal region of RBM5 are important, including for example the

previously reported interaction with U2AF65 (Bonnal et al., 2008).

Discussion
The Octamer Repeat (OCRE) domain of RBM5 adopts a unique three-dimensional fold with a large

number of conserved tyrosine residues. Although the primary sequence signature could suggest a

linear sequence of octamer repeats, our structural analysis clearly reveals that the OCRE domain

adopts a small globular fold. We show that the twisted b-sheet of the OCRE domain exposes con-

served tyrosine residues that provide a platform for the recognition of a proline rich motif (PRM).

This interaction is based upon a network of tyrosine residues as well as anchoring residues located in

the loops of the b-strands. The SmN PRM is flanked by a positively charged arginine residue preced-

ing the four consecutive prolines, followed by a hydrophobic residue and another arginine. Taking

into account the sequence conservation, binding studies (Figure 3), and the details of molecular rec-

ognition of the SmN peptide (Figure 4), we propose that the OCRE domain recognizes a RPPP(P)

GfR consensus motif. A key feature of the motif is a central PPII helix, which is recognized by a net-

work of parallel and aromatic T-stacking of Tyr470, Tyr479, Tyr482, Tyr488 and Tyr495 with the pro-

line side chains in the PPII helix. These tyrosines are exposed at one side of the OCRE b-sheet and

collectively embed the PPII helix. Specific contacts that define the orientation of the bound peptide

are mediated by two flanking arginine residues, with a stronger contribution of the N-terminal argi-

nine (SmN Arg221, Figure 3B). The glycine residue may enable an unusual backbone conformation

such that hydrophobic residues (f, Ile/Met/Val flanking different PRMs in the SmN/B/B’ C-terminal

tails, Figure 3A) can shield the central hydrophobic PPII motif from solvent exposure. Notably,

unbound PRMs harboring 3–4 consecutive prolines already adopt (at least partially) a preformed PPII

conformation and thus reduce the entropy loss associated with binding to the OCRE domain. The

somewhat reduced affinity for peptides with only three prolines may reflect a smaller propensity of

forming PPII conformation in the free ligands and the lack of a preceding arginine, which is consis-

tently present in all four proline PRMs.

The tertiary fold and the mode of PRM recognition by the OCRE domain is distinct from other

PRM binding domains, such as GYF, SH3, and WW domains (Figure 7A). Although – as a common

feature – aromatic residues are used to interact with proline residues and to recognize the PPII helix

(Ball et al., 2005), different secondary structure elements are found in GYF (a-helical), SH3 (a/b

fold), WW (b-sheet) and OCRE domains (b-sheet). Interestingly, a somewhat related PRM motif in

the CD2 protein (PPPPGHR) was reported to interact with the GYF domain of the CD2BP2 protein

(Freund et al., 2002). The CD2BP2 GYF domain and the FBP21 WW domain have been previously

implicated in binding to the PRM sequences of SmB, suggesting that interactions between PRMs

and these factors may be critical for the function of these proteins in spliceosome regulation

(Bedford et al., 1998; Klippel et al., 2011).

An interesting aspect of the OCRE/Sm interaction is that the presence of multiple PRM motifs

greatly enhances the overall affinity ranging from KD » mM for a single PRM peptide to KD = 20–40

mM for complete Sm tails, and thus comparable to other PRM binding domains. The relatively weak

Figure 5 continued

detected by western blot with an anti-T7 epitope antibody. (C) Quantification of the activity of RBM5 OCRE domain mutants in FAS alternative splicing

regulation of 3 to 10 replicates of the experiment. The percentage of inclusion is presented. T-test (two-tailed distribution, homoscedastic) results are

mentioned (**<0,01; ***<0,001).

DOI: 10.7554/eLife.14707.016

The following figure supplements are available for figure 5:

Figure supplement 1. Effect of mutation of non-aromatic residues in RBM5 OCRE on FAS alternative splicing regulation.

DOI: 10.7554/eLife.14707.017

Figure supplement 2. Effects and statistical analysis of RBM5 mutations on FAS alternative splicing.

DOI: 10.7554/eLife.14707.018

Figure supplement 3. Effects of SmN wild type and mutants expression on FAS alternative splicing.

DOI: 10.7554/eLife.14707.019

Mourão et al. eLife 2016;5:e14707. DOI: 10.7554/eLife.14707 15 of 25

Research article Biochemistry Biophysics and Structural Biology

http://dx.doi.org/10.7554/eLife.14707.016
http://dx.doi.org/10.7554/eLife.14707.017
http://dx.doi.org/10.7554/eLife.14707.018
http://dx.doi.org/10.7554/eLife.14707.019
http://dx.doi.org/10.7554/eLife.14707


Protein

30°          -     +    +   +    +    +   +    +    +   +    +    +   +   +

      -     -

C-term C-term

∆OCRE

N-term

H

A

B

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

          Ctr C-term
∆OCRE

N-term

*
*

*

A

B

R
a

ti
o

 (
c
o

m
p

le
x
 B

)/
(c

o
m

p
le

x
 A

)

C-term

Figure 6. Spliceosome assembly assays with different regions of RBM5. (A) RBM5 inhibits the full spliceosome assembly on AdML and blocks the

transition from complexes A to B in an OCRE dependent manner.Splicing complexes assembled on AdML were resolved by electrophoresis on native

gel in the presence or absence of 25, 50, 100 and 200 ng/ul of the indicated proteins. The position of the H, A and B complexes are indicated. (B)

Figure 6 continued on next page
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affinity of a single PRM found in the Sm tails argues that avidity effects due to the presence of multi-

ple motifs play an important role for high affinity binding by increasing the local concentration of

PRM motifs available for OCRE binding. We note that avidity effects provided by multiple binding

sites have also been observed for other PRM binding domains (Varani et al., 2000; Klippel et al.,

2011), and that this feature is reminiscent of the recognition of dimethyl-arginine residues in the Sm

tails by Tudor domains (Tripsianes et al., 2011). On the other hand, the weak binding affinity of a

single motif indicates that the interaction between RBM5 and SmN/B/B’ may have been selected to

be transient, as expected for a regulatory interaction that needs to promote interactions with the

spliceosome but also needs to be disrupted at later steps of the splicing reaction.

Previously, we have shown that the splicing regulation by RBM5 acts at the stage of spliceosomal

B complex formation (Bonnal et al., 2008). The role of RBM5 and its OCRE domain in this context

could be to attract the U4/U6.U5 tri-snRNP to the splice sites. The fact that the SmN/B/B’ tails are

intrinsically disordered and extend very far away from the seven-membered Sm core ring in U

snRNPs (Figure 7B,C), is consistent with such an activity. In fact, the recent EM structure of the tri-

snRNP (Nguyen et al., 2015) revealed that the Sm cores of U4 and U5, as well as the LSm ring of

U6 are located at the outside of this large RNP (Figure 7C). Thus, the C-terminal tails of SmN/B/B’

of the U4 and U5 components are clearly accessible and could scan for possible binding partners of

their proline-rich motifs, such as the RBM5 OCRE domain. This could help to localize the tri-snRNP

to the splice sites that are regulated by RBM5.

SmB was described to participate in alternative splicing of its own pre-mRNA and many additional

genes, including the FAS gene (Saltzman et al., 2011). Recently, mutations in SmB were linked to

cerebro-costo-mandibular syndrome (Bacrot et al., 2015). The multi-domain protein RBM5 pro-

motes FAS exon 6 skipping and it has been proposed that for this activity the protein modulates

splice site pairing after the competing 5’ and 3’ splice sites have been recognized by U1 and U2

snRNPs, respectively (Bonnal et al., 2008). This model is based upon the observation that RBM5

inhibits the transition from A (U2 snRNP binding) to B (U4/U6.U5 tri-snRNP binding) complex forma-

tion in the introns flanking exon 6. It is conceivable that interactions mediated by the C-terminal tails

of SmN/B/B’, which are present in U1, U2 and the tri-snRNP, facilitate the transition from A to B

complex and that binding of the OCRE domain of RBM5 prevents these interactions and therefore

the progression of spliceosome assembly. Direct or indirect association of RBM5 with particular

regions of the pre-mRNA – likely involving other regions of the protein including RRM or zinc finger

domains – may prevent A to B transition of pre-spliceosomes assembled on the flanking introns of

exon 6, but fail to prevent tri-snRNP assembly on the distal splice sites, thus facilitating exon skip-

ping. Alternatively, or in addition, RBM5 interaction with the C-terminal tails of SmN/B/B’ may lead

to a general decrease in snRNP function, possibly more acute for U2 snRNP. As decreased activity of

U2 snRNP – e.g. by individual knock down of its protein components – is known to result in

increased FAS exon skipping (Papasaikas et al., 2015), RBM5-mediated reduction in U2 function

could potentially explain at least part of the effects of the protein on FAS splicing regulation.

Taken together, our study provides a molecular understanding of how the OCRE domain of

RBM5 interacts with proline-rich sequences of the SmN/B/B’ tail and thus identifies a key interaction

essential for regulation of alternative splicing.

It is interesting to note that, based on primary sequence alignments, the OCRE domains of RBM5

and RBM10 are expected to adopt highly similar structures and possibly functions. In fact, the

recently reported structure of the RBM10 OCRE domain is highly similar to RBM5 OCRE (backbone

coordinate r.m.s.d. 1.1Å) (Martin et al., 2016). Interestingly, mutation of a conserved tyrosine

Figure 6 continued

Quantification of the activity of spliceosome assembly of the C-term, N-term and DOCRE proteins. The experiment was performed three times and

the results of a T-test (two-tailed distribution, homoscedastic) are indicated (*<0,05).

DOI: 10.7554/eLife.14707.020

The following figure supplements are available for figure 6:

Figure supplement 1. Effects of RBM5 full-length and fragments on spliceosome assembly.

DOI: 10.7554/eLife.14707.021

Figure supplement 2. Effects of RBM5 full-length and OCRE on FAS alternative splicing.

DOI: 10.7554/eLife.14707.022
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residue (corresponding to Tyr470 in RBM5, where it contributes to the recognition of the PRMs by

the OCRE domain) is frequently found associated with lung carcinoma (Imielinski et al., 2012). It is

thus tempting to speculate that splicing defects that are linked to impaired interactions with PRM in

SmN/B/B’ proteins contribute to the pathogenesis.

Materials and methods

Cloning, protein expression and purification
RBM5 (Swiss Prot P42756) OCRE domain (451–511) and all the mutants were subcloned into a

pETM11 vector (with a N-terminal His6-tag) from the corresponding GST-RBM5 full-length DNA. The

several SmN and SmB constructs were cloned into a pETM30 vector, containing a N-terminal His6-

tag followed by glutathione S-transferase protein. In both vectors, a TEV site is present before the

corresponding protein. All the proteins were produced by overexpression in E. coli BL21 cells at

20˚C for 16 hr after induction with 0.5 mM of IPTG when cells were at approximately O.D. 0.7 in

media supplemented with 30 mg/ml kanamycin. For unlabeled proteins, bacteria were grown in Luria

broth.

For isotope-labeled proteins, bacteria were grown in M9 minimal media supplemented with
13C-glucose and/or 15NH4Cl. Cell lysates were suspended in buffer containing 20 mM Tris pH 8,

300 mM NaCl, 5% glycerol, 10 mM imidazole, and 2 mM of 2-mercaptoethanol and purified with

Ni-NTA Superflow beads (Qiagen, Hilden, Germany) using standard conditions. After overnight

cleavage of the fusion protein with tobacco etch virus protease, proteins were purified in a gel fil-

tration column 26/60 sephadex II (GE Healthcare, München, Germany) and buffer was exchanged

to NMR buffer; 20 mM sodium phosphate pH 6.5, 50 mM NaCl. For measurements in D2O, the

protein was lyophilized and dissolved in D2O. The OCRE domain used for NMR studies thus com-

prises residues 451–511 preceded by a GAM tripeptide that results from the TEV cleavage. The

SmN 219–229 peptide (Peptide Specialty Laboratory, Heidelberg, Germany) was dialyzed against

water, lyophilized and then dissolved in NMR buffer.

GST-tagged RBM5 OCRE domain proteins were expressed in BL21 cells. Bacteria were trans-

formed and grown in one liter LB to an absorbance at 600 nm of 0.6 before the induction of the

expression with 1 mM IPTG for 3 hr at 37˚C. The pellet was resuspended in cold buffer X (20 mM

Tris pH 7.5; 1 M NaCl; 0.2 mM EDTA; 1 mM DDT and protease inhibitors cocktail (Roche Diagnos-

tics, reference 11697498001, Mannheim, Germany) and sonicated. The supernatant was collected

after centrifugation for 20 min at 10,000 rpm at 4˚C and incubated with Glutathione Sepharose 4B

beads for 15 min on a rotating wheel at 4˚C. The beads were washed with 50 ml buffer X 3 times 10

min and eluted on column with 50 mM glutathione, 100 mM Hepes pH 8,0; 1 mM DTT. The selected

fractions were dialyzed against buffer D (20 mM Hepes pH 8.0; 20% glycerol; 0.2 mM EDTA; 0.1 M

KCl; 1 mM DTT and 0.01% NP40), frozen in liquid nitrogen and stored at �80˚C. T7-tagged SmN

protein was expressed and purified from HEK 293T cells (Cazalla et al., 2005).

The N-terminal (aa 1–318) and C-terminal (320–815) regions of RBM5 were produced by PCR

amplification using specific primers and cloned into the pET15b vector (Novagen) generating plas-

mids N-term and C-term, respectively. The plasmid C-term DOCRE was obtained by removing the

aa 452 to 511 of plasmid C-term using site-directed mutagenesis. Recombinant His6-tagged proteins

were expressed in E. coli (BL21-CodonPlus), solubilized under denaturing conditions (6M Guanidine

hydrochloride) (Wingfield et al., 2001) and purified by Ni-NTA affinity chromatography. After purifi-

cation, the proteins were dialysed overnight against buffer D using Slide-A-Lyser devices (Pierce).

Figure 7 continued

seven-membered Sm ring of assembled U snRNPs. The crystal structure of U4 snRNP core (PDB 4WZJ) (Leung et al., 2011) is shown, the C-terminal

tails of SmD1/D3, which harbour RG-rich regions and SmN/B/B’ comprising RG and PRM regions are not visible in the crystal structure and indicated

schematically. (C) The seven-membered Sm core rings of U4 and U5 snRNPs are located at the outside of the assembled U4/U6.U5 tri-snRNP

(Nguyen et al., 2015). Thus, also in the tri snRNP the SmN/B/B’ tails are accessible for interactions with the RBM5 OCRE domain.

DOI: 10.7554/eLife.14707.023
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NMR spectroscopy
Spectra were recorded at 298 K in DRX500, 600 and 900 spectrometers with cryogenic triple reso-

nance probes using 13C, 15N labeled OCRE sample (1 mM) for the apo structure, and a 13C, 15N

labeled OCRE and unlabeled peptide (2 mM and 14 mM, respectively) for the complex. Data were

processed with NMRPipe (Delaglio et al., 1995) and analyzed using NMRView (Johnson and Ble-

vins, 1994). For backbone resonance assignments, standard experiments were recorded, including

3D HNCA, HNCACB, HN(CO)CACB experiments. Side chain resonances assignments were made

with 3D HCCH-TOCSY and 3D 15N-HSQC TOCSY experiments. Distance restraints were derived

from 15N- and 13C-resolved three-dimensional, 1H homonuclear two-dimensional (mixing time 120

ms). In addition, for the complex structure, assignment and distance restraints information for the

peptide were obtained by recording a 15N, 13C filtered TOCSY with the mixing times of 15, 30, 60,

90 ms and NOESY experiments with NOE mixing times of 120 ms. H/D exchange experiments were

recorded after lyophilization. 15N relaxation experiments (T1, T2 and {1H}–15N heteronuclear NOEs)

were measured for both the apo and bound form of OCRE. Chemical shift mapping on OCRE was

done by monitoring the 2D 1H,15N HSQC, 2D 15N-labeled OCRE (0.2 mM) with an excess of unla-

beled SmN constructs until no further changes in chemical shifts were observed in the 2D 1H,15N

HSQC spectra. Combined CSPs were calculated as Dd (ppm) = ((10*DdHN)
2 + (DdN)

2)1/2.

Determination of relative binding affinity for peptides from NMR
titrations
A semi-quantitative approach was taken to assess the contribution of the amino acid sequence of

PRM motifs in Sm tails to the binding interaction. Due to the relatively weak interaction, NMR titra-

tions were used to compare relative affinities between wild type peptides and peptides with specific

mutations. The SmN derived wild type and mutant peptides were titrated into OCRE at a 1:10 ratio

of OCRE:peptide. CSPs from 7 OCRE residues (Y470, Y471, Y479, D481, N483, S490, Y495) were

added for each of the peptide titration and normalized with that of the wild type peptide

(GMRPPPPGIRG). The score is used to compare the relative affinities of the various peptides with

the wild type (Figure 3B). An overlay of 1H,15N-HSQC spectra of OCRE bound to wild type

(GMRPPPPGIRG) or variant peptides -GMAPPPPGIRG, GMEPPPPGIEG illustrates the different

extent of CSPs observed for seven residues in the OCRE domain that are most strongly affected by

the binding (Figure 3—figure supplement 2). These residues were selected to define the CSP

score.

Structure calculations
For the apo structures, automatic NOE assignments and structure calculations were initially per-

formed by CYANA3 (Güntert, 2009). Subsequently, NOEs were manually checked and applied as

distance restraints together with dihedral angle restraints in a simulated annealing protocol using

ARIA (Linge et al., 2001) and CNS (Brunger et al., 1998). Dihedral restraints were derived from

TALOS+ (Shen et al., 2009), hydrogen bond distance restraints were applied based on secondary

structure identified by TALOS+, and added during structure calculations. For the complex structure,

manual assigned NOEs were applied as distance restraints together with dihedral angle and mea-

sure hydrogen bond restraints in a simulated annealing protocol using ARIA (Linge et al., 2001) and

CNS (Brunger et al., 1998). Water refinement was performed on the final ensembles of NMR struc-

tures (Linge et al., 2003). The structural quality of the 10 lowest energy structures out of 100 calcu-

lated structures was evaluated using ProcheckNMR (Laskowski et al., 1996), and the iCING

(Doreleijers et al., 2012) and PSVS (Bhattacharya et al., 2007) servers. Ramachandran statistics for

the free RBM5 OCRE domain and the complex structure with SmN (219–229) are 91.5%/8.5%/0%/

0% and 88.0%/9.8%/2.0%/0.2% in the most favored/additionally/generously/disallowed regions,

respectively. Ribbon representations and the electrostatic surface potential were prepared with

PYMOL (DeLano Scientific, San Carlos, CA, USA).

Isothermal titration calorimetry
ITC experiments were performed using an ITC200 instrument (MicroCal, Wolverton Mill, UK) at

24˚C. SmN constructs (168–196, 168–240) and an SmN peptide (219–229) at 1 mM, 1 mM and

5 mM, respectively, were titrated into OCRE (100 mM, 100 mM and 1 mM, respectively). For the
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mutation analysis, purified OCRE mutants (2 mM) were titrated to wild type SmN (29.5 mM) or SmB

(40 mM). All purified proteins were in the same buffer, 20 mM sodium phosphate pH 6.5, 50 mM

NaCl. The lyophilized peptide was dialyzed against water, lyophilized again, and then dissolved in

the same buffer as the protein. The heat of dilution was measured by titrating SmN or OCRE

mutants into buffer. The titration protocol consisted of one initial injection of 0.4 mL followed by 38

injections of 1 ml of the ligand into the protein sample with intervals of 120 s, allowing the titration

peak to reach the baseline. Data were calculated using the program Origin v7.0 (MicroCal) and

duplicates were measured for all the experiments.

Circular Dichroism (CD) spectroscopy
All CD spectra were recorded on a JASCO-J715 spectropolarimeter and analyzed with Spectraman-

ager version 1.53.00 (Jasco Corp.). The temperature was regulated using a Peltier type control sys-

tem (PTC-348WI). The spectra were recorded at 5˚C in 20 mM sodium phosphate,100 mM NaCl, pH

6.5 buffer from 190–260 nm wavelength with a 1.0 nm bandwidth, 0.5 nm pitch at a scan speed of

50 nm/min, in cuvettes with 0.1 cm path length. All spectra are presented as an average of 20 scans,

obtained after buffer subtraction and plotted as mean residue ellipticity (deg cm2 dmol�1) vs wave-

length (nm). All peptides were measured at 0.3 mM concentration in a buffer containing 20 mM

sodium phosphate, 100 mM NaCl, pH 6.5 at 5˚C.

Glutathione S-transferase pull-down experiments
GST RBM5 OCRE and T7 SmN or 35S-labeled SmB proteins were incubated for one hour at 4˚C
degrees on a rotating wheel in 1 ml PBS supplemented with 0.1% Triton X100. 45 ml of packed and

equilibrated GSH beads (Glutathione Sepharose 4B, GE Healthcare, reference 17-0756-05) were

added and the samples were incubated for one hour more as before. The beads were then washed

four times with 1 ml PBS-0.1% Triton X100 and the proteins were directly eluted in SDS loading dye

at 95˚C for 5 min under shaking, loaded on SDS gels, separated by electrophoresis. Proteins were

revealed by autoradiography or analyzed by western blot using the following antibodies: anti-T7 (T7-

Tag Antibody HRP conjugate, Novagen, reference 69048) and anti-GST (GST(B14)-HRP mouse

monoclonal, Santa Cruz Biotechnology, reference sc-138 HRP).

Ex vivo splicing analysis
Protocol of co-transfection, RT-PCR and western blot analysis were carried out as previously

described (Bonnal et al., 2008). siRNA against Sm proteins were carried out as described

(Saltzman et al., 2011).

Spliceosome assembly assays
Cy5-CTP labeled AdML RNA bearing exon 1 – intron 1 – exon 2 was in vitro transcribed using T7

Megascript kit (Ambion). The spliceosome assembly reaction was performed as described previously

(Mackereth et al., 2011) with 10 ng/ul fluorescently labeled RNA and the indicated recombinant

protein. After electrophoresis, the gel was analyzed directly with a PhosphorImager Typhoon. Quan-

tification was carried out using Image Quant.

Yeast two hybrid assays
The C-terminal domain of human SmB (aminoacids 84–231; Accession n˚: NM_003091) was PCR-

amplified using oligonucleotides carrying EcoRI (Forward) and SalI (Reverse) restriction sites and the

pGFP-huSmB plasmid as template (Mouaikel et al., 2003). After agarose gel electrophoresis, the

DNA fragment was purified using the GeneClean procedure and transferred into EcoR1-Sal1 cut

pGBT9 vector carrying the DNA binding domain of Gal4 (Fields and Song, 1989).

The various pACT2-RBM5 plasmids containing the RBM5 full length and mutated coding sequen-

ces in frame with the Gal4AD (activation domain) were constructed using the Gateway system and a

pACT2-based vector according to the manufacturer’s instructions (Invitrogen). The plasmids used for

amplification have been described previously (Bonnal et al., 2008). All pDonor constructs were

sequenced prior to proceed to LR recombination. The sequences of cloning junctions and coding

sequences of all plasmids were verified to ensure the absence of any unwanted mutations.
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Yeast strains were grown using standard procedures and media. For 2YH assays, the pGBT-

CterSmB plasmid and the appropriate pACT2 plasmids were transformed into the CG1945 strain

(Fromont-Racine et al., 1997). Transformants were selected on double selectable media (-Leu -Trp)

and further grown in minimal -Trp -Leu liquid medium. Growth of yeast was measured by spotting

serial dilutions of liquid cultures on -Leu -Trp -His plates which enables selection of interacting

partners.

Accession codes
The atomic coordinates for the NMR ensembles of the RBM5 OCRE domain and the complex with

the SmN (219–229) are deposited in the Protein Data Bank under accession numbers 5MFY and

5MF9, respectively. The chemical shift assignments have been deposited in the Biological Magnetic

Resonance Data Bank under accession numbers 34068 and 34067.
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