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Abstract Nutrition plays an important role in human

metabolism and health. Metabolomics is a promising tool

for clinical, genetic and nutritional studies. A key question

is to what extent metabolomic profiles reflect nutritional

patterns in an epidemiological setting. We assessed the

relationship between metabolomic profiles and nutritional

intake in women from a large cross-sectional community

study. Food frequency questionnaires (FFQs) were applied

to 1,003 women from the TwinsUK cohort with targeted

metabolomic analyses of serum samples using the Biocrates

Absolute-IDQTM Kit p150 (163 metabolites). We analyzed

seven nutritional parameters: coffee intake, garlic intake

and nutritional scores derived from the FFQs summarizing

fruit and vegetable intake, alcohol intake, meat intake,

hypo-caloric dieting and a ‘‘traditional English’’ diet. We

studied the correlation between metabolite levels and die-

tary intake patterns in the larger population and identified

for each trait between 14 and 20 independent monozygotic

twins pairs discordant for nutritional intake and replicated

results in this set. Results from both analyses were then

meta-analyzed. For the metabolites associated with nutri-

tional patterns, we calculated heritability using structural

equation modelling. 42 metabolite nutrient intake associa-

tions were statistically significant in the discovery samples

(Bonferroni P \ 4 9 10-5) and 11 metabolite nutrient

intake associations remained significant after validation.

We found the strongest associations for fruit and vegetables

intake and a glycerophospholipid (Phosphatidylcholine
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diacyl C38:6, P = 1.39 9 10-9) and a sphingolipid

(Sphingomyeline C26:1, P = 6.95 9 10-13). We also

found significant associations for coffee (confirming a

previous association with C10 reported in an independent

study), garlic intake and hypo-caloric dieting. Using the

twin study design we find that two thirds the metabolites

associated with nutritional patterns have a significant

genetic contribution, and the remaining third are solely

environmentally determined. Our data confirm the value of

metabolomic studies for nutritional epidemiologic research.

Keywords Metabolomics � Twins � Dietary pattern �
Nutrition habits � Food questionnaires

BMI Body mass index

CV Coefficient of variation

DZ Dizygotic

EPIC European prospective investigation into cancer and

nutrition

FFQ Food frequency questionnaire

MZ Monozygotic

PCA Principal components analysis

SD Standard deviation

1 Introduction

Nutrition plays an important role in human metabolism and

health. Metabolomics is considered a promising tool for

nutritional studies (Oresic 2009). It aims to profile all low-

molecular weight metabolites that are present in biological

samples to enhance the understanding of the effect of a

particular stimulus on metabolic pathways (Brennan 2008).

Combining the data obtained with multivariate data

analysis tools allows the exploration of changes induced by

a biological treatment or changes resulting from a partic-

ular phenotype. The interest in using metabolomics for

nutritional research has increased recently given the inti-

mate relationship between nutrients and metabolism

(Brennan 2008). A key question that needs to be answered

is to what extent do metabolomic profiles reflect nutritional

patterns.

Some interventional studies have examined the role of

specific foods or nutrients on metabolite patterns. For

example, Llorach et al. (2010) assessed the role of a single

dose of almond skin extract on the urine metabolome of 24

volunteers (12 who ingested a dietary supplement and 12

who ingested a placebo) over a 24 h period. The study

identified 34 metabolites associated with the single dose of

almond extract. Similar study designs have been applied to

investigate the role of meat intake (Cross et al. 2011; Stella

et al. 2006) and the role of three distinct dietary patterns

(O’Sullivan et al. 2011) on a limited number of urinary

biomarkers. Some observational studies have also been

conducted. Altaimer et al. ran two observational studies in

284 male individuals to investigate the role of coffee

consumption and different nutrients on serum metabolites.

Coffee consumption was found to significantly correlate

with metabolomic profilings (Altmaier et al. 2009) and

dietary pattern highly associated with serum metabolite

concentrations were identified (Altmaier et al. 2011) thus

showing that metabolites are reliable candidates for risk

assessment in prospective epidemiologic studies with blood

sample collection at one time point and that it is highly

relevant to explore the link between nutrient intake and

metabolite patterns in an epidemiological (non interven-

tional) setting.

The AbsoluteIDZ kit developed by Biocrates Life Sci-

ence AG (Innsbruk, Austria) allows more than 160 targeted

metabolites to be quantified in over four compound classes.

The kit measures the targeted metabolites in an easy,

reliable and robust way. Also, the 4 months reproducibility

is good and a single measurement appears to be sufficient

for risk assessment in epidemiologic studies with healthy

subjects Floegel et al. (2011). In a previous study on 2,362

female twins, five distinct dietary patterns that best repre-

sent the sources of independent variation in dietary intake

in the twins, were identified using food frequency ques-

tionnaires (FFQs): fruit and vegetables, high alcohol con-

sumption, traditional English diet, dieting and low meat

(Teucher et al. 2007). FFQ are particularly strong at

detecting patterns consistently, and principal component

analysis (PCA) derived pattern cores are widely used to

assess association with health outcome, for example car-

diovascular disease, stroke and the risk of cancer (Stricker

et al. 2012; Schulze et al. 2001; Adebamowo et al. 2005;

Ouderaa et al. 2006).

In the present study we assessed the role of dietary

intake patterns on metabolomic parameters, also including

foods (e.g. garlic) that are commonly perceived as related

to an individual’s health in the context of complex chronic

diseases such as metabolic syndrome or cardiovascular

disease. Using a targeted metabolomics approach we ana-

lysed the correlation between metabolite serum levels

using the Biocrates Absolute-IDQTM Kit p150 and the

above five dietary patterns in 892–965 individuals. These

patterns essentially cover all relevant dietary intake infor-

mation available in the FFQs and are broadly comparable

to those reported in a number of large-scale population-

based studies of nutrition (Stricker et al. 2012; Schulze

et al. 2001; Adebamowo et al. 2005; Ouderaa et al. 2006).

We also tested for coffee intake to be able to compare our

data to previously published studies (Altmaier et al. 2009)

and for garlic intake since, it has been highlighted as a

beneficial dietary constituent (Baños et al. 2008). A recent
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study (Suhre et al. 2011) has shown the strong statistical

power available even with relatively modest sample sizes

to identify genes underlying metabolite circulating levels.

However, not all metabolites are necessarily influenced by

an individual’s genetic make-up. Having identified

metabolites associated with dietary intake patterns or die-

tary components, we validated the results using identical

twins discordant for that particular nutritional intake or

dietary component. Moreover, we evaluated the heritability

of these metabolites. The rationale of this study therefore is

to provide investigators with some key information nec-

essary to pursue the study of the molecular mechanisms

that underlie the relationship between dietary patterns and

health outcomes, including information on the genetic

contribution to the metabolites that relate to dietary intake

patterns.

2 Subjects and methods

2.1 Study population

Study subjects were twins enrolled in the TwinsUK reg-

istry, a national register of adult twins. Twins were

recruited as volunteers by successive media campaigns

without selecting for particular diseases or traits (Moayyeri

et al. 2012). In this study we analysed data from 1,003

female twins who completed the FFQs and had meta-

bolomic data available. The study was approved by

St. Thomas’ Hospital Research Ethics Committee, and all

twins provided informed written consent.

2.2 Dietary and other data

Twins were sent, by post, the 131-item FFQ which was

developed for the EPIC (European Prospective Investiga-

tion into Cancer and Nutrition) Norfolk study (Bingham

et al. 2001). Macro and micro nutrient intakes were cal-

culated from an established nutrient database (Holland

et al. 1991). For each food group, the frequency of intake

(serving/wk) was adjusted for the total energy intake using

the residual method. The energy-adjusted intakes were

standardised and used in the PCA as previously described

(Teucher et al. 2007). Dietary patterns were captured by

five principal components of food consumption which

accounted for 22 % of the total variance: fruit and vege-

table, high alcohol, traditional English diet, hypo-caloric

dieting and low meat. The five dietary patterns are PCA-

generated scores. As such, they are independent variables

standardized to have a mean of zero and a SD of one in the

whole TwinsUK study population. Each dietary pattern

should be considered as the representative of a particular

food pattern intake. For instance, a positive fruit and veg-

etable score can be understood as an average high con-

sumption of fruit, allium and cruciferous vegetable together

with a low consumption of fried potatoes. Vice versa, a

negative score may be taken to mean low consumption of

fruit, allium and cruciferous vegetables together with high

consumption of fried potatoes. Garlic and coffee are

measured in terms of estimated weekly consumptions.

Body mass index (BMI) was calculated as body weight in

kilograms divided by the square of height in square meters.

2.3 Metabolomic measurements

The serum samples were collected after an overnight fast of

all the study subjects. They were stored in -808 C freezers

from which they were retrieved and sent to Germany for

metabolite measurements. A targeted metabolomic assay

was done in samples of fasting serum from participants in the

British TwinsUK study (n = 1,003) using the Biocrates

Absolute IDQTM-kit p150 (BIOCRATES Life Sciences AG,

Innsbruck, Austria), as previously described (Illig et al.

2010; Mittelstrass et al. 2011; Römish-Margl et al. 2012).

Briefly, the flow injection analysis (FIA) tandem mass

spectrometry (MS/MS) method is used to quantify 163

known small molecule metabolites simultaneously by mul-

tiple reaction monitoring. Quantification of the metabolites

is achieved by reference to appropriate internal standards.

Reproducibility of the assay was performed in 23 serum

samples. The mean of the coefficient of variation (CV) for

the 163 metabolites was 0.07 and 90 % of the metabolites

had a CV of\0.10.

Concentrations of all analysed metabolites are reported

in lM.

2.4 Metabolites panel

The metabolomics dataset contains 41 acylcarnitines (Cx:y),

hydroxylacylcarnitines [C(OH)x:y] and dicarboxylacylcarni-

tines (Cx:y-DC); 14 amino acids; one Sugar; 15 sphingomy-

elins (SMx:y) and sphingomyelin-derivatives [SM(OH)x:y];

and 92 glycerophospholipids (PC). Glycerophospholipids are

differentiated with respect to the presence of ester (a) and ether

(e) bonds in the glycerol moiety, where two letters

(aa = diacyl, ae = acyl-alkyl) denote that two glycerol

positions are bound to a fatty acid residue, while a single letter

(a = acyl) indicates the presence of a single fatty acid residue.

Lipid side chain composition is abbreviated as Cx:y, where

x denotes the number of carbons in the side chain and y the

number of double bonds. The full list of metabolites is pre-

sented in the supplementary material (Table S1).
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2.5 Statistical analysis

Statistical analysis was carried out using Stata version 11. The

metabolite serum concentrations were first log transformed as

these were not normally distributed, but right-skewed. For

each dietary variable, linear regression analysis (adjusting for

age and BMI) was first undertaken by excluding MZ discor-

dant twins (i.e. MZ twins with measures one SD apart).

Familial relatedness was accounted for using random

intercept linear regression:

Yi ¼ b0 þ biXij þ ciageij þ diBMIij þ fj þ eij ð1Þ

where Yi and Xij are respectively the log-transformed

metabolite (Y) and the dietary variable of twin j from pair

i. fj is the family-specific error component which repre-

sents the omitted family characteristics or unobserved

heterogeneity. So the comparison between metabolite and

dietary variables was performed between each twin pair.

We then ran for each significant metabolite-dietary vari-

able (3 9 10-4 = 0.05/162) the same linear regression

analysis on the discordant MZ twin pairs. Finally, we com-

bined results using an inverse variance fixed effect meta-

analysis. The fixed effect model provides a weighted average

of the study estimates, the weights being the inverse of the

variance of the study estimate. We used Bonferroni correc-

tion to account for multiple testing thus giving a significant

threshold of 4 9 10-5 (0.05/7 nutrients 9 163 metabolites).

For the metabolites associated with nutritional patterns,

we first calculated the intra-class correlation coefficient

(ICC) for MZ and DZ pairs. We then estimated heritability

using structural equation modelling to separate the observed

phenotypic variance into three latent sources of variation:

additive genetic variance (A), shared/common environ-

mental variance (C), and non-shared/unique environmental

variance (E) (Neale and Cardon 1992). Additive genetic

influences are indicated when MZ twins are more similar

than DZ twins. The common environmental component

estimates the contribution of family environment, which is

assumed to be equal in both MZ and DZ twin pairs (Kyvic

2000), whereas the unique environmental component does

not contribute to twin similarity, rather it estimates the

effects that apply only to each individual including mea-

surement error. Any greater similarity between MZ twins

than DZ twins is attributed to greater sharing of genetic

influences. Heritability is defined as the proportion of the

phenotypic variation attributable to genetic factors, and is

given by the equation, h2 = (A)/(A ? C ? E).

3 Results

1,003 females from TwinsUK with targeted metabolo-

mic analyses of serum samples using the Biocrates

Absolute-IDQTM kit p150 (163 metabolites) were included

in the analysis. Of these, 75 were MZ twin pairs, 228 were

DZ twin pairs and 397 were singletons. The mean age of

the study sample was 58.5 years (10.45 years SD) and the

mean BMI was 25 kg/m2 (4.45 kg/m2 SD).

We first ran linear regression analysis, adjusting for age

and BMI, in the larger population excluding MZ discordant

twins.

We studied the correlation between metabolite levels and

seven dietary intake patterns: coffee intake, garlic intake and

nutritional scores derived from the FFQs summarizing fruit

and vegetable intake, alcohol intake, meat intake, hypo-

caloric dieting and a ‘‘traditional English’’ diet. These five

dietary intake patterns derived from PCA (Teucher et al.

2007) are broadly comparable to those reported in a number

of large-scale population-based studies of nutrition, such as

the Nurses’ Health cohort in the U.S. (Adebamowo et al.

2005), and the EPIC Postdam study (Schulze et al. 2001). A

description of the seven dietary intake patterns and the mean

and SD values in the discovery and replication sets is pre-

sented in Table 1. We correlated these traits with 163

metabolite levels. 42 metabolite nutrient intake associations

were statistically significant with Bonferroni P \ 0.0003

(Supplementary Table 2), with many associations for both

the fruit and vegetable and low meat scores. We then

assessed whether these associations with dietary patterns

were robust. In order to do so these 42 metabolite nutrient

intake associations were tested in the identical twins dis-

cordant for the phenotype (i.e. MZ twins with the dietary

measure or dietary pattern one SD apart or more). For each

dietary variable, we identified between 14 and 20 indepen-

dent monozygotic pairs discordant for the dietary variable.

The regression (beta) coefficients were in the same direction

in both analyses (discordant identical twins and the rest of the

population) for 11 metabolites. We then combined results

using inverse-variance fixed effects meta-analyses. Using a

Bonferroni cut-off of 4 9 10-5 (0.05/7 nutrients 9 163

metabolites), these are shown in Table 2. We find two sig-

nificant associations with garlic intake, one with coffee

intake, six with the dietary pattern for fruit and vegetable,

and two with the ‘‘dieting’’ dietary pattern. The remaining 31

associations become not significant after this analysis and we

find no validated metabolite associations with three of the

five dietary intake patterns derived from FFQs (Table 2). The

metabolites associated with nutrient intake and dietary pat-

terns all fall within three broad categories: acylcarnitines,

glycerophospholipids and sphingolipids. It is of interest

therefore to understand what these metabolites represent and

whether they are genetically determined or only environ-

mentally determined. A brief description of pathways to

which these metabolites belong are shown in Table 3. In

addition, for each of these 11 metabolites, we also calculated

the genetic contribution/heritability. The two metabolites
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negatively correlated with garlic intake are acylcarnitines

C8:1 (Octenoylcarnitine, h2 = 44 %) and C5–DC(C6–OH)

(Glutarylcarnitine, h2 = 0 %)—but only one of them shows

evidence of a genetic component. Coffee intake was also

negatively associated with a metabolite from the acylcarni-

tines pathway—C10:1(Decenoylcarnitine, h2 = 53 %).

Finally, we could not compute the ACE model for PC aa

C38:6 and PC ae C38:6 as, in both cases, the ICC for DZ

was higher than the ICC for MZ, thus violating one of the

ACE model assumption and indicating that circulating levels

of these metabolites are not genetically determined.

With regards to the PCA traits derived from the FFQs,

we found the strongest associations with the fruit and

vegetables score. Five of the six metabolites significantly

and positively correlated with this variable were glycero-

phospholipids L PC aa C36:6 (Phosphatidylcholine diacyl

C36:6, h2 = 54 %); PC aa C38:6 (Phosphatidylcholine

diacyl C38:6, h2 = 0 %); PC aa C40:6 (Phosphatidylcho-

line diacyl C40:6, h2 = 57 %); PC ae C38:6 (Phosphati-

dylcholine acyl-alkyl C38:6, h2 = 0 %); and PC ae C40:6

(Phosphatidylcholine acyl-alkyl C40:6, h2 = 57 %). The

sixth was a sphingolipid (SM C26:1: Sphingomyeline

C26:1, h2 = 35 %). Finally, significant positive associa-

tions with an acylcarnitine—C9 (Nonacylcarnitine,

h2 = 62 %) and a glycerophospholipid—PC ae C38:3

(Phosphatidylcholine acyl-alkyl C38:3, h2 = 38 %) were

found for the hypo-caloric dieting score (Table 3).

4 Discussion

In this study we have investigated in a large cross-sectional

population of women the role of dietary intake patterns on

in metabolomic parameters. Our data support that garlic

intake, coffee intake and dietary intake patterns from FFQs

representing fruit and vegetables and low calorie intake are

correlated with metabolite profiles. All of the associations

found fall within three main pathways: acylcarnitines,

glycerophospholipids and sphingolipids. However, no

association between metabolite levels and meat intake,

high alcohol consumption, or the ‘‘traditional English’’ diet

were found.

The strongest association identified by our study is

between a sphingolipid (Sphingomyeline C26:1 or SM

C26:1) and fruit and vegetable intake. Diets rich in fruits

and vegetables have been associated with a reduced risk of

chronic disease, including cardiovascular disease (Esfahani

et al. 2011). Current research indicates that fruit and veg-

etable concentrates significantly increase serum levels of

antioxidant provitamins and vitamins (b-carotene, vitamins

C and E) as well as folate, but reduce homocysteine and

markers of oxidative stress (Esfahani et al. 2011). Inter-

estingly, sphingolipid depletion has been shown to inhibit

vitamin uptake (Stevens and Tang 1997). The other

metabolites positively correlated with fruit and vegetable

intake are phosphatidylcholines which are highly desatu-

rated fatty acids and among most common constituents of

biological membranes (Zhang et al. 2009). They are an

essential biological component and widely used as a

nutritional supplement for protecting cells from oxidation,

increase fat burning and preventing cardiovascular disease

(Ristic Medic et al. 2006). Lecithin contains fatty acids

identified as the peroxisome proliferator-activated receptor

(PPAR) agonists. Experimental data has shown that leci-

thin promotes adipocyte differentiation and differentiation-

specific gene expression and increased triglycerides and

Table 1 Food intake and dietary patterns scores in discovery and replication set

Phenotype Description Discovery MZ discordant

N Mean(SD) N Mean(SD)

Coffee intake Coffee weekly consumption 965 10.24(11.53) 38 15.21(13.28)

Garlic intake Garlic weekly consumption 975 1.31(2.12) 28 2.73(2.22)

Fruit and vegetable pattern score Frequent intake of fruit, allium and cruciferous vegetables;

low intake of fried potatoes

896 -0.04(1.95) 28 0.88(2.84)

High alcohol pattern score Frequent intake of beer, wine and allium vegetables; low intake

of high fibre breakfast cereals and fruit

884 -0.08(1.38) 40 0.31(1.82)

Traditional English pattern score Frequent intake of fried fish and potatoes, meats, savoury pies

and cruciferous vegetables

896 -0.01(1.34) 28 -0.24(1.17)

Dieting pattern score Frequent intakes of low-fat dairy products, low-sugar soda;

low intake of butter and sweet baked products

896 -0.01(1.25) 28 0.06(1.73)

Low meat pattern score Frequent intakes of baked beans, pizza and soy food;

low intake of meat, other fish and seafood, and poultry

892 -0.12(1.16) 32 -0.12(1.86)

MZ discordant are defined as being one SD apart. This however does not necessarily imply that they are at the population extremes. Hence, mean

scores may have opposite signs in the Discovery and MZ discordant cohort. For each food intake and dietary pattern a description of the

phenotype is given, along with the number of individuals who entered the analysis in the discovery and MZ discordant cohorts, the mean and

standard deviation
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free fatty acid levels in the adipocytes (Zhang et al. 2009).

Phosphatidylcholine has also been shown to have an anti-

inflammatory action (Eros et al. 2009). Therefore, there is a

likely physiological link between the metabolites identified

by us and the beneficial effects of fruit and vegetable intake

which may also be reflected in cardiovascular and other

health-related phenotypes.

Our study also confirms the association between coffee

consumption with C10:1 which was previously reported by

Atlmaier et al. (2009) in a study of German men only and

this underlines the reliability and reproducibility of meta-

bolomic data in nutritional research.

A glycerophospholipid is also associated with low-

calorie dieting. The positive association between phos-

phatidylcholine acyl-alkyl C38:3 and ‘‘dieting’’ pattern

suggests that increased glycerophospholipid levels may be

one possible benefit of a low-calorie diet.

Both garlic and coffee intake were found to be nega-

tively correlated with levels of three acylcarnitines whereas

‘‘dieting’’ was positively correlated with nonacylcarnitine

(C9). Acylcarnitines are long-chain fatty acids. Compre-

hensive plasma acylcarnitine profiles in patients with type

2 diabetes have revealed elevated circulating markers of

incomplete long-chain fatty acid catabolism and of acet-

ylcarnitine, together with lower levels of propionylcarni-

tine. These metabolites appear to be sensitive indicators of

biochemical pathways that are responsive to, or underlie,

the severity of diabetes and long-term blood sugar control.

(Adams et al. 2009). The increased levels of nonacylcar-

nitine (C9) with low-calorie dieting might thus be reflect-

ing less efficient long fatty acid metabolism. On the other

hand, the lower circulating levels of octenoylcarnitine

(C8:1) and glutarylcarinitine (C5–DC/C6–0H) with garlic

intake and of decenoylcarnitine (C10:1) with associated

with coffee intake suggest a possible link between these

foods and more efficient mitochondrial fat metabolism.

Both garlic (Baños et al. 2008; Padiya et al. 2011) and

coffee (Matsuura et al. 2012) have been implicated in

decreased risk of metabolic syndrome and improved insu-

lin sensitivity. It is therefore reasonable to hypothesize that

the effect of garlic and coffee on acylcarnitines and mito-

chondrial fat metabolism may be part of the molecular link

underlying such clinical observations. The results pre-

sented here illustrate the use of metabolomic profiling to

gain insights on the role of nutrients on health. But in order

to gain a reliable risk estimate with a single blood mea-

surement the within-subject variance over time should

be small compared with the between-subject variance.

Otherwise the high sensitivity of the metabolome to

internal or external stimuli (such as age, hormonal status,

diet and lifestyle) may potentially limit their use for risk

assessment in large-scale epidemiologic studies that are

based on single blood measurement The reliability of the

serum metabolite concentrations in the panel used in our

study has been previously reported. Floegel et al. (2011)

investigated the between- and within-person variation in

the metabolite measurements of the 163 serum metabolites

in Biocrates panel was analysed the in 100 subjects who

had provided two fasting blood samples taken 4 months

apart. The metabolite reliability expressed by the ICC (i.e.

the ratio of between-person variance and total variance).

All the metabolites that we identify as related to dietary

intake patterns in our study showed fair to good reliability

as defined by Floegel et al. (2011) (values ranging from

0.41 to 0.69) and hence should be reliable for risk assess-

ment in prospective epidemiological studies and useful to

researchers investigating the most reliable biomarkers to

use in nutritional and healthy lifestyle studies.

Table 2 Validated metabolite associations with dietary patterns

Metabolite short

name

Nutritional parameter/

dietary pattern

Discordant MZ replication Fixed effect meta-analysis

Pathway n Beta SE P value Beta P value

C8:1 Garlic Acylcarnitines 28 -0.049 0.01 0.001 -0.016 1.80 9 10-7

C5–DC(C6–OH) Garlic Acylcarnitines 28 -0.017 0.02 0.27 -0.010 1.25 9 10-5

C10:1 Coffee Acylcarnitines 38 -0.001 0.001 0.05 -0.002 3.12 9 10-6

C9 Dieting Acylcarnitines 28 0.007 0.02 0.66 0.026 3.27 9 10-5

PC aa C36:6 Fruit and vegetables Glycerophospholipids 28 0.001 0.01 0.95 0.014 3.78 9 10-5

PC aa C38:6 Fruit and vegetables Glycerophospholipids 28 0.017 0.01 0.03 0.017 1.39 9 10-9

PC aa C40:6 Fruit and vegetables Glycerophospholipids 28 0.023 0.01 0.002 0.014 1.81 9 10-7

PC ae C38:6 Fruit and vegetables Glycerophospholipids 28 0.013 0.01 0.07 0.011 3.92 9 10-5

PC ae C40:6 Fruit and vegetables Glycerophospholipids 28 0.015 0.01 0.05 0.013 1.36 9 10-6

PC ae C38:3 Dieting Glycerophospholipids 28 0.024 0.013 0.09 0.022 3.59 9 10-5

SM C26:1 Fruit and vegetables Sphingolipids 28 0.020 0.01 0.01 0.015 6.95 9 10-13

Significant results in MZ discordant twins and meta-analysis (P value \ 4 9 10-5). Beta coefficients, standard errors and p value are provided

for both the discordant MZ cohort and for the fixed effect meta-analysis
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Another interesting observation to come out of our study

is that two thirds of the metabolites related to nutritional

patterns have a significant genetic contribution, but one

third have only an environmental contribution. For exam-

ple, in the case of garlic one of the metabolites has an

significant additive genetic component (e.g. octenoylcar-

nitine C8:1) yet the other metabolite associated appears to

be due to environmental influences (e.g. glutarylcarinitine

C5–DC/C6–OH).

The present study has several strengths. Firstly, we

employed a two-stage analysis design—discovery and

independent replication with stringent P values—thus

minimizing the risk of false positive findings. Secondly, we

used identical twins discordant for nutritional intake for the

validation analysis. Metabolite levels may be influenced by

many factors including genetics (Suhre et al. 2011). Since

identical twins share 100 % of their genetic makeup and

are matched perfectly for age, gender, social class, etc., we

were able to validate the role of nutritional intake on

metabolites; isolating the non-genetic contribution. Thus,

these data help us understand the complex interplay

between genetic and environmental influences that deter-

mine nutritional patterns.

The results presented here are consistent with data from the

study carried out in men (Altmaier et al. 2011) in that we

identify correlations between metabolomic measurements and

the intake of certain nutrients and, in particular, nutritional

patterns as summarized by principal component analyses.

Given the strong results for individual metabolites found by

the previous study, we have focused only on individual

metabolites and not on metabolite ratios and we confirm that

indeed there are very correlations with dietary patterns.

There are some limitations in the current study. Firstly,

both our validation and replication samples consist of

women only. Some of these metabolites may be influences

by sex-hormone levels and results could be different in

men. Secondly, we have used FFQs rather than other more

reliable methods for assessing nutrient intake.

Over the past two decades, FFQs have become a well-

accepted method for quantitative assessment of usual

nutrient intake (Sempos et al. 1992) and their for assessing

dietary composition has been documented objectively in

prospective studies (Willett 1998). FFQ derived dietary

intake patterns (using PCA) have been shown repeatedly in

the literature to correlate with various health-outcomes

such as cardiovascular risk, stroke, diabetes and cancer

among others (Stricker et al. 2012; Schulze et al. 2001;

Adebamowo et al. 2005; Ouderaa et al. 2006).

Although FFQs may not be perfect, they have been

extensively validated for epidemiological studies needing

Table 3 Heritability of metabolites associated with dietary patterns

Metabolite

short name

Metabolite Pathway Description ICCMZ ICCDZ h2

(%)

c2

(%)

e2

(%)

C8:1 Octenoylcarnitine Acylcarnitines Facilitate entry of long-chain fatty acids into

the mitochondrion and act as fuels for

many tissues (e.g. skeletal and cardiac

muscle) via fatty acid beta-oxidation

0.51 0.16 44 0 56

C5–DC

(C6–OH)

Glutarylcarinitine 0.23 0.20 0 21 79

C10:1 Decenoylcarnitine 0.55 0.26 53 0 47

C9 Nonaylcarnitine 0.60 0.38 62 0 38

PC aa

C36:6

Phosphatidylcholine

diacyl C36:6

Glycerophospholipids Composed of glycerol, a phosphate group,

and two fatty acid chains, are by far the

most abundant lipids in cell membranes

0.43 0.34 54 0 46

PC aa

C38:6a
Phosphatidylcholine

diacyl C38:6

0.21 0.23 – – –

PC aa

C40:6

Phosphatidylcholine

diacyl C40:6

0.49 0.29 57 0 43

PC ae

C38:6a
Phosphatidylcholine

acyl-alkyl C38:6

0.25 0.28 – – –

PC ae

C40:6

Phosphatidylcholine

acyl-alkyl C40:6

0.25 0.20 0 21 79

PC ae

C38:3

Phosphatidylcholine

acyl-alkyl C38:3

0.40 0.29 38 0 62

SM C26:1 Sphingomyeline

C26:1

Sphingolipids Lipids containing a backbone of sphingoid

bases. Important in signal transmission and

cell recognition.

0.43 0.15 35 0 65

For each metabolite which was associated overall and in significant MZ twins with (P value \ 4 9 10-5)., we estimated the ICC for MZ and DZ

pairs and the additive genetic contribution/heritability (h2), the common environmental contribution (c2) and the unique environmental

contribution (e2)

* For this metabolite it was not possible to compute the ACE model as ICCMZ \ ICCD
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large sample sizes. Notwithstanding, we have been able

using FFQs and a targeted metabolomic approach to

identify metabolites that are correlated with nutritional

patterns and within these, to identify those that have a

genetic component from those that are purely environ-

mentally determined.

In conclusion, our results provide further support to the

use of metabolomic analyses to identify the molecular

mechanisms responsible for the links between nutrition and

health. Whereas directly associating lifestyle habits with

clinical endpoints provides only limited information about

the underlying disease-causing mechanisms, the use of a

metabolomic approach helps identify the molecular path-

ways underlying dietary patterns and these molecular

mechanisms in turn can be more easily linked experimen-

tally in smaller studies to relevant clinical outcomes (Jenab

et al. 2009; Scalbert et al. 2009; Wishart 2008). Our study

confirms that this technology has great potential in the area

of nutritional assessment as metabolites reflects certain

nutritional patterns and can help separate those metabolites

related to nutrient that reflect inherited patterns of metab-

olism from those that are entirely due to environmental/

lifestyle choices. In this context a metabolomic approach

may provide useful biomarkers of disease prevention, early

disease, or nutritional status, and eventually to identify

potential molecular mechanisms in chronic disease pro-

cesses that are modulated by dietary constituents and/or

dietary patterns.
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