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Abstract 

Instrumentation technology for metabolomics has advanced drastically in recent years in 

terms of sensitivity and specificity. Despite these technical advances, data analytical 

strategies are still in their infancy in comparison with other „omics‟. Plants are known to 

possess an immense diversity of secondary metabolites. Typically, more than 70% of 

metabolomics data are not amenable to systems biological interpretation due to poor database 

coverage. Here, we propose a new general strategy for mass spectrometry-based 

metabolomics that incorporates all exact mass features with known sum formulae into the 

evaluation and interpretation of metabolomics studies. We extend the use of mass differences, 

commonly used for feature annotation, by re-defining them as variables that reflect the 

remaining „omic‟ domains. The strategy uses exact mass difference network analyses 

exemplified for the metabolomic description of two gray poplar (Populus x canescens) 

genotypes that differ in their capability to emit isoprene. This strategy established a direct 

connection between the metabotype and the non-isoprene emitting phenotype, as mass 

differences pertaining to prenylation reactions were over-represented in non-isoprene 

emitting poplars. The analysis of mass differences was not only able to grasp the known 

chemical biology of poplar but it also improved the interpretability of yet unknown 

biochemical relationships.  

A major part of mass spectrometric data is not amenable to data interpretation as metabolite 

databases are far from being complete. This work presents the concept and rules on how 

Mass Difference Enrichment Analysis (MDEA) enables data driven analysis and 

interpretation of metabolomics data. This new metabolomics approach is presented vis-à-vis 

the biochemically well-characterized gray poplar isoprene emitting and non-emitting mutants, 

and yields results that are in perfect accordance with prior metabolite and physiological 

knowledge. MDEA is shown to extend prior knowledge supporting the formulation of new, 

testable biochemical working hypotheses. 
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Abbreviation Meaning 

Da Dalton 

DCA Dicarboxylic acid 

DHAP Dihydroxyacetone Phosphate 

DMAPP Dimethylallyl Pyrophosphate 

DXS 1-deoxy-D-xylulose 5-phosphate Synthase 

FA Fatty acid 

FPP Farnesyl Pyrophosphate 

FT-ICR-MS Fourier Transform Ion Cyclotron Resonance Mass Spectrometry 

GPP Geranyl Pyrophosphate 

HMDB Human Metabolome Database 

HTG Hemiterpene Glucosides  

IE Isoprene Emitting 

KEGG Kyoto Encyclopedia of Genes and Genomes 

MDA Malondialdehyde 

MDEA Mass Difference Enrichment Analysis 

MDiA Mass Difference Analysis 

MDiN Mass Difference Network 

MEP Methylerythritol Phosphate 
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MS Mass Spectrometry/Mass Spectrometer 

MS/MS Tandem Mass Spectrometry 

NE Non-Isoprene Emitting 

OPLS-DA Orthogonal Partial Least Squares Discriminant Analysis 

PcISPS Isoprene Synthase 

PEP Phosphoenolpyruvate 

POP Poplar Metabolome 

PP Pyrophosphate 

MDB Mass-difference based building blocks 

rpairs KEGG reaction pairs 

SIM Selected Ion Monitoring 

SIMMS/MS Selected Ion Monitoring Tandem Mass Spectrometry 

TCA Tricarboxylic acid 

WT Wild Type 
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Introduction 

From genes via transcripts to proteins and finally to metabolites, is the “classical” view of the 

cellular information cascade. These days this flow of information is interpreted as a cellular 

network in which the different layers (genes, transcripts, proteins and metabolites) interact 

with, and influence, each other. Nonetheless, the nature and direction of these interactions are 

under constant debate. The scientific discipline, which aims to understand these cellular 

bionetworks globally is called systems biology (Ideker et al. 2001). The integration of 

genomic, transcriptomic, proteomic, and metabolomic data is a major challenge as all of these 

domains have their own time scale and are measured using different analytical techniques.  

Well-known methods for metabolic pathway/network analysis are (i) constraint-based 

modelling such as flux balance analysis (e.g. Boyle & Morgan 2009), (ii) stable isotope 

feeding (e.g. Masakapalli et al. 2010) or (iii) the reconstruction of the differential 

biochemical Jacobian from a predefined fluctuation matrix and the covariance matrix of 

metabolomics measurements (Steuer et al. 2003, Nägele et al. 2014). 

Recently, a comprehensive study showed how more than 80% of 2435 Arabidopsis thaliana 

metabolic features were altered due to cytoplasmic genome variation (Joseph et al. 2013). 

Notably, 91.2% of these features were unknown, which means that the known partition that 

would have been available for prior-knowledge driven metabolic network analysis amounted 

to 8.8% of all features. If the proportion of unknown molecular features is reported at all, 

their proportion is consistently documented to vary between 70% and 90% (e.g. Walker et al. 

2014a, Witting et al. 2015).  
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As simultaneous identification and quantification of the entire metabolome is not possible 

using state-of-the-art instrumentation, there is also no data-analytical method available that 

incorporates these 90% of unknowns into phenotypic descriptions and interpretations. There 

have been approaches that use Gaussian graphical models towards a stepwise incorporation 

of yet unidentified features into bioinformatic evaluations (Krumsiek et al. 2011).   

In recent years, mass spectral analysis has been extended using mass-difference networks 

(MDiNs) whose reconstruction requires accurate m/z-features or molecular masses as nodes, 

which can be connected by mass-difference-based building blocks (MDBs) as edges.  

The concept was first introduced by Breitling et al. (2006a, 2006b) where they proposed two 

scientific applications of the concept. Firstly, MDiNs enable ab initio pathway detection, 

therefore, reasonably, metabolic pathways must be subgraphs of MDiNs, given the detection 

of the corresponding metabolites. Secondly, the common biochemical ancestry of connected 

metabolites in conjunction to metabolic difference analysis can support feature identification 

if one of the metabolites is known.  

This database-driven exploitation of MDiNs was refined by a series of papers (Gipson et al. 

2008, Rogers et al. 2009, Weber & Viant 2010, Watrous et al. 2012, Morreel et al. 2014). 

However, ultimately all approaches leave features that can be neither identified by MS/MS 

nor they be mapped into metabolite databases apart. Doing so is perfectly appropriate when 

high confidence molecular formula assignments to unknown/unidentified features are not 

possible. Despite the fact that ultra-high resolution (UHR) mass spectrometers have become 

commonplace, the majority of assigned molecular formulas do not match metabolite 

databases, while their detected m/z peaks in direct infusion mode are amenable to neither 

immediate MS/MS identification nor isotopic pattern matching. Moreover, non-targeted LC-
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MS methods have too low sensitivities and require duty cycles that are too fast for true LC-

UHR-MS.  

While the methods described above have a tremendous potential to consolidate and elaborate 

on presently known metabolomes, and to extend this knowledge (if m/z-peak abundances are 

sufficiently large), they are bound to miss the impact of enzymatic promiscuity (Pichersky & 

Lewinsohn 2011) and as of yet unassigned enzyme specificities. Particularly in plant 

secondary metabolism, enzymes can either utilize multiple substrates or produce a variety of 

products from one substrate, e.g. terpene synthases (Kampranis et al. 2007) and O-

methyltransferases (Schwab 2003). Metabolites coexist in very concentrated solutions and it 

has even been hypothesized they form deep eutectic fluids in a cell (Choi et al. 2011). 

Moreover, chemical activity is a function of compound concentration, meaning spontaneous 

reactions between metabolites are likely to occur. Global descriptions of molecular 

(metabolite) pools are therefore unlikely to be reflected by measurements of free metabolites 

alone.  

Focusing on the assignment of molecular formulas, rather than on metabolite identification, 

Tziotis et al. (2011) generalized molecular formula propagation through MDiNs as a means 

of database-independent molecular formula assignment for UHR-MS features. The given 

method was applied on a multitude of analytical matrices (Müller et al. 2013, Walker et al. 

2014b, Zhang et al. 2014, Forcisi et al. 2015, Moritz et al. 2015, Witting et al. 2015) and 

extensions to low-resolution mass spectrometry have been described (Forcisi et al. 2015).  

Previously analyzed Populus x canescens (gray poplar) lines knocked-down in isoprene 

synthase (PcISPS; EC 4.2.3.27) (Behnke et al. 2007) revealed large phenotypic changes. The 

resulting lack of isoprene (2-methyl-1,3-butadiene) emission in poplar results in large 

metabolic (Behnke et al. 2010a, Way et al. 2013, Velikova et al. 2015), transcriptomic 



 
This article is protected by copyright. All rights reserved. 

(Behnke et al. 2010b), proteomic (Velikova et al. 2014), and physiological modifications 

(Behnke et al. 2007, Behnke et al. 2012). However, as interpretations of KEGG-based m/z 

feature annotations related to merely 3% of all molecular formulas, we aimed to explore the 

remaining 97% of the dataset. In the spirit of gene set enrichment analysis (Subramanian et 

al. 2005), we used mass difference enrichment analysis (MDEA) as a tool for mass difference 

analysis (MDiA), which mines MDBs that are associated with statistically important m/z 

features with molecular formulas of both known and unknown metabolites (Zhang et al. 

2014, Moritz et al. 2015). 

We used a Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) 

dataset on Populus x canescens isoprene-emitting (IE) and non-isoprene-emitting (NE) poplar 

lines published recently (Kaling et al. 2015). We show that – regardless of the proportion of 

knowledge on single metabolic features – MDiA (i.e. MDEA) mines MDBs that are in 

agreement with prior knowledge, and we confirm them to be the major building blocks of the 

given poplar metabolome using SIM-stitch MS/MS experiments. We show that the 

approaches of Breitling et al. (2006a, 2006b) and Weber and Viant (2010) can easily be 

integrated, and how an extension to Walker et al. (2014b) enables the formulation of 

hypotheses that can serve as a basis for hypothesis-driven research in future endeavors. 

 

Material and Methods 

Plant material 

The dataset of a UV experiment described in Kaling et al. (2015) was used. In brief: the four 

genotypes consisted of (i) two isoprene non-emitting (NE) RNAi lines Ra2 and Rb7 and (ii) 

two isoprene emitting (IE) lines wild type (WT) and empty vector control (EV) gray poplar. 

Each group (NE and IE) had a total of 16 plants, where half of the pants were exposed to high 
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UV radiation for 13 days. Sample preparation was performed as described in Kaling et al. 

(2015). 

 

FT-ICR-MS measurements 

FT-ICR MS measurements were performed as described in Kaling et al. (2015). 

 

Data annotation 

The 211 FT-ICR-MS spectra were internally calibrated, aligned, exported as ascii files, and 

combined with an error of 1 ppm using an in-house written program (Lucio et al. 2011). 

Peaks, which were present in just one spectrum were removed from the matrix. M/z features 

whose mass defect cannot be realized on the basis of any valid combination of C, H, N, O, P, 

and S, given their m/z, were omitted. Isotopologues of one molecular species must correlate 

across samples if the samples‟ origin is comparable. De-isotoping was performed in two 

steps. Firstly, searching for commonly known mass differences (e.g. 
13

C-
12

C = 1.003355 Da) 

within an error window of 3 ppm, and secondly, omission of the heavy isotope candidate if its 

ion abundance correlates with the monoisotopic candidate peak (r ≥ 0.95).  

Molecular formula assignment was performed on the basis of Tziotis et al.
 
(2011) with an 

additionally applied Senior filter (Senior 1951), and a box for search direction randomization. 

Both edges and annotations were allowed to be rejected by the overall MDiN context so as to 

maximize the overall consensus of all formulas and MDBs. Molecular formula assignment 

was performed using the manually curated MDB list described herein. The overall error 

tolerance was set to 5 ppm and the error tolerance for MDB assignment was set to 0.2 ppm. 

The error over m/z distribution was centered on 0.04 ppm with a standard deviation of 0.1 

ppm at m/z = 200 and 0.25 ppm at m/z ≥ 300 (Fig. S1).  
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Each mass spectrum contained 2,276 ± 886 non-randomly occurring m/z peaks. On average, 

1,579 ± 487 successful monoisotopic molecular formula assignments were obtained per 

spectrum, which amounted to 4335 annotated molecular formulas over all 211 mass spectra 

(Table S1). The central composition of molecular formulas was CHO (1,499), N (2,205), S 

(1,938) and P (892). Overall, low mass defects indicated a high proportion of desaturation 

and oxygenation (not shown). A comparison of all 4,335 empirical molecular formulas to 

KEGG yielded 129 matches.  Database queries were performed at hand of molecular 

formulas as error-bound m/z-queries amount to substantial proportions of false hits. As 

exemplified in Fig. S1, the empirical error distribution was i) not continually centered on 0 

ppm as it is not linear, and (ii) shows systematic oscillations of error values. At mass spectral 

regions that are systematically not centered on 0 ppm, false database matching occurs by 

default if minimal errors are considered as a criterion of annotation goodness. Corresponding 

database query strategies are especially prone to false positive annotations if the error 

distribution is not centered, and prone to false negative annotations if the correct formula is 

not listed in the database. 

 

Generation of MDB lists 

The Breitling et al. (2006a, 2006b) approach: Mass-difference-based building blocks were 

defined to cover i) the functional list as described in Tziotis et al.
 
(2011), further exchanges 

of small functionalities, (ii) amino acids, (iii) their corresponding keto-acids, (iv) even-

chained fatty acids (C2-C16), (v) dicarboxylic acids, (vi) phenylpropanoids, (vii) cofactors 

and nucleotides/nucleosides, as well as (viii) derivatives of pentoses, hexoses, and their 

disaccharides. Furthermore, multiple prenylation steps were added. Co-enzymes were 

implicitly considered in the formulation of the reaction classes that they catalyze. The 

transformation of the above compound classes into mass-difference-based building blocks 
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(MDBs) was performed by modifications according to the following reaction classes: 

condensation/hydrolysis (Type A, CoA; M-H2O), decarboxylative condensation (Type B, 

CoA, Pyridoxal-Phosphate; M-H2O-CO2), and hydrogenation of carbonyls with consecutive 

condensation (Type C, CoA, NADH, Pyridoxal-P; M+H2-H2O). The full list of MDBs and 

reaction types is given in Table S2.  

The Weber and Viant (2010) approach: Mining of KEGG rpairs from KEGGAPI. 

MDBs that span two rpairs because 13 shortest paths of a length of k = 2 were obtained 

between D-Glucose and β-D-Fructose-6-phosphate after removal of metabolite entries such 

as „electron‟, „proton‟ or H2O. Such multiplicity is problematic if the aim is to describe an 

MDB class that is intended to serve as a class of variables. The full list of MDBs and reaction 

types is given in Table S2. 

 

Statistical analysis 

The molecular formula / intensity matrix of annotated features was used for principal 

component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-

DA) using SIMCA-P (v13.0.0.0, Umetrics, Umeå, Sweden). Isoprene emission was utilized 

as the Y-variable and the molecular formulas and their respective intensities were defined as 

X-variables. Based on the principal component 1 loadings of the OPLS-DA model 

(R2Y(cum) = 0.957, Q2(cum) = 0.767, Figure 2 - Figure supplement 1), 10% of the most 

important molecular formulas for the characterization of NE and IE were extracted and used 

for mass-difference enrichment analysis (Fig. S4).  
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Mass-difference enrichment analysis 

MDEA was performed by separately using the two MDB lists described herein. MDiNs were 

reconstructed using the theoretical neutral masses of the 4335 molecular formulas annotated 

above. Assuming them to be error free, MDiNs were reconstructed at a networking error of 

0.01 ppm to accommodate for mass deviations that derive from rounding. Given CHNOPS, 

there are usually no isobaric annotations at errors < 0.05 ppm. However, exceptions do exist. 

The MDiN, which was built using the curated MDB list contained 63,608 edges, 15,537 and 

18,143 of which were incident to IE nodes and NE nodes, respectively. The KEGG rpair 

MDiN comprised 65,180 edges, 16,072 and 19,102 of which were incident to IE nodes and 

NE nodes, respectively. The entire results are provided as „.xlsx‟ files in Table S2. An 

inference pertaining to whether an MDB is over/under-represented among nodes of interest 

requires testing as to whether it was observed more or less frequently than should be expected 

by chance given the entire model dataset. The Fisher exact test, which assumes a 

hypergeometric distribution, was used as follows: (1) reconstruct an MDiN from a population 

of nodes, P, and a set of edges, E, (2) define a sample set S, that contains nodes of interest, 

(3) count the set of edges, ES, that are connected to S, (4) count the number of edges of one 

MDB type R in E; and (5) count the corresponding number of edges, RS, that are connected to 

S. The probability for RS edges to be connected to S, given E, R and ES is calculated as 

follows (using the MATLAB function hygecdf):   

                
     

   
     

  
  

 

  
         Eq. 1 

Using the MATLAB function hygestat, it was possible to calculate the values µ and σ, which 

are the expected amount of RS and the expected standard deviation given E, R, ES: 

  
    

 
         Eq. 2 

and 
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       Eq. 3 

The values µ and σ were used to calculate a Z-score that is indicative for enrichment or 

depletion of an MDB in S: 

  
    

 
         Eq. 4. 

The equations above assume a hypergeometric distribution; a discrete probability distribution 

that is very commonly used for modelling discrete problems as the one stated above. Eq. 1 to 

4 enable the calculation of the expected frequency, µ, of an R, given a number of randomly 

selected edges that equals the number of edges that was found in association to a given MDB 

(Rs).. The equations for the calculation of the hypergeometric standard deviation of µ, and the 

expression of the de-pauperation or enrichment of an MDB in terms of Z-scores (deviation of 

the MDB frequency from µ in multiples of σ). As an approximation, Z-scores of z ≈ 2 and z ≈ 

2.5 associate to the p-values p ≈ 0.05 and p ≈ 0.01, respectively. Naturally, there is no 

guarantee for RS to follow a hypergeometric distribution, and as ES becomes smaller, both p-

values and Z-scores become biased (overestimated). The Matlab code, which was used to 

calculate the MDEA statistics is available as Table S5. Cross-validation via bootstrapping of 

S was performed 10,000 times to obtain an additional frequentist measure of significance. 

Notably, the present concept is entirely data-driven, as it does not differentiate whether 

compounds/metabolites are known to metabolic databases or not. The general workflow 

towards MDEA can be viewed in Fig. S5. 
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Incidence matrix 

Even if database coverage is poor, it is possible to describe empirical metabolomics datasets 

by MDB-based transformations of molecules from metabolomic databases. MDiNs that 

encompass database entries and empirical data contain an interface between both metabolome 

spaces. Molecular formulas that were assigned to empirical m/z features can be expressed as 

combinations of molecular formulas from databases and MDBs. To analyze and visualize 

whether specific MDBs are used to generate arbitrary groups of non-annotated empirical 

features, it is necessary to convert the given data into an appropriate structure.  

The adjacency matrix (Harary 1962), the Laplacian (Merris 1994), and the incidence matrix 

(Fulkerson & Gross 1965) (IM) are structures that represent a graph. IM rows pertain to 

nodes v and IM columns pertain to edges e. Each edge is listed as a distinct variable. Non-

zero entries imply the incidence of a node vi and an edge ej. This structure was chosen for the 

representation of a transformation map that explains the data as a function of KEGG database 

entries. 

Firstly, the 854 KEGG nodes and the 4,206 POP nodes were co-networked. As the aim was 

the description of the production of POP metabolites that are not a subset of the KEGG 

metabolome, 129 POP molecular formulas found in KEGG were omitted. Both previously 

described MDB lists were combined into one list of 450 MDBs. The MDiN consisted of 

117,693 edges (the 129 omitted features would have amassed 8,644 additional edges). 492 

KEGG formulas (substrates) were directly connected to 2,316 POP formulas (products) by 

means of 16,109 edges. 2,138 and 1,988 edges were connected to IE nodes and NE nodes 

respectively (Table S3). 

Secondly, MDEA was used to analyze which MDBs were specifically associated to IE and 

NE nodes. 20 and 31 MDBs obtained Z-scores major 2 for their association to IE and NE 

respectively.  
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Thirdly, 42 human metabolome database (HMDB, Wishart et al. 2007) compound classes 

were assigned to 486 out of 492 KEGG formulas that served as substrates. Multiple 

compound class assignments were considered as independent variables. Edges are replaced 

by MDBs and compound classes replace nodes in the KEGG-POP-IM. Non-zero values 

indicate the sum of incidences a compound class has to a given MDB class. Figure 5 was 

created using the clustergram function within MATLAB over the KEGG-POP-IM. The 

KEGG-POP-IM is a generic extension to Walker et al.
 
(2014b), who annotated an unknown 

metabolite of major impact by in silico conjugation of empirical data. 

 

Empirical NULL distributions 

To accommodate for an inappropriate assumption of the hypergeometric NULL distribution, 

α-values were empirically determined by performing MDEAs over 10,000 bootstrapped 

marker sets of the same size as the original set of markers. Α-values for over-representation 

and underrepresentation are provided as „xlsx‟ files (Table S2). 

 

MS/MS experiments 

One IE leaf and one NE leaf were investigated by fragmentation experiments that were 

performed using the multiple adjacent selected ion monitoring (SIM) method (Southam et al. 

2007). ESI parameters were set as described above. The spectra were acquired over a time 

domain transient of 4 Megawords and an Ion-accumulation time of 1.3 s. The SIM window 

size was set to 30 Da. The SIM window was first centered around 260 m/z and was then 

shifted towards 440 m/z values in 15 Da steps (13 windows). Fragmentation of each SIM 

window was performed with four different fragmentation energies: (i) 0 eV, (ii) 5 eV, (iii) 10 

eV, and (iv) 15 eV. Each spectrum was acquired for 56 scans. 
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Data were calibrated and aligned following spectral overlap. Annotation was performed as 

described above. Each spectrum was then divided into parent and daughter sections. MDiNs 

were created using KEGG rpairs and the manually curated MDB list. For MDEA, only valid 

parent→daughter (P→D) pairs were considered. The MDEA variables were generated as 

follows. E represents the sum of all MDBs that were P→D pairs in IE and NE.; R is the sum 

of all MDBs that were P→D pairs with P being a marker for either NE or IE; ES defines the 

frequency of P→D pairs for each MDB; and  RS: gives the frequency of P→D pairs with P 

being a marker for each MDB.   

 

Results 

Interpretation of m/z feature statistics 

The gray poplar dataset contains 211 mass spectra, each of which encompasses 2276 ± 886 

non-randomly occurring m/z peaks after calibration, alignment, and exclusion of exported 

noise peaks. A mass difference network (MDiN)-based annotation strategy according to 

Tziotis et al. (2011) resulted in an average of 1,579 ± 487 successful monoisotopic molecular 

formula assignments per spectrum, with a final amount of 4,335 annotated molecular 

formulas across all spectra. The quality of the formula assignment is displayed as error over 

m/z plots (Fig. S1), indicating a good spectral alignment, as well as a slightly non-linear 

systematic error distribution.  

Prior to the application of any further statistics, it was necessary to drop all m/z features that 

could not be annotated successfully, as they are potential artefacts by nature. Furthermore, 

knowing that the 4,335 assigned molecular formulas pertain to m/z features, both terms will 

be used interchangeably across the remainder of this work. Multivariate statistical approaches 

are common practice in metabolomics, as they are appropriate in screening large datasets for 

features that are potentially associated to a given experimental intervention. Here, orthogonal 
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partial least squares discriminant analysis (OPLS-DA)-modeling was used and the top 10% of 

most important features were used for the characterization of molecular formulas in NE and 

IE genotypes (Fig. 2, Fig S1 and Fig S2). 

Comparing the assigned molecular-formulas of our gray poplar dataset with the KEGG 

database resulted in only 129 database hits (3%), which limits the interpretation of 

metabolomics results, and may result in false statements.  

Initial observation of differences in the molecular formula annotations (compositional space) 

revealed that pure CHO, CHOP and CHOS compositions are by trend upregulated in the NE 

genotypes, while a majority of N-containing compositions were IE-specific (Fig. 1, Fig. S2). 

The average cyclomatic number u according to Senior (1951; later termed double bond 

equivalent or degree of unsaturation) was significantly lower in NE than in IE (uNE = 6.6, 

uIE = 9.1 | p = 2.2*10
-19

). Consequently, compounds in the IE genotypes are characterized by 

a higher amount of double bonds, which is supported by significantly lower H/C ratios and 

H/(C+N) ratios in IE (pH/C= 1.4*10
-12

,pH/(C+N)=2.2*10
-23

). These general analyses imply 

there are a lower amount of C- and N-aromatics in NE, as well as a higher amount of 

nitrogen-free compounds.  

Among the 129 KEGG molecular formula hits (242 KEGG compounds), 17 molecular 

formulas (55 KEGG entries) and 22 molecular formulas (47 KEGG compounds) were 

accumulated in NE and IE, respectively (Table S1). It is common to describe and interpret 

metabolomes in terms of statistics over the KEGG pathway map participation of designated 

markers (Kankainen et al. 2011). The present analysis shows that 97% of the assigned 

molecular formulas in leaf extracts of IE and NE poplars do not match with KEGG listed 

compounds, indicating a more general problem in plant metabolomics: a lack of structural 

information. Of the 17 molecular formulas found for the NE genotypes, two were related to 

down-stream products of the methylerythritol phosphate (MEP) pathway where the PcISPS 
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knock-down was induced (C5H12O7P2 for dimethylallyl pyrophosphate / isopentenyl 

pyrophosphate (DMAPP / IPP, pyrophosphate = PP) and C10H20O7P2 for geranyl-PP (GPP)). 

Five formulas were related to saccharide metabolism, glycolysis, or pentose-phosphate 

metabolism (C6H12O6 for hexose, C12H22O11 for hexose di-saccharide, C6H10O7 for hexuronic 

acid, C6H13O9P for hexose-P, C7H15O10P for heptose-P). Furthermore, the formulas for 

malate, C20- and C22-fatty acids, two flavonoids, two hydroxybenzoate derivatives, and one 

phytosterol were found. Five flavonoid molecular formulas, three unsaturated fatty acids/α-

linoleic acid derivatives including linoleic acid, three phenylpropanoid derivatives, two 

glucosyl-flavonoids, three quinic acid derivatives, as well as hexose-bisphosphate and 

dihydroxyacetone phosphate (DHAP) were found on the side of IE genotypes. PEP and 

glycerol 3-phosphate, the isomer of DHAP, are the first substrates for the non-mevalonate or 

2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. Higher amounts of DMAPP, the 

substrate of PcISPS, were observed in NE genotypes. This is consistent with the 

corresponding RNAi knock-down of this enzyme. Furthermore, flavonoid metabolism, which 

is derived from phenylpropanoid metabolism, is pronounced in IE plants (Table S1, Fig. S2, 

and Fig. S3). While hexose and hexose-P are enriched in NE, hexose-bisphosphate is 

depleted; this implies feedback regulation in this genotype on the level of 

phosphofructokinase (PFK, EC 2.7.1.11), which is inhibited either by aberrant ATP/AMP 

ratios or by phosphoenolpyruvate (PEP) (Kelly & Latzko 1977, Stitt 1990). Furthermore, 

differential behaviors of these three hexose derivatives implies that the classification of 

features is not primarily driven by matrix effects as they have similarly strong hydrophilicity 

and polarizability, i.e. they are features that are typically suppressed by more surfactant 

molecules in ESI ionization. KEGG metabolic pathway hits that were markedly enriched in 

the NE genotype are „Ubiquinone and other terpenoid-quinone biosynthesis‟ as well as 

„Starch and sucrose metabolism‟. Major changes in general terpenoid metabolism were not 



 
This article is protected by copyright. All rights reserved. 

indicated. The IE specific pathway hits „Biosynthesis of amino acids‟, „Flavonoid 

biosynthesis‟, „Phenylalanine, tyrosine and tryptophan biosynthesis‟, „Anthocyanin 

biosynthesis‟, and „Phenylpropanoid biosynthesis‟ in turn agrees with the compositional 

results presented above (Table S1, Fig. S2, and Fig. S3). 

 

Mass-difference-based building blocks (MDBs) and mass difference networks (MDiNs) 

4,335 molecular formulas could be assigned globally. The MDiNs were reconstructed over 

the set of theoretical monoisotopic exact masses that pertain to the 4,335 neutral molecular 

formulas of the poplar dataset (POP-formulas). Literature proposes two ways to generate lists 

of MDBs. The first one (Breitling et al. 2006a) formulates MDBs by means of manual 

inspection of biochemical reactions. Subtracting the masses of substrate A from product C in 

a biochemical reaction A+B→C, will result in an MDB that describes substrate B, 

notwithstanding the existence of various reaction mechanisms (Fig. 1A and Fig. 1B). Such a 

list of MDBs will be termed as „manual MDBs‟. Using this approach, enzyme-catalyzed and 

spontaneous reactions were curated manually and converted into a first set of 248 mass 

differences (Table S2). The second approach (Weber & Viant 2010) mines MDBs from 

biochemical reactions listed in databases.  

This approach is the basis for a second MDB set which is created from KEGG reaction-pairs 

(rpairs) that were downloaded from KEGGAPI, (similar to Weber & Viant (2010); 

http://www.KEGG.jp/KEGG/rest/KEGGapi.html). This set will be termed as „rpair-MDBs‟ 

for convenience. Ultimately, 301 unique rpair-MDBs shared 99 entries with the list of manual 

MDBs. The MDiNs that were generated by cross-linking the POP-formulas either with 

manual or rpair-MDBs encompassed 63,608 (NE|IE: 18,143|15,537) and 65,180 (NE|IE: 

19,102|16,072) edges respectively. As MDBs are derived from biochemical reactions, the 

following sections will interpret and discuss them as both, building blocks and reactions. 

http://www.kegg.jp/kegg/rest/keggapi.html
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It was then possible to investigate whether the edges of specific MDBs were significantly 

associated to all IE– and NE-formulas as compared to their frequencies across the entire 

MDiNs. These specific up- or down-regulated MDBs form the basis of MDEA. In MDEA, 

the MDiN itself is the reference population, and as MDB-frequency counts are discrete, 

MDB-NE/IE association can be tested against a hypergeometric distribution (Fisher Exact 

Test; see method section for detailed description).  

 

Prenylation-MDBs directly link the metabolism to the modification of isoprenoid 

biosynthesis 

Mass difference enrichment analysis (MDEA) was used to attribute each MDB with a Z-

score expressing the over- (Z ≥ 2) or underrepresentation (Z ≤ -2) of MDBs with either IE or 

NE nodes (molecular formulas) A scatter plot of Z(IE) over Z(NE)-scores (Fig. 2B) enables a 

swift visual summary of the types of MDBs associated to either genotype. Forty MDBs out of 

248 (16%) of the manually curated MDB list were observed to be over-represented in the NE 

genotype (Fig. 2B, Fig. S2).  

Three of the MDBs describe mass-differences that pertain to mono-, di-, and tri-prenylation 

reactions, with mono-prenylation yielding the highest Z-score (Z=4.54) of the entire dataset. 

The molecular formulas of two hemiterpene glucosides (HTG) were annotated. Namely 4-

hydroxy-2-methyl-2-buten-1-yl-O-glucopyranoside (C11H20O7) (Ward et al. 2011) and 2-C-

methyl-D-erythritol-O-4-b-D-glucopyranoside (Gonzalez-Cabanelas et al. 2015), which were  

recently characterized in Arabidopsis. Both compounds were upregulated in the NE genotype 

(Table S1) and possessed a high incidence with the three aforementioned mentioned 

prenylation MDBs (Fig. 2C, Fig. 3A).  
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Our analysis revealed that hexose and other discriminant sugars in the isoprene-free cellular 

background frequently connect to nodes of unknown identity and strong phenotypic 

discrimination by means of prenylation MDBs; reasonably, the molecular formulas fit to 

prenylated glycosides (Fig. 2C, Fig. 3A). The same three prenylation reactions, plus two 

KEGG-specific carotenoid-epoxide rpair-MDBs were observed to be associated to the NE 

genotype, using both MDB sets.  

 

MDBs mirror oxidative stress responses in the NE genotype 

Dicarboxylic acids (DCA) form an MDB-class that is present only in the manually curated 

list. Eight out of ten DCA-MDBs were calculated to be enriched in the metabolome of the NE 

genotype (Fig. 2B), a finding that would have been missed by conservative database-driven 

analysis. The DCAs azelaic acid (Z=2.13) and pimelic acid (Z=3.37) are produced either by 

lipoxygenases or via spontaneous fragmentation of oxidized lipids (Zoeller et al. 2012). The 

manually curated MDBs included 15 FA reactions, 11 of which (73%) were over-represented 

in NE, while four were simultaneously depleted in the IE genotype (Fig. 2B). The majority of 

these FA MDBs were acids with less than ten carbon atoms, which is a chain length that 

corresponds well with the expected residuals of oxilipin break-down (Table S2). Although 

biochemical functions regarding the remaining DCAs are not yet described, their 

corresponding MDBs can be hypothesized to be markers for variants of the oxilipin pathway, 

which is the primary known source for plant DCAs. Corresponding DCA precursors can be 

unsaturated FAs other than linoleic acid, likely with alternative double bond positions 

(Zoeller et al. 2012). High oxidative stress in plants leads to increased concentrations of 

malondialdehyde (MDA), a marker for lipid hydroperoxidation (Moore & Roberts 1998). 

MDA is formed through a spontaneous radical reaction (Pryor et al. 1976), which was 

translated into an MDB (Table S2). Its over-representation (Z=2.77) in isoprene-free lines 
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(Fig. 2B) matches previously published work, which shows the accumulation of MDA and 

H2O2 in the NE plants (Behnke et al. 2010a). MDA itself is too small and too unstable to be 

detected using FT-ICR-MS. Oxidative stress-related MDBs also dominate the KEGG-based 

MDEA results and therewith confirm both the “curated MDB”-based interpretations and 

literature-based knowledge/hypotheses. MDBs that pertained to α-linoleic acid residuals (3 

out of 4 MDBs) and oxilipin metabolism (3 out of 3 MDBs), one of three MDA reactions and 

one of two peroxidation reactions, were significantly enriched in association to NE nodes. 

 

Network triangle-motifs aid lifting curation induced biases 

The curation of MDB lists induces biases towards the curator‟s assumptions, however, as 

MDBs are mass differences there is no guarantee for them to reflect the exact biochemical 

reaction they were intended to describe. One MDB might likewise be the sum of smaller 

MDBs, i.e. more elementary building blocks or reactions.  

Specific MDB patterns that were strongly enriched in the NE genotype were detected: (i) the 

decarboxylative condensation of adipic acid is equivalent to a prenylation followed by an 

hydroxylation; (ii) the condensation of decanoic acid (Z=4.34) can alternatively be described 

by a di-prenylation followed by H2O addition; and (iii) the decarboxylative condensation of 

ketohexanoic acid (Z=4.42) is equivalent to a two-step reaction involving prenylation and 

H2O addition. A subgraph containing these MDBs was extracted while allowing only nodes 

connected to at least one upregulated NE node (Fig. 2C). The three MDB groups formed 

triangle-motifs, which are similarity-indicating network motifs that are commonly used for 

the calculation of the clustering coefficient (Fig. 2D, Fig. 3) (Barabasi & Oltvai 2004). These 

triangles offer alternative biochemical interpretations: the decarboxylative condensation of 

adipate is isomeric to the condensation of 2-methylbut-2-en-1,4-diol (detected in 

Arabidopsis) (Ward et al. 2011), which might also occur in a two-step reaction of prenylation 
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(ZNE = 4.54) followed by hydroxylation. Furthermore, the connection of the above-mentioned 

HTG to glucose (an NE node) and C11H20O6 was found using that exact triangle motif (Fig. 

2D, Fig. 3A). Additionally, nodes that participate in triangles (Fig. 2D, Fig. 3A) all share at 

least one characteristic composition, in this case hexose. The highest FA Z-score (Z=4.34) 

was obtained by the condensation of decanoic acid (depleted in IE Z=-2.67), which forms a 

triangle-motif with diprenylation and hydrolysis. Again, this triangle connected to molecular 

formula annotations that fit prenyl glycosides, monoterpenes, and carbohydrates (Fig. 2E, 

Fig. 3B). Consequently, the high Z-score of decanoic acid is partly due to its close 

relationship to the geranylation MDB. Here, triangle motifs helped overcome self-induced 

biases upon MDB-interpretation. 

 

MDEA reveals global compositional reprogramming in the NE genotype 

Hemiterpene glucosides were identified in Arabidopsis when plants were grown under 

nitrogen limitation, showing an interdependent regulation of the N and C metabolism (Ward 

et al. 2011). MDEA yielded a striking number of 96 under-represented MDBs in the NE 

genotype (Fig. 2B, Table S2), each of them containing nitrogen, with 56 of those pertaining 

to amino acids (56/59 amino acid MDBs). The compositional evaluations (Fig. 1, Fig. S2), 

that indicate a loss of CHNOP compounds in NE, agree with these findings. Closely linked to 

amino acids are the one- and two-step transamination MDBs, which were also depleted in the 

NE samples. The major source for N-metabolism is ammonia, which enters primary 

metabolism in the form of carbamoyl-phosphate (Masclaux-Daubresse et al. 2010). The 

corresponding MDB is strongly underrepresented in the metabolome of NE (Z=-4.71) while 

phosphorylation is enriched (Z=2.51). The other metabolic entry site for ammonia is 

glutamine/glutamate (Bernard & Habash 2009, Chellamuthu et al. 2014). With a Z-score of -
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5.04, glutamine is the second most underrepresented NE-MDB, directly following formimine 

transfer (Z=-5.15) which is tetrahydrofolate-dependent. 

  

MDBs from the NE genotype highlight alterations in the phosphoenolpyruvate-

dependent metabolism.  

The TCA cycle makes use of TCAs, DCAs and 2-oxo-acids. Eleven aliphatic and/or acidic 2-

oxo-acid MDBs were enriched in the NE genotype (Fig. 2B). The highest (second overall) Z-

score (Z=4.42) of this MDB group was obtained by the decarboxylative addition of 

ketohexanoic acid. As previously stated, this mass difference forms a triangle with the 

prenylation MDB (Fig. 2F, Fig. 3C).  

Four 2-oxo-acid MDBs, pertaining to pyruvic acid, hydroxypyruvic acid, and 2-ketosuccinic 

acid, as well as erythrose and transphosphorylation, are known to be related to PEP and 

pyruvate and were found to be enriched in NE poplar leaves. Notably, transphosphorylation 

describes the biosynthesis of PEP from oxaloacetate, which can be synthesized from malate. 

The latter tricarboxylic acid cycle metabolite accumulated in NE leaves. The 2-keto-succinic 

acid MDB (Z=3.4) is equivalent to the decarboxylative addition of oxaloacetate, which is 

strongly associated to the NE genotype while its free ion was not detected. Yet another NE-

MDB pertained to 2-oxo-glutarate, which next to oxaloacetate, malate and succinate, 

represents a tricarboxylic acid cycle (TCA) intermediate. Furthermore, the enrichment of the 

condensation and decarboxylative addition of ketoisovaleric acid in the NE genotype 

establishes an additional link to pyruvate and the TCA cycle. 
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Phenolic MDBs are characteristic for the isoprene emitting genotype  

Seven out of 13 IE-genotype-associated MDBs pertained to the metabolism of aromatics and 

shikimate (Fig. 2B, Table S2). Earlier metabolomic and transcriptomic experiments on NE 

poplars showed the diminished production of phenolics when isoprene is absent, compared to 

their isoprene-emitting homologs (Behnke et al. 2010a, Kaling et al. 2015). This result 

coincides with the up-regulation of the IE-nodes of dehydroquinate and quinate, two 

intermediates of the shikimate pathway (Fig. 2G).  

 

MDEA-driven cropping of MDiNs improves the visual localization of metabolic 

pathways 

Full MDiNs, reconstructed with hundreds of MDBs, often allow for neither visual nor graph-

theoretical network analyses as they tend to resemble a ball of wool and do thus not possess 

any appreciable network structure/topology. MDB-based biochemical interpretation aside, 

MDEA is helpful as a means of data-driven dimensionality reduction for network 

visualization (Fig. 4A). Here, hydroxylation and hydration were used in addition to the top 

six MDBs that were over-represented in the NE genotype for the extraction of sub-graphs 

enriched with upregulated NE nodes (Fig. 4A). This approach resulted in the formation of 

five sub-graphs (separated into the elemental compositions CHO, CHOP, CHNO, CHOS and 

CHNOS), which were affected by the genetic modification (Fig. 1, Fig. S2), whereby 

annotations of CHO, CHOS and CHOP exhibited many discriminant nodes that were 

upregulated in the metabolome of isoprene-free lines. Breitling et al. (2006a) previously 

stated that MDiNs might represent a means for the characterization of pathways within the 

known metabolic realm. The MDiA approach enabled the visual detection of the shikimate 

pathway which underpinned its association with the IE genotype within the extracted CHO 

sub-graph (Fig. 4B). Per definition, MDiNs must contain metabolic pathways, and analyzing 
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how building blocks are processed aside, MDEA and the introduced triangle-motifs (Fig. 2) 

are useful tools to narrow down pathways that are both known and unknown. 

 

The MDiN incidence matrix describes the origin of the unknown metabolic space 

MDBs were shown to be highly valuable for the interpretation of metabolomic MS-data, 

especially if the majority of molecular formulas are unknown. However, all results obtained 

so far describe relationships within this poplar dataset itself. The next question of interest was 

whether the same context held true if the poplar metabolome (POP) was related to a widely 

accepted database (KEGG). To this end, an incidence matrix was constructed, which is a 

network representation where nodes are mapped against their respective edges (Table S3). 

Figure 5 describes how KEGG-metabolites are transformed into discriminant unknown 

compounds. Notable differences between the poplar genotypes were found for terpene nodes 

(Fig. 5). The NE plants displayed a more pronounced terpene metabolism mainly conjugating 

different carbohydrates to terpenes and vice versa (farnesylation and geranylation on 

carbohydrate containing compounds). 

IE plants preferentially conjugated aromatic moieties with carbohydrates that likely resulted 

in (poly)phenolic-glycosides. Additionally, the incidence matrix shows that IE plants use N-

aromatics and amino acids more frequently, which corresponds to the MDEA results that 

were mined in POP. 

The initial molecular formula annotations already indicated differences in phosphorous-

containing compounds between the genotypes (Fig. 1, Fig. S2). The incidence matrix 

confirmed this observation and additionally revealed different usage patterns. Plants with 

missing isoprene bio-catalysis performed FA condensations and geranylation, whereas 

isoprene producers preferably conjugated aromatic metabolites. The introduced methodology 

facilitates the definition of targeted strategies to investigate very specific aspects of a largely 
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unknown metabolism. Ultimately, it allows the mining of candidate enzymes by querying 

databases for the combined information of source compound class and acting MDB for future 

studies on gray poplar. 

Tandem mass spectrometric measurements validate MDEA findings in the NE 

genotypes 

As described in the introduction, the main focus of this work is to demonstrate how MDiA 

can integrate the entirety of acquired m/z data, be it of high or low ion abundance, into the 

analysis of biochemical building block usage patterns. Fragmentation experiments on single 

m/z species are only possible if a given feature can be isolated using a quadrupole filter. For 

this exact reason, Morreel et al. (2014) fragmented only the most abundant m/z signal per full 

FT-ICR MS scan. One of our initial hypotheses was that MDEA can reveal information about 

the rate at which a building block/metabolite is invested by distinct genotypes to synthesize 

their specific metabotype. As single feature identification is costly in many different ways, 

and the aim of this work is to introduce the concept of MDiA based metabolome 

contextualization, multiple adjacent selected ion monitoring (SIM) MS/MS (Southam et al. 

2007) scans were performed on leafs of both the NE and IE genotypes. Markers of interest 

suffer from less penalization using the SIM-MS/MS approach as compared to smaller SIM 

windows conventionally used for MS/MS. The larger SIM windows allow for marker 

features of low abundance to contribute to the daughter-ion space. The analysis was focused 

on the mass range 245 to 455 m/z, which equals the mass range of the network shown in 

Figure 2. MDEA was used to mine neutral losses that were significantly associated to the NE 

and IE markers as compared to all parent-daughter ion pairs of a given SIM window. 

The MDEA results of the SIM-MS/MS experiments yielded an overrepresentation of 49 

MDBs in the NE genotype using the curated MDB-list (Fig. 6A, Table S4). The correlation 
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coefficient between all full-scan and SIM-MS/MS MDB Z-scores from the NE samples was 

0.76 (Fig. 6E, Table S4).  

Twenty-five MDBs were significantly over-represented in both the full scan and the SIM-

MS/MS results (Fig. 6A). The three MDBs, which were part of the triangle motifs in Figure 

3, namely the prenylation, decarboxylative condensation of adipic acid, and of ketohexanoic 

acid, were also over-represented in the SIM-MS/MS data (Fig. 6B). This observation directly 

validates the full-scan MDEA data in which MDEA established a direct linkage between the 

metabotype and the genotype. Additionally, it substantiates the presence of unknown 

prenylated compounds in NE poplars (Fig. 3).  

Close similarities between conventional full-scan and SIM-MS/MS results were observed in 

the DCA MDBs, where seven out of the eight over-represented full-scan MDBs were also 

associated to the NE poplars in the SIM-MS/MS data (Fig. 6B).  

Additionally, 17 2-oxo acid MDBs, of which 11 described the cleavage of aliphatic 2-oxo 

acids, were over-represented in the SIM-MS/MS spectra of NE plant extracts. This is in 

agreement with the observation that ten out of those 17 2-oxo acid MDBs were also over-

represented in the full-scan MDB results of this genotype (Fig. 6B).  

The MDBs that only were over-represented in the SIM-MS/MS results pertained to four two 

carbon 2-oxo acid building blocks (pyruvate-related), two hydroxyphenylpyruvate MDBs, 

and one ketoglutarate MDB (Table S4). Six FA related MDBs were enriched in the NE SIM-

MS/MS experiments (Table S4). Four of them overlapped with MDBs that were enriched in 

the full-scan MDEA results of the NE genotype (Fig. 6B). Two of those MDBs describe 

butanoic acid reactions (type A and B), one hexanoic type A reaction and one dodecanoic 

acid type A reaction (Fig. 6B). Another observation that confirms the results obtained by the 

incidence matrix is the overrepresentation of six carbohydrate MDBs in the SIM-MS/SM NE 

poplar results. The results of the incidence matrix show that those MDBs were used for 
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terpene modifications to form unknown terpene glycosides in NE poplar (Fig. 5B). A high 

overall correlation between the Z-score profiles of the NE incidence matrix and of the NE 

SIM-MS/MS (Fig. 6E) was observed.  

   

MS/MS experiments validate and extend the conjugation of phenolics in the IE genotype 

Forty-two MDBs were over-represented in the SIM-MS/MS data set of IE poplars. The 

correlation coefficient between the MDB Z-scores of full-scan and SIM-MS/MS MDEA 

analysis in the IE poplars was 0.68 (Fig. 6E, Table S4). Eight MDBs yielded significant Z-

scores in both measurement types (Fig. 6C). Five of those MDBs described phenolic 

reactions (including two aromatic 2-oxo-acids), one characterizes the condensation of quinate 

and the remaining two described ketoglutarate reactions (Fig. 6D). These results do not only 

validate the full-scan MDB results (Fig. 2), they also complement the known literature 

showing higher contents of phenolics in leaves of IE compared to leaves of the NE genotypes 

(Behnke et al. 2010a, Way et al. 2013, Kaling et al. 2015). Additionally, four phenolic MDBs 

and three aromatic 2-oxo acid MDBs were over-represented in the SIM-MS/MS results, thus 

further complementing the full-scan MDEA results in IE poplars. 

 

Discussion 

Interpretation of m/z feature statistics 

The present analysis shows that 97% of the assigned sum formulas in the leaf extracts of IE 

and NE poplars do not match to KEGG listed compounds, highlighting a more general 

problem in plant metabolomics; a lack of structural information. Although the amount of 

KEGG-hits is limiting, some interpretations are still possible: while hexose and hexose-P are 

enriched in leaves of NE poplars, hexose-bisphosphate is depleted; this implies feedback 

regulation in this genotype on the level of phosphofructokinase (PFK, EC 2.7.1.11), which is 
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inhibited either by aberrant ATP/AMP ratios or by phosphoenolpyruvate (PEP) (Kelly & 

Latzko 1977, Stitt 1990). Furthermore, a differential behavior of these three hexose 

derivatives implies that the classification of features is not primarily driven by matrix effects. 

DHAP is depleted in the NE genotype as well, which supports that interpretation. The 

hexose-scenario implies a consequent increase in PEP flux, while PEP itself could not be 

observed as an ion; increase of PEP flux would however confirm previous observations of 1-

deoxy-D-xylulose 5-phosphate synthase (DXS; EC 2.2.1.7) feedback inhibition by DMAPP 

(Ghirardo et al. 2014). The observed decrease in DHAP goes hand in hand with a decrease in 

pentose-P, which generally indicates a limited energy metabolism in NE plants. As 

highlighted above, leaves of NE poplars are enriched in hexose and hexose-P and depleted in 

hexose-PP levels, a scenario which implies feedback regulation of PFK by PEP. PEP itself – 

a highly reactive/unstable metabolite - could not be detected. Increased levels of PEP can be 

well explained by a backlog of metabolites resulting from strong reduction of metabolic flux 

through the MEP pathway as consequence of the negative feedback regulation of DXS by 

increased DMAPP levels (Ghirardo et al. 2015). As phenylpropanoids were found to be 

downregulated in NE poplar leaves, the PEP-traversing C-flux might have been redirected to 

the anaplerotic TCA cycle whose metabolites involve TCAs, DCAs and 2-oxo-acids. Malate 

is apparently enriched in this genotype, but this observation does not allow any further 

interpretation pertaining to the TCA cycle mass flux. Yet, the MDBs of 11 2-oxo-acids, 

among them 2-keto-succinic acid, as well as transphosphorylation and pyruvate-related 

MDBs were found to substantially contribute as building blocks for NE upregulated 

metabolites. The entire context of these findings suggests 13C-fluxomic analyses to be a 

hotspot of future investigations and thus exemplifies how hypotheses that can be of use for 

future investigations can be generated using non-targeted metabolomics and MDiA. 
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Prenylation-MDBs directly link the metabolism to the modification of isoprenoid 

biosynthesis 

It is known that the chloroplastic DMAPP pool is much larger in NE as compared to IE 

leaves (Ghirardo et al. 2014), yet only „ubiquinone- and terpenoid-quinone biosynthesis‟ is 

listed among the addressed terpenoid KEGG pathway maps (Fig. 1, Fig. S3). As these 

pathways are located in the cytosol and not in the plastids, the KEGG pathway hits do not 

appropriately reflect alterations in the MEP pathway in NE plants in the near proximity to 

PcISPS (Cheng et al. 2007). This result represents a major phenological/contextual 

connection between the metabotype and absence of isoprene biosynthesis in NE plants. 

DMAPP and GPP were found to be upregulated in the NE genotype (Table S1) among the 

few KEGG annotations. DMAPP is the substrate of PcISPS, and together with its isomer IPP 

forms the C5 building blocks of GPP and farnesyl pyrophosphate (FPP), which are the major 

di- and tri-prenylating agents for phenolic compounds (Shen et al. 2012), zeatin biosynthesis 

(Mok et al. 2000), and for the posttranslational modification of proteins (Zhang & Casey 

1996). The knock-down of PcISPS in poplar results in a strong accumulation of DMAPP 

(Ghirardo et al. 2014), confirming the present up-regulation of isoprenoid intermediates in 

the NE genotypes. This is in accordance with Weise et al. (2013) who showed that acid 

hydrolysis, a commonly used technique for the quantification of DMAPP available for 

isoprene synthesis, results in higher amounts of DMAPP in gray poplar than is quantified by 

LC/MS, which indicates a substantial pool of unknown prenylated compounds (Weise et al. 

2013). The three types of MDiA and MDEA performed agree that this pool of prenylated 

compounds is likely constituted of various kinds of hemiterpene glucosides. The POP-MDEA 

finds prenylation, geranylation, and farnesylation among the top ranked MDBs. The POP-

KEGG incidence matrix agrees with this finding as theoretical terpenoids preferentially 

connected to NE-upregulated compounds using various carbohydrate MDBs, while various 
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carbohydrates used farnesylation and geranylation to connect to regulated features. 

Carbohydrate containing compounds were further shown to connect to a wide range of fatty 

acids in NE and phenylpropanoids in IE. Earlier metabolomic and transcriptomic experiments 

on NE poplars showed the diminished production of phenolics when isoprene is absent 

compared to their isoprene-emitting homologs (Behnke et al. 2010a, Kaling et al. 2015). This 

result coincides with the up-regulation of the IE-nodes of dehydroquinate and quinate, two 

intermediates of the shikimate pathway (Fig. 2G). These results were confirmed by the results 

of the SIM-stitch MS/MS approach, where prenylation, but not geranylation and 

farnesylation, was found to be of importance. The NE-leaves‟ lack in phenylpropanoids was 

confirmed as well. The high incidence of carbohydrate MDBs in the SIM-stitch MS/MS 

approach is not shown in Fig. 6 but can be viewed in Table S4, where condensations of 

glucose, rhamnose, and erythrose were top ranked for NE markers. Poplar trees are known 

for their high production of phenolics, such as flavonoids, phenolic glycosides, and 

phenylpropanoids (Babst et al., 2010, Boeckler et al., 2011). These compounds differ 

drastically in their glycosylation patterns, and because of that neutral losses of carbohydrates 

are often observed in MS/MS experiments of plant extracts (Kachlicki et al., 2008; Abreu et 

al., 2011). These results complement the known literature showing higher contents of 

phenolics in leaves of IE compared to leaves of the NE genotypes (Behnke et al. 2010a, Way 

et al. 2013, Kaling et al. 2015). 

MDBs mirror oxidative stress responses in the NE genotype 

Interestingly, the linoleic acid derivatives, which are commonly interpreted to have an 

association to oxidative stress (op den Camp et al. 2003, Moller et al. 2007) are higher in IE. 

This observation contradicts existing knowledge, which implies higher oxidative stress in 

plants when cell internal isoprene is absent (Behnke et al. 2010a). Indeed, MDEA results 

correct preemptive interpretation based on a small set of KEGG metabolite hits as follows: 
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although biochemical functions regarding most DCAs are not yet described, their 

corresponding MDBs can be hypothesized to be markers for variants of the oxilipin pathway, 

which is the primary known source for plant DCAs. This is supported by the incidence-

matrix (Fig. 5B) that visualizes the compositional relationship of DCAs with fatty acids (FA) 

via a clustering of FA KEGG-nodes, and the NE MDBs succinate transfer to aldehydes and 

pimelate condensation. As Table S4 confirms, DCA-neutral losses are jointly characteristic 

for NE-features in SIM-stitch MS/MS. Furthermore, it may be speculated whether the DCA-

MDBs represent unstable metabolic intermediates, similar to pimeloyl-CoA (Streit & 

Entcheva 2003), which prevents the detection of the free metabolites with MS techniques. 

This finding clearly supports the assumption that mass difference analysis can drastically 

improve the interpretation of metabolomic data because it has the capability to describe 

spontaneous reactions of metabolites in vivo, as is the case for MDA. 

Conclusion 

Three types of MDiNs and MDEAs were used: firstly, the full scan MDiN, where markers for 

both genotypes were assigned using OPLS classification. Here, MDEA was performed on the 

full scan MDiN and significant Z-scores pertained to the general differences in metabolome 

setup between both investigated genotypes. The reference edge population of all marker-

associated MDBs was the entire set of MDB-edges found in the MDiN. This approach was 

largely data driven, but knowledge driven in that two different types of MDB sets were used, 

the curated list and the KEGG list. Both approaches yielded a consistent metabolomic context 

of the investigated genotypes. The approach of Breitling et al. (2006a, 2006b) is flexible in a 

way that manual curation can lead to mass differences addressing building blocks that are not 

listed as free reactants in e.g. KEGG. The approach by Weber and Viant (2010) has the 

advantage that each MDB (rpair) can be associated to a set of enzymes, which – knowing 

some compositional and structural properties of the detected features – can be narrowed 
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down to more specific enzyme sets. These can be targeted in future proteomics and 

transcriptomics experiments as well as on UHPLC-ToF-MS data (Forcisi et al. 2015). 

Secondly, the directed KEGG-POP incidence matrix: this approach is an extension of Walker 

et al. (2014b) as it uses MDBs to connect knowledge base data to experimental non-targeted 

metabolomics data. Ultimately, this approach enabled Walker et al. (2014b) to discover 

sulfonated lipids that were confirmed via MS/MS. Herein, the full list of neutral KEGG 

metabolites were considered as substrates (building blocks) for the marker sets of the NE and 

IE genotypes. The reconstructed MDiN was thus directed and bipartite because all source 

nodes came from KEGG and all target nodes came from the full scan data (POP). The 

reference edge population was the entirety of all MDB-edges connecting KEGG to POP.  

 

Thirdly, the directed SIM-MS/MS network: here, edges were directed from parent ions (P) to 

daughter ions (D) per SIM window and collision energy. All P→D MDBs per spectrum were 

counted as reference population and P→D MDBs that connected marker P‟s defined in above 

to the daughter space were tested for their overrepresentation against the reference 

population. The consistency of all MDEAs was tested given the Weber-Viant-KEGG list. The 

correlation matrix for all six Z-score sets (Fig. 6E) clearly shows that MDEAs from the NE 

genotypes were more similar among themselves in comparison to MDEAs from IE and vice 

versa. Only the SIM-MS/MS Z-score profiles of IE and NE poplars were more similar to each 

other than the Z-scores of the full-scan IE MDEA and the MDEA of the IE incidence matrix. 

The reason for that is that SIM-MS/MS experiments lead to a fragmentation of the entire 

metabotype, which – as both genotypes are poplar trees – still have a given large basal set of 

building blocks. Nevertheless, all three investigations delivered consistent results for each 

respective genotype. 
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The present study demonstrated how the application of MDiNs can be extended beyond 

feature annotation and compound identification by probing them for network regions, where 

nodal genotype differentiation significantly coincides with compositional context. In fact, the 

complex chemical biology of the two gray poplar genotypes was completely grasped by 

MDEA, which demonstrates this technique‟s tremendous potential for „omics‟-based 

applications, and opens the door for the development of tailor-made targeted techniques 

beyond the limitations of database knowledge. 
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Figure 1. Fresh weight of leaves (black) and roots (white) of A. thaliana plants. Arabidopsis 

seedlings were either continuously grown under control conditions or Cu-deficiency or nineteen-days-

old control plants were exposed to 5 µM CdSO4 alone or in combination with additional CuSO4 (0.5, 

1 or 2 µM Cu extra in comparison to control Hoagland solution) for 72 h. Data are mean ± S.E. of 6 

biological replicates. Significant differences (P<0.05) after one-way ANOVA test and Tukey 

correction are indicated with different capital (roots) or small (leaves) letters.  
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Figure 2. Cd translocation in A. thaliana. Arabidopsis seedlings were either continuously grown 

under control conditions or Cu-deficiency or nineteen-days-old control plants were exposed to 5 µM 

CdSO4 alone or in combination with additional CuSO4 (0.5, 1 or 2 µM Cu extra in comparison to 

control Hoagland solution) for 72 h. The Cd translocation from roots to leaves was calculated as the 

concentration in the leaves relative to the concentration in the roots. Data are mean ± S.E. of 6 

biological replicates. Significant differences (P<0.05) after one-way ANOVA test and Tukey 

correction are indicated with different letters. 
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Figure 3. Gene expression levels of SPL7-regulated genes in the leaves and roots of A. thaliana. 

Arabidopsis seedlings were either continuously grown under control conditions or Cu-deficiency or 

nineteen-days-old control plants were exposed to 5 µM CdSO4 alone or in combination with 

additional CuSO4 (0.5, 1 or 2 µM Cu extra in comparison to control Hoagland solution) for 72 h. 

Significant differences (P<0.05) after one-way ANOVA test and Tukey correction are indicated with 
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colour shading: red for reduction in comparison to control, green for induction in comparison to 

control and yellow for induction in comparison to control but reduction in comparison to a single 5 

µM Cd exposure. The relative fold changes are shown in Table S3. Abbreviations: FSD1, Fe 

superoxide dismutase1; CCH, Cu chaperone; COPT2, Cu transporter2; ZIP2, zinc-regulated 

transporter2. 
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Figure 4. Fresh weight of leaves and roots of A. thaliana wildtype (black) and cad1-3 mutant 

(white) plants. Arabidopsis seedlings were either continuously grown under control conditions or 

nineteen-days-old plants were exposed to 5 µM CdSO4 for 24 h and 72 h. Data are mean ± S.E. of 4 

biological replicates. Significant differences (P<0.05) after three-way ANOVA test and Tukey 

correction are indicated with different small (leaves) or capital (roots) letters. 
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Figure 5. Cd translocation in A. thaliana wildtype (black) and cad1-3 mutant (white) plants. 

Arabidopsis seedlings were either continuously grown under control conditions or nineteen-days-old 

plants were exposed to 5 µM CdSO4 for 24 h and 72 h. The Cd translocation was calculated as the 

concentration in the shoots relative to the concentration in the roots. Data are mean ± S.E. of 7 

biological replicates. Significant differences (P<0.05) after two-way ANOVA test and Tukey 

correction are indicated with different letters. 
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Figure 6. Gene expression levels of HMA2 (A) and HMA4 (B) and HMA5 (C) in roots of A. 

thaliana wildtype and cad1-3 mutant plants. Arabidopsis seedlings were either continuously grown 

under control conditions or nineteen-days-old plants were exposed to 5 µM CdSO4 for 24 h. Data are 

mean ± S.E. of at least 3 biological replicates relative to its own unexposed control (set at 1.00). 

Significant Cd-induced differences (P<0.05) in expression within each genotype relative to the 

control after two-way ANOVA test and Tukey correction are indicated with asterisks. 

 


