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Summary 

We report on a whole-genome draft sequence of rye (Secale cereale L.). Rye is a diploid 

Triticeae species closely related to wheat and barley and an important crop for food and feed 

in Central and Eastern Europe. Through whole-genome shotgun (WGS) sequencing of the 

7.9 Gbp genome of the winter rye inbred line Lo7 we obtained a de novo assembly 

represented by 1.29 million scaffolds covering a total length of 2.8 Gbp. Our reference 

sequence represents nearly the entire low-copy portion of the rye genome. This genome 

assembly was used to predict 27,784 rye gene models based on homology to sequenced 

grass genomes. Through resequencing of 10 rye inbred lines and one accession of the wild 

relative S. vavilovii, we discovered more than 90 million single nucleotide variants (SNVs) 

and short insertions/deletions (indels) in the rye genome. From these variants, we developed 

the high-density Rye600k genotyping array with 600,843 markers which enabled anchoring 

the sequence contigs along a high-density genetic map and establishing a synteny-based 

virtual gene order. Genotyping data were used to characterize the diversity of rye breeding 

pools and genetic resources and to obtain a genome-wide map of selection signals 

differentiating the divergent gene pools. This rye whole-genome sequence closes a gap in 

Triticeae genome research and will be highly valuable for comparative genomics, functional 

studies and genome-based breeding in rye. 

 

Introduction  

Rye (Secale cereale L.) is a member of the Triticeae tribe of the grass family Poaceae and 

related to bread wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.). It has the 

largest genome (~7.9 Gbp; Bartoš et al., 2008) among all diploid Triticeae with more than 

90% repetitive sequences (Flavell et al., 1974). As a first comprehensive sequence resource 

for rye, an expressed sequence tag (EST) library was established which allowed the 
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development of the Rye5k genotyping array (Haseneyer et al., 2011), synteny-based 

comparisons with other cereal genomes which provided insights in the reticulate evolution of 

rye (Martis et al., 2013), and mapping of quantitative trait loci (QTL) influencing agronomic 

traits (Miedaner et al., 2012). As expected for an outcrossing species, previous studies in rye 

indicated higher levels of nucleotide diversity and a faster decay of linkage disequilibrium 

(LD) (Li et al., 2011; Auinger et al., 2016) compared to self-pollinating crops such as barley 

and wheat (Chao et al., 2010; Zhou et al., 2012). The low level of LD in rye promises high 

resolution in association genetic approaches for the identification of candidate genes for 

traits of interest, but at the same time requires large marker numbers which emphasizes the 

need for high-density genotyping platforms as they have been established recently for many 

major crop species (Voss-Fels and Snowdon, 2015). 

Comprehensive whole-genome sequence information of the allogamous rye has been 

missing so far, whereas draft genome sequences of the related autogamous Triticeae 

species barley, bread wheat, Aegilops tauschii and T. urartu became available recently 

(Mayer et al., 2012; Jia et al., 2013; Ling et al., 2013; Mayer et al., 2014). These genomic 

resources are indispensable tools for understanding the biology and evolution of major 

Triticeae species through comparative genomic approaches (Spannagl et al., 2016a) and for 

relating this knowledge to phenotypic traits (Esch et al., 2015). As yet, rye is not well 

represented in public sequence databases, which prohibits large-scale functional analyses in 

rye and genomics-assisted genetic improvement of rye for sustainable crop production. Rye 

is an important model to elucidate the genetic and functional basis of traits which are also 

relevant for the genetic improvement of wheat and barley. It excels by an exceptional frost 

tolerance (Fowler and Carles, 1979) and outyields wheat and barley on poor and medium 

soils and under drought stress conditions (Schittenhelm et al., 2014). Rye translocations are 

present in many wheat varieties grown worldwide and contribute to abiotic and biotic stress 

tolerance (Rabinovich, 1998), and in addition, rye is one of the parents of the man-made 

cereal triticale (× Triticosecale) (Oettler, 2005). Thus, the availability of rye whole-genome 
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sequences would facilitate the elucidation of genes and molecular mechanisms underlying 

important agronomic traits which are useful for the improvement of related Triticeae species. 

Here we report comprehensive rye genome resources consisting of a draft assembly, 

resequencing data from 10 rye inbred lines and S. vavilovii, a high-confidence gene set and 

a high-density genotyping array. We demonstrate their utility for comparative genomics, for 

investigating the genomic diversity in rye breeding pools and genetic resources (GR) and for 

detection of selection signals. These genomic resources will facilitate map-based cloning 

and functional characterization of genes underlying agronomic traits and fill a gap in current 

Triticeae genomics. 

Results and discussion 

Whole-genome shotgun sequencing, assembly and structural analysis 

Genome sequencing and de novo assembly 

The genome of the winter rye inbred line Lo7 was sequenced and de novo assembled using 

a WGS sequencing strategy. Several paired-end (PE) and mate-pair (MP) libraries were 

constructed and sequenced on the Illumina Hiseq2000 platform, resulting in approximately 

72.4-fold total sequence coverage (Table S1, Table S2). Deep sequencing revealed an 

average GC content of 46.1% in PE350 and PE450 reads (Table S2), only slightly higher 

than the estimate of 45.9% reported from BAC-end survey sequencing of rye chromosome 

arm 1RS (Bartoš et al., 2008). An elevated GC content of 46.6% observed in the assembled 

contigs indicates that genic regions, which tend to have a higher GC content in plants 

(Glémin et al., 2014), are well represented in the rye WGS assembly. The de novo 

assembled rye genome consisted of 1.58 million contigs totalling 1.68 Gbp of gap-free 

sequence which most likely covers the low-copy portion of the rye genome. Through 

subsequent scaffolding we obtained 1.29 million scaffolds with a length of 2.80 Gbp 

(Table 1) which corresponds to around 35% of the rye genome. This value might 
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underestimate genome coverage since typically in WGS assemblies of large plant genomes 

single- or low-copy sequences are enriched whereas highly repetitive sequences are difficult 

to assemble or may collapse (Treangen and Salzberg, 2012). 

The genome assembly was used to predict 27,784 rye high-confidence (HC) gene models 

through a reference-based approach (Table S3), which is similar to the 26,159 HC genes 

reported in barley (Mayer et al., 2012). We validated the genome assembly using the 

‘Benchmarking Universal Single-Copy Orthologs’ (BUSCO; (Simão et al., 2015)) gene set 

and found 89% of all BUSCO plant genes being represented in the assembly (Table S4). 

With this proportion the genome assembly and annotation completeness in rye is 

comparable to other plant species (Visser et al., 2015; Xu et al., 2015). Previously published 

draft genomes as for instance the close relative barley (Mayer et al., 2012) accelerated 

forward genetic approaches and enabled novel strategies for genome research such as 

exome-capture sequencing (Mascher et al., 2013b; Mascher et al., 2014). Therefore, we 

expect that the rye draft genome will promote genome analysis and gene discovery to a new 

level. 

Repetitive elements 

Transposable elements (TE), constituting the major portion of genomic repeat elements, 

were annotated and classified by a homology-based approach using a comprehensive 

Poaceae repeat library. The overall TE content of rye as estimated from 800 Mbp random 

Illumina sequence reads amounted to at least 72% (Table S5). Long terminal repeat (LTR) 

retrotransposons were prevalent with a content of 60%, followed by a much lower amount 

(7%) for DNA transposons. Although short sequence reads of highly repetitive genomes are 

typically difficult to assemble, the 1.68 Gbp assembly still contained 60% (~1 Gbp) TEs, but 

with a moderately different distribution of transposon classes: LTR retrotransposons, in 

particular the generally younger and still more repetitive copia subgroup, were depleted in 

the assembly, whereas DNA transposons and non-LTR retrotransposons were enriched 

(Table S5). Both of these increased TE types, especially MITEs (short DNA transposon 
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derivatives), are known to reside in the vicinity of genes and thus confirm the high gene 

content of the assembled sequences. The TE compositions for the rye Lo7 WGS assembly 

and raw Illumina sequence reads, especially the enrichment of the gene-associated MITEs, 

were in line with previous findings for barley (Mayer et al., 2012). The rye genome is one 

example for the massive mobile element accumulation within the Triticeae (Middleton et al., 

2013). The availability of this whole-genome sequence in combination with resequencing 

data from 10 inbred lines and S. vavilovii will enable insights in TE dynamics in rye and will 

be a useful resource for gaining more insights in Triticeae genome evolution (Wicker et al., 

2009). 

Variant calling and diversity patterns in rye 

To assess the sequence diversity in contemporary rye breeding lines on a genome-wide 

level and to discover sequence variants for the development of a genotyping array suitable 

for rye research and breeding, we sequenced five representative lines from each of the two 

heterotic pools used in hybrid breeding – the seed and pollen parent pool. In addition, one 

accession of the wild species S. vavilovii was sequenced as a putative ancestor of cultivated 

rye. We obtained 14.0- to 15.4-fold genome coverage in the 11 samples which together 

yielded 1.27 Tbp of sequence data (Table S6). On average, we found for each genotype 

~245 million reads properly paired, covering 80.2% of the reference genome with more than 

four reads. As expected due to higher sequence divergence, coverage of the reference 

genome was reduced to 72.4% in S. vavilovii (Table S6). In total, 90,012,964 SNVs and 

short indels were discovered in the rye genome. For convenience, we refer to both types of 

variants in the following as SNVs unless stated otherwise. After stringent quality filtering and 

removal of heterozygous sites, 8,626,622 variants including 220,766 indels remained. 

Around 24.3% of these SNVs were unique to S. vavilovii, 15.2% and 22.0% were specific for 

the seed and pollen parent pools, respectively, and 11.2% were shared between the two 

breeding pools and S. vavilovii (Figure S1). The remaining 27.2% were shared by only two of 

the three groups. 
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Based on this filtered set of SNVs we determined nucleotide diversity (π per site) in the two 

breeding pools. The average values in the five seed and five pollen parent pool lines (0.260 

and 0.254, respectively) were significantly different (p < 2.2e-16). Taking the 10 lines from 

both pools together to represent the overall diversity in rye breeding germplasm, a higher 

level of nucleotide diversity of 0.295 was observed. As shown above a considerable portion 

of SNVs was specific for each of the breeding pools, which was also reflected by an FST 

estimate of 0.108 indicating a moderate differentiation between the two populations. Despite 

a relatively small sample size, this level of differentiation between the two heterotic pools in 

rye is similar as observed in a large and diverse panel of temperate maize lines from two 

heterotic pools (Unterseer et al., 2016) and consistent with expectations for divergent 

breeding pools in outcrossing species.  

 

A condensed overview of SNV distribution along the rye chromosomes is shown in Figure 1. 

Our analysis revealed patterns of divergence between the seed and pollen pool elite lines 

with obvious differences mainly in (peri-)centromeric regions. Diversity hot spots were visible 

in S. vavilovii in regions which showed reduced variation in rye elite lines, e.g. on 

chromosome arms 1RS and 6RS. Such regions could be targets for mining the diversity 

present in genetic resources and wild ancestors of rye. The centromeric and extensive peri-

centromeric regions of rye chromosomes contain a large number of genes that are enclosed 

in recombinationally inactive genomic regions which is similar to findings in barley and wheat 

(Mayer et al., 2011; Mayer et al., 2014). Approximately 17,196 (32.5%) of the genetically 

anchored WGS contigs were assigned to these regions, which are challenging to access in 

positional cloning and in plant breeding since it is difficult to break up the large linkage 

blocks. Especially in these (peri-)centromeric regions of the genetic map which cover large 

physical distances, residual heterozygosity was observed in the inbred reference line Lo7 

(Figure 1, outmost track). The residual heterozygosity in the highly inbred line Lo7 

corroborates the assumption that due to genetic load rye inbred lines retain a certain rate of 

heterozygosity to avoid lethal effects of homozygous deleterious genes (Thompson and 
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Rees, 1956). A similar phenomenon was reported in maize, where excess heterozygosity 

was observed in peri-centromeric regions (McMullen et al., 2009). It cannot be excluded 

however, that to some extent the apparent heterozygosity in the assembly of rye line Lo7 

arises from mapping of reads to duplicated sequences that collapsed in the assembly.  

The majority of SNVs (97.6%) in rye was located in intronic/intergenic regions. In 9,675 out 

of the 27,784 predicted genes we found a considerable proportion (1.01%) of non-

synonymous SNVs (nsSNVs) in at least one of the resequenced lines (Table 2, Table S7, 

Figure S2). These nsSNVs may encode functional polymorphisms and thus may influence 

gene integrity. Loss-of-function by gain or loss of a stop codon is the main large-effect 

polymorphism in coding sequences. We compared the resequenced lines from the seed and 

pollen parent pools and found more nsSNV mutations in the pollen (8,483) than in the seed 

(7,907) parent pool (Figure S2). This was expected, since lines from the pollen parent pool 

are genetically more distant from the reference line Lo7, which belongs to the seed parent 

pool, and thus exhibit a larger total number of SNVs than lines from the seed parent pool. 

However, with 1.01% the proportion of nsSNVs was the same in seed and pollen parent 

pools (Table 2, Table S7). In a single sequenced plant of S. vavilovii, our study revealed a 

high number of nsSNVs (6,341) which was almost twice than in each of the other ten lines, 

but with 0.88% the proportion relative to the total number of SNVs found in S. vavilovii was 

at a slightly lower level than in the two rye breeding pools (Table 2, Table S7). Due to 

filtering of heterozygous SNV calls in our dataset potentially deleterious alleles in 

heterozygous stage in S. vavilovii might have been removed which may explain the lower 

proportion compared to the inbred lines.  

 

We further investigated the gene content among the studied rye inbred lines and S. vavilovii 

and found substantial presence/absence variation (PAV). Nine percent (9,007) of all exons 

were missing in at least one of the 11 resequenced genotypes. When focusing on the gene-

space of rye we found that 2,934 gene models were missing in at least one genotype. 

Cluster analysis of these gene models with PAV patterns showed a cluster split in the two 
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breeding pools and separated S. vavilovii from the S. cereale lines, indicating pool- or 

species-specific PAV patterns (Figure S3). A considerable proportion (39.0%) of these gene 

losses was detected only in single inbred lines but we also found 1,251 (42.6%) gene 

models missing in at least three genotypes. Among these more frequently missed genes we 

detected pool-specificity for 80 and 132 candidate genes of the seed and pollen parent pool, 

respectively. 

 

Design of a Rye600k genotyping array 

The complete set of SNVs discovered by resequencing of 10 elite lines and one accession of 

S. vavilovii and their functional annotation was subsequently used to design a Rye600k 

genotyping array which aimed for a uniform representation of markers across all rye 

chromosomes and optimal coverage of exonic SNVs (for details see Experimental 

procedures). Given the genetic composition of the resequencing panel with mainly lines from 

two divergent elite breeding pools, we included a substantial number of SNVs from the wild 

species S. vavilovii on the array to additionally cover polymorphisms representative for rye 

GR (Figure S4). Phylogenetic trees constructed from the WGS data set and from the SNVs 

represented on the Rye600k array showed the same topology and reflected the breeding 

history of the lines (Figure S5).  

 

The 600,843 SNVs on the Rye600k array were experimentally validated in a broad 

germplasm panel comprising 84 elite inbred lines from the seed and pollen parent breeding 

pools, 46 diverse accessions from GR, and 133 recombinant inbred lines (RILs) from a 

mapping population. This genotyping panel included the reference line Lo7, seven of the 10 

resequenced inbred lines and the S. vavilovii accession. Average call rates in samples from 

the seed and pollen parent pools and GR were high with 96.4%, 96.2% and 94.4%, 

respectively. The fact that probe sequences on the array were derived from the inbred line 

Lo7 likely contributed to the higher call rate in the seed parent pool, whereas the lower call 
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rates in GR may be explained by increased sequence difference between GR and elite 

material. The lowest call rates were observed in samples from the three wild relatives 

S. strictum (89.6%), S. vavilovii (87.5%) and S. sylvestre (84.3%), consistent with their 

evolutionary distance from cultivated rye (Jones and Flavell, 1982). After genotype 

clustering, more than half (52.7%) of the SNVs fell in one of the three Affymetrix SNV 

categories “Poly High Resolution” (PHR), “Off-Target Variant” or “No Minor Homozygote” 

which are useful for genotyping and can be regarded as technically validated (Table S8). 

PHR SNVs had the highest proportion in this group (39.3% of all SNVs) and can be 

considered as producing the most reliable genotype calls. The remaining SNVs (47.3%) 

were classified as “Other”, “Call Rate Below Threshold” or “Mono High Resolution”, 

indicating difficulties with genotype clustering in the first two cases or a lack of polymorphism 

in the latter case. Overall, the validation rate was similar to genotyping arrays of other 

species (Unterseer et al., 2014; Winfield et al., 2016). The experimentally validated SNVs 

are a comprehensive and very valuable resource for genome analysis and marker-assisted 

breeding in rye. They may be converted into other highly flexible SNV assay formats such as 

Kompetitive Allele-Specific PCR (KASP) to target specific genomic regions, since flanking 

sequence information is available and conversion rates among platforms are generally high 

(Semagn et al., 2014).  

 

High-density genetic map and cross-species comparison 

Using the Rye600k array, we generated a high-density genetic map as a backbone for 

anchoring the WGS contigs along the rye genome. In a RIL population derived from an inter-

pool cross between the genome reference line Lo7 from the seed parent pool and line Lo225 

from the pollen parent pool, 87,820 SNVs were genetically mapped (Table S9). They 

represented 44,371 Lo7 WGS contigs (covering 158.2 Mbp of sequence) and 3,022 contigs 

from previous projects (e.g. Haseneyer et al., 2011). The linkage map had a total length of 

1,245 cM which is in the same order as other genetic maps in rye (Martis et al., 2013). 
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Owing to the high marker number on average 42.3 markers cosegregated per locus. The 

average distance of 0.6 cM between loci indicated a nearly saturated genetic map. Large 

areas around the centromeres exhibited low recombination rates, leading to extensive 

linkage blocks which are generally observed in the large cereal genomes (Mayer et al., 

2012) (Figure 1). The high-density genetic map served to generate an updated and 

extended version of the Rye Genome Zipper (Martis et al., 2013) which provides a virtual 

linear order of rye sequence contigs based on genes in syntenic blocks of the model grass 

genomes Brachypodium distachyon, Oryza sativa and Sorghum bicolor. The new Rye 

Genome Zipper links the ordered rye genome sequence with these grass species at high 

resolution and thus makes a wealth of sequence resources directly accessible for genomic 

and cross-species analyses. 

 

The comparison of the gene order established in rye with barley (Figure 2) and wheat 

(Figure S6) indicated a well-conserved genome collinearity between the three species as is 

evident from large syntenic blocks that are interrupted by breakpoints corresponding to the 

previously described chromosomal rearrangements (Naranjo and Fernández-Rueda, 1991; 

Devos et al., 1993; Martis et al., 2013). The large pericentromeric regions with reduced 

recombination frequency (Figure S7), were conserved between the (sub-)genomes of all 

three species. In addition to the phylogenetically conserved genetic centromere of 5R, we 

found a second region on the long arm of this chromosome with reduced recombination 

frequency relative to wheat and barley (Figure 2, Figure S6, Figure S7), which might be 

related to a previously described neocentric activity on 5RL (Schlegel, 1987; Manzanero et 

al., 2000). 

Genomic diversity in rye breeding pools and genetic resources 

To investigate the genomic diversity within and differentiation between elite breeding pools 

and GR, we investigated a diverse panel of inbred lines from each of the two heterotic pools 

and a broad panel of GR with the Rye600k array. The seed parent pool was represented by 
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38 and the pollen parent pool by 46 inbred lines. The GR comprised 46 individuals from 

open-pollinated populations mainly from Eastern Europe but also included accessions from 

Portugal, Canada, U.S.A., a primitive rye from Iran, and three wild Secale species (S. 

strictum, S. sylvestre, S. vavilovii). The seed and the pollen parent pool for hybrid rye 

breeding were initially developed from the two genetically distant pools Petkus and Carsten 

through recurrent selection programs after introgression of dominant self-fertility genes 

which overcame the natural self-incompatibility of rye (Geiger and Miedaner, 2009). Major 

differences in agronomic traits are observed between these two pools: whereas lines from 

the seed parent pool typically exhibit high yield performance, good kernel development, 

tolerance to abiotic stress and high pre-harvest sprouting resistance, lines from the pollen 

parent pool are characterized by large spikes and good seed setting, but low lodging and 

pre-harvest sprouting resistance and low yield performance. For broadening the genetic 

basis of the elite breeding pools a rich reservoir of diversity preserved in GR with favourable 

alleles for different agronomic traits is available, but the utilization of GR is hampered by 

strong inbreeding depression due to genetic load and linkage drag with undesired alleles. 

With the Rye600k array a novel tool is available for a genome-wide detailed characterization 

of the diversity in different elite and GR gene pools. 

 

To compare the diversity estimates obtained based on WGS data from 10 lines from the two 

elite pools with estimates from the genotyping array we calculated nucleotide diversity π per 

site for each pool and for the GR based on 235,460 SNVs of class PHR from the array. 

Confirming the results from WGS data, nucleotide diversity calculated from the genotyping 

array was significantly higher in the seed than in the pollen parent pool (0.327 and 0.311; 

p < 2.2e-16), respectively. Both values were higher than the corresponding estimates from 

WGS data reported above which may be due to a more representative sample size in the 

genotyping panels and/or due to the filtering process during array construction. The GR 

exhibited significantly higher nucleotide diversity (0.371; p < 2.2e-16) than the two elite 

breeding pools, which indicates that these accessions harbour allelic diversity not 
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represented in the elite lines and thus might be of interest for broadening the genetic basis of 

the elite germplasm. With array data a strong differentiation between the seed and pollen 

parent pool was observed with an FST estimate of 0.229. Differentiation between the GR 

accessions and each of the breeding pools was significantly lower (GR vs. seed parent pool: 

FST = 0.109; GR vs. pollen parent pool: FST = 0.116; both: p < 2.2e-16), suggesting an 

intermediate position of the GR between the two breeding pools. This was also reflected by 

a Principal Coordinate Analysis which showed a clear separation between the two breeding 

pools and a more central position of the GR between the two divergent breeding pools 

(Figure 3). No clear population structure was observed within each of the three groups. 

Consistent with results based on simple sequence repeat markers (Fischer et al., 2010; 

Parat et al., 2015) and with the breeding history of many Eastern European open-pollinated 

populations, the GR group which comprised many accessions of Eastern European origin 

had a significantly lower FST with the seed than with the pollen parent pool.  

 

Genome-wide screens for selection signals 

To detect selection signals along the genome differentiating the two rye elite breeding pools 

and the diverse GR accessions we analysed the 78,731 genetically mapped SNVs. Using 

Lositan (Antao et al., 2008) we identified FST outliers in the three pairwise group 

comparisons, which resulted in 592 SNVs (from 480 contigs) between the seed and pollen 

parent pools, 1,187 SNVs (from 996 contigs) between the GR accessions and the seed 

parent pool and 3,420 SNVs (from 2,815 contigs) between the GR accessions and the pollen 

parent pool. About 40% (237) of the SNV outliers between the two breeding pools were 

highly differentiated (FST > 0.8) which points towards fixation of different alleles that may 

contribute to heterosis between the breeding pools. We further calculated the Bayenv2.0 

XTX statistic which is analogous to FST but accounts for genome-wide covariance of allele 

frequencies (Günther and Coop, 2013). Since this measure is closely related to FST we 

compared the highest 1% XTX values with the FST outliers for each of the three pairwise 
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group comparisons and found a strong overlap of highly differentiated SNVs with both 

methods. Genome-wide maps of selection signals revealed the genetic differentiation 

between the rye breeding pools (Figure 4) and each of the breeding pools with the GR group 

(Figure S8, Figure S9). In all three comparisons outlier SNVs clustered in few distinct 

genomic regions that may harbour targets of divergent selection. 

 

To demonstrate the usefulness of the new rye genomic tools for assigning putative functions 

to selection targets, WGS contigs which contained rye gene models and harboured SNVs 

that were identified as selection candidates from the overlap of the highest 1% XTX values 

with the FST outliers were used for a tBLASTX analysis against the Q-TARO database 

(Yonemaru et al., 2010). Q-TARO comprises 1,949 cloned and functionally characterized 

rice genes. The functional characterization of these genes in rice allows hypotheses on the 

possible roles of their orthologs in rye and gives first insights which genes contribute to the 

differentiation between rye germplasm pools. In total, 27 rice orthologs could be detected on 

22 Lo7 contigs (Table S10). Ten rice orthologs were found for potential selection candidates 

in the comparison between seed and pollen parent pool, eight between seed parent pool 

and GR, and 14 between pollen parent pool and GR. Five of them were found in two 

comparisons. For the 22 Lo7 contigs for which rice orthologs were identified, we calculated 

nucleotide diversity π (Table S11). As expected, in most cases the highest nucleotide 

diversity was observed in the GR group. Of the 27 rice orthologs, six affect plant height 

(Dwarf 1 gene, gid1, OsDOG, OsGAE1, OsGSK2/BIN2, OsPH1). Plant height is a 

quantitative, highly heritable trait and a major selection target to improve lodging resistance 

of rye (Geiger and Miedaner, 2009). Strong differentiation in five of the six orthologs 

governing plant height was observed in the comparison of the seed or pollen parent pools 

with GR, which are typically much taller than elite inbred lines. This finding is consistent with 

the large number of genomic regions affecting plant height that were previously detected in a 

rye introgression library constructed from a seed parent pool inbred line and an Iranian GR 

(Miedaner et al., 2011; Mahone et al., 2015). Two of the six genes (orthologs of Dwarf 1 
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gene and OsPH1) were strongly differentiated between the seed and pollen parent pools 

(Table S10). The pollen parent pool was mainly derived from the population Carsten’s 

Kurzstroh (“Carsten’s short-strawed”) and has reduced plant height compared to the taller 

‘Petkus’ population from which the seed parent pool was developed and thus these two 

genes may contribute to the phenotypic differences between the two pools. The rye ortholog 

of OsPH1, a gibberellic acid (GA)-responsive protein, maps to the long arm of chromosome 

5R and may serve as a candidate for the GA3-insensitive rye dwarfing gene ct2, which has 

been mapped on 5RL (Plaschke et al., 1993). Three of the rice orthologs (d11, OsGPX1, 

SP1) affect grain size, number of seeds per spikelet or panicle length in rice, respectively 

(Tanabe et al., 2005; Li et al., 2009b; Passaia et al., 2014). Interestingly, the ortholog 

controlling the number of seeds per spikelet (OsGPX1) was detected in the comparison of 

seed and pollen parent pools, which strongly differ in their ear morphology, with generally 

longer ears with many smaller kernels in the pollen parent pool, as opposed to the shorter 

and more compact ears with larger kernels in the seed parent pool (Figure 5A). Large 

differences in ear morphology are also observed between the seed parent pool and GR. In 

this comparison, we identified the rye ortholog of SP1 which affects panicle elongation and 

grain size in rice. The rye ortholog of SP1 is located in the centromeric region of 

chromosome 4R and might be a candidate for a thousand-kernel weight QTL identified in a 

rye introgression library (Falke et al., 2009b). As typical examples for differences of 

candidate selection loci between the germplasm pools haplotypes of two Lo7 contigs which 

carry the rye orthologs of SP1 and OsGPX1/OsGPX3, respectively, are shown in Figure 5B. 

A clear difference in haplotype frequencies between the three pools was observed in both 

contigs. Especially in GR, rare haplotypes are prevalent which also fits with the high 

nucleotide diversity observed for the selection candidates in GR (Table S11). The rye 

ortholog of rice gene DCW11 on chromosome 1R, encoding for a mitochondrial protein 

phosphatase 2C protein (Fujii and Toriyama, 2008), was differentiated between the seed 

parent pool and GR. The knockdown of DCW11 in rice leads to defects in pollen germination 

ability and reduced seed set which are interesting phenotypes in the context of hybrid 
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breeding in rye. Hybrid production in rye is based on cytoplasmic-genic male sterility (CMS) 

in the seed parent pool combined with effective nuclear male fertility restorer genes on the 

pollen parent side (Geiger and Miedaner, 2009). Intensive selection in the seed parent pool 

ensures full male sterility in CMS cytoplasm, which may explain the strong differentiation 

between the seed parent pool and GR for this gene. The DCW11 ortholog on 1R may 

correspond to QTL for partial pollen-fertility restoration genes identified in an early inbred line 

from seed parent pool (Wricke et al., 1993; Miedaner et al., 2000) and in the rye 

introgression library with the Iranian rye donor accession (Falke et al., 2009a). The other rice 

orthologs of rye selection candidates have functions in plant development and morphology, 

abiotic and biotic stress and regulation of multiple physiological processes and thus are 

interesting targets for follow-up studies to investigate gene classes affected by intensive 

selection and differentiation of the rye breeding pools.  

 

All selection candidates described above affect phenotypic traits known to differ between the 

three pools investigated in our study. Our analyses can be seen as a first step towards 

detecting selection signals in the rye genome and demonstrate the utility of the Rye600k 

array for population genetic analyses. The genome-wide screens have enabled us to identify 

candidates with selection signals in the pairwise comparisons of two breeding pools and GR 

which warrant further research. Since sequence information is available from WGS 

sequencing, results from such studies can now easily be linked to genomic resources from 

other grass species, either directly or via the Rye Genome Zipper.  

Summary and outlook 

We present a whole-genome draft sequence assembly of rye, a diploid crop species of the 

Triticeae with a 7.9 Gbp genome, which covers most of the non-repetitive portion of the rye 

genome. Different strategies were employed to anchor the WGS contigs in the rye genome 

which resulted in the assignment of around half of the 1.58 million contigs to one of the 
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seven rye chromosomes. For specific regions of interest, even more contigs may be 

anchored through synteny-based approaches using the wheat and barley draft genome 

sequences which have become available recently. The rye gene set represented by 27,784 

predicted high-confidence gene models will greatly promote transcriptomic approaches and 

genome-wide functional analysis in rye. The functional genomic analysis of agronomic traits 

such as abiotic stress tolerance may have implications on other cereals as well and 

contribute to breeding better varieties for challenging environmental or climatic conditions. 

Our population genetic analyses revealed insights in the structure and diversity of elite 

breeding pools and GR in rye. A genome-wide scan for selection signals between the 

breeding pools and/or GR revealed candidate genes with rice orthologs affecting agronomic 

traits differing between pools. Candidates detected in the comparison of the seed and pollen 

parent pools are targets for further investigating the differentiation between these two pools 

in the context of heterosis. Altogether, the rye whole-genome sequence, the gene models 

and the high-density genotyping array will enable comparative genomic analyses at 

unprecedented resolution and open new avenues for genome-based breeding, genome 

mapping and gene cloning in rye. Making use of sequencing platforms which provide longer 

reads combined with physical genome mapping in nanochannel arrays (Hastie et al., 2013) 

may help to further improve the assembly and to explore structural variation in rye in more 

depth. 

 

Experimental procedures 

Plant material, nucleic acid preparation and whole-genome sequencing 

A diverse panel of cultivated rye (Secale cereale L.) inbred lines from two heterotic groups 

from a hybrid breeding program (KWS LOCHOW GMBH) was selected for WGS, assembly 

and variant detection. Six inbred lines (Lo7, Lo90, Lo115, Lo117, Lo176, Lo191) represent 

the rye seed parent pool, whereas five lines (Lo282, Lo298, Lo310, Lo348, Lo351) originate 
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from the pollen parent pool. Lines from the seed and pollen parent pools were selfed for 5-6 

and 2-3 generations, respectively. A S. vavilovii accession was provided by Thomas 

Miedaner (University of Hohenheim). Genomic DNA of each inbred line was prepared from 

bulked young leaf tissue from five plants which were pre-tested for homogeneity and from a 

single plant of S. vavilovii using a modified CTAB protocol (Saghai-Maroof et al., 1984). The 

preparation of sequencing libraries and Illumina (http://www.illumina.com/) sequencing was 

done by Eurofins Genomics GmbH (http://www.eurofinsgenomics.eu/). For deep sequencing 

of inbred line Lo7 different sequencing libraries were prepared using standard protocols 

recommended by the manufacturer or developed by the service provider. Two PE shotgun 

libraries with insert sizes of 150-350 bp (PE350) and 250-500 bp (PE450), two methylation-

filtered paired-end shotgun libraries (100-600 bp, METH), and three long jumping distance 

(LJD; similar to the MP library protocol from Illumina, but with adaptor-guided ligation of 

genomic fragments) libraries with insert sizes of ~3 kbp (LJD3), ~8 kbp (LJD8) and ~20 kbp 

(LJD20) were prepared. For resequencing of the other 10 rye inbred lines and S. vavilovii, 

PE shotgun libraries with insert sizes of 250-500 bp were prepared. All libraries (Table S1) 

were sequenced on an Illumina HiSeq 2000 sequencer with chemistry v3.0 and the 2 x 100 

bp paired-end read module.  

 

Sequence assembly and hierarchical scaffolding 

FASTQ sequence data from the Lo7 reference line, 10 rye inbred lines and one S. vavilovii 

accession are archived at the European Nucleotide Archive (http://www.ebi.ac.uk/ena) under 

the project numbers PRJEB6214 for the reference inbred line Lo7 and PRJEB6215 for the 

11 resequencing data sets. LJD MP sequences of Lo7 were provided with trimmed adapters 

and removed barcodes and are decoded as PE sequences (read pairs point to each other 

‘fr’). Prior to data analysis all raw sequence data sets were quality trimmed using 

‘clc_quality_trim’, a subroutine of the software suite CLC Assembly Cell v4.1 

(http://www.clcbio.com). As cut-off we used a minimal base quality of 20 and required that at 
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least 50% of a read is exceeding this threshold. On average, 83.9% of all sequence base 

pairs and 87.6% of all sequence reads passed the quality trimming. Sequencing quality was 

checked with FastQC version v0.10.1 (http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc) 

and the ea-utils command line tool (https://code.google.com/p/ea-utils/). We observed on 

average a PHRED base quality of ~38. 

 

Sequences were de novo assembled using CLC Assembly Cell v4.1. The quality trimmed 

reads of short Lo7 libraries (PE350, PE450 and METH) were integrated in the assembly 

process. The singleton reads of all libraries were merged to a joint dataset and integrated as 

one FASTQ file. The assembly was calculated in PE mode using calculated minimum and 

maximum distances of paired read libraries. We used a base pair distance ranging from 150 

to 350, 250 to 500 and 100 to 600, respectively, for the short libraries PE350, PE450 and 

METH. These distances were based on the estimated fragment length peak for each PE 

library. A minimum contig length of 300 bp was used. Subsequently, the constructed WGS 

assembly was screened for contaminations. Therefore, we downloaded the NCBI nt 

nucleotide collection (date: 10th January 2013) and performed a BLASTN analysis to screen 

for non-plant species using a sequence identity threshold of 90% (Zhang et al., 2000). In 

total, 1,782 WGS contigs were removed from the WGS assembly with a cumulative size of 

828.2 kbp. In these discarded contigs hits to 783 different non-plant species were detected. 

 

To gain higher specificity of the constructed WGS assembly the Lo7 contigs were analysed 

by chromosome arm assignment (CarmA). CarmA is a bioinformatics tool that uses the 

resource of flow-sorted chromosome (arm) sequence sets to determine the chromosomal 

origin of unassigned query sequences, like WGS contigs. It was used before to aid the gene 

based assemblies of barley and wheat (Mayer et al., 2012; Mayer et al., 2014). For the 

CarmA approach about 1x coverage of 454 chromosome survey sequences (CSS) from 

each of the seven flow-sorted rye chromosomes was available (Martis et al., 2013) which 

allowed the assignment of Lo7 WGS contigs and LJD MP reads from the LJD3, LJD8 and 
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LJD20 libraries to chromosomes as input for the virtual gene order (Genome Zipper) 

approach and thus reduced scaffolding ambiguities. The principle of CarmA is based on a 

homology search for each query sequence separately against the CSS bins from each of the 

seven chromosomes. The homology search was done via vmatch (http://www.vmatch.de) 

under high stringency conditions: -d-p -l 100 or 90 (forward and reverse strand search, 

perfect match, minimum hit length 100 bp for contigs, 90 bp for LJD reads). Queries with hits 

to more than one bin were assigned to the highest coverage bin if the signal noise ratio to 

the second lower bin was ≥ 1.5. Under these parameter settings 67% of all Lo7 contig 

basepairs, corresponding to 50.9% of all contigs, could be allocated to one of the seven 

chromosomes (Table S12). CarmA was also used for the assignment of 38.4 mio LJD mate-

pairs to their chromosomal origin. 

 

Ordering and continuation of WGS contigs into scaffolds is feasible if large distance MP 

libraries are available. As described above, all Lo7 WGS contigs and LJD MP reads were 

processed by CarmA to establish chromosome assignment. To construct a scaffolded 

genome reference sequence we implemented a hierarchical scaffolding approach 

(Figure S10) as is widely used especially in large and complex plant genomes (International 

Brachypodium Initiative, 2010; Schatz et al., 2010; Chapman et al., 2015). Among various 

scaffolding tools we decided to use SSPACE (Boetzer et al., 2011), which had good 

performance results in a broad evaluation study of scaffolding tools (Hunt et al., 2014) and 

application in other plant genome studies (Beier et al., 2015). To reduce the risk of chimeric 

scaffolding where contigs from distant genome regions (e.g. different chromosomes) are 

erroneously linked, we integrated the information of genetic map positions obtained from 

~15.000 rye DArT-seq markers that were anchored to the Lo7 WGS assembly by BLASTN. 

BLASTN was performed using an e-value of 1e-5, perc_identity of 98% and requiring a 

minimal overlap of the contig with the DArT marker sequence length of 90%. If a WGS contig 

was assigned by CarmA to the same rye chromosome as a genetically mapped DArT-seq 

marker the required minimal overlap was reduced to 85%. In total, 3,443 WGS contigs were 
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assigned to genetic map positions using DArT-seq markers. If the genetic distance between 

WGS contigs exceeded 1 cM, a putative physical link was discarded. For hierarchical 

scaffolding we first used the shortest MP libraries (LJD3) that were characterized by a more 

accurate estimation of MP distances. Subsequently, we included the longer MP libraries with 

increasing distances (LJD8 and LJD20). Each chromosome was assessed separately. A 

prerequisite of the scaffolding is an alignment of the MPs to the WGS contigs that was 

performed using BWA version 0.7.8 (Li and Durbin, 2009). To integrate an external 

alignment in the scaffolding process of SSPACE we used an adapted version of the 

sam2TAB.pl scripts that were published with the barley BAC pipeline (Beier et al., 2015). All 

WGS contigs represented in the genetic map and in the updated Rye Genome Zipper (see 

below) were used to assign a genetic map position to scaffolds. The assignment was 

performed using MegaBLAST (Zhang et al., 2000) with stringent parameter settings of 

‘word_size’ of 150, ‘perc_identity’ of 99.5% and ‘evalue’ of 1e-60. In total, 42,197 scaffolds 

could be anchored. From these, only a minor proportion of <0.3% (122) were classified as 

chimeric scaffolds originating from different rye chromosomes. The WGS scaffolds of Lo7 

are deposited as digital object identifier DOI 1 (see Data Availability). 

 

Transposon composition in the rye genome 

Transposons were detected and classified by a homology search against the 

REdat_9.0_Poaceae section of the PGSB transposon library (Spannagl et al., 2016b). The 

program vmatch (http://www.vmatch.de) was used as a fast and efficient matching tool 

suited for large and highly repetitive genomes with the following parameters: identity ≥ 70%, 

minimal hit length 75 bp, seedlength 12 bp (exact command line: -d -p -l 75 -identity 70 -

seedlength 12 -exdrop 5). The vmatch output was filtered for redundant hits via a priority 

based approach, which assigned higher scoring matches first and either shortened (<90% 

coverage and ≥ 50 bp rest length) or removed lower scoring overlaps, leading to an overlap-
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free annotation. The analyses were performed both with the WGS assembly and with 800 

Mbp of randomly selected Illumina reads. 

 

High-confidence gene set 

S. cereale gene structures were predicted using a reference-based approach. Available 

annotations of closely related plant genomes, namely Brachypodium distachyon v1.2 

(International Brachypodium Initiative, 2010), Sorghum bicolor v1.4 (Paterson et al., 2009), 

Oryza sativa MSU7 (Kawahara et al., 2013), H. vulgare (Mayer et al., 2012), Triticum urartu 

(Ling et al., 2013), and Aegilops tauschii (Jia et al., 2013), as well as three data sets of rye 

ESTs and transcripts (Haseneyer et al., 2011; Banaei-Moghaddam et al., 2015), were used 

as a template to model the genes by aligning the rye contigs against the protein and 

transcript sequences and identifying potential gene structures using the GenomeThreader 

gene prediction software (Gremme et al., 2005). Gene candidates were filtered to remove 

models that translate for peptide sequences with internal stop codons. Redundant predicted 

genes from the different sources of information were clustered based on their genomic 

coordinates by using Cuffcompare, which is part of the Cufflinks package (Roberts et al., 

2011). For all non-redundant coding regions the open reading frames (ORFs) and peptide 

sequences were predicted using Transdecoder (http://transdecoder.sf.net) and the structure 

with the longest continuous amino acid sequence was selected for further analysis. The 

accuracy of the predicted genes was further increased by filtering known repeats from the 

predicted gene set using BLASTX searches against the Triticeae repeat database TREP 

(Wicker et al., 2002) and against all known repetitive sequences in the reference genomes 

used as templates. In addition, we removed gene models with overlapping coordinates from 

the final data set. 
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To identify high-confidence protein-coding genes the predicted gene models were compared 

against the protein data sets of the reference genomes mentioned above and the best-

matching reference protein selected as representative template sequences. Based on the 

similarity to the respective representative template sequence and the maximum coverage of 

the template sequences, the gene models were classified in five confidence classes: three 

high-confidence classes (HC1 to HC3), one low confidence class (LC), and one class 

containing pseudogenes and gene fragments (PGGF). The high-confidence classes contain 

only gene models with matches to one of the following reference genomes: Brachypodium, 

Sorghum, rice, barley, T. urartu, or Ae. tauschii, while the low-confidence class contains 

gene models with matches to rye ESTs/transcripts only. In the HC1 class the genes show a 

protein coverage greater than 70% of the representative template sequence, while in the 

HC2 class the coverage lies between 50% and 70%, and in the HC3 class between 30% and 

50%. The genes of the LC class cover over 70% of the tagged rye ESTs/transcripts with a 

minimal length of 150 amino acids. The PGGF class contains genes covering less than 30% 

of the representative template sequence and genes without sequence homology to any of 

the reference species proteins. The 27,784 genes grouped in the first three confidence 

classes (HC1 - HC3) were referenced here as the rye gene set. The assignment of these rye 

gene models to Lo7 WGS contigs is available under DOI 2 (see Data Availability). 

 

Gene annotation 

To provide insights into the putative function of genes, the rye gene set was processed using 

the ‘Automatic assignment of human readable descriptions’ (AHRD) pipeline (version 2.0; 

https://github.com/groupschoof/AHRD/) which integrates three types of database evidences 

to describe putative gene functions using standard nomenclature. A human readable protein 

description was inferred for 23,274 (83.24%) of the rye genes using BLASTP hits to TAIR10, 

Swiss-Prot and TrEMBL databases. AHRD annotation results are available under DOI 2 (see 

Data Availability). Gene ontology (GO) terms were assigned to the rye gene set using the 
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Blast2GO version 2.8 (Götz et al., 2008) pipeline in standard settings (except the e-value 

threshold for the annotation step which was set to 1e-3) identifying sequence similarity to 

other sequenced species using NRPEP, the NCBI non-redundant protein sequences 

database. In total, 16,275 rye genes were mapped, 12,716 were annotated and 3,247 were 

assigned to an EC number. Blast2GO annotation results are available under DOI 2 (see 

Data Availability). A BUSCO analysis was performed according to Simão et al. (2015) using 

the BUSCO plant gene set. 

 

Read alignment and variant calling 

The genome-wide diversity of rye was investigated using WGS resequencing data from 10 

rye inbred lines and one S. vavilovii accession. FASTQ sequences of quality trimmed paired 

end data were aligned to the Lo7 genome reference WGS assembly using BWA version 

0.7.0 (Li and Durbin 2009). For read alignment a minimal base quality of 20 and a minimal 

mapping quality of 13 was required. The constructed SAM read alignment files were 

converted into the sorted binary BAM format using SAMtools version 0.1.18 (Li et al., 

2009a). Duplicated reads were removed using the ‘rmdup’ function of SAMtools. On 

average, ~9% of all PE read pairs were detected as duplicated reads and removed from 

further processing steps. Subsequently, this data resource was used for variant discovery 

using the MPILEUP format constructed by SAMtools (Li, 2011) that was further processed 

by VCFtools version 0.1.11 (Danecek et al., 2011) resulting in the raw variant data file in the 

VCF format. Filtering of detected variant positions was performed with the following criteria: 

First, we discarded ambiguous positions with multiple alleles in the Lo7 reference line (e.g. 

heterozygous positions). Second, we filtered for homozygous positions that passed the 

additional requirements of minimal read coverage of five reads per genotype and a minimal 

quality score of 100. From the filtered set of variants, we calculated nucleotide diversity π 

and FST (Weir and Cockerham, 1984) on a per-site basis using VCFtools version 0.1.12a. A 

two-sided Wilcoxon rank sum test (Wilcoxon, 1945) was performed to test for differences in 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

nucleotide diversity between pools. The effects of SNVs and InDels were annotated with 

CooVar version 0.07 (Vergara et al., 2012). The SNVs detected in the 10 resequenced lines 

and S. vavilovii were used to construct a phylogenetic tree using SNPhylo (Lee et al., 2014). 

As filter criteria we used a minor allele frequency of 0.1, a maximal missing rate of 0.1 and a 

minimal depth of coverage of 3. 

 

Genome positions and allele calls for the variants derived from the resequencing data can 

be downloaded as VCF files under DOI 3 (see Data Availability). The functional annotations 

of variant positions are provided in separate GFF files for each genotype (DOI 3; see Data 

Availability). 

 

Gene loss 

Gene loss was investigated by the coverage breadth criterion using read alignments of the 

10 resequenced rye inbred lines and S. vavilovii. A gene model was defined as absent if less 

than 5% of the gene length was covered with reads. Subsequently, a gene model was 

considered as strong candidate for divergent presence/absence variation (PAV) patterns, if 

more than 25% of the studied genotypes (>3) were flagged as absent. Genes that fulfilled 

this stringent criterion were regarded as candidates that most likely underwent gene loss. A 

list of 2,934 gene models which were missing in at least one genotype is deposited under 

the digital object identifier DOI 2 (see Data Availability). 

 

Development of the Rye600k Affymetrix genotyping array 

For the development of the Rye600k Affymetrix Axiom HD genotyping array 

(http://www.affymetrix.com) we used 8.6 million informative SNVs derived from 10 

resequenced cultivated rye lines and one accession of the wild progenitor S. vavilovii with 

unique positions in the Lo7 genome reference sequence. For selection of the final SNV 

dataset we followed the Axiom myDesign Custom Array recommendation giving priority to 
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SNVs that were observed in multiple lines, had sufficient sequence depth, high quality, no 

additional polymorphism within the flanking 30 bp marker sequences, were not classified as 

repetitive sequence and had Minor Allele Frequency (MAF) larger 0.05. In addition, 10,250 

Infinium iSelect markers from a custom Rye16k Illumina genotyping array (Auinger et al., 

2016) were integrated in the Rye600k array. Initially, the complete set of 8.6 million SNVs 

was processed by the quality control of Affymetrix to classify if a SNV position is 

‘recommended’, ‘neutral’ or ‘not possible’ for marker design. It was ensured that no adjacent 

SNVs occurred within recommended probe sequences. For an optimal selection of SNVs 

within the design process in a first phase additional information sets were pre-calculated and 

subsequently integrated in the evaluation pipeline using a custom PERL script. Figure S11A 

shows the utilized information sets. The information provided by the CarmA assignment as 

well as by DArT markers for Lo7 contigs were used to achieve a uniform representation of 

SNVs across chromosomes. K-mer frequencies were pre-calculated with the tool Kmasker 

(Schmutzer et al., 2014) using a 21-mer index that was constructed based on a 10-fold 

representation of the Lo7 PE reads (PE350). SNVs with k-mer frequencies >10 were 

excluded. With this we intended to avoid selecting ambiguous SNVs from repetitive regions. 

In the second phase, information gained in phase I was assessed in four steps using the 

following filtering criteria: 1) SNVs from coding regions; 2) high stringency; 3) medium 

stringency, and 4) low stringency. Details of the stringency settings are given in 

Figure S11B. Finally, 600,843 SNVs were selected for marker design on the Rye600k array 

which represent 242,349 different Lo7 contigs and 21,479 rye gene models that have a 

variant site within their coding sequence (88,487 SNV markers are linked with gene models). 

SNVs used for marker design were used to construct a phylogenetic tree using SNPhylo 

(Lee et al., 2014) with identical parameter settings as described above. 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Variant validation by genotyping 

For the experimental validation of SNVs, a total of 38 elite inbred lines from the seed parent 

pool, 46 elite inbred lines from the pollen parent pool, 43 diverse accessions derived from 

rye genetic resources (GR) including three accessions from wild species were genotyped 

with the Rye600k array (Table S13). For construction of the genetic linkage map 131 

recombinant inbred lines (RIL) from a cross between rye lines Lo7 and Lo225 were 

genotyped. From GR we extracted DNA from a single plant per accession and from elite 

lines and RILs, DNA was extracted from a bulked sample of 8-10 plants using a protocol 

modified after Doyle and Doyle (1987). Per DNA sample 200 ng were processed on an 

Affymetrix Gene Titan platform by the Animal Breeding group at Technical University of 

Munich (Germany) according to manufacturer’s protocols (http://www.affymetrix.com). Raw 

intensity data were analysed in one batch with the Affymetrix Genotyping Console (v. 

4.2.0.26) following the manufacturer’s best practice guidelines to obtain genotype calls. 

During genotype calling the level of inbreeding of the samples was taken into account by 

setting appropriate values for inbred penalties (ranging from a value of 2 for highly 

heterozygous single plants from rye GR to 8 for mostly homozygous inbred lines at higher 

selfing generations). Categorization of variants into one of the six Affymetrix SNV categories 

“Poly High Resolution”, “No Minor Homozygote”, “Mono High Resolution”, “Off-Target 

Variant”, “Call Rate Below Threshold” and “Other” was performed with the R package 

SNPolisher (v. 1.3.6.6) (Gao et al., 2012) according to the Axiom Genotyping Solution Data 

Analysis Guide. 

 

Genetic mapping 

For construction of a high-density genetic map, 131 RILs in selfing generation F7 were used. 

Genotype calls from the two SNV categories “Poly High Resolution” and “Off-Target Variant” 

were filtered for markers polymorphic between the parents of the mapping population (Lo7 × 

Lo225), allowing a maximum of 5% missing values and a maximum of 5% heterozygous 
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calls per SNV, which resulted in 115,241 SNVs. This dataset was processed through a script 

from the POPSEQ pipeline to identify groups of SNVs with identical segregation patterns 

based on the Hamming distance (Mascher et al., 2013a). All remaining heterozygous 

genotype calls were set to missing values for constructing the linkage map. A first genetic 

map was calculated with the R package ASMap v. 0.3-3 (Taylor and Butler, 2014), by using 

the function mstmap with the following parameters: pop.type="RIL6", dist.fun="kosambi", 

objective.fun="COUNT", p.value=1e-20, noMap.dist=20, noMap.size=2, miss.thresh=0.05. 

The resulting linkage groups were assigned to the seven rye chromosomes based on 

previously mapped markers (Martis et al., 2013) and unlinked small groups with only a few 

markers were discarded. Two RILs exhibited very high numbers of crossovers and were 

excluded from further analyses. In two consecutive rounds of mapping using the same 

parameters as stated above, markers which led to double-crossovers were identified using 

the function statMark in the ASMap R package and discarded before final map construction. 

The final genetic linkage map contained 10,196 loci. All SNVs from the initial dataset which 

had a Hamming distance of 0 with only one of the mapped SNVs and which could be 

assigned to a unique map position were inserted into the map, resulting in a genetic map 

with 87,820 SNVs representing 44,371 Lo7 WGS contigs and 3,022 contigs from previous 

studies (e.g. Haseneyer et al., 2011). The genetic map is available under DOI 2 (see Data 

Availability). 

 

Genome colinearity and synteny across rye, barley and wheat 

The rye WGS assembly was aligned to coding sequences (CDS) of barley and wheat gene 

models with GMAP (Wu and Nacu, 2010). We used the high-confidence gene models 

annotated on the WGS assembly of barley cv. Morex (Mayer et al., 2012) and on the 

chromosome survey sequence assembly of wheat cv. Chinese Spring (Mayer et al., 2014). 

Only the best alignment of each CDS was considered, requiring at least 90% alignment 

identity and 50% coverage of the CDS. Genetic positions of CDS were taken from the 
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POPSEQ genetic maps of barley (Mascher et al., 2013a) and wheat (Chapman et al., 2015) 

and plotted against the map locations of the rye WGS contigs the CDS were aligned to. The 

positions of genetic centromeres in rye chromosomes were determined by tabulating the 

number of anchored sequence contigs in 1 and 5 cM bins. Centromere positions are given in 

Figure S7. Aggregation and plotting of positional information was performed with standard 

functions of the R statistical environment (R Core Team, 2015) and the R package 

“data.table” (https://cran.r-project.org/web/packages/data.table/index.html). 

 

Updated version of the Rye Genome Zipper 

The previously described framework of genetic map data, chromosomal gene content of rye, 

conserved synteny information to model grass genomes, rye EST assembly information and 

barley full-length cDNAs (Haseneyer et al., 2011; Matsumoto et al., 2011; Martis et al., 2013) 

was extended to ~87k markers as described earlier (Mayer et al., 2011). The complete Rye 

Genome Zipper v2 data sets for the seven rye chromosomes are available under DOI 4 (see 

Data Availability).  

 

Circos plot of rye genome structure and diversity 

Genome structure and diversity distribution within the 10 resequenced rye inbred lines and 

S. vavilovii was visualized using a concatenated version of the Lo7 rye assembly (Figure 1). 

The assembly was ordered using the genetic map and the updated Rye Genome Zipper. 

Heterozygosity and gene density were analysed per 1 cM. To estimate the heterozygosity 

we performed a read alignment of Lo7 reads against the Lo7 WGS assembly and calculated 

the number of sites with multiple alleles using a minimal read coverage of ten and a minimal 

quality score of 100. Gene density, marker density and SNV counts were plotted in 500 kbp 

windows. For greater clarity, we calculated the 98 quantile within each single track and 

applied it as maximum per track. Calculated maximum values were 558 (heterozygosity), 78 
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(gene density per 1cM) and 472 (marker density per 500 kbp). The resulting figure was 

constructed using Circos (v.0.67) (Krzywinski et al., 2009). 

 

Population genetic analyses  

The population genetic analyses were performed with biallelic SNVs of class PHR from the 

Rye600k array. A common dataset of 235,460 SNVs was available for the 130 samples from 

the seed and pollen parent pool and GR. From this dataset nucleotide diversity π and FST 

(Weir and Cockerham, 1984) on a per-site basis were calculated using VCFtools version 

0.1.12a. Differences in nucleotide diversity and FST between pools were tested with the two-

sided Wilcoxon rank sum test (Wilcoxon, 1945). For Principal Coordinate Analysis based on 

Rogers’ distances (Rogers, 1972) in the R package ade4 (Dray and Dufour, 2007), data 

were further filtered for maximum 5% missing data and minor allele frequency > 0.01, 

resulting in 179,660 SNVs. Missing values were imputed by sampling from the marginal 

allele distribution of a marker using the codeGeno function of the R package Synbreed 

(Wimmer et al., 2012).  

 

In order to detect genomic regions under selection in rye we scanned 78,731 genetically 

mapped SNVs of class PHR of the Rye600k array for selection signals using Lositan (Antao 

et al., 2008) and Bayenv2.0 (Günther and Coop, 2013). By searching for SNVs that are 

strongly differentiated between two populations, candidate regions and genes for positive 

selection can be detected. Lositan uses a FST outlier detection method (Beaumont and 

Nichols, 1996). To find candidate SNVs with Lositan we analysed three population pairs: 

seed vs. pollen parent pool, seed parent pool vs. GR and pollen parent pool vs. GR material. 

For each population comparison three runs with 200,000 simulations were performed and 

only SNVs that were identified as outliers in all three runs were considered as selection 

candidates. We also used Bayenv2.0 to detect SNVs that are strongly differentiated between 

the three population pairs. Bayenv2.0 calculates standardized allele frequencies at each 
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SNP by removing unequal SNP sampling variances and covariance among populations. The 

resulting XTX statistic therefore accounts for a shared population history and sampling noise 

and allows identifying loci with an unusually high allele frequency variance among 

populations which may reflect differential selection. We estimated the covariance matrix that 

reflects the population and kinship structure based on 100,000 MCMC iterations. For each 

population comparison we conducted 100,000 iterations and compared the top 1% XTX 

values with the Lositan results to validate candidate SNVs.  

 

To characterize possible selection candidates the WGS contigs which contained rye gene 

models and harboured SNVs identified as selection candidates from the overlap of the 

highest 1% XTX values with the FST outliers were used for a tBLASTX analysis against the 

Q-TARO database with 1,949 cloned and functionally characterized rice genes (Yonemaru 

et al., 2010). Hits with an e-value <1e-40 and a minimum overlap of 40 amino acid residues 

(120 bp) are reported in Table S10. For 22 contigs which gave a hit with the Q-TARO 

database we calculated population-specific nucleotide diversity π using all PHR SNVs 

available for these contigs (Table S11). For two Lo7 contigs containing genes that may 

contribute to phenotypic differences between germplasm pools we show graphical 

representations of population-specific haplotypes. Only the more frequent haplotypes which 

occurred in at least four individuals (~10% frequency) in one of the three groups are shown.  

Data availability 

For comparative analysis we established a stand-alone BLAST web server similar to the IPK 

Barley Blast Server (Spannagl et al., 2016a) using ViroBLAST (Deng et al., 2007). For direct 

application of analyses based on sequence homology it contains the WGS assembly and the 

rye gene models. The IPK Rye Blast Server is accessible under http://webblast.ipk-

gatersleben.de/ryeselect/. 
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The WGS scaffolds of Lo7 (version 2) are deposited as digital object identifier DOI 1 (see 

below). A list of 2,934 gene models with divergent PAV patterns, the assignment of WGS 

contigs and scaffolds to rye chromosomes (based on CarmA, 88k genetic map and Rye 

Genome Zipper), the assignment of 27,784 rye gene models to Lo7 WGS contigs, and the 

88k genetic map of RIL population Lo7 × Lo225 are deposited as DOI 2 (see below). VCF 

files and related functional annotations of variant positions are accessible for download 

under DOI 3 (see below). The updated version of the Rye Genome Zipper (v2) is deposited 

as digital object identifier DOI 4 (see below). All DOIs were constructed using the tool e!DAL 

(Arend et al., 2014) and stored in the Plant Genomics and Phenomics Research Data 

Repository – PGP (Arend et al., 2016). 

 

List of DOIs: 

DOI 1: http://dx.doi.org/10.5447/IPK/2016/56 

DOI 2: http://dx.doi.org/10.5447/IPK/2016/57 

DOI 3: http://dx.doi.org/10.5447/IPK/2016/13 

DOI 4: http://dx.doi.org/10.5447/IPK/2016/58 

Accession numbers 

All sequence data exploited in this study is deposited in the European Nucleotide Archive 

(http://www.ebi.ac.uk/ena/). WGS data of the rye reference inbred line Lo7 is deposited 

under study accession PRJEB6214 with the sample accession number ERS446995. 

Resequencing data of the 10 rye inbred lines and S. vavilovii are stored under study 

accession PRJEB6215 with sample accession numbers ERS455621 to ERS455631. The 

Lo7 WGS assembly is stored under project study number PRJEB13501 with the sample 

accession number ERS1115868. The WGS contigs of this study (FKKI010000001-

FKKI011581707) have the assigned analysis id ERZ291745. Information on the Affymetrix 
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Rye600k array including SNV IDs, probe sets, and alleles can be retrieved from NCBI GEO, 

platform GPL22066 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL22066). 
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Supplementary figures are available in file RyeGenome_SupplementaryFigures.pdf. 

Supplementary tables are available in file RyeGenome_SupplementaryTables.pdf or as 
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Figure S1. Comparisons of diversity between two different breeding pools and S. vavilovii. 
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Figure S2. Comparison of rye genes with non-synonymous SNVs (nsSNVs) in the seed and 

pollen parent pools. 

Figure S3. Comparison of 2,934 gene model candidates showing presence/absence 

variation. 

Figure S4. Genotype proportion in the complete variant data set and the selected set of the 

Rye600k array. 

Figure S5. Phylogenetic tree constructed (A) from complete set of chromosome assigned 

SNVs and (B) from the Rye600k high density array. 

Figure S6. Collinearity between the genetic maps of rye and wheat. 

Figure S7. Position of genetic centromeres in the rye genetic map. 

Figure S8. Genome-wide map of selection signals between the seed parent pool and 

genetic resources. 

Figure S9. Genome-wide map of selection signals between the pollen parent pool and 

genetic resources. 

Figure S10. Hierarchical scaffolding scheme. 

Figure S11. Process and parameter settings of the Rye600k array design. 

 

Table S1. EBI/ENA sequence information. 

Table S2. Statistics of the WGS sequencing and read quality processing of reference line 

Lo7. 

Table S3. High-confidence gene set of rye. 

Table S4. BUSCO analysis of genome (WGS assembly), protein and transcript data sets.  

Table S5. Transposable element composition of the rye genome in the Lo7 WGS assembly 

and in 800 Mbp of random Illumina reads. 

Table S6. Statistics for resequencing results and read alignment statistics of the 10 rye 

inbred lines and S. vavilovii. 

Table S7. Functional annotation of SNVs discovered in 10 resequenced rye inbred lines and 

S. vavilovii. 
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Table S8. Classification of SNVs on the Rye600k array according to Affymetrix SNV 

categories. 

Table S9. Overview statistics for the Lo7 × Lo225 high-density genetic map 

Table S10. Rice orthologs for selection candidates. 

Table S11. Nucleotide diversity π for 22 contigs harbouring SNVs which were under 

selection. 

Table S12. Assignment of WGS contigs and scaffolds to rye chromosomes based on 

CarmA, 88k genetic map and Rye Genome Zipper. 

Table S13. List of rye inbred lines and accessions genotyped with the Rye600k array for 

genome-wide selection screens. 
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Tables  

Table 1. Summary of WGS assembly and scaffolding. 

  Contigs* Scaffolds** Scaffolds (>1kb) 

Sum (Mb) 1,685 2,804 2,334 

Total number 1,581,707 1,286,927 335,608 

N50 contig length (bp) 1,708 9,448 12,472 

N75 contig length (bp) 705 2,935 7,545 

Maximum (bp) 35,334 148,970 148,970 
 

* Minimal length of 200 bp. 

** Minimal length of 300 bp. 
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Table 2. Genome annotation and variant calling statistics.  

A) Total number of high-confidence gene models and number of gene models with AHRD or 
Blast2GO annotation and their representation by orthologous clusters.  
B) Functional annotation of SNVs according to subclasses defined by the CooVar annotation 
(Vergara et al., 2012). The class ‘non-synonymous’ includes frameshift and in-frame 
variants, non-conservative missense, conservative missense, variants in the splice acceptor 
or splice donor site and gain or loss of stop codon. 
 
 

A) Total number of rye gene models:    27,784 (%) 

 Assigned functional description (AHRD or Blast2GO)   26,571 95.6 

 OrthoMCL link to grass species*   17,470 62.9 

B) Total number of SNVs:    8,626,622   

 Occurrence in elite breeding pool or S. vavilovii Seed Pollen S. vavilovii 

 Total number 4,010,067 4,812,751 3,797,250 

 Silent (%) 97.59 97.59 97.92 

 Synonymous (%) 1.40 1.40 1.20 

 Non-synonymous (nsSNV, %) 1.01 1.01 0.88 

 Total number of gene models with nsSNV 7,907 8,483 8,041 

 

* brachypodium, barley 
 

Figure legends 

Figure 1. Distribution of SNVs, genes and markers along the rye nuclear genome. 

The figure depicts WGS contigs anchored to the rye genetic framework as a combined 
representation of the high-density genetic map and the rye genome zipper. This framework 
was constructed using 93,157 markers, assigning 52,901 different sequence contigs to 
2,813 unique cM positions. The plot is separated into several circular tracks showing the 
seven chromosomes 1R to 7R. The outer track depicts the heterozygosity of the sequenced 
reference line Lo7 as histogram with the number of heterozygous sites per 1 cM. The 
second track shows the gene density per 1 cM along the genetic map plotted as heatmap. 
The subsequent track shows the short (grey) and the long (dark green) chromosome arm, 
where the breakpoint indicates the position of the centromere. The following connector track 
illustrates the anchoring of the genetic map to the physical sequence contigs. Subsequently, 
gene density is plotted per 500 kbp for the physical sequence level. The next track shows 
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the marker density (brown histogram). The eleven inner tracks present the SNV density as 
heatmap along the anchored WGS contigs for each of the resequenced rye genotypes. From 
outside to inside, the tracks represent the S. vavilovii accession, the five inbred lines from 
the pollen parent pool (Lo351, Lo348, Lo310, Lo298, Lo282) and the five inbred lines from 
the seed parent pool (Lo191, Lo176, Lo117, Lo115, Lo90). 
 

Figure 2. Collinearity between the genetic maps of rye and barley.  

A) The order of gene-bearing sequence contigs in the high-density genetic map of rye (x-
axis) was compared to the order of their orthologous contigs in the assemblies of the barley 
genome (The International Barley Genome Sequencing Consortium, 2012) (y-axis). 
Chromosomes are separated by blue lines. Positions of genetic centromeres are marked 
with dotted grey lines.  
B) Schematic representation of genomic rearrangements between barley chromosomes 1H 
to 7H (left) and rye chromosomes 1R to 7R (right). 
 

Figure 3. Principal Coordinate Analysis (PCoA) of seed and pollen parent pool and 

genetic resources. 

The PCoA was based on Rogers’ distances calculated from 179,660 SNVs from the 
Rye600k array. Only SNVs with < 5% missing values and minor allele frequency > 0.01 were 
used. PCo1 and PCo2 are the first two principal coordinates. The percent of the variance 
explained by the respective PCo is indicated. GR: genetic resources. 
 

Figure 4. Genome-wide map of selection signals between the seed and pollen parent 

pools. 

The plots for the seven rye chromosomes are based on 78,731 genetically mapped SNVs 
from the Rye600k array. The blue and red SNVs are the top 1% XTX values. The red SNVs 
are shared Lositan (FST) outliers and top 1% XTX values. Centromere positions are indicated 
by a triangle on the x-axis. 
 

Figure 5. Morphological differences in ears from different rye gene pools and 

haplotype frequencies in two contigs with selection candidates. 

A) From left to right, three representative ears are shown for inbred lines from the seed and 
pollen parent pool and from genetic resources (Eastern European open-pollinated 
populations), respectively. The ruler on the right side indicates the size of the ears in cm. 
B) Graphical representation of haplotype patterns for contigs Lo7_v2_contig_1355272 (top, 
15 SNVs) and Lo7_v2_contig_63401 (bottom, 9 SNVs) which harbour the rye orthologs of 
rice genes SP1 and OsGPX1/OsGPX3, respectively. Only the more frequent haplotypes 
present in at least four individuals (~10%) in one of the three populations are shown. Each 
row represents a haplotype with SNVs indicated by boxes. Reference allele (Lo7) 
homozygote: light grey, heterozygote: middle grey, alternative allele homozygote: dark grey. 
The frequencies of the haplotypes in seed and pollen parent pool and genetic resources 
(GR) are shown on the right side. Numbers in the columns do not add up to 1 since rare 
haplotypes are not displayed. 
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