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Abstract

The examination of biopsy samples plays a central role in the diagnosis and staging of numerous diseases, including most cancer
types. However, because of the large size of the acquired images, the localization and quantification of diseased portions of a tissue
is usually time-consuming, as pathologists must scroll through the whole slide to look for objects of interest which are often only
scarcely distributed. In this work, we introduce an approach to facilitate the visual inspection of large digital histopathological
slides. Our method builds on a random forest classifier trained to segment the structures sought by the pathologist. However,
moving beyond the pixelwise segmentation task, our main contribution is an interactive exploration framework including: (i) a
region scoring function which is used to rank and sequentially display regions of interest to the user, and (ii) a relevance feedback
capability which leverages human annotations collected on each suggested region. Thereby, an online domain adaptation of the
learned pixelwise segmentation model is performed, so that the region scores adapt on-the-fly to possible discrepancies between the
original training data and the slide at hand. Three real-time update strategies are compared, including a novel approach based on
online gradient descent which supports faster user interaction than an accurate delineation of objects. Our method is evaluated on
the task of extramedullary hematopoiesis quantification within mouse liver slides. We assess quantitatively the retrieval abilities of
our approach and the benefit of the interactive adaptation scheme. Moreover, we demonstrate the possibility of extrapolating, after
a partial exploration of the slide, the surface covered by hematopoietic cells within the whole tissue.
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1. Introduction

Histopathology is a crucial tool in modern clinical practice.
It consists in the microscopic observation of biological tissues
surgically extracted from a patient, in order to collect informa-
tion regarding the presence or extent of a particular disease in
the sample. In particular, it is part of the standard experimen-
tal protocol for the definitive diagnosis, grading and staging of
most cancer types and plays an essential role in the design of ap-
propriate patient-specific treatments. Histopathological exami-
nations usually aim at searching for a certain kind of anatomical
structure, like biomarkers, cancer cells or necrotic areas, whose
presence or proportion within the tissue has to be quantitatively
estimated. Although this procedure is traditionally conducted
under a standard optical microscope, digital acquisitions of en-
tire slices can be performed at comparable resolutions and are
increasingly used by pathologists in their clinical workflow as
well as for educational and research purposes (Farahani et al.,
2015). Moving from optical to digital examinations has been
shown to maintain similar diagnosis performances (Jukić et al.,
2011; Bauer et al., 2013) and offers numerous additional ad-
vantages such as the applicability of image analysis algorithms,
easier recordings and safer storage of patient data, and the pos-

sibility of displaying the scanned tissue to several examiners
simultaneously (Al-Janabi et al., 2012). However, because of
their high resolution, the size of digitally acquired images is
very large and commonly reaches the order of a billion of pix-
els (Cooper et al., 2012). This increases the time required for
manual quantification procedures: beyond the tediousness of
annotating objects in images, a pathologist also spends a lot of
time navigating through the large slide looking for evidence of
the disease of interest. Moreover, the objects to localize may
only be scarcely distributed, for instance at early stages of dis-
eases or after a treatment has been applied. In such situations,
the exploration phase even becomes the bottleneck of the pro-
cess, since most of the time of the pathologist is spent scrolling
through uninformative areas (Fig. 1).

Some characteristics of the field of histopathology bring spe-
cific challenges for an automated analysis of the acquired im-
ages. First, the accurate identification of diseased areas based
on their visual appearance can be a very difficult task requir-
ing a lot of expertise. Pathologists are typically trained several
years before reaching satisfactory diagnosis abilities (Jaarsma
et al., 2014), and the variability between experts remains never-
theless significant for several applications (Meyer et al., 2005;
Gonul et al., 2006; Gilles et al., 2007; Eefting et al., 2009). An-

Preprint submitted to Medical Image Analysis September 20, 2016



Figure 1: Typical histopathological slide. Three regions (blue, yellow and
red squares) containing a cluster of hematopoietic cells are highlighted. Our
method aims at retrieving such regions of interest within a large slide which
mostly contains irrelevant background areas. Note the absence of large-scale
context to guide the visual search, which would require an exhaustive screening
of the slide in the case of a manual examination.

other common challenge in histopathological image analysis is
the visual variability between two acquisitions. In particular,
the consistency of the staining procedure is difficult to control
experimentally leading to variations in terms of dye concentra-
tion (Fig. 2). Therefore, an algorithm that has been trained or
designed on labeled data may not generalize well to newly ac-
quired samples. To mitigate this source of inaccuracies, color
normalization can be performed as a preprocessing step and
remains an active field of research (Rabinovich et al., 2003;
Macenko et al., 2009; Khan et al., 2014; Onder et al., 2014;
Bautista and Yagi, 2015; Vahadane et al., 2015), together with
generic techniques for online domain adaptation (Sec. 3.3). Fi-
nally, a tissue extracted surgically and observed under a micro-
scope is less structured than other kinds of medical data such
as body scans, while being of a much larger size. Objects of
interest are expected to appear anywhere within the tissue, so
that location or connectivity priors are rarely available.

In this work, we introduce an interactive method to assist
a pathologist in exploring and quantifying large histological
slides (Fig. 3). Our approach builds on a pixelwise segmen-
tation model provided by a pre-trained random forest classifier

Figure 2: Examples of visual artifacts. A portion of a slide is displayed here.
The staining itself is inhomogeneous and presents a vertical shading. Moreover,
a dark artifact is present (circled in orange). Such a visual variability between
and within slides complicates the application of supervised learning techniques
and prompts an adaptation at prediction time.

(Sec. 4.1), and uses its output to perform an interactive slide ex-
ploration by suggesting, in a sequential manner, a series of can-
didate regions of interest (Sec. 4.2). This interactive navigation
framework includes a component which allows the pathologist
to provide, after each suggestion, some feedback about the ac-
tual relevance of the proposed region. From these user inputs,
the underlying forest-based model is modified on-the-fly via a
real-time online adaptation framework. This enables a progres-
sive adjustment to the characteristics of the data at hand and
compensates for possible mismatches with the original training
set without specific assumptions about their nature, in contrast
to the aforementioned explicit stain normalizations. Finally, we
also demonstrate how a whole-slide quantification can be in-
ferred after a partial exploration of the slide (Sec 4.3). The
experimental evaluation of our approach was conducted in the
context of extramedullary hematopoiesis quantification within
mouse liver slides. The results demonstrate the ability of our
method to quickly retrieve regions of interest and confirm the
benefit of the interactive online adaptation scheme. The whole-
slide quantification capabilities of our approach are also evalu-
ated depending on the duration of the exploration stage. Finally,
we demonstrate how one of our update strategies can be used
with one-click inputs for faster interaction without decreasing
its performance (Sec. 6).

2. Contributions

We propose an interactive framework using a forest-based
pixelwise segmentation to explore large digital slides accord-
ing to a predefined quantification task. In our application case,
this clinical objective is the assessment of the surface covered
by hematopoietic cells within mouse liver slides. Two main
methodological contributions are introduced:

• The design of a region scoring function to convert pixel-
wise predictions into a score for each region of the slide.
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Figure 3: Overview of our scenario. Initially, a classification forest F 1 is trained offline at pixel level to segment the structures of interest (in our case, clusters of
hematopietic cells). Given a large new slide to analyze, our method sequentially displays to the pathologist regions that are likely to contain these objects, thereby
alleviating a tedious manual navigation through the slide. After the suggestion of a region Rk (k ≥ 1), chosen as to maximize a forest-based scoring function φ(.|F k),
the user provides a relevance feedback about its actual content. From this input, the current forest F k is updated in real time leading to a new forest F k+1. By
doing so, the visual specificities of the test slide are progressively incorporated into the decision model so that upcoming region suggestions can be reconsidered.
The exploration is stopped after seeing a certain number nstop of negative regions suggestions in a row. The updated forest and the user labels collected during the
exploration can then be combined in a regression framework to predict the total surface covered by hematopietic cells in the tissue, including the areas not observed
by the pathologist.

• An online domain adaptation scheme based on interactions
with the user. Three real-time strategies are compared, in-
cluding a novel approach based on online gradient descent
which is compatible with lighter kinds of annotations.

By means of our experimental validation, we were able:

• To demonstrate the exploration abilities of our method and
the benefit of the online adaptation.

• To show how, as a by-product of an only partial explo-
ration of the slide, a whole-slide estimate of the surface
covered by hematopietic cells can be predicted.

• To study experimentally the use of discretized user inputs
during adaptation, and demonstrate how one-click inputs
can be effectively used instead of accurate annotations.

The present manuscript builds on an earlier version presented
at a conference (Peter et al., 2014) and includes the following
extensions. Our original forest update scheme based on online
gradient descent has been improved by incorporating theoreti-
cal results from the online learning literature. In addition, two
alternative forest update methods are considered and studied
in our experiments. The size of the dataset has been doubled
and now consists of 70 fully labeled high-resolution images ex-
tracted from 16 different mouse slides. The cross-validation
used in our experiments now includes the optimization of the
update-related hyperparameter λ on a validation set. We also
demonstrate how a whole-slide quantification can be performed
based on an only partial exploration of the slide. Finally, we ex-
tended the validation regarding the discretization of user inputs.
The impact of the amount of discretization is studied experi-
mentally and we introduce and evaluate an alternative quanti-
zation procedure showing a more robust behavior.

3. Related Work

3.1. Learning-Based Image Segmentation in Histopathology

A large number of methods have been introduced for the au-
tomated analysis of histological slides and are progressively put
into practice, as demonstrated by the development of general-
purpose toolboxes such as Ilastik (Sommer et al., 2011), Cell-
Profiler (Carpenter et al., 2006) and CellCognition (Held et al.,
2010). We refer to surveys (Gurcan et al., 2009; Veta et al.,
2014) for a broader overview of the field and focus here more
specifically on the case of segmentation of histological images.
In this context, learning-based techniques have been success-
fully applied for different tasks, including cell segmentation
within follicular lymphoma images (Kong et al., 2011) and
within lung and brain tumor samples (Su et al., 2015), segmen-
tation of cancer tissue within colon images (Xu et al., 2014),
and whole-slide segmentation of necrotic areas (Homeyer et al.,
2013). The prediction of the Gleason grading, which is one
of the most important quantitative measures for prostate can-
cer staging, has also gathered a particular interest in the field.
Several statistical learning methods such as support vector ma-
chines (Nguyen et al., 2014), AdaBoost (Gorelick et al., 2013)
and randomized forests (Khurd et al., 2010) were used towards
an automatic prediction of this score. To overcome the diffi-
culty of efficiently processing large whole-slide images, multi-
resolution approaches were designed to find and segment re-
gions of interest in a hierarchical manner (Sertel et al., 2009;
Roullier et al., 2011; Huang et al., 2011; Doyle et al., 2012).
These approaches simulate the behavior of a pathologist, start-
ing from the lowest resolution and progressively refining the
analysis towards presumably interesting areas. In this work,
our segmentation model is a pixelwise forest classifier trained
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with Haar-like features (Sec. 4.1), whose efficiency allows us to
operate directly at the highest resolution instead.

3.2. Assisted Navigation within Large Digital Slides

While the aforementioned methods focus on the segmenta-
tion task, a few other approaches aim at identifying regions of
interest within histological data. A method for classifying re-
gions as relevant or irrelevant using support vector machines
was introduced (Bahlmann et al., 2012), and extended to a sce-
nario where the ground truth is generated by analyzing the ac-
tual behavior of a pathologist with viewport tracking data (Mer-
can et al., 2014). These classification techniques are closer to
our goal but differ methodologically in two aspects. First, the
methods above model the region retrieval task as a classification
problem, ignoring the differences between positive regions. In
particular, one may desire to display in priority regions con-
taining larger structures of interest. Building our region scor-
ing scheme on an underlying segmentation model naturally pro-
vides such a ranking of regions and gives the opportunity to ex-
trapolate the quantification estimate to unobserved areas. Sec-
ondly, our method is more flexible, as it includes the ability to
update the region selection rule from user annotations collected
after each suggestion, in an online domain adaptation fashion.

3.3. Online Domain Adaptation

Experimental constraints during the preparation of a tissue
may induce inconsistencies in terms of visual aspect between
acquisitions. In particular, a newly acquired sample may dif-
fer from the data used to train the initial classifier. The prob-
lem of domain adaptation consists in the correction of such a
shift between the distributions of the training and testing data.
Most domain adaptation strategies retrain a new classifier once
samples from the target domain have been observed. In our
case, new samples are collected every time a suggested region
is labeled by the user, after which the current classifier is ac-
cordingly adapted. To keep this interaction loop tractable in
practice, the updates must be performed in real time, which ex-
cludes a retraining of the classifier between two suggestions.
Because of this constraint, our scenario is more precisely an
online domain adaptation task. This relatively recent paradigm
has been addressed in a few works only. A generic unsuper-
vised method based on Gaussian process regression was intro-
duced to adapt the decision boundary of any black-box classi-
fier to a target image (Jain and Learned-Miller, 2011). Other
approaches combined a classifier trained on the source data
with an online classifier continuously updated from the target
data (Zhao and Hoi, 2010; Tommasi et al., 2012). Originally
designed with kernel-based classifiers, transferring this tech-
nique to forest models poses some challenges. First, since it
treats the initial classifier as a whole, applying this procedure to
a forest would result in entire trees being discarded if they do
not suit the testing distribution anymore. Thereby, one would
ignore the fact that some areas of the feature space, i.e. some
tree leaves, may remain valid. Moreover, it requires a strat-
egy to build decision trees online which is not straightforward.
One of the most popular strategies for online forest training

is to grow trees progressively, starting from a root node, by
turning a leaf node into an internal node as soon as a split of
sufficient quality can be found, both in terms of information
gain and statistical representativity (Saffari et al., 2009). More-
over, this approach includes, in the context of tracking, the idea
of online domain adaptation by discarding trees when they no
longer match the distribution of the arriving samples. Another
recent work models trees as samples from Mondrian distribu-
tions (Lakshminarayanan et al., 2014) and improves over exist-
ing online approaches, yet at the cost of losing the compatibil-
ity of forests with high-dimensional feature spaces. In our case,
the large size of histological data and the fact that online for-
est updates take place between two human interactions impose
strict computational constraints to ensure the practical applica-
bility of our method. In particular, modifications of the struc-
ture of the trees, such as in the two aforementioned approaches,
are compromised. By acting on the leaf probabilities only, we
achieve real-time updates between two interactions (Sec. 4.2.2).

3.4. Active Learning

Finally, querying user labels in order to improve a classi-
fier can be seen as a form of active learning (Settles, 2010),
which inspired a few approaches in the context of histopathol-
ogy (Homeyer et al., 2011). In general, active learning algo-
rithms query the label of the most uncertain samples given the
knowledge of the current classifier, in order to minimize the la-
beling effort from the user. The spirit of our approach is differ-
ent: from a clinical perspective, a pathologist is only interested
in seeing positive examples in a short amount of time. This
asymmetry between positive and negative observations leads us
to focus on finding and displaying positive regions as quickly as
possible, so that they can be visually inspected and validated by
the user. The annotations obtained during the process are used
to assess the accuracy of the initial model and correct it if nec-
essary. Moreover, by doing so, any erroneous region suggestion
naturally provides a challenging negative example to include in
the online adaptation process.

4. Methods

This section exposes our methodology. Our slide examina-
tion method is based on an initial forest-based model whose
goal is to segment the objects of interest within the tissue. This
initial forest, denoted F 1, is trained offline on some labeled ex-
amples and encodes the available prior knowledge before ob-
serving the test data. After training, the original training data
are no longer considered available. This assumption is driven
by practical aspects: while sharing and transferring a classifier
from a machine to another is straightforward, this is usually less
feasible with patient data which are of larger size and subject to
ethical considerations. The training mechanism generating F 1

from labeled images is conducted in a standard way (Sec. 4.1).
In addition to its use as a navigation tool (Sec. 4.2), we also

discuss whole-slide quantification abilities for our method. In-
deed, after the exploration phase has been completed, it can
be of interest to estimate the total amount of cells in the slide,
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including in the areas that have not been seen by the patholo-
gist. After a discussion on a relevant definition of a stopping
criterion for the exploration stage in Sec. 4.3.1, we expose our
regression-based strategy for this task in Sec. 4.3.2.

4.1. Forest-Based Segmentation Model
Our slide analysis method builds on a segmentation model

assessing the surface covered by a certain type of anatomical
structure within the acquired tissue. In this work, we follow a
pixelwise classification approach by modeling the segmentation
process as a series of independent decisions for each pixel x
in an image. Each decision is conducted by a random forest
classifier F which outputs a conditional probability P(x ∈ P|F )
that the true label y(x) is 1 given the classifier F , with P =

{x ∈ X|y(x) = 1} denoting the set of positive samples. X denotes
the theoretical set of observable samples.

The visual aspect around each pixel has to be quantitatively
modeled by a set of features on which the node splitting func-
tions are based. In this work, we use Haar-like features which
describe each pixel by its visual content at offset locations. The
precomputation of an integral image for each color channel al-
lows a fast access to any of these feature values, so that this
large set of descriptors can be efficiently handled at a low mem-
ory footprint. These generic and computationally efficient fea-
tures were originally used in combination with a boosting clas-
sifier, first in the context of face detection (Viola and Jones,
2004) and later extended to object recognition and segmenta-
tion (Shotton et al., 2006). Their use within the random forest
framework (Criminisi et al., 2009) has been successfully ap-
plied to a great variety of tasks and imaging modalities (Pauly
et al. (2011); Montillo et al. (2011); Chatelain et al. (2013);
Gauriau et al. (2014); Ebner et al. (2014); Kontschieder et al.
(2014); Zikic et al. (2014)).

The forest training was conducted using axis-aligned split-
ting functions and the Gini index (Breiman et al., 1984) as node
purity measure. More precisely, ntries candidate Haar-like fea-
tures are randomly drawn at each node and nthresholds thresholds
are tried for each of them. The candidate features are drawn
in a fine-to-coarse fashion instead of the standard uniform sam-
pling over a patch, so that an appropriate visual scale can be
automatically inferred at each node (Peter et al., 2015). Among
all tried splits, the best one is retained and the procedure recur-
sively repeated until purity, or until none of the ntries candidate
splits send at least nsamples/leaf training samples to the two child
nodes. As soon as one of these stopping criteria is satisfied, a
leaf L is created. A probability πL is computed from the class
histogram of training samples reaching L and stored at this leaf.

4.2. Interactive Slide Exploration
Considering a new test slide, we partition it into a prede-

fined set R of non-overlapping regions of fixed size δ × δ.
The first step of our algorithm consists in retrieving the region
R1 ∈ R of highest interest to the user. Since F 1 provides a
pixelwise estimate, this choice of region is made according to
a region scoring function φ(R|F 1), which predicts the expected
interest of a region R given the knowledge carried by the for-
est model F 1. The first region displayed to the pathologist is

R1 = argmaxR∈R φ(R|F 1). Once R1 has been shown, the pathol-
ogist reports the actual relevance of its content. To do so, two
possibilities of user labelings are considered in this work: ei-
ther a full delineation of the object of interest in R1, which is
accurate but time-consuming, or a one-click input obtained by
discretization, which is faster to provide but more ambiguous
(Sec. 6). Using the input of the pathologist on R1, the forest F 1

is accordingly modified, leading to a new forest F 2. This pro-
cedure is repeated several times by showing, at each iteration,
the region Rk = argmaxR∈R\{R1,...,Rk−1}

φ(R|F k). In Sec. 4.2.1,
we describe in more details our choice of scoring function φ.
Section 4.2.2 is dedicated to the techniques for online domain
adaptation, where three real-time alternatives are described in-
cluding a novel approach based on online gradient descent.

4.2.1. Region Scoring Function
After training on a set of labeled images, we obtain a random

forest classifier F 1 which outputs, for every pixel x in an image,
the probabilistic estimate P(x ∈ P|F 1) ∈ [0, 1] that x is a posi-
tive instance, i.e. belongs to one of the sought structures. Since
the goal of our approach is to display regions of interest to a
pathologist, we use these pixelwise forest predictions to build a
region scoring function φ. We propose to define the score of a
region R as

φ(R|F ) =
∑
x∈R

P(x ∈ P|F ) (1)

given a pixelwise classification forest F . This scoring function
can be interpreted as the mathematical expectation of a random
variable counting the number of positive pixels in the region R.
In particular, regions containing larger objects obtain a higher
score. Since the quantification task consists in the estimation of
the total surface covered by the structures of interest within the
slide, this amounts to showing first regions which have a greater
contribution to this quantity. Due to its simplicity, our scoring
function possesses important properties in the context of forest
updates (computational efficiency and convexity) which will be
detailed in Sec. 4.2.2. These advantages result from the fact that
φ(R|F ) can be rewritten as a scalar product between the vector
of leaf models of the forest F and a sparse vector character-
izing the region R. The derivation of this equivalent formula-
tion is exposed in the next paragraph. Finally, although the leaf
models are probabilistic estimates of a classification task in this
work, a similar scoring function could be equivalently used for
a regression output. For instance, if the forest predicts a den-
sity of objects (Fiaschi et al., 2012), this scoring function would
count a number of objects in the region instead of a surface.

Expressing φ(R|F ) as a scalar product. Let us first introduce
some notations. The set of leaf nodes belonging to the tth tree
is denoted Lt. L = ∪1≤t≤ntreesLt is the set of all leaf nodes con-
tained in the forest F , and we denote tree(L) ∈ {1, . . . , ntrees}

the index of the tree to which a leaf L ∈ L belongs. We arbi-
trarily order the finite set L and consider the leaf probabilities
jointly as a (finite-dimensional) vector π = (πL)L∈L. We de-
note Σ = (σt)1≤t≤ntrees

the list of routing functions σt : X → Lt,
which assign to each sample x ∈ X the leaf σt(x) that it reaches
when passed through the tth tree (Fig. 4). Intuitively, Σ encodes
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Figure 4: Notations. This figure illustrates our notations in the simplified case
of a small forest (3 trees of depth 2). The leaves are arbitrarily ordered and the
leaf models are jointly considered as a vector π. For each pixel x, σt(x) denotes
the leaf reached by x when passed through the tth tree. The list of functions
Σ = (σt)1≤t≤ntrees encompasses information about the arrangement of the trees
and the node splitting functions.

the structure of the forest determined by the arrangement of the
nodes and the splitting functions, i.e. the way the forest par-
titions the space of observations X, while the vector π defines
the label predictions stored in the terminal nodes. Σ and π fully
determine the forest decision rule, defined as

P(x ∈ P|F ) =
1

ntrees

ntrees∑
t=1

πσt(x). (2)

By incorporating Eq. 2 into the definition of the scoring func-
tion (Eq. 1) and rearranging the sum signs (see Appendix A for
details), we obtain the identity

φ(R|F ) = φ(R|Σ,π) = 〈ρ(R|Σ),π〉 , (3)

where ρ(R|Σ) = (ρL(R|Σ))L∈L is a vector of dimension nleaves
characterizing the region R and defined as

ρL(R|Σ) =
1

ntrees
#
{
x ∈ R | σtree(L)(x) = L

}︸                          ︷︷                          ︸
number of pixels in R falling in the leaf L

. (4)

Hence, the scoring function of a region R appears as a scalar
product between the vector of leaf models π and a vector ρ(R|Σ),
which only depends on how the samples from the region R are
sent to the leaves (Fig. 5). Moreover, since every pixel x of a re-
gion R falls in exactly ntrees leaves, each vector ρ(R|Σ) is sparse
(or of small size) with at most ntrees |R| non-zero elements.

4.2.2. Interactive Forest Adaptation
In Sec. 4.2.1, we described how to score regions of a large

histological slide so that they can be ranked and displayed in
decreasing order of interest to a pathologist. This ranking is
based on the output of a pixelwise classification forest learned
on labeled data. If the data at hand differs from the training im-
ages, for instance because of variations in terms of dye concen-
tration or because of the presence of artifacts, this initial forest
model can be prone to errors (Fig. 6). However, the fact that
regions of interest are shown sequentially to the human expert
offers the opportunity to let the user report the actual validity of
the suggestions and, thereby, to recalibrate the forest model to

R

ρ(R|Σ)

t = 1 t = 2 t = 3

Figure 5: Characteristic vector of a region R. Applying a forest on all the
pixels of a region R leads to ntrees different partitions of R, defined by the leaves
reached by the sent pixels. By counting and concatenating the leaf occurrences,
one obtains a characteristic vector ρ(R|Σ) of the region R which only depends
on the structure Σ of the forest (Eq. 4). Consequently, the score of any region R
can be written as φ(R|F ) = 〈ρ(R|Σ),π〉.

take into account the characteristics of the slide to analyze. This
scenario corresponds to an online domain adaptation problem,
for which we consider three different strategies. The first two
require accurate delineations of the objects of interest by the
user, whereas the third approach only requires a weaker form
of labeling stating the actual surface covered by such objects
within a suggested region. By discretizing this quantity, faster
user interactions can be performed (see Sec. 6).

As exposed at the beginning of Sec. 4, the adaptation pro-
cedure generates, starting from a forest F 1, a series of forests
F 2,F 3, . . . where each forest F k+1 is created after k regions
have been observed by the pathologist and the k corresponding
inputs collected. At each iteration k, the region Rk is chosen
as the one maximizing the scoring function φ(.|F k) over the
set of remaining regions. The three alternative strategies de-
scribed below are based on an assumption of fixed structure for
all the forests F k, so that only the leaf probabilities are mod-
ified. This assumption offers the following computational ad-
vantage. For all k ≥ 1, the structure Σk of the forest F k is
equal to the structure Σ1 of the initial forest F 1. In particu-
lar, the vectors ρ(R|Σk),R ∈ R are now kept unchanged during
the whole exploration process, so that they can be precomputed
once for all at the first iteration and compactly stored in mem-
ory due to their sparsity. For simplicity, we omit their depen-
dency in Σ1 and denote these vectors ρ(R),R ∈ R. The score
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Figure 6: Benefit of the interactive adaptation illustrated by the negative region suggestions. In challenging cases (here the slide containing the portion shown
in Fig. 2), a direct application of the pre-trained forest model leads to difficulties in the exploration. The first 10 regions that are suggested are in fact negative
(first row). These confusions are due to the variation of staining and the presence of an artifact shown in Fig. 2, which confirms the necessity of adapting the initial
classifier. When interactive updates are performed, each negative suggestion is signaled by the user and the underlying model is accordingly calibrated. The benefit
of this adaptation scheme can be illustrated by looking at the first 10 negative suggestions (second row, using the ALM update). First, we can see that positive
suggestions occur earlier in the exploration: the 3rd, 7th, 9th, 10th and 11th suggestions were positive and allowed the pathologist to localize already 24.2% of the
hematopoietic patterns present in the slide. This demonstrates that adapting the classifier clearly improves the quality of the exploration. Moreover, we can see that
the adaptive approach ‘learns from its mistakes’ through the greater diversity of its negative suggestions: regions with different shades of stain are proposed and
multiple suggestions within the dark artifacts are avoided. Among their 10 first negatives, only 3 suggestions are shared by the two approaches (emphasized with
colors), which further illustrates their difference.

φ(R|F k) =
〈
ρ(R|Σk),πk

〉
of a region R described in Eq. 3 can be

rewritten φ(R|F k) =
〈
ρ(R),πk

〉
. Hence, to obtain the updated

scoring functions φ(R|F k) for a new forest F k, one only needs
to recompute the sparse scalar products

〈
ρ(R),πk

〉
with the new

leaf models πk. The efficiency of this operation yields real-time
updates between two region suggestions, and the histological
slide has to be passed only once through a forest (the initial
F 1) as a preliminary step before starting the exploration.

We expose now our three alternative real-time update strate-
gies. They are all equivalent from a computational point of
view, with a worst-case complexity of O(ntrees |R|), and depend
on one hyperparameter λ > 0 weighting the importance of the
prior knowledge in comparison to the newly observed samples.

Update of Leaf Statistics (ULS) If the input provided by the
pathologist is a full object delineation in the displayed re-
gion Rk, the pixels x ∈ Rk can be seen as new training
samples whose label is known. Therefore, the leaf statis-
tics can be updated (Criminisi et al., 2012). We denote
N1,+

L (resp. N1,−
L ) the number of positive (resp. nega-

tive) samples which arrived in the leaf L during the train-
ing of the initial forest F 1, leading to the leaf models

π1
L =

N1,+
L

N1,−
L +N1,+

L
. We also denote Nk+1,+

L and Nk+1,−
L the total

number of positive and negative samples collected in the
regions R1, . . . ,Rk. Given these quantities, the ULS strat-
egy updates the probability of each leaf L after labeling the
region Rk as

πk+1
L =

Nk+1,+
L + λN1,+

L

Nk+1,+
L + Nk+1,−

L + λ
(
N1,+

L + N1,−
L

) . (5)

Average of the Leaf Models (ALM) In the same conditions
than the update described above, we propose an alternative

leaf update consisting in computing a separate probability
πnew

L based on the pixels observed in R1, . . . ,Rk only (i.e.
originating from the test slide) and averaging it with the
initial probability π1

L. By doing so, the choice of λ is made
independent of the initial number of samples in the leaf.
This update can be written in vectorial form as

πk+1 =
1

1 + λ

(
πnew + λπ1

)
(6)

where, for each leaf L, πnew
L =

Nk+1,+
L

Nk+1,+
L +Nk+1,−

L
if some new

samples have been observed in the leaf L (i.e. if Nk+1,+
L +

Nk+1,−
L > 0). Otherwise, we define πnew

L = π1
L.

Online Gradient Descent (OGD) The two previous updates
require a pixelwise labeling provided by the user. In-
stead, this last update method uses the (weaker) informa-
tion Q(Rk) stating the amount of positive pixels located
in the region Rk. This quantity is, in fact, what the score
φ(Rk |F

k) =
〈
ρ(Rk),πk

〉
used to assess the relevance of

the region Rk estimates (Sec. 4.2.1). We propose to mea-
sure the discrepancy between the true valueQ(Rk) revealed
by the user and the prediction from the set of leaf mod-
els π with the squared loss lk(π) = (〈ρ(Rk),π〉 − Q(Rk))2.
Hence, at iteration k, the incurred loss is lk(πk). The con-
vexity of the loss function lk, which directly results from
the linear rewriting of our scoring function (Eq. 3), allows
us to see the update problem as an online convex opti-
mization scenario (Shalev-Shwartz, 2012). We solve this
problem via an online gradient descent strategy (Zinke-
vich, 2003), which leads to the update rule

πk+1 = Π[0,1]|L|
[
πk − η~∇lk(πk)

]
(7)

= Π[0,1]|L|
[
πk − 2η

(〈
ρ(Rk),πk

〉
− Q(Rk)

)
ρ(Rk)

]
, (8)
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where η is a learning rate. Π[0,1]|L| : R|L| → [0, 1]|L| is
the projection operator on [0, 1]|L| which projects each in-
dividual component πl of a vector π ∈ R|L| onto the set
[0, 1], ensuring that the leaf probabilities stay in [0, 1] af-
ter each update. By transferring generic considerations on
online gradient descent to our forest-based scenario (see
Appendix B), we choose a learning rate η of the form

η =
1

2λδ4

√
ntrees |L|

|R|
, (9)

where λ is a positive hyperparameter, |L| (resp. ntrees) is
the number of leaves (resp. trees) in the forest, |R| is the
number of regions in the slide and δ × δ is the predefined
region size.

The difference between ALM and ULS can be seen by con-
sidering their respective asymptotic behavior when the num-
ber of new samples increases. In Eq. 5, we have πk ∼ πnew,
whereas, in Eq. 6, πk always includes a fixed contribution from
π1 regardless of the number of new samples which have been
collected. These two variants correspond to the simplest way to
update an existing tree (Criminisi et al., 2012), where we intro-
duce a parameter weighting old and new training data. More
sophisticated but computationally costly strategies would in-
volve further splitting or the replacement of old trees by new
ones (Saffari et al., 2009). In our case, since the original train-
ing data used to train F 1 are no longer available at testing
time, we keep the structure of the old trees which represent the
only available prior knowledge about the quantification task.
This emphasizes the scope of our adaptation procedure, which
should be seen as adjusting a known supervised segmentation
task (e.g. within a same clinical study) to the variations of
visual appearances that may occur experimentally. However,
a different task cannot be accommodated a priori and would
first require the training of a new segmentation model. Finally,
due to the nature of the required input, OGD can be used for a
lighter kind of user interaction (see Sec. 6), which is not sup-
ported by existing forest online learning algorithms.

4.3. From Partial Exploration to Whole-Slide Quantification

4.3.1. Stopping the Exploration Stage
In practice, the exploration process is meant to be interrupted

before seeing the whole slide. Since the amount of hematopoi-
etic cell clusters is variable from a slide to another, some slides
intrinsically require more time from the pathologist than oth-
ers. Therefore, fixing in advance the number of iterations for
the exploration would be inappropriate. Instead, we propose
a stopping criterion based on the density of positive sugges-
tions, and interrupt the exploration as soon as nstop negative re-
gions were suggested in a row, i.e. when most positive regions
were presumably seen. Once the stopping criterion is reached,
a whole-slide prediction can be made (Sec. 4.3.2).

The chosen value for nstop is directly depending on the
amount of time that the pathologist is ready to spend for the
analysis. Strictly reasoning in terms of accuracy, it is always

preferable to let the pathologist see a maximum number of re-
gions. Defining a recommended value for nstop is hence subjec-
tive and result from a tradeoff between accuracy and human ef-
fort. Our experiments regarding the whole-slide quantification
were conducted for several values of nstop, encoding different
amounts of effort that the pathologist is ready to invest.

4.3.2. Whole-Slide Quantification via Regression
Once the stopping criterion has been reached, we predict an

estimate q̂ of the surface covered by hematopoietic cells within
the whole slide with linear regression. Denoting K the total
number of regions that have been seen during the exploration
stage, a partial knowledge on q̂ is available via the quantity
qlabeled =

∑K
k=1 Q(Rk) obtained as the user annotated the regions

R1, . . . ,RK during the exploration. In addition, the updated for-
est model F K+1 obtained at the end of the exploration phase
provides a prediction φ(R|F K+1) of the quantity of positive pix-
els in each region R ∈ R of the slide. In particular, this gives
a total prediction Φtotal =

∑
R∈R φ(R|F K+1) and a prediction on

the labeled regions Φlabeled =
∑K

k=1 φ(Rk |F
K+1). We formalize

our regression problem by considering that the relative change
between the total quantity q̂ and the partial quantity qlabeled is
proportional to the relative change between total prediction and
the partial prediction, i.e.

q̂ − qlabeled

qlabeled ∝
Φtotal − Φlabeled

Φlabeled . (10)

This corresponds to a prediction rule of the form

q̂ = qlabeled + a
Φtotal − Φlabeled

Φlabeled qlabeled. (11)

The regression parameter a ∈ R is learned on a validation set.

5. Experiments

5.1. Dataset and Medical Motivation

The presence of hematopoietic cells outside the bone mar-
row, also called extramedullary hematopoiesis, is a marker of an
extensive stimulation of the immune system (Tao et al., 2008).
There is accumulating evidence that the amount of infiltrating
immune cells such as cytotoxic CD8-positive T-lymphocytes
into the tumor can be considered as a tumor biomarker for mea-
suring clinical outcome (Balermpas et al., 2016). We evaluated
our approach in this clinical context on a dataset addressing
the aspect of lymphocytic infiltration into mouse liver tissues,
for which the amount of these cells within histological samples
must be estimated.

Slides from 16 mice were digitally acquired at the resolution
0.5 µm per pixel and downsized by 2 to speed up the train-
ing and testing steps. 70 large representative subimages were
extracted from these slides and fully segmented, covering ap-
proximately 20% of the total tissue (Fig. 7). Resorting to a
set of subimages follows the clinical practice and was neces-
sary to obtain accurate labels for a sufficient number of differ-
ent slides. This is particularly important in our study which
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Figure 7: Dataset dimensions. Our dataset consists of 16 digital slides, an ex-
ample of which is provided in Fig. 1. Figure 7a shows their dimensions, where
each colored point corresponds to one slide. Instead of working on the slide, we
extracted and labeled entirely a total of 70 subregions such as the one shown
in Fig. 2. The dimensions of these subregions are reported in Fig. 7b. The
color code of Fig. 7a is respected so that the slide from which each subimage is
extracted can be identified by its color. In total, the extracted subimages cover
around 20% of the acquired tissues.

focuses on issues arising from the visual variability between
acquisitions. Yet, it comes at the cost of possibly introducing a
few natural biases such as underrepresentation of border areas
or of straightforwardly negative objects (e.g. large white parts).

5.2. Experimental Settings
We randomly split our dataset D into 4 sets Di of 4 slides

each and we performed a 4-fold nested cross-validation. The
goal of this procedure is to optimize the update-related hyper-
parameter λ independently of the test data to avoid overfitting.
Let Λ be a set of candidate values for λ and lcv(λ,F 1, I) a loss
measuring the error of our method on the slide I when using the
hyperparameter λ and an initial forest F 1. The nested cross-
validation consists of 4 runs, each run corresponding to a set
Diout (with iout ∈ {1, 2, 3, 4}) left out for testing. For each run,
a second cross-validation (called inner cross-validation) is per-
formed over the 3 remaining sets (Di)i,iout

, where 2 sets are used
to train the forest and the remaining one is used as a validation
set. At the end of the inner cross-validation, i.e. when 3 forests
have been trained and each of the 3 sets has been used as a val-
idation set, we define the optimal hyperparameter λiout of this
run as the one minimizing the total loss over the 3 bags, i.e.

λiout = argmin
λ∈Λ

∑
i,iout

∑
I∈Di

lcv(λ,FD\(Di∪Diout ), I). (12)

FD\(Di∪Diout ) denotes the forest obtained by training on the two
remaining sets after excluding Di and Diout . Using the hyper-
parameter value λiout , we then report independently the predic-
tion of each of the 3 forests

(
FD\(Di∪Diout )

)
i,iout

on the left-out
set Diout . This procedure allows us to learn automatically the
hyperparameter independently of the testing set, and outputs
3 different predictions for each test slide which gives an idea
of their dependency on the original training data. This results
in a total of 48 predictions. Note that, to conduct the entire
nested cross-validation, only 6 forests

(
FDi∪D j

)
1≤i< j≤4

have to
be trained. The user interaction was automatically simulated
from the ground truth delineations. Regions were chosen of

size δ × δ with δ = 60 µm. Every time a region is displayed,
the user can easily extend the field of view around it if neces-
sary. We simulated this behavior automatically by showing the
neighboring positive region(s) in the case where an object of
interest is not fully included in the displayed region.

The forests were initially trained on labeled pixels which
were densely collected every 8 µm in the two directions. Par-
allelized on 10 threads, this training step took between 3 and 6
hours depending on the cross-validation run (with a correspond-
ing number of training samples comprised between 5× 105 and
106). Given an incoming slide, testing was performed on all
pixels, which is tractable since it has to be done only once at
the beginning of the process (see Sec. 4.2.2). This prelimi-
nary step took around 1 minute, after which the interaction loop
could take place in real-time conditions. More precisely, the
update of forest leaf models and recomputation of box scores
between two iterations took between 10 and 100 ms without
any parallelization. The visual features were computed on the
Lab color space. The following forest parameters were used:
nsamples/leaf = 10, ntrees = 30, ntries = 500, nthresholds = 10, and the
bagging rate was 0.5.

Due to the efficiency of Haar-like features, our segmentation
algorithm is able to work directly at the highest level of magni-
fication, processing approximately 2.0 × 107 pixels per minute.
This order of magnitude is, for instance, the same as in a re-
cent boosting-based hierarchical segmentation approach (Doyle
et al., 2012) which analyzes around 1.4×107 pixels in less than 3
minutes (with parallelization on 2 threads instead of 10). How-
ever, this latter work used more complex features for their ap-
plication, hence justifying a hierarchical strategy.

5.3. Evaluation of the Exploration Stage
We studied the ability of our approach to retrieve regions of

interest as quickly as possible within large slides. The following
alternatives were compared:

• the simplest forest-based exploration approach without up-
date from the pathologist (No Update (Forest)), i.e.
only relying on the pre-trained forest F 1,

• the three update strategies (ULS, ALM and OGD) exposed in
Sec. 4.2.2,

• a baseline showing, at each iteration, a region randomly
(uniformly) drawn among the remaining regions (Random
exploration),

• an oracle whose scoring function is extracted from the
ground truth, hence serving as a gold standard showing
the highest achievable performance (Oracle).

In addition, to position the forest-based performance among
other classification methods, we trained an AdaBoost classi-
fier and used it as segmentation model instead of the forest
(No Update (AdaBoost)). The chosen weak classifiers were
decision stumps based on Haar-like features such as the split-
ting functions stored in tree nodes. 100 boosting iterations were
conducted, and 500 stumps tried at each iteration. These design
choices led to a training time similar to the forest one.
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Figure 8: Experimental validation of the slide exploration stage. (a) For each method, we plot the mean retrieval curve which shows the proportion of positive
pixels seen by the pathologist after having seen a certain proportion of the slide. We use the area under these curves to measure quantitatively the slide exploration
abilities. (b) Statistical distribution of the area under the curve for each method. Each box plot is computed over the 48 measurements obtained during the nested
cross-validation. (c) Influence of the hyperparameter λ on the performance. For each of the three update strategies, we studied the behavior of the mean area under
the curve when λ varies, i.e. without optimization on a validation set.
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Figure 9: Experimental validation of the whole-slide quantification stage. (a) We report the root-mean-square deviation for several values of the stopping
criterion nstop which represents the amount of interaction provided by the pathologist. (b) Difference ∆RMSD between the root-mean-square deviation obtained
when using a regression of the form q̂ = (1 + a)qlabeled based on the user inputs alone, and the one obtained with the regression of Eq. 11 whose results are reported
in Fig. 9a. Positive values of ∆RMSD correspond to a gain of accuracy when including the forest scores Φtotal and Φlabeled in the regression task. As soon as nstop is
large enough to obtain stable results, the information carried by an updated forest improves the performance. (c) Distribution of the signed quantification error over
slides for nstop = 10, with and without including the forest scores in the regression.

To assess quantitatively the performance of each method,
we consider the curve showing the proportion of positive pix-
els that have been displayed after having shown a certain per-
centage of the slide to the pathologist (Fig. 8a). A good ex-
ploration method is expected to lead to a curve converging
quickly towards 1. We summarize quantitatively the perfor-
mance on a slide I by computing the area A(λ,F 0, I) under
this curve. The nested cross-validation procedure described
in Sec. 5.2 was accordingly performed using the loss func-
tion lcv(λ,F 1, I) = 1 − A(λ,F 1, I) and optimizing λ over a
logarithmic grid. The statistical distribution of the area under
curves obtained at prediction time for each method are shown
in Fig. 8b. We performed statistical pairwise comparisons be-
tween methods by conducting paired Wilcoxon’s signed-rank
tests over these values. To maintain the independence between
samples, we repeated each test 100 times retaining at random
one of the 3 runs for each slide and considered the median p-
value over these 100 runs. Denoting Method 1 ≺ Method 2

the fact that Method 2 is significantly better than Method 1 and
Method 1 ≈ Method 2 the absence of demonstrated statistical
difference between the two methods, the series of tests provided
the following ranking:

Random ≺ No Update (AdaBoost) ≺ No Update (Forest) ≺
OGD ≺ ULS ≈ ALM ≺ Oracle.

All p-values showing statistical difference were lower than
10−3, and the p-value obtained when comparing ULS and ALM
was 0.5. This ranking confirms what was intuitively expected.
The three methods proposing a model update from the user in-
puts improve over a non-interactive exploration, and the two
methods using accurate pixelwise labelings outperform the on-
line gradient descent technique which is based on a weaker but
lighter type of information. We also see, from the performance
of a random exploration, that using a pre-trained forest dras-
tically helps finding relevant objects more quickly. Note that,
in theory, one might have expected a straight ‘y = x’ line for
the random exploration. In fact, when a suggested region be-
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longs to a larger object, the user extends the field of view to
see the object in its totality. Hence, a positive suggestion may
be immediately followed by other positive ones due to the user
intervention. This bias explains why, in spite of a random ex-
ploration, one obtains a slightly ‘better than random’ curve.

The impact of the update-related parameter λ was assessed
experimentally (Fig. 8c). As expected, when λ → ∞, the three
methods converge towards the method without update. The
choice λ = 0 leads to a nearly maximal performance for the
two update strategies based on pixelwise labelings (ULS and
ALM). Since, moreover, these two methods are equivalent for
λ = 0, they behave very similarly after optimization on a valida-
tion set, as observed on Fig. 8a and Fig. 8b. Note that choosing
λ = 0 does not mean that the initial forest F 1 is ignored. The
prior knowledge contained in F 1 is used through both the tree
structures and their leaf models. Moreover, a leaf remains un-
changed as long as it does not appear in a selected region, which
may happen if it accurately predicts background areas.

5.4. Evaluation of the Whole-Slide Quantification Stage
To assess, at prediction time, the accuracy of a list of npred

estimates (q̂i)1≤i≤npred
given the corresponding true quantities

(qi)1≤i≤npred
, we use the root-mean-square deviation

RMSD =

√√
1

npred

npred∑
i=1

(qi − q̂i)2. (13)

In our case, npred = 48. This corresponds to the 3 predictions
obtained for each of the 16 slides during the cross-validation.

The experimental evaluation of the whole-slide quantifica-
tion abilities was conducted as follows. We kept the cross-
validation setup described in Sec. 5.2 and learned the hyper-
parameter a on a validation set, as was done for the update pa-
rameter λ, using here a squared loss lcv(a,F 1, I) = (qI− q̂I)2 be-
tween true and predicted whole-slide estimates. This procedure
was performed independently for several values of the stopping
criterion nstop. We report the resulting curves in Fig. 9a and
an example of the correspondence between estimates and true
quantities in Fig. 10. The ranking of methods obtained while
studying the exploration abilities is preserved, due to the fact
that the quality of the exploration phase is directly linked to
the amount of regions which are eventually labeled. Asymp-
totically, if all regions containing positive samples are labeled,
choosing a = 0 provides a perfect prediction.

During our experiments, we observed that the sum of seg-
mentation probabilities over the whole slide, i.e. predicting
q̂ = Φtotal (with the notation of Eq. 11), does not form a reli-
able whole-slide quantification and overestimates the quantity
of positive pixels due to two effects. First, the random nature of
trees leads in general to small nonzero probabilities on negative
pixels. When summed over all pixels, these small errors ag-
gregate. Moreover, since we mainly retrieve positive examples
during the slide exploration, the distribution of incoming sam-
ples for the update is strongly biased towards positive instances.
These difficulties motivate the use of a regression. In Fig. 9b
and Fig. 9c, we show that our regression approach (Eq. 11) out-
performs a regression based on the user inputs alone of the form
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Figure 10: Correlation between estimated and true hematopoietic surface
within whole slides. We show an overview on the whole dataset of the whole-
slide estimates after exploration. Each slide tested during the cross-validation
appears 3 times corresponding to different initial forests (Sec. 5.2). Perfect
predictions would lie on the red line. This example was obtained using the ULS
adaptation for nstop = 6, leading to RMSD = 1.9 × 10−2 mm2. The median
proportion of the slide which was seen during the exploration was 5.2% in this
case. The predictions obtained without using the final forest scores (see Fig. 9b
and Fig. 9c) are also reported.

q̂ = (1 + a)qlabeled. This demonstrates that, in spite of its global
overestimation, the forest estimate can be effectively exploited
by a regression procedure.

6. Input Discretization for Lighter Interactions

In the experiments presented in Sec. 5, the forest adaptation
techniques assumed that the pathologist provides a full pixel-
wise labeling of the objects of interest in the displayed regions.
In this section, we demonstrate how our OGD scheme can be
used with one-click inputs instead without decreasing its per-
formance, thereby allowing faster user interaction.

6.1. One-Click User Inputs
Unlike the two other techniques based on individual labels

for each pixel in a region, the OGD forest update employs as
user input for a region Rk the amount of positive pixels Q(Rk)
contained in Rk. This is a different kind of input, which can be
infered from a delineation or communicated directly instead.
Here, we propose to discretize the input values into bins and
ask the user to select the bin to which the proportion of posi-
tive pixels belongs. This interaction is performed with only one
click, or possibly without a mouse (e.g. via voice recognition).

Formally, the user annotations are discretized as follows. In-
stead of providing the exact quantity Q(Rk), the user simply
indicates an interval within which the proportion Q̃(Rk) =

Q(Rk)
|Rk |

lies. The list of available ranges is predefined as {0}, ]0; 1
m ],
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. . ., ] m−2
m ; m−1

m ], ] m−1
m ; 1[, {1}, where m is a positive integer

which encodes the fineness of the quantization. Accordingly,
by taking the middle-value of each bin, the proportions Q̃(Rk)
provided by the user take their values in the finite set Dm ={
0, 1

2m ,
3

2m , . . . ,
2m−1

2m , 1
}
. This gives in total m + 2 input possi-

bilities for the discrete input Q̃(Rk), including the 2 trivial ones
corresponding to an empty (Q̃(Rk) = 0) or a full (Q̃(Rk) = 1)
region . By doing so, only one click per region is required from
the pathologist, resulting in a lesser amount of interactions.

Given a discrete region label Q̃(Rk) ∈ Dm provided by the
user, we have to compute the actual quantity Q(Rk) eventually
used in the adaptation process (Eq. 8) and recorded for an even-
tual whole-slide quantification (Eq. 11). The simplest idea con-
sists in directly taking Q(Rk) = |Rk | Q̃(Rk), but has the drawback
of losing information due to the discretization. To attenuate
this aspect, we propose to perform updates only if the forest
estimate φ(Rk |F

k) (whose objective is to predict the quantity
Q(Rk)) deviates too strongly from the user label. More pre-
cisely, we define Q(Rk) = |Rk | Q̃(Rk) if

∣∣∣∣ φ(Rk |F
k)

|Rk |
− Q̃(Rk)

∣∣∣∣ ≥ 1
2m ,

and Q(Rk) = φ(Rk |F
k) otherwise. In other words, we fully trust

the forest estimate as long as it leads to the same bin as the
one indicated by the user. This distinction is only made if the
label is ambiguous, i.e. different than 0 and 1. Otherwise, it
corresponds in fact to an exact labeling and is treated as such.

6.2. Evaluation
The experiments involving online gradient descent presented

in Sec. 5.3 and Sec. 5.4 were repeated using these discretized
inputs instead of the exact ones, for every level of quantization
m ∈ {1, . . . , 5}. In terms of retrieval performance, discretiz-
ing the inputs does not show any clear difference in compar-
ison to the use of exact user inputs, and this from m = 1 on
(Fig. 11). For m = 1, the paired Wilcoxon’s signed-rank test
leads to a p-value of 0.65. Additionally, if we assume the differ-
ences to be normally distributed, the confidence interval for the
mean difference is

[
−4.8 × 10−3, 2.3 × 10−3

]
. Hence, by mak-

ing available to the user 3 buttons (corresponding to the choice
m = 1) stating respectively whether a region is empty, full of
hematopoietic cells or partially covered, the exploration phase
is of equivalent quality as the one provided by the online gradi-
ent descent method with accurate user labelings.

Since the task of whole-slide quantification from the explo-
ration phase (Sec. 5.4) relies strongly on the user inputs Q̃(Rk)
(see Eq. 11), obtaining satisfactory results for this task with
discretized inputs requires a more accurate quantization. This
minimum level was experimentally found to be m = 3, which
remains nevertheless tractable in practice (Fig. 12).

7. Conclusion

We introduced an interactive framework able to help a
pathologist to navigate efficiently through large digital slides.
Our approach is based on a pixelwise random forest classi-
fier pre-trained to segment objects of interest within the tis-
sue whose predictions are used to score, rank and display re-
gions according to their expected interest. By allowing the user
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Figure 11: Impact of input quantization on the exploration phase. We con-
sider the difference ∆A of area under the curve observed when using discretized
user inputs instead of exact ones in the OGD adaptation. The parameter m en-
codes the fineness of the quantization. No statistical difference is observed from
m = 1 on. To put the variations in perspective, we also report the difference ob-
tained when no updates are performed.

to provide labels on each suggested region, the leaf nodes of
the forest model are adjusted in real time during the explo-
ration procedure so that visual specificities of the data at hand
can be gradually incorporated into the region selection pro-
cess. For this purpose, in addition to two standard leaf update
techniques, we introduced a novel adaptation scheme based on
online gradient descent which supports one-click inputs from
the pathologist instead of more tedious accurate object delin-
eations. Experimental validation was conducted on the task
of extramedullary hematopoiesis quantification within mouse
liver slides. Beyond its slide exploration abilities, we demon-
strated how our method can successfully exploit both the forest
segmentation output and the labels collected during the explo-
ration stage to provide accurate estimates of the surface covered
by hematopietic cells in the whole slide.
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Appendix A. Rewriting the Scoring Function φ(R|F ) as a
Scalar Product (Eq. 3)

We expose here in details how Eq. 3 can be derived. This
equality mainly comes from the linearity of both the scoring
function φ and the aggregation of the tree predictions. Combin-
ing Eq. 2 and Eq. 1, one obtains

φ(R|F ) =
1

ntrees

∑
x∈R

ntrees∑
t=1

πσt(x) (A.1)

=
1

ntrees

∑
x∈R

ntrees∑
t=1

∑
L∈Lt

πL1{σt(x)=L}. (A.2)

We defined in Sec. 4.2.1 the quantity tree(L) ∈ {1, . . . , ntrees} as
the index of the tree to which a leaf L ∈ L belongs. Following
this definition, we have for all trees t ∈ {1, . . . , ntrees} and leaves
L ∈ Lt the equality t = tree(L). Thus

ntrees∑
t=1

∑
L∈Lt

πL1{σt(x)=L} =

ntrees∑
t=1

∑
L∈Lt

πL1{σtree(L)(x)=L} (A.3)

=
∑
L∈L

πL1{σtree(L)(x)=L} (A.4)

since the double sum
∑ntrees

t=1
∑

L∈Lt
amounts to summing over

all leaves in the forest. Finally, by incorporating Eq. A.4 in
Eq. A.2, we obtain

φ(R|F ) =
1

ntrees

∑
x∈R

∑
L∈L

πL1{σtree(L)(x)=L} (A.5)

=
∑
L∈L

πL

 1
ntrees

∑
x∈R

1{σtree(L)(x)=L}

 (A.6)

=
∑
L∈L

πLρL(R|Σ) (A.7)

= 〈ρ(R|Σ),π〉 (A.8)

using the definition of ρ(R|Σ) given in Eq. 4.
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Appendix B. Choice of Learning Rate (Eq. 9)

We expose here the theoretical considerations leading to the
form of the learning rate exposed in Eq. 9. We follow a classi-
cal reasoning inspired from the online learning literature (Ne-
mirovski et al., 2009; Shalev-Shwartz, 2012) and show how it
relates to our scenario by expressing bounds in terms of the
parameters of our method. As detailed in Sec. 4.2.2, at each
iteration k ≥ 1, the current set of leaf models πk suffers the loss
lk(πk) =

(〈
ρ(Rk),πk

〉
− Q(Rk)

)2
, after which a new vector of leaf

models πk+1 is chosen according to the online gradient descent
update rule (Eq. 7). After T region suggestions (T ≥ 1), the
cumulated regret of having used the series of models π1, . . . ,πT

is defined as

RegretT =

T∑
k=1

(
lk(πk) − lk(π∗)

)
, (B.1)

where

π∗ = argmin
π∈[0,1]|L|

T∑
k=1

lk(π) (B.2)

corresponds to the set of leaf models which would have in-
curred the smallest loss over the T iterations. The reasoning
consists in computing an upper bound of RegretT depending
on the learning rate η. To do so, we use the fact that the
functions lk are convex, so that, for all k, we have lk(πk) ≤
lk(π∗) +

〈
πk − π∗, ~∇lk(πk)

〉
and thus

RegretT ≤
T∑

k=1

〈
πk − π∗, ~∇lk(πk)

〉
. (B.3)

To find an upper bound of Ak =
〈
πk − π∗, ~∇lk(πk)

〉
, we use the

update rule of Eq. 7 as follows. For all k, denoting Π = Π[0,1]|L|

and Dk =
∥∥∥πk − π∗

∥∥∥, we have

D2
k+1 =

∥∥∥πk+1 − π∗
∥∥∥2

(B.4)

=
∥∥∥∥Π [
πk − η~∇lk(πk)

]
− π∗

∥∥∥∥2
(B.5)

=
∥∥∥∥Π [
πk − η~∇lk(πk)

]
− Π

[
π∗

]∥∥∥∥2
(B.6)

≤

∥∥∥∥πk − η~∇lk(πk) − π∗
∥∥∥∥2

(B.7)

= D2
k − 2ηAk + η2

∥∥∥∥~∇lk(πk)
∥∥∥∥2
, (B.8)

which leads to the inequality

Ak ≤
1
2η

(
D2

k − D2
k+1 + η2

∥∥∥∥~∇lk(πk)
∥∥∥∥2)

. (B.9)

The inequality between Eq. B.6 and Eq. B.7 results from the
fact that, in the Hilbert space R|L|, performing a projection on
the closed convex set [0, 1]|L| does not increase the distance be-

tween two points. Using Eq. B.9 in Eq. B.3, we obtain

RegretT ≤
1
2η

T∑
k=1

(
D2

k − D2
k+1 + η2

∥∥∥∥~∇lk(πk)
∥∥∥∥2)

(B.10)

=
1
2η

D2
1 − D2

T+1 + η2
T∑

k=1

∥∥∥∥~∇lk(πk)
∥∥∥∥2

 (B.11)

≤
1
2η

D2
1 +

η

2

T∑
k=1

∥∥∥∥~∇lk(πk)
∥∥∥∥2
. (B.12)

To obtain a final bound on the regret, we need to find an upper

bound of D2
1 and of the norm of the gradient

∥∥∥∥~∇lk(πk)
∥∥∥∥2

. First,

since both π1 and π∗ belong to [0, 1]|L|, we have

D2
1 =

∥∥∥π1 − π∗
∥∥∥2
≤ |L| . (B.13)

Secondly, for all k and π, we have

~∇lk(π) = 2 (〈ρ(Rk),π〉 − Q(Rk)) ρ(Rk). (B.14)

The quantity 〈ρ(Rk),π〉 estimates the surface covered by pos-
itive pixels in the region Rk, while Q(Rk) is the actual value
of this surface revealed by the user. Since, by definition, both〈
ρ(Rk),πk

〉
and Q(Rk) are comprised between 0 and the size δ2

of the region, we have
∣∣∣∣〈ρ(Rk),πk

〉
− Q(Rk)

∣∣∣∣ ≤ δ2. By definition
of ρ (see Eq. 4), we also know that each individual component
ρL does not exceed δ2

ntrees
(since at most the number of pixels in

the region δ2 can fall in a leaf L), and, moreover, that these
components sum to δ2. Thus

‖ρ(Rk)‖2 =
∑
L∈L

ρ2
L(Rk) (B.15)

≤
δ2

ntrees

∑
L∈L

ρL(Rk) (B.16)

=
δ4

ntrees
, (B.17)

hence the following upper bound on the gradient:∥∥∥∥~∇lk(πk)
∥∥∥∥2
≤ 4

δ8

ntrees
. (B.18)

Finally, including Eq. B.13 and Eq. B.18 in Eq. B.12 gives the
bound

RegretT ≤
|L|

2η
+

2ηTδ8

ntrees
. (B.19)

We choose the value of η providing the best regret bound, i.e.
minimizing the right side of Eq. B.19. This is obtained for

η =
1

2δ4

√
ntrees |L|

T
. (B.20)

While the relevant number of iterations T for the practical ap-
plicability of our scenario is unknown, it should at least be pro-
portional to the size of the test slide, and thus to the number of
regions |R|. This leads us to define T = λ2 |R| as proportional to
this quantity, resulting in Eq. 9, and learn the hyperparameter λ
on a validation set.
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