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Abstract

Motivation: Dynamics of cellular processes are often studied using mechanistic mathematical

models. These models possess unknown parameters which are generally estimated from experi-

mental data assuming normally distributed measurement noise. Outlier corruption of datasets

often cannot be avoided. These outliers may distort the parameter estimates, resulting in incorrect

model predictions. Robust parameter estimation methods are required which provide reliable par-

ameter estimates in the presence of outliers.

Results: In this manuscript, we propose and evaluate methods for estimating the parameters of or-

dinary differential equation models from outlier-corrupted data. As alternatives to the normal distri-

bution as noise distribution, we consider the Laplace, the Huber, the Cauchy and the Student’s t

distribution. We assess accuracy, robustness and computational efficiency of estimators using

these different distribution assumptions. To this end, we consider artificial data of a conversion

process, as well as published experimental data for Epo-induced JAK/STAT signaling. We study

how well the methods can compensate and discover artificially introduced outliers. Our evaluation

reveals that using alternative distributions improves the robustness of parameter estimates.

Availability and Implementation: The MATLAB implementation of the likelihood functions using

the distribution assumptions is available at Bioinformatics online.

Contact: jan.hasenauer@helmholtz-muenchen.de

Supplementary information: Supplementary material are available at Bioinformatics online.

1 Introduction

Quantitative dynamic models are widely used to gain a mechanistic

understanding of biological processes (Ideker et al., 2001; Kitano,

2002). These dynamic models facilitate the integration of multiple

experimental datasets and the analysis of system properties that are

not within reach of biological experiments (Aderem, 2005). For this,

the models need to be calibrated based on experimental data in

order to determine the unknown parameters, e.g. initial values or

kinetic rates (Tarantola, 2005).

Experimental data used for parameter estimation are collected using

a broad spectrum of techniques. While measurement devices provide in-

creasingly precise quantitative data (Chen et al., 2013), there are

numerous potential sources of measurement errors during data collec-

tion and data processing (Ghosh and Vogt, 2012). These include tech-

nical limitations and human errors, such as pipetting errors or incorrect

labeling, which result in potentially large errors (Motulsky and

Christopoulos, 2003). Individual data points which are corrupted by

large errors are usually denoted as outliers and assumed to be generated

from a different mechanism as the remainder of the data points and

might be misleading in the further analysis (Hawkins, 1980; Tarantola,

2005). Therefore, parameter estimation using outlier-corrupted data

can result in large estimation errors and limits the validity of models.

Since outlier-corrupted data distorts results in various fields,

many methods for the detection and subsequent removal of outliers
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have been developed (Ben-Gal, 2005; Hodge and Austin, 2004; Niu

et al., 2011). Most of the algorithms either assign a score for the de-

gree of abnormality or a binary label to a data point. This labeling is

usually based on a fit to a distribution or distance measure e.g. k-

nearest neighbor distance (Ramaswamy et al., 2000). Eventually, it

however remains a subjective decision on whether or not a data

point is sufficiently abnormal to be removed (Aggarwal, 2015).

Noisy measurements complicate the distinction even more and the

increasing size and complexity of biological data make the removal

of outliers a challenging task. Furthermore, the elimination of data

points which are indeed no outliers, as well as the retention of out-

liers in the data, will yield less reliable results in the further analysis

(Motulsky and Christopoulos, 2003).

In the fields of regression (Lange et al., 1989; Peel and

McLachlan, 2000) and computer vision (Stewart, 1999) robust esti-

mation methods are used to circumvent the removal of data points.

These robust approaches exploit estimators that are less affected by

outliers than the standard approach, the least squares estimator. Well

known maximum-likelihood type estimators (M-estimators) (Press

et al., 1988), which were found to be robust to outliers are, for ex-

ample, the least absolute deviation estimator (Tarantola, 2005) and

the Huber M-estimator (Huber et al., 1964). These estimators essen-

tially use lower weights for data points with large residuals. In add-

ition, Student’s t regression models were studied, which assume

Student’s t distributed errors (Fern�andez and Steel, 1999).

The methods developed in the field of robust regression can in

principle be applied across scientific fields. Each field has, however,

its particularities regarding experimental data, e.g. noise levels, out-

lier generating mechanisms, and mathematical models which influ-

ence the performance. For dynamical models of biological systems,

the Huber M-estimator was already successfully applied, yielding

more reliable parameter estimates (Cao et al., 2011; Qiu et al.,

2016). A comprehensive evaluation of different methods in the field

of quantitative biology is, however, missing. Furthermore, the stand-

ard formulation as regression problem does not allow in a straight-

forward way to perform model selection using statistical methods

such as the likelihood ratio test (Wilks, 1938), the Akaike (1973) or

the Bayesian information criterion (Schwarz, 1978). To facilitate

model selection for the mechanistic as well as the statistical model, a

formulation of robust estimation in terms of (normalized) probabil-

ity distributions would be beneficial.

In this manuscript we consider a comprehensive selection of statis-

tical models for the residual distribution, assuming distributions with

heavier tails than the generally used normal distribution. These statis-

tical models correspond to a range of robust estimators. We derive the

analytic gradients and Hessian matrices of the resulting objective

functions, which are required for an efficient optimization (Raue

et al., 2013; Hross and Hasenauer, 2016). The formulation in terms

of probability distributions facilitates model selection and the estima-

tion of tuning parameters, e.g. for the Huber M-estimator. We sys-

tematically assess and evaluate the properties of the resulting

estimation in the absence and presence of outliers. The efficiency and

robustness of the methods could statistically be evaluated for gener-

ated artificial data of a conversion process as the true parameters

were known. Additionally, we applied our method to artificially per-

turbed experimental data of the JAK/STAT signaling pathway.

2 Methods

In this section, we propose methods for the robust estimation of par-

ameters of biological processes from outlier-corrupted data. We

introduce the considered dynamical and statistical models along

with optimization and model selection methods. Additionally, we

present three outlier scenarios.

2.1 Data-driven modeling of dynamic biological

systems
We consider biological processes, for which the dynamics are mod-

eled by ordinary differential equations (ODEs), e.g. reaction rate

equations (Klipp et al., 2005). ODEs describe the temporal evolu-

tion of the concentration of molecular species and can be written as

x
: ¼ f ðx; nÞ ; xð0Þ ¼ x0ðnÞ ;

with time-dependent states xðtÞ 2 R
nx
þ , vector field f, parameters

n 2 R
nn
þ (e.g. reaction rates) and parameter-dependent initial

conditions x0ðnÞ 2 R
nx
þ . The states and parameters are mapped

to the observables y 2 R
ny by an output function h,

y ¼ hðx; nÞ :

We consider data D ¼ fðtk; �ykÞg
nt

k¼1 at nt time points with ny observ-

ables, �yk ¼ ð�y1;k; . . . ; �yny ;k
ÞT . The measurements �yk of the observ-

ables yðt; nÞ are subject to measurement noise

�yi;k � pð�yi;kjyiðtk; nÞ;uiÞ : (1)

The noise is usually assumed to be normally distributed. In the pres-

ence of outliers, single observations are however drawn from an al-

ternative distribution with heavier tails, which is difficult to assess

due to small sample sizes.

2.2 Outlier scenarios
We studied three scenarios that differ in the outlier generating mech-

anism which are–in our own experience–practically relevant

(Fig. 1). In the first scenario (no outliers), no outliers are included in

the data. In the second scenario (one data point at zero), the meas-

ured concentration at a certain time point tk is zero, e.g. due to a

missing label or entry. Consequently, we measure �yi;k ¼ 0. In prac-

tice this might not be easy to spot due to background intensity and

additional noise. In the third scenario (two data points inter-

changed), two data points in the dataset were interchanged. This

might have occurred due to labeling or entry errors. In the case of

several observables (ny>1) the modification was applied to all ny

observables.

2.3 Distribution assumptions
For parameter estimation from outlier-corrupted data we study the

standard assumption, the normal distribution, as well as distribu-

tions with heavier tails than the normal distribution, the Laplace,

Fig. 1. Three scenarios used for the data generation. No outliers: the data is

not outlier-corrupted and any deviation is due to measurement noise. One

data point at zero: the data has one outlier, which is a zero-entry. Two data

points interchanged: the data has two outliers, which are two measurements

that were interchanged. The arrows illustrate how the outliers were intro-

duced in the dataset
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the Huber, the Cauchy and the Student’s t distribution. The distribu-

tions used for p in (1) are listed in Table 1.

The considered distributions possess a range of properties re-

garding their moments. The Laplace distribution has well defined

moments (e.g. finite variance) for all parameter values. The

Student’s t distribution possesses an infinite variance for large de-

grees of freedom and the variance of the Cauchy distribution is al-

ways infinite. We refer to the Laplace, Huber, Cauchy and Student’s

t distribution in the following as heavier-tailed distributions. Note

that the case of a log-normal distribution assumption, as used by

Kreutz et al. (2007), is implicitly captured in the normal distribution

assumption since this corresponds to log-transformation of the out-

put and the use of a normal distribution assumption.

2.4 Parameter estimation
The kinetic parameters n and distribution parameters u are usually

unknown. To estimate the unknown parameters h ¼ ðn;uÞ from the

data, we use maximum likelihood estimation. The likelihood LDðhÞ
is the conditional probability of observing some data D given the

parameters h,

LDðhÞ ¼
Ynt

k¼1

Yny

i¼1

pð�yi;kjyiðtk; nÞ;uiÞ; (2)

with distributions p as listed in Table 1. For numerical reasons, the

maximum of the likelihood is usually determined by minimizing the

negative log likelihood,

hML ¼ arg min
h
�
Xnt

k¼1

Xny

i¼1

log p �yi;kjyi tk; nð Þ;ui

� �( )
: (3)

Substitution of p from Table 1 in (3) reveals the relation of this for-

mulation with least squares and M-estimators. For the normal distri-

bution with known variances, (3) is a least squares problem. For the

Laplace and Huber distribution with known parameters, we obtain

the least absolute deviation estimator and the Huber M-estimator,

respectively. The formulation can however also be employed if the

parameters of the statistical models, e.g. the tuning parameter of the

Huber distribution, are unknown. For details we refer to the

Supplementary Information, Section 1.

The optimization problem (3) is usually—independent of the dis-

tribution assumption—nonlinear and non-convex. We performed

the minimization by multi-start local optimization (Raue et al.,

2013) using the MATLAB toolbox PESTO (Hross and Hasenauer,

2016). To improve performance and convergence of the optimiza-

tion an analytical description of the gradient and higher-order de-

rivatives was derived for all distribution assumptions (see

Supplementary Information, Section 1). The reaction rate equations

and the sensitivities, needed for the calculation of the gradient, were

simulated using the MATLAB toolbox AMICI (Kazeroonian et al.,

2016). Moreover, we estimated the log10-transformed parameters

due to better numerical properties.

The accuracy of the maximum likelihood estimate for different

distribution assumptions were evaluated using the Mean Squared

Error (MSE)

MSE½nML; ntrue� ¼ E½ðnML � ntrueÞ2� :

A small MSE indicates a good agreement of the true and esti-

mated parameters. The expectation is computed over several data-

sets. We only calculated the MSE for the kinetic parameters n, since

the distribution parameters are not comparable.

The uncertainty of an individual estimate can be assessed by

computing the confidence interval (CI) for a confidence level a using

profile likelihoods (Raue et al., 2009). The CIs should cover the true

parameter with a frequency of 1 – a. Accordingly, if the true param-

eter is known, the appropriateness of the CIs can be evaluated by

computing the coverage ratio (CR), which should be close to the

desired confidence level (Schelker et al., 2012).

2.5 Model selection
We performed hypothesis testing for the statistical models including

the distribution assumptions using the Bayesian Information

Criterion (BIC),

BIC ¼ �2 log ðpðDjhMLÞÞ þ log ðnDÞnh ; (4)

with nD denoting the number of data points and nh denoting the

number of parameters. Models with low BIC values are preferred

and models with differences in BIC values to the minimal BIC value

above 10 are commonly rejected (Raftery, 1999).

Table 1. Probability densities. The formulas for the normal, Laplace, Huber, Cauchy and Student’s t distribution are listed together with the

parameters defining the distributions. The error function is denoted by erf and the gamma function by C

Probability density Distribution parameters u

Normal
pð�yjy;rnÞ ¼ 1ffiffiffiffi

2p
p

rn
exp � 1

2
�y�y
rn

� �2
� �

Standard deviation rn > 0

Huber

pð�yjy;rh; jÞ ¼ s �

exp � 1

2

�y � y

rh

0
@

1
A

20
@

1
A ;

����� �y � y

rh

����� � j

exp � 1

2
2j

����� �y � y

rh

������ j2

0
@

1
A

0
@

1
A ;

����� �y � y

rh

����� > j

8>>>>>>>><
>>>>>>>>:

Scale rh > 0, tuning parameter j> 0

with s ¼ ð
ffiffiffiffiffiffi
2p
p

rherf jffiffi
2
p
� �

þ 2rh

j expð� 1
2 j2ÞÞ�1

Laplace pð�yjy;bÞ ¼ 1
2b exp � j�y�yj

b

� �
Scale b > 0

Cauchy pð�yjy; cÞ ¼ 1
pc

c2

�y�yð Þ2þc2
Scale c> 0

Student’s t
pð�yjy;rt; �Þ ¼

C �þ1
2ð Þ

C �
2ð Þ
ffiffiffiffi
p�
p

rt
1þ 1

�
�y�y
rt

� �2
� ���þ1

2 Scale rt > 0, degrees of freedom � > 0
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3 Results

To study the performance and robustness of parameter estimation

using the different distribution assumptions, we applied the methods

to artificial data of a conversion process as well as experimental

data of the JAK/STAT signaling pathway.

3.1 Simulation study: conversion reaction
For this simulation study, we considered a simple conversion pro-

cess: A�B. This process is described by a reversible reaction, which

converts a biochemical species A to a species B with rate k1, and B

to A with rate k2. The corresponding ODEs are

_x1 ¼ �k1x1 þ k2x2 ;

_x2 ¼ k1x1 � k2x2 ;

for which the state vector x ¼ ðx1;x2ÞT consists of the concentra-

tions of A and B, respectively. We assumed that x2 is measured

yielding the observation model y ¼ hðx; hÞ ¼ x2.

For the evaluation of the proposed method, we generated 103

artificial datasets for each of the three outlier scenarios described in

Section 2.2. The datasets were generated with initial conditions

x0 ¼ ð1; 0ÞT , kinetic parameters n ¼ ðk1;k2ÞT ¼ ð10�1:5; 10�1:5ÞT

and normally distributed measurement noise with standard devi-

ation 0.02. Examples of datasets for the scenarios are depicted in

Figure 2.

3.1.1 Mean squared estimation error for different distribution

assumptions

To evaluate the differences in parameter estimation using different

distribution assumptions, the kinetic parameters k1 and k2 together

with the distribution-specific parameters were estimated from the

103 datasets per scenario using maximum likelihood estimation

(Supplementary Information, Section 2). Parameter estimation using

the assumption of normally distributed measurement noise allowed

for the reconstruction of the systems trajectory in the absence of out-

liers (Fig. 2). However, if there are strong outliers, the fitted and the

true trajectory differ, implying estimation errors. In contrast, for the

Laplace, Huber, Cauchy and Student’s t distribution the fitting

yielded systems trajectories close to the trajectory used to simulate

the data.

These findings are also reflected in the MSE for the parameter es-

timates of the kinetic parameters k1 and k2 (Fig. 3A). If no outliers

are present in the data, all methods yield a comparable MSE for

both kinetic parameters. In the presence of outliers, the MSE

achieved using the normal distribution is however much higher. This

implies that the parameter estimates differ largely from the true par-

ameters, which will result in wrong predictions. The heavier-tailed

distributions were able to provide reliable estimates of the param-

eters in the presence of outliers. Indeed, the MSE hardly increased,

indicating that the influence of a small number of outliers can be

compensated. Consequently, robust estimation methods reduce the

MSE for outlier-corrupted data.

3.1.2 Unraveling the presence of outliers using model selection

As parameter estimation using heavier-tailed distributions is robust

with respect to outliers, we wondered if these methods can also be

used to reveal outliers in datasets. To analyze this, model selection

was performed regarding the statistical models using the BIC. Note

that the models do not differ in the model dynamics but only in the

distribution assumption. Using the 103 datasets per scenario the

Fig. 2. Data and fits for different scenarios and distribution assumptions. The data points are generated by simulating the system with normally distributed noise

and generating outliers according to the defined scenarios. The fits corresponding to the different distribution assumptions, normal, Laplace, Huber, Cauchy and

Student’s t distribution are plotted as lines

A B

C

D

E

Fig. 3. Evaluation of optimization results for all three outlier scenarios.

(A) MSE for the log10-transformed parameters. The circles indicate the MSE

over all 103 datasets per scenario, while the error bars represent the 95% per-

centile bootstrap CIs. (B) Model selection results using BIC. The percentage is

given for how many times each statistical model is chosen for the 103 data-

sets per scenario. (C) Difference of BIC value of a statistical model compared

to the best statistical model. The difference is averaged over all datasets with

the minimum computed for all datasets individually. (D) Average percentage

of converged starts over all datasets. (E) The mean computation time per

optimizer start and the corresponding standard error of mean
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percentage was calculated how often a distribution assumption

achieved the lowest BIC. The model employing the normal distribu-

tion assumption was chosen for most of the no outliers datasets

(Fig. 3B). In the presence of outliers, heavier-tailed distributions are

preferred over the normal noise model. In particular for the one data

point at zero scenario we observe a large difference of the average

BIC values (Fig. 3C). Accordingly, model selection detected the pres-

ence of outliers. This shows that heavier-tailed distributions can be

used as diagnostic tools to test for the presence of outliers.

In addition to the distribution of the measurement noise and the

outliers, also the structure of the biochemical reaction network

might be unknown. In this case, the network structure has to be

inferred from the experimental data along with the model param-

eters. If probability distributions with heavier tails are used, data

points might (incorrectly) be considered as outliers due to the mod-

el’s inability to describe them or because model selection methods

prefer lower model complexity. At least in a simple toy problem this

was, however, not observed. Furthermore, parameter estimation

with heavier-tailed distributions tends to provide a good fit to a

large fraction of the data instead of distributing the error equally

(Fig. 2B and C). Accordingly, a few measurements are sufficient to

verify or falsify whether a data point is an outlier. For details we

refer to the Supplementary Information, Section 5.

3.1.3 Optimizer convergence and computation time

In parameter optimization, critical aspects are optimizer conver-

gence and computation time (Raue et al., 2013). We evaluated both

properties by determining for each scenario and distribution as-

sumption how many runs of the local optimizer converged by using

a statistical approach (Hross and Hasenauer, 2016). We found that

for this simple example the convergence is for most distributions

comparable and above 75% (Fig. 3D). Merely the optimization

using the Huber distribution yields a slightly lower fraction of con-

verged starts.

The mean time needed per start is similarly low for the normal,

Cauchy and Student’s t distribution (Fig. 3E). Only the Laplace and

Huber distribution have a higher computation time, since no ap-

proximation of the Hessian based on first-order sensitivities could

be found (see Supplementary Information, Section 1.2). This verifies

that the use of robust methods did not increase the computation

time significantly.

3.1.4 Consistency of confidence intervals

To assess the influence of outliers on parameter CIs, we computed

profile likelihoods. Examples for profiles are shown in

Supplementary Figure S2A and B. Based on these profile likelihoods,

the CIs were computed for different confidence levels (Fig. 4A).

For the artificial data (Fig. 2) we find that in the case of no out-

liers, all distribution assumptions yield similar CIs for parameter k1.

The confidence intervals computed using the normal distribution

widen in presence of outliers, yet not ensuring that the true param-

eter is covered. Also for the Laplace and Huber distribution the CIs

80%90%95%99%

A

B
CI too wide

CI too narrow

Fig. 4. Confidence intervals and coverage ratios. (A) Example CIs for one data-

set per scenario (shown in Fig. 2), indicated by different bars for 80%, 90%,

95% and 99% from dark to light colors. The MLEs for the normal, Laplace,

Huber, Cauchy and Student’s t distribution are displayed as vertical lines. The

true parameter value for k1 is displayed as vertical grey line. (B) Coverage

ratios for parameter k1 for different confidence levels considering all 103 data-

sets per outlier scenario. Lines in the upper part of the panels indicate that

the CI is too wide, lines in the lower part that it is too narrow

A

B

Fig. 5. Sample size limitation of Cauchy and Student’s t distribution.

(A) Normalized histogram of the residuals of all 102 datasets when the param-

eter estimation is performed for nt¼10,4,3. The curve represents the corres-

ponding probability density of the normal, Laplace, Huber, Cauchy or

Student’s t distribution using the estimated median value of the distribution-

specific parameters over all 102 datasets. (B) Visualization of the correspond-

ing scale parameters, rn for the normal, b for the Laplace, rh for the Huber, c

for the Cauchy and rt for the Student’s t distribution
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become wider, the true parameter however remains covered. For the

Cauchy and the Student’s t distribution we observe that the CIs be-

come even tighter, which is counter-intuitive as the information con-

tent in the data should be decreased. The presence of outliers shifts

the probability mass often closer to the mode. The results for param-

eter k2 are similar (Supplement Fig. S2C).

We evaluated the reliability of the confidence intervals by deter-

mining the coverage ratio which states how often the true parameter

ntrue is covered by the confidence intervals for all 103 generated

datasets per scenario (Fig. 4B). Interestingly, the coverage ratio is

lower than the confidence level for most of the cases indicating that

the size of the confidence intervals is too narrow and therefore the

uncertainty in the parameter estimates is underrated. For the normal

distribution we tried to correct the coverage by applying the Bessel

correction. The improvement was, however, minor (Supplementary

Information, Section 2). The Laplace and Huber distribution pro-

vide the best coverage ratio in the presence of outliers. It was shown

that outliers have a greater influence on the confidence intervals

when using the normal distribution assumption.

3.1.5 Sample size limitation of the Cauchy and the Student’s t

distribution

The performance of estimators often depends strongly on the sample

size. Therefore, we analyzed how different distributions perform as

the sample size is decreased. To this end, we varied the number of

data points (nt¼10,4,3) for datasets of the conversion process with-

out outliers. For a lower number of data points, the model can fit an

higher percentage of the data points exactly (¼up to numerical ac-

curacy). For the full datasets (nt¼10), the obtained residual distri-

butions for all combined datasets fit the corresponding distributions

(Fig. 5A), visualized for the median scale parameters obtained with

parameter estimation (Fig. 5B). The scale parameters for the normal,

Laplace and Huber distribution do not become much smaller for

lower number of data points. However, the scale parameters of the

Cauchy and Student’s t distribution are decreased and thus the mass

of the distribution is concentrated on the exactly fitted data points,

neglecting other residuals, i.e. the model overfits single data points.

For nt¼3 these scale parameters are even estimated at the lower

bound defined as 10–10. Scale parameters close to zero yield residual

distributions which do not reflect the variation in the data (see also

Supplementary Fig. S3).

For regression, Fern�andez and Steel (1999) suggest to provide a

lower bound for the degrees of freedom � calculated with respect to

the ratio of exactly fitted data points to other data points, thereby

avoiding the regions of likelihood for which the problem occurs

(Jones and Faddy, 2003; Taylor and Verbyla, 2004). However, such

a restriction is not possible for the Cauchy distribution, which

should, according to the formula of Fern�andez and Steel (1999),

only be used if less than half of the data points can be fitted exactly.

In general, the Cauchy and Student’s t distribution should be applied

carefully if the model is too flexible and overfitting is to be

expected.

3.2 Application study: JAK/STAT signaling pathway
To assess the performance of the robust estimation methods under

realistic conditions, we considered model and data from JAK/STAT

signaling in response to Epo. The phosphorylated receptor (pEpoR)

of the hormone Erythropoietin leads to JAK-mediated phosphoryl-

ation of STAT, which dimerizes and enters the nucleus to initiate the

transcription of target genes (Fig. 6A). We used the mathematical

model introduced by Swameye et al. (2003), which is provided in

the Supplementary Information, Section 3.1. It comprises kinetic

parameters, spline parameters for modeling the input pEpoR con-

centration as well as scale and offset parameters.

Swameye et al. (2003) collected quantitative data of three ob-

servables at 16 time points. The dataset has been analyzed in a var-

iety of studies and seems to be free of outliers. To evaluate the

method, we introduced artificial outliers which led to 16 cases of

one data point at zero and 120 cases of two data points inter-

changed. Subsequently, we studied how well the estimation results

obtained for the original dataset are resembled. Examples of outlier

realizations are visualized in Figure 6C and D along with the corres-

ponding fit achieved using different noise models. We excluded the

Cauchy distribution from our analysis and restricted the degrees of

freedom for the Student’s t distribution to � >2, since overfitting of

individual data points was an issue.

A B C D

Fig. 6. Modeling and parameter estimation of JAK/STAT signaling. (A) Illustration of the pathway, for which arrows represent biochemical reactions and circles

the species of the system. The observables are highlighted with boxes. (B) Experimental data without outliers and fitted trajectories obtained by normal, Laplace,

Huber and Student’s t distribution. (C) Example of the outlier scenario for which one data point is set to zero, in this case t¼ 8 min. (D) Scenario for which the two

data points at t¼ 8 min and t¼ 40 min are interchanged

6 C.Maier et al.

Deleted Text:  t 
Deleted Text: Figure 
Deleted Text: Figure 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw703/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw703/-/DC1
Deleted Text:  <italic>t</italic>
Deleted Text: Figure 
Deleted Text: Figure 
Deleted Text:  t 
Deleted Text: ,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw703/-/DC1
Deleted Text:  t 
Deleted Text: Figure 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw703/-/DC1
Deleted Text: s
Deleted Text:  t 


The fitting of the original dataset (no outliers) using the different

distribution assumptions yields very similar trajectories (Fig. 6B). This

supports the hypothesis that the dataset is free of outliers. For the ex-

amples of the outlier-corrupted scenarios shown in Figure 6C and D,

the trajectory obtained using the normal distribution is visibly influ-

enced by the outliers, while the other distributions yield a similar be-

havior of the trajectories as in the original data without outliers.

The optimal parameter values found for no outliers were taken

as reference for the MSE calculated for one data point at zero and

two data points interchanged (see Fig. 7A and B for the biologically

meaningful parameters). For all parameters, the MSEs achieved

using the Laplace, the Huber and the Student’s t distribution are

smaller than the MSE observed using the normal distribution. This

implies that these statistical models yield more robust estimates in

the presence of outliers even if the measurement noise might be nor-

mally distributed. Considering the MSE for the parameter vector in-

stead of individual parameters, the normal distribution yields the

highest error in the estimates for both outlier scenarios (Fig. 7C).

For the distribution parameters and the MSE of the biologically

non-relevant parameters see Supplementary Figures S5 and S6A, B.

The convergence for the three scenarios is comparable for the nor-

mal, Laplace and Student’s t distribution, but lower for the Huber

distribution (Supplementary Fig. S6C). This application example

demonstrates that the proposed approaches also yield promising re-

sults in a more realistic example.

4 Conclusion

Outliers in biological data can arise through experimental errors or

incorrect data processing and, by definition, deviate largely from the

predicted observable. Using objective functions which exploit the

squared distance, as the normal distribution, gives a great weight to

outliers. Consequently, these outliers have a relatively large contri-

bution to the objective function compared to other data points. We

implemented efficient gradient-based parameter estimation for ODE

models using heavier-tailed distributions to reduce the effect of out-

liers. These methods are well established in robust regression and we

demonstrated that they are also beneficial in the context of dynam-

ical systems.

We evaluated parameter estimation using heavier-tailed distribu-

tions from artificial data for a conversion process and from artifi-

cially perturbed experimental data for the JAK/STAT signaling

pathway. The analysis revealed that in the absence of outliers, par-

ameter estimation for the different methods performed similarly. In

the presence of outliers, however the MSE is reduced by the use of

heavier-tailed distributions. The heavier-tailed distributions yielded

a reasonable optimizer convergence, even for a discretized PDE

model of Pom1p gradient formation (Supplementary Information,

Section 4). The suggested model-based approaches facilitate an auto-

matic, unbiased detection of outliers and can also be applied if no

replicates for individual measurements are available. They allow a

joint estimation of the kinetic and distribution parameters, which is

in different formulations rather time-consuming (Qiu et al., 2016).

Furthermore, only in this normalized description a thorough statis-

tical evaluation is possible as it enables the use of statistical criteria.

A manual exclusion of outliers is time consuming and suffers

from the lack of a universal definition of outliers, since extreme data

points that are truly generated from the underlying mechanisms

should not be removed as they carry important information.

However, if the intention still is to exclude outliers from the data,

the detection of the outliers might be more reliable when first fitting

the full data with a robust method. Then data points that have a

large distance from the corresponding simulated trajectory can be

removed according to e.g. the three-sigma rule (Aggarwal, 2015).

The evaluation of different statistical models revealed that sample

size limitations can result in problems, e.g. overfitting. Furthermore,

the coverage of confidence intervals might not be appropriate, as the

distribution does not capture the true outlier distribution. Even in the

case in which the true distribution is known, i.e. in the no outlier scen-

ario, the coverage might be incorrect as the threshold value of the pro-

file likelihoods holds only asymptotically or for linear problems. In

other cases, the threshold values can be computed numerically using

Monte-Carlo sampling (Kreutz et al., 2012). For the considered prob-

lem and threshold values derived from the v2-distribution, the Laplace

and Huber distribution were found to provide the best balance as

they lead to reliable fits by ensuring a good coverage. If, however, the

convergence is an issue, e.g. for large models with many parameters

and state variables, the Laplace distribution might be advantageous.

Consequently, our recommendation for outlier-corrupted data is to

employ the Laplace or Huber distribution as residual distribution in

the parameter estimation. As part of future work, other distribution

assumptions, e.g. the normal-Laplace distribution (Reed, 2006),

which also has an asymmetric version, could be examined for param-

eter estimation in dynamical systems.

In summary, we provided a first comprehensive evaluation of the

different properties of heavier-tailed distributions when calibrating

dynamic mathematical models to experimental data. Therefore, we

derived the necessary gradients and Hessian matrices of the objective

function to ensure an efficient optimization. The proposed approach

has substantial practical value, since it allows to use statistical tools,

such as model selection, and it yields robust parameter estimates in

the presence of outliers. This facilitates more accurate and reliable

predictions, which are important to gain a better understanding of

the biological processes of interest.

Conflict of Interest: none declared.

A

B

C

Fig. 7. Comparison of estimation accuracy for JAK/STAT signaling.

Confidence intervals for the MSE, calculated by bootstrapping, for all log10-

transformed parameters are shown for the normal, Laplace, Huber and

Student’s t distribution for the outlier scenario with (A) one data point at zero

and (B) two data points interchanged. The parameter values are compared to

those obtained by fitting the no outliers data. (C) MSE for the parameter vec-

tor including kinetic, offset and scale parameters
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