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SUMMARY

Mechanistic understanding of multi-scale biological
processes, such as cell proliferation in a changing
biological tissue, is readily facilitated by computa-
tional models. While tools exist to construct and
simulate multi-scale models, the statistical inference
of the unknown model parameters remains an
open problem. Here, we present and benchmark a
parallel approximate Bayesian computation sequen-
tial Monte Carlo (pABC SMC) algorithm, tailored for
high-performance computing clusters. pABC SMC
is fully automated and returns reliable parameter
estimates and confidence intervals. By running the
pABC SMC algorithm for �106 hr, we parameterize
multi-scale models that accurately describe quanti-
tative growth curves and histological data obtained
in vivo from individual tumor spheroid growth in
media droplets. The models capture the hybrid
deterministic-stochastic behaviors of 105–106 of
cells growing in a 3D dynamically changing nutrient
environment. The pABC SMC algorithm reliably con-
verges to a consistent set of parameters. Our study
demonstrates a proof of principle for robust, data-
driven modeling of multi-scale biological systems
and the feasibility ofmulti-scalemodel parameteriza-
tion through statistical inference.

INTRODUCTION

Systems and computational biology aims at a mechanistic

understanding of complex biological behavior. To achieve this,

biological processes on a wide range of time and length scales

have to be captured (Hunter and Borg, 2003). To integrate these

diverse data into a coherent view of how biological systems may

work, multi-scale models of biological processes are needed.

Interdisciplinary initiatives have been formed to develop multi-

scale models and modeling approaches for basic research,

diagnosis, and therapy (see Hunter and Borg, 2003; Karr et al.,

2012; Noble, 2002; Tomita et al., 1999; Trayanova, 2011; and ref-
Cell Systems 4, 1–13, Fe
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erences therein). Platforms for multi-scale modeling of individual

cells (Schaff et al., 1997; Stiles and Bartol, 2001), tissues (Rich-

mond et al., 2010; Starruß et al., 2014; Swat et al., 2012), and

organs (Mirams et al., 2013) have also been implemented and

popularized. These technological advances have resulted in a

tremendous increase of the availability and popularity of

multi-scale models. However, one problem remains largely

unsolved: how can these models be parameterized in a consis-

tent and rigorous way? Most model parameters cannot be

measured directly. To enable truly quantitative predictions, the

parameters of multi-scale models have to be inferred from

experimental data.

For deterministic multi-scale models obtained by coupling

ordinary differential equations (ODEs) and partial differential

equations (PDEs), promising successes have been achieved.

For example, an integrated, physiologically based, whole-body

model of the glucose-insulin-glucagon regulatory system has

been developed and parameterized in an automated way for in-

dividual patients to improve the understanding of type 1 diabetes

(Schaller et al., 2013). Similarly, whole-heart models could be

used to infer ischemic regions from body surface potential

maps to provide an early diagnosis of heart infarction (Nielsen

et al., 2013). These and other applications demonstrate that

the automated parameterization of multi-scale models from

experimental data using parameter estimation methods is

feasible. However, parameter estimation is mostly limited to

deterministic multi-scalemodels because they allow for efficient,

gradient-based optimization. In gradient-based optimization, the

local change of the likelihood function—a statistical measure for

the goodness of fit—is evaluated to determine the direction in

parameter space in which the fit improves most rapidly. This

facilitates substantial improvements of the fit within a few itera-

tions of the optimizer and frequently produces a good model

with limited computational effort.

The parameterization of computationally demanding stochas-

tic and hybrid stochastic-deterministic models is more chal-

lenging (Adra et al., 2011; Karr et al., 2015). However, to

understand biological processes on the smaller scale, stochas-

tic, and hybrid multi-scale models have to be considered

(Dada and Mendes, 2011; Hasenauer et al., 2015; Walpole

et al., 2013). Molecular processes such as gene expression

(Eldar and Elowitz, 2010; Elowitz et al., 2002) and signal trans-

duction (Klann et al., 2009; Niepel et al., 2009) are partially
bruary 22, 2017 ª 2016 The Author(s). Published by Elsevier Inc. 1
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stochastic, influencing cell division (Huh and Paulsson, 2011)

and cell movement (Anderson and Quaranta, 2008; Graner and

Glazier, 1992). The stochasticity of processes like these presents

two key challenges to the analysis and parameterization. First,

the simulation of stochastic models is often computationally

demanding, especially when compared to similar deterministic

models. Second, for stochastic models, the likelihood function

and its gradients cannot be assessed in closed form.

To see these challenges in action, consider the sophisticated

agent-based models of liver regeneration (Hoehme et al., 2010)

and tumor growth (Anderson and Quaranta, 2008; Jagiella,

2012). These agent-based models provide hybrid stochastic-

deterministic descriptions of the biological processes, and a sin-

gle stochastic simulation takes days to months. To assess the

average behavior of models, many such stochastic simulations

are necessary. Even worse, the rigorous evaluation of the likeli-

hood function of the data given the model—that is, the objective

function for parameter optimization—requires the integration

over all possible trajectories of the systems being modeled.

This is already infeasible for simple models. In practice, approx-

imations of the likelihood are computed, usually based on a few

realizations of the processes. For this reason, they are easily cor-

rupted by large statistical noise. This noise is further amplified

during gradient calculation using methods like finite differences.

Statistical noise renders the reliable calculation mostly infeasible

and prevents the use of scalable gradient-based optimization

methods in most cases (Raue et al., 2013). Instead, simple

manual line search methods are used in practice (see, e.g.,

Jagiella, 2012; and Karr et al., 2012). These methods are known

to be inefficient, do not reliably converge to the best solutions,

and do not provide reliable information about the parameter

uncertainty.

To infer parameters of stochastic processes, approximate

Bayesian computation (ABC) algorithms have been developed

(Beaumont et al., 2002). These ABC algorithms circumvent

the evaluation of the likelihood function by assessing the dis-

tance between summary statistics of measured and simulated

data. If the distance measure exceeds a threshold, the param-

eter values used to simulate data are rejected; otherwise, they

are accepted. This concept can be used in rejection sampling

(Beaumont et al., 2002), but as the acceptance rates are gener-

ally low, Markov chain Monte Carlo sampling (Marjoram et al.,

2003; Sisson and Fan, 2011) and sequential Monte Carlo

methods (Sisson et al., 2007; Toni and Stumpf, 2010; Toni

et al., 2009) are usually more efficient. If the summary statistics

are informative enough, samples obtained using ABC algo-

rithms converge to the true posterior as the threshold

approaches zero (Marin et al., 2014). A key advantage of

ABC methods is that, in contrast to other search strategies

(Adra et al., 2011; Karr et al., 2015), information about param-

eter and prediction uncertainties is obtained along with the

calculation of good parameter estimates.

ABC algorithms have been used in a multitude of systems

biology applications for the analysis of intra-cellular processes,

e.g., gene expression and signal transduction (Liepe et al.,

2013; Lillacci and Khammash, 2013; Loos et al., 2015; Toni

et al., 2011, 2009). Furthermore, a few studies considered cell

proliferation and cell movement using cellular Potts models (Sot-

toriva et al., 2015; Sottoriva and Tavaré, 2010) or agent-based
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models (Johnston et al., 2014). In a recent study, ABC methods

have even been used for the model-based analysis of intra-

tumoral heterogeneity in colorectal cancer (Sottoriva et al.,

2015). However, the inference of the hybrid stochastic-determin-

istic models of multi-scale processes has, to the best of our

knowledge, not been reported. This may be because the number

of necessary simulations is large, as is the computation time for

individual simulations. For computationally less intensive prob-

lems, parallelization on small computing clusters (Feng et al.,

2003; Jabot et al., 2013) and graphical processing units (GPUs)

(Liepe et al., 2010) has been used to address such computational

bottlenecks. Here, we move one step further—namely, to high-

performance computing.

In this article, we introduce a parallel approximate Bayesian

computation sequential Monte Carlo (pABC SMC) algorithm.

This extension of the ABC SMC method facilitates the use of a

broad spectrum of multi-core systems and computing clusters,

thereby enabling the analysis of computationally demanding sto-

chastic multi-scale models, including hybrid discrete-continuum

models. Convergence of the pABC SMC sampling to the poste-

rior distribution is ensured by sample sequence preservation.

A crucial reduction of computation time is achieved using early

rejection, a method implemented in several available ABC algo-

rithms (see, e.g., Liepe et al., 2010). The pABC SMC algorithm

facilitates parameter inference for thewidely used class of hybrid

discrete-continuum models. Hybrid discrete-continuum models

are highly flexible, as they combine discrete agent-based

descriptions of individual cells with continuous PDE-based

description of extracellular substances.

We use the algorithm to analyze tumor spheroid growth in

droplets (Figure 1A), an increasingly popular experimental model

for anti-cancer drug screening (Carver et al., 2014; Kwapiszew-

ska et al., 2014; Lemmo et al., 2014). The variability and

morphology of tumor spheroids depend on various factors,

including nutrition concentrations, and can be assessed using

growth curves and immunostaining data (Figure 1B). Immuno-

staining data revealed that tumor spheroids usually consist of

proliferating, quiescent, and necrotic cells. The cell fate depends

on the microenvironment and intra-cellular processes, such as

energy metabolism. Accordingly, multi-scale models describing

the time-dependent spatial structure as well as properties of in-

dividual cells are required, which renders this an ideal test case

for the pABC SMC algorithm. We consider a hybrid discrete-

continuous model (Jagiella, 2012) for describing tumor spheroid

growth. Thismodel simulates up to 106 cancer cells on a growing

three-dimensional domain. The individual cancer cells are

modeled as discrete, interacting agents with intra-cellular infor-

mation processing. The dynamics of extracellular substances,

such as nutrition and extracellular matrix, are captured by reac-

tion-diffusion equations. These reaction-diffusion equations are

coupled with the agent dynamics. Experimental data and model

simulations are illustrated in Figures 1C and 1D. In contrast to

previous publications relying on tedious manual parameter tun-

ing (Jagiella, 2012; Jagiella et al., 2016), the fully automated

pABC SMC algorithm provides both parameter and prediction

confidence bounds. Our study provides a proof-of-principle

that the parameter inference for computationally demanding sto-

chastic models of multi-cellular processes is feasible, using

tailored, scalable estimation methods.
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Figure 1. Experimental Analysis and Modeling of Tumor Spheroid Growth
(A) Schematic of 3D tumor spheroid culturing in hanging drops. Individual points indicate cells.

(B) Illustration of measurement data available for tumor spheroids: growth curves and marker staining. The imaging data are preprocessed, and the average

staining for different distances from the spheroid rim is quantified.

(C and D) Shown here are (C) a representative imaging dataset (collected in Jagiella, 2012) and (D) illustrative model simulation for a glucose concentration (G) of

25 mM and an oxygen concentration (O2) of 0.28 mM.
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Figure 2. Illustration of pABC SMC Methods

The pABC SMC method uses a master/slave structure. The master node generates the parameter candidates, submits the jobs, collects the results, and

proceeds to the next generation. Slave nodes simulate themodel for different parameter values, evaluate the distancemeasure, and return the results. The results

for individual simulations are stored in the order they have been submitted.
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RESULTS

Implementation of pABC SMC Algorithms
To facilitate parameter estimation for computationally demanding

hybrid discrete-continuum models, we implemented the pABC

SMC algorithm illustrated in Figure 2. ABC methods rely on

Bayes’s theorem and approximate the posterior distribution

pðq j DÞfpðD j qÞpðqÞ of the parameter q given the data D. To

circumvent the evaluation of the likelihood pðD j qÞ, measured

and simulated data are compared directly using distance mea-

sures dð,; ,Þ. A parameter value q is accepted if the distance be-

tween a corresponding stochastic simulation and the data does

not exceed a threshold ε; otherwise, the parameter vector q is re-

jected. To capture the posterior distribution, stochastic simula-

tions formanyproposedparameter values qhave tobeperformed,

yielding a sample of accepted parameters fqðiÞgNi =1. Straightfor-

ward but slow approaches sample the parameter values q

from the prior pðqÞ. To accelerate convergence, the ABC SMC

algorithm constructs a series of distributions for decreasing

threshold εt, with ε0 > ε1 >.> εT�1. The sample fqðiÞt gNi =1 obtained

for the threshold εt is called generation t. For εT�1/0, the final

sample resembles the posterior distribution.

We parallelized the ABC SMC methods (Toni and Stumpf,

2010; Toni et al., 2009) by performing the simulation of the cur-

rent generation t in parallel. For each threshold εt, a sample of

at least N accepted parameter values is required. To obtain

this sample, the pABC SMC algorithm draws parameter candi-

dates from the distribution approximation obtained for genera-

tion t � 1, simulates the hybrid discrete-continuum model,

and evaluates the distance between simulation and data. The

computationally inexpensive generation of parameter candi-
4 Cell Systems 4, 1–13, February 22, 2017
dates is performed in the master node, while simulation and

objective function evaluation is parallelized using a large number

of slave nodes. To accelerate the parameter estimation further,

we intertwined simulation and distance measure evaluation.

We used sums of weighted least-squares type distance mea-

sures, which strictly increase over time. If the objective function

threshold εt was already reached for the data points up to the

current simulation time, the simulation was stopped, and the cor-

responding parameter vector was rejected. This early rejection

procedure reduced the computation time by avoiding unneces-

sary calculations.

The proposed algorithm is suited for a large number of infra-

structures (multi-core, GPU, cluster, etc.). We implemented

it on a queue-mediated cluster architecture with over 1000

cores. A master is running the ABC SMC routine and is

outsourcing the computation time and memory-consuming

model simulation and distance evaluation to slave nodes.

The work distribution is handled by a queue (Univa Grid

Engine). The number of queued model evaluations is kept

constant at m; i.e., finished jobs are immediately replaced by

new jobs. The evaluation results are stored in the same order

as the corresponding jobs are submitted. As soon as the first J

jobs are finished containing N accepted parameters, the

master stops all still-running/queued evaluations and con-

tinues with the next generation. We note that it was important

to not simply wait for N samples to be accepted, but we had to

use N in the first J finished jobs. Otherwise, the parameter

samples would have been biased toward regimes for which

the computation time was lower. For details regarding the

ABC SMC method and our parallel implementation, we refer

to the STAR Methods.
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Model andExperimental Data of TumorSpheroidGrowth
To study the capabilities of the parallelized ABC SMC methods,

we exploited it for the data-driven modeling of tumor spheroids

formed by SK-MES-1 cells. In droplets, SK-MES-1 cells form

spheroids with a rich spatial structure, including a proliferative

rim and necrotic core, which resemble avascular tumors. These

tumor spheroids are more suited for the analysis of drug delivery

and drug response thanmono-layer cultures (Carver et al., 2014;

Kwapiszewska et al., 2014; Lemmo et al., 2014). However, an un-

derstanding of the underlying mechanisms requires quantitative

mechanistic models. In the following, we consider 2D and 3D

hybrid discrete-continuum models, which we developed previ-

ously (Jagiella, 2012). These models exploit an agent-based

description for individual cells and a PDE-based description for

extracellular metabolites and extracellular matrix (ECM) compo-

nents. The intra-cellular regulation of cell division and of cell

death is captured by a combination of continuous-time Markov

chains and simple decision rules. The trajectories of the tumor

growth models are subject to stochastic fluctuations. In partic-

ular, during the initial growth phase, which is marked by low

cell numbers, stochastic simulations differ greatly. During later

phases with higher cell numbers, a self-averaging effect occurs.

Detailed descriptions of the models are provided in the STAR

Methods.

We considered experimental data for tumor spheroids

collected and processed by Jagiella et al. (2016). These experi-

mental data provide the fraction of proliferation and necrotic

cells, the relative ECM abundance, and the time-dependent

spheroid radius (Figure 1B) under up to four experimental condi-

tions, i.e., different oxygen and glucose concentrations (see

STAR Methods). The data reveal that proliferation is limited to

an outer rim, while cells further in the interior are mostly quies-

cent (Figure 1C). Furthermore, ECM abundance increases from

the outer border toward the interior. For details regarding the

experimental data and their evaluation, we refer to the original

publication (Jagiella et al., 2016).

For evaluation purposes, we also consider artificial data ob-

tained by simulating the model for the known parameter values

(STAR Methods). Figure 1D depicts a sequence of snapshots,

illustrating the time evolution of the model. The artificial data

closely resemble the aforementioned properties of the experi-

mental observations. Furthermore, we observe substantial

stochastic variability between realizations. This stochastic vari-

ability poses challenges and renders this model ideal for the

evaluation of our pABC SMC algorithm.

Performance and Reliability of the pABC SMC Algorithm
Given the challenges of statistical inference for stochastic

models, we asked whether the pABC SMC algorithm can fit

hybrid discrete-continuum models and whether it provides reli-

able parameter estimates. To address this, we used the 2D

model and the corresponding artificial dataset. A single experi-

mental condition without nutrition limitation was considered,

implying that cell proliferation depends exclusively on the avail-

able space and the ECM abundance. Parameters used to simu-

late the artificial data and to specify of the experimental condition

are provided in the STAR Methods. For the estimation, the pa-

rameters qi were restricted to the range 10�5– 100 to resemble

the common lack of prior information. The sum of weighted
least-squares was used to measure the distance between

measured data and simulation, using the SD of each data point

as weighting.

A visualization of the behavior of the pABC SMC algorithm is

provided in Figure 3. We found that the pABC SMC algorithm

yielded excellent fits to the artificial experimental data (Fig-

ure 3A). Although not a single member of the first generation of

the sequential scheme provided a satisfactory fit, after 35 gener-

ations, the model simulations closely resembled the observed

data. After 35 generations, the normalized fitting error per data

point was below 1, which is what we expect for the true param-

eters (Figure 3B). For the subsequent generations, we observed

an acceptance rate for new parameter candidates below 5%

(Figure 3C), resulting in a rapid increase of the cumulative num-

ber of function evaluations (Figure 3D). This was not surprising,

as we found in an independent evaluation that, even for simula-

tions with the true parameter values, a small fraction of the

stochastic simulations was accepted. Over the different genera-

tions, the parameter sample successively contracted around the

true parameter used to generate the artificial data (Figure 3E).

Hence, we concluded that the pABC SMC algorithm worked.

While the final confidence intervals for most parameters were

narrow, for the critical ECM concentration, ediv, we observed a

relatively large uncertainty. This indicated a weaker dependence

of the observables on the critical ECM concentration than on the

other parameters. All these findings were reproducible across

several runs of the method.

In total, for parameter estimation, we used a queue with

C = 100 cores and required N = 100 accepted samples per gen-

eration. An individual simulation of the 2D model took, on

average, about 0.1 min, resulting in an overall computation

time of roughly 104 CPU hr. Accordingly, parallelization was

essential for obtaining results in a reasonable amount of time.

As the sample size N influences the convergence of the estima-

tors, as well as the computation time, we studied its impact on

the approximation of the posterior distribution pðq j DÞ. We found

that, for this estimation problem, N = 100 is sufficient, as similar

results were observed for large sample sizes, e.g., N = 1,000. A

significant decrease of the sample size belowN = 100 resulted in

convergence problems and biased results. Potential causes are

the limited coverage of the distribution and degeneracy of the

perturbation kernel (see STAR Methods). The computation time

increased linearly with N, which was expected.

Our analysis of artificial data verified that the pABC SMC

algorithm facilitates the reliable inference of hybrid discrete-

continuum models. The algorithm worked robustly despite the

stochastic nature of the problems and parallelization rendered

its application tractable for complex simulation models.

Consistency of Parameter Estimates for 2D and 3D
Models
The positive results for the artificial data suggested that the

pABC SMC algorithm might be suited for the application to

experimental data. To evaluate this, we considered the afore-

mentioned published experimental data for SK-MES-1 cells

(Jagiella et al., 2016). These data were already modeled

using the hybrid discrete-continuum model that we considered

in the previously published article. However, in that previous

work, parameters were determined using a combination of
Cell Systems 4, 1–13, February 22, 2017 5



Figure 3. Evaluation of pABC SMC for Artificial Data

(A) Artificial data and fits for generations 0, 4, 10, 19, 32, and 47. For the fit, the 90% confidence intervals of the accepted stochastic simulations are depicted.

std, SD.

(B) Distance between simulation and data for accepted samples of different generations. The line of medians is provided as reference.

(C) Acceptance rate for different generations. The seemingly low acceptance rate for generation 13 is caused by a single stochastic simulation that took very long,

delaying the progression to the next generation.

(D) Cumulative number of function evaluations for the different generations of the pABC SCM algorithm.

(E) 2D scatterplots of parameter samples for different generations and true parameter. For all parameter pairs, the 90% confidence regions are depicted. The

colors in the different subplots are matched, and the corresponding generations are indicated by arrows.

Please cite this article in press as: Jagiella et al., Parallelization and High-Performance Computing Enables Automated Statistical Inference of Multi-
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manual search and parameter sweeps. Although neither

optimization nor uncertainty analysis had been performed, we

considered the parameters derived in Jagiella et al. (2016) as

reference parameters,qref, and restricted our search domain

to q˛½10�2,qref;102,qref�.
The 3D model captured the dynamics of up to 106 cells and

required the simulation of a 3D system of coupled PDEs. A single

simulation of the 3D model at the reference parameters for all

four experimental conditions required 3–4 CPU days. This

computation time posed a serious challenge for parameter esti-
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mation and rendered parallelization essential. To assess the

feasibility of inference using the 3D model, we first considered

only the experimental condition without nutrition limitations

(25 mM glucose and 0.28 mM oxygen). In this condition, the

model simplified as the PDEs for glucose and oxygen concentra-

tions could be disregarded. This reduced the computation time

for the 3D model for this condition to roughly 1 CPU hr. We

used the pABC SMC algorithm to estimate the parameters of

the 3D model in the reduced setting. In addition, we estimated

the parameter of the 2D model, for which simulation required



Figure 4. Comparison of Inferences Using 2D and 3D Models for Experimental Data

(A) Experimental data and fits for the 2D and 3D models for generations 2, 8, 14, 19, and 25. For the fit, the 90% confidence intervals of the accepted stochastic

simulations are depicted. std, SD.

(B) Distance between simulation and data for accepted samples for different generation. The median is provided as reference.

(C) Acceptance rate for different generations.

(D) Cumulative number of function evaluations.

(E) Confidence intervals for parameters of the 2D model and the 3D model for the final generation. The horizontal bars represent the confidence intervals cor-

responding to different confidence levels (80%, 95%, and 99%), and the line indicates the median.

The colors in the different subplots are matched and the corresponding generations indicated by arrows.
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roughly 0.1 CPU min, and asked how similar the estimation re-

sults obtained using 2D and 3D models are for this setting. The

estimation results are summarized in Figure 4.

The evaluation of the estimation results revealed that the 2D

model and the 3D model could be fitted to the experimental

data using our pABC SMC algorithm (Figure 4). This verified

the practical applicability of the method and the feasibility of sta-
tistical inference for computationally intensive multi-scale

models. Both the 2D and 3Dmodels allowed for a good descrip-

tion of the experimental data (Figure 4A). Furthermore, the

convergence properties for both models were compatible (Fig-

ure 4B), while the acceptance rates and the cumulative number

of function evaluations were slightly better for the 3D model

(Figures 4C and 4D). As the simulation of the 2D model was,
Cell Systems 4, 1–13, February 22, 2017 7
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however, almost two orders of magnitude faster than for the 3D

model, the parameter estimation for the 2D model was substan-

tially faster. The difference in computation time appeared,

although the computationally most intensive simulations of the

3D model were avoided by the early rejection methods.

While the 3D model described a spheroid, the 2D model

essentially assumed symmetry in the third direction and, instead,

described a cylinder. Given the difference, we were surprised

that the parameter estimates were in good agreement. The pos-

terior medians, as well as the confidence intervals, are similar

(Figure 4E). This implied that, for high nutrition concentrations,

the parameters of the 3D biological process could be inferred

using a 2D model.

Multi-experiment Data Integration
Given the feasibility of parameter estimation for single experi-

mental conditions, we considered the problem of model-based

data integration across experimental conditions. We used previ-

ously measured growth curves and histological information

(Jagiella et al., 2016) for up to four experimental conditions

with differing glucose and oxygen concentrations. For the lower

glucose and oxygen concentrations, cells in the core of the

spheroid might suffer nutrition limitations. Therefore, we used

the hybrid discrete-continuum model, which captures the local

glucose, oxygen, lactate, and cell debris concentrations. In line

with the results presented in the previous section, we used

the 2D model to reduce the computational complexity. This

complexity, however, remained substantial as (1) the simulation

of the 2D model for all four conditions under the altered setting

takes hours and as (2) the number of unknown parameters in-

creases from 7 to 18. The latter required an increased sample

size, N = 1000 as found by preliminary evaluations.

We performed the parameter estimation using our pABC SMC

algorithm on a cluster with over 1000 cores. The calculation ran

for roughly 1 month, corresponding to an overall computation

time of almost 106 CPU hr. Accordingly, parameter estimation

for this multi-scale and multi-cellular model would not have

been possible without massive parallelization. The fit achieved

using the Big Computing approach closely resembled the

measured growth curves (Figure 5A) and immunostaining data

(Figure 5B) for all experimental conditions. Among others, the

slow spheroid growth under low glucose or oxygen concentra-

tions (conditions III and IV) (Figure 5A) and the altered necrosis

profile (conditions II versus III) on day 17 (Figure 5B) and day

24 (Figure S1) were captured. The predictions for proliferation,

necrosis, and ECM profiles for conditions under which they

have not been measured (conditions III and IV) appeared

plausible.

Our results showed that the 2D model can resemble the data

measured in the 3D system under four different experimental

conditions. Previously, however, we only verified the consis-

tency of the 2D and 3D models under high nutrition concentra-

tions. To assess whether the results also hold in this more

complex scenario, we subsampled the parameter sample ob-

tained using the 2D model and used the subsample obtained

to simulate the 3D model. The simulation results for the 3D

model, indeed, closely resembled the experimental data and

the fitting results of the 2D model. Only the saturated growth

observed under conditions II and III were mis-matched. Notably,
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however, the measurement uncertainty in this regime was high,

and the experimental data showed, counterintuitvely, stronger

growth under lower glucose (condition I versus condition II) con-

centrations after 30 days. This suggests that the mis-match

between model and experiment likely reflects the fact that the

experiment was conducted in an atypical biological regime

rather than a problem with the model per se.

To assess the uncertainty of the individual model parameters,

we analyzed the final parameter sample. Although the parameter

dimension increased, the parameter uncertainties are compara-

tively small (Figure 5C). In addition, the first two principal compo-

nents of the parameter sample capture most of the variability

(Figure 5D), implying that all but two directions in parameter

space are well determined. The good parameter identifiability

was achieved by integrating multiple experimental conditions

and data types. We evaluated how the parameter identifiability

depends on the availability of individual readouts, e.g., the frac-

tion of necrotic cells. To achieve this, we re-ran the pABC SMC

algorithm for the 2Dmodel presented in the previous sectionwith

different reduced datasets. The analysis revealed that, already,

the removal of a single readout would result in large parameter

and prediction uncertainties (Figure S2).

Uncertainty-Aware Prediction of Tumor Spheroid
Growth
Beyond the integration of experimental data formeasured exper-

imental conditions, statistical inference of mechanistic models

facilitates uncertainty-aware predictions. To illustrate this, we

studied tumor spheroid growth behavior for a wide range of

glucose and oxygen concentrations using the 2D model. Among

others, we considered the depth of the proliferating zone, the

depth of the viable zone, and the initial growth rate. To account

for stochasticity and parameter uncertainties, stochastic simula-

tions are performed for the parameter sample obtained by the

pABC SMC algorithm.

The analysis of stochastic simulations for a broad spectrum of

nutrition concentrations indicated the existence of three growth

regimes. For glucose concentrations < 0.1 mM, no growth is

observed. The depth of the proliferating zone and the initial

growth rate were both zero (Figures 6A and 6B), and cells were

undergoing necrosis. For glucose concentrations > 0.1 mM

and oxygen concentrations < 0.1 mM, the model predicted an

initial spheroid growth rate of 2 � 5 mm/d. The initial growth

rate and the depth of the proliferating zone slightly increased

with the glucose concentration but were essentially independent

of the oxygen concentration, indicating anaerobic growth.

For glucose concentrations > 0.1 mM and oxygen concentra-

tions > 0.1 mM, the model predicted initial growth rates of up

to 15 mm/d. In this aerobic growth regime, the initial growth

rate and the depth of the proliferating zone depended strongly

on the glucose concentration but were again almost indepen-

dent of the oxygen concentration. Accordingly, the oxygen

concentration only controls the switch between anaerobic and

aerobic growth, a result of the metabolic model embedded in

the individual cells.

To assess the reliability of these predictions, we evaluated

the SD of the growth properties considered. We found that the

variability of the model predictions—this considered stochastic-

ity and parameter uncertainty—was small compared to the



Figure 5. Multi-experiment Data Integration

(A andB) Shown here are (A) growth curves and (B) immunostainings on day 17. Experimental data, the fitting result for the 2Dmodel, and simulation results for the

3Dmodel are depicted. The simulation results for the 3Dmodel were obtained using the parameter sample determined by fitting the 2Dmodel. For the 2D and 3D

models, the 90% percentile intervals of the fitting/simulation results are depicted. G, glucose. std, SD.

(C) Confidence intervals for parameters of the 2D model for the final generation. The vertical bars represent the confidence intervals corresponding to different

confidence levels (80%, 95% and 99%), while the line indicates the median.

(D) Contribution of principal components to the overall variance in the parameter sample.
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Figure 6. Model-Based Prediction of

Growth Behavior for Different Nutrient Con-

ditions

(A–D) In (A and B), the median of the simula-

tion results are shown, providing a prediction.

(C and D) Inter-quantile range of simulation results,

providing the prediction uncertainty resulting from

parameter uncertainty and stochastic variability.

The prediction and prediction uncertainties are

visualized for (A and C) depth of proliferating zone

on day 17 and (B and D) median growth rate in the

linear regime. The shading indicates the values of

the median and inter-quantile range obtained from

50 simulation runs of the 2D models for parame-

ters sampled from the final generation. The dots

indicate the nutrition combinations of the experi-

mental data used for fitting.
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changes observed across the studied range of nutrition condi-

tions (Figures 6C and 6D). This was also the case for nutrition

conditions that were far from the conditions for which experi-

mental data were collected. This analysis demonstrates that

not only are our model’s parameters defined with high confi-

dence, but its predictions are also. In addition to the dependence

of the growth behavior on the oxygen concentration, we found

several interesting features that are predicted with similar exac-

titude. For example, in the anaerobic regime, increasing the

glucose concentration results in an increase of the depth of the

proliferating zone before the depth of the viable zone increases

(Figures S3A and S3B). Thus, the fitted model provided testable

predictions (with uncertainty bounds) formodel validation in vivo.

DISCUSSION

In the past, quantitative multi-scale models have mostly been

obtained by data-driven modeling of individual scales and sub-

sequent coupling (Chew et al., 2014; Hayenga et al., 2011; ten

Tusscher et al., 2004). While this approach is usually computa-

tionally less demanding than parameter estimation for multi-

scale models, for certain classes of multi-scale couplings, it is

not applicable, and consistency as well as optimality cannot

be ensured (Hasenauer et al., 2015). In addition, in many studies,

experimental data for different submodels have been collected

under different experimental conditions, raising questions of

model validity. To overcome these limitations, methods for

integrated statistical inference need to be adapted for the chal-

lenges faced in multi-scale modeling. In this article, we propose

a pABC SMC algorithm that provides reliable confidence inter-

vals in agreement with theory on ABC (see, e.g., Marjoram

et al., 2003; Sisson et al., 2007; Toni et al., 2009 and references

therein). The application of the method to 2D and 3D hybrid
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discrete-continuum models of tumor

spheroid growth demonstrated its practi-

cable applicability and scalability with

respect to the number of parameters

and experimental conditions. To the

best of our knowledge, this study pro-

vided the first proof-of-principle for

automated statistical inference for com-
putationally demanding stochastic multi-scale models in sys-

tems biology.

The pABC SMC algorithms that we implemented worked effi-

ciently for the examples considered; however, a variety of

aspects might be improved. Sophisticated local perturbation

kernels (Filippi et al., 2013) and optimized threshold schedules

(Silk et al., 2013) can reduce the required number of function

evaluations and improve the convergence. Moreover, methods

to adjust the effective sample size online might improve the

robustness of the methods. For the considered inference prob-

lems, surprisingly low sample sizes proved to be sufficient. For

problems with higher dimensional parameter spaces and poste-

rior distribution with complex shapes, including multiple modes,

a substantially larger number of samples will be required. These

improvements will facilitate the analysis of even larger multi-

scale models, e.g., models for the study of intra-tumor heteroge-

neity in large lesions (Waclaw et al., 2015).

Beyond parameter estimation, many applications require the

comparison of competing hypotheses, also known as model

selection. Similar to the standard ABC SMC algorithm (Toni

and Stumpf, 2010), pABC SMC can be used for model selection

by including the model index as an additional (discrete) variable.

While this does not require any changes to the implementation,

the choice of appropriate distance measures and summary sta-

tistics becomes even more critical (Robert et al., 2011). As for

multi-scale models, the selection of important features of the

data and their weighting is non-trivial; methods for the optimal

selection of summary statistics might be used (Nunes and Bald-

ing, 2010). The evaluation of the method on the experimental

data revealed that the weighted least-squares method, with

weights determined from the SDs of experimental replicates,

does not work reliably, as the number of replicates is usually

too small to obtain robust estimates of the SDs. Results obtained
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using the dynamic range of the signal turned out to be more

robust. The improvements on the methodological side need to

be complemented by the development of software packages

and standards to improve the reproducibility, the transparency,

and the exchange of models further.

In basic research, as well as clinical applications, a multitude

of tissue samples are collected and analyzed. This provides a

wealth of experimental data, which is mostly analyzed using sta-

tistical tools. The measured data are, however, associated to

mixtures of different, interacting cell types arranged in complex

morphologies. This renders a simple analysis of the resulting

averages problematic and, in some situations, even misleading

(Altschuler and Wu, 2010; Hasenauer et al., 2014; Intosalmi

et al., 2016). Multi-scale models combined with advanced statis-

tical inference methods can contribute to the deconvolution and

subsequentmechanistic interpretation of the data. They allow for

the integration of prior knowledge on intra- and inter-cellular

processes from available databases, such as STRING (France-

schini et al., 2013), KEGG (Kanehisa and Goto, 2000), and

Reactome (Croft et al., 2011), as well as the integration of multi-

ple data sources. In addition, mechanistic/first-principles

modeling on different scales can effectively reduce the number

of parameters, as macroscopic properties usually originate

directly from microscopic properties (Kevrekidis and Samaey,

2009). This turns data-driven, multi-scale modeling into an

enabling technology.

The relevance of multi-scale and multi-cellular models in sys-

tems biology is steadily increasing (Dada and Mendes, 2011;

Hunter and Borg, 2003; Martins et al., 2010; Walpole et al.,

2013); however, the methods for automated statistical inference

are lagging behind. We introduced the pABC SMC algorithm, the

first and only method to allow parameter estimation for detailed

stochastic multi-scale models. The pABC SMC algorithm is not

only an improvement over existing ABCmethods but it also actu-

ally renders a new class of problems solvable by exploiting high-

performance computing. We demonstrated this for a hybrid

discrete-continuum model of tumor spheroids with single-cell

resolution. The pABC SMC algorithm is applicable to a broad

classes of multi-scale models and provides novel insights via

the consistent integration of data from multiple experiments

and measurement devices. In addition, by eliminating the need

for error-prone manual parameter tuning and the bias of individ-

ual researchers, the proposed method will improve the repro-

ducibility of multi-scale modeling studies. This renders the

pABC SMC algorithm and the extension of it valuable for the

analysis of a broad class of modeling projects in quantitative

biology. This can result in a paradigm shift toward data-driven

multi-scale modeling and could have a considerable impact on

computational modeling.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Growth curves and radial profiles of histological stainings Jagiella et al., 2016 https://github.com/ICB-DCM/pABC-SMC

Software and Algorithms

MATLAB (including the Statistics Toolbox) Mathworks https://www.mathworks.com/

Implementation of the 2D and 3D agent-based model of

tumor spheroid growth

Jagiella et al., 2016 https://github.com/ICB-DCM/pABC-SMC

Grid-specific implementation of the parallel Approximate

Bayesian Computing Sequential Monte Carlo (pABC SMC)

This paper https://github.com/ICB-DCM/pABC-SMC
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for software and algorithms should be directed to the Lead Contact Jan Hasenauer (jan.

hasenauer@helmholtz-muenchen.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Growth curves and histological imaging data
We study growth curves and histological imaging data collected under up to four experimental conditions with different glucose and

oxygen concentrations. The data have been collected, processed and published by Jagiella et al. (2016).

The growth curves provide the measured radius of spheroids rmðtg;kÞ at time points tg;1;.; tg;ng. The histological imaging data

provide the spatially resolved fraction of proliferating cells, necrotic cells and the extracellular matrix intensity. To obtain informative

summary statistics, we computed the average fraction of proliferating and necrotic cells as well as the average extracellular matrix

intensity at different distances d1;.;dnd from the spheroid rim. This yields the fraction of proliferating and necrotic cells, pmðth;k ;dlÞ
and nmðth;k ;dlÞ, as well as the extracellular matrix intensity, emðth;k ;dlÞ, at distances d1;.;dnd and time points th;1;.; th;nh. The

superscript m indicates a measured value while the subscripts g and h indicates growth curve and histological data, respectively.

Accordingly, the number of measured time points for the growth curves and the histological experiments are denoted by ng
and nh. In addition, the number of distances is denoted by nd.

For the histological imaging data at most two replicates were available. Accordingly, the estimates of the standard deviations

included in the figures were unreliable and were not used for statistical inference.

METHOD DETAILS

Hybrid discrete-continuum model for tumor spheroid growth
We consider a stochastic multi-scale model describing in-vitro tumor growth. The model exploits an individual-based description of

tumor cells and a continuum-based description of key metabolites, extracellular matrix and waste material from cellular debris of

necrotic cells. Individual cells are modeled by agents which can sense their environment, move, divide and die. Furthermore, these

agents interact directly via cell-cell contact and indirectly via uptake/secretion of extracellular substances. The dynamics of extra-

cellular matrix, the key metabolites and waste material are modeled using partial differential equations. The model we consider is

based on our own previous work (Jagiella, 2012) and will be introduced in the following.

Notation: H½x� denotes the Heaviside step function evaluated at x, with

H½x�=
�
0 for x < 0;
1 for xR0:

Furthermore, we denote the second derivative with respect to spatial coordinate x – the Laplace operator – by Vx.

Individual-based description of single-cell dynamics
The agent-based model considers proliferating, quiescent and necrotic cells populating a static unstructured lattice. Each lattice site

can be occupied by at most one cell. The behavior of a cell located at site x can depend on the time-dependent local concentrations

of extracellular matrix eðt; xÞ, glucose gðt; xÞ, oxygen oðt; xÞ, lactate lðt; xÞ, adenosine triphosphate aðt; xÞ and waste material from

debris of necrotic cells wðt; xÞ as well as the distance Lðt; xÞ to the next vacant lattice site.
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Proliferating cells progress in a discretised cell cycle with md stages, m= 1;.;md. The transition from stage m to stage m+ 1

occurs with propensity

kdiv;mðt; xÞ= kdivmaxmd

�
1� 1

2
H
�
odiv � oðt; xÞ�� �1� 1

2
H
�
wðt; xÞ �wdiv

��
;

with maximal division rate kdivmax, oxygen division threshold odiv and waste division threshold wdiv. This transition propensity increases

with the availability of oxygen and deceases in the presence of waste. As stage m=mg is reached, the cell grows and occupies an

adjacent lattice site. If no adjacent lattice site is vacant, the neighboring cells are pushed along the shortest path toward the closest

vacant lattice site. For m=md, the cell divides into two daughter cells. An individual daughter cell decides to proliferate with

probability.

An individual daughter cell decides to proliferate with probability

preðt; xÞ= exp

�
� Lðt; xÞ

Ldiv

�
H
�
eðt; xÞ � ediv

�
H
�
kaðt; xÞ � kdiva

�
H
�
lðt; xÞ � ldiv

�
H½nw;o;max � nw;oðt; xÞ�

and otherwise becomes quiescent. Proliferating daughter cells start in the first cell cycle stage, m= 1. The probability to become a

proliferating cell depends on the distance to the next free lattice side Lðt; xÞ, the local concentrations of extracellular matrix eðt; xÞ, the
local concentration of lactate lðt; xÞ, the ATP synthesis rate kaðt; xÞ= 2qgðt; xÞ+ ð17=3Þqoðt; xÞ as well as on the time the cell was

deprived of oxygen or exposed to waste material nw;oðt; xÞ. Parameters are the division depth Ldiv, the ECM division threshold

ediv, the lactate division threshold ldiv, the ATP synthesis division threshold kdiva as well as the maximum number of cell cycles under

waste exposure/oxygen deprivation nw;o;max. The time of oxygen deprivation and waste exposure is calculated as

nw;oðt; xÞ=
Z t

0

1� H
�
wdiv �wðt; xðtÞÞ�H�odiv � oðt; xðtÞÞ�dt

in which xðtÞ denotes the time-dependent spatial location of the cell located at time t at position x. The ATP synthesis rate depends on

the local glucose and oxygen consumptions, qgðt; xÞ and qgðt; xÞ, which are defined below.

Quiescent cells are arrested in cell cycle but can reenter cell cycle and become proliferating cells with stagem= 1. A quiescent cell

attempts to reenter the cell cycle with propensity

kreðt; xÞ= kremax

�
1� 1

2
H
�
wðt; xÞ �wdiv

���
1� 1

2
H
�
odiv � oðt; xÞ��

and succeed with probability preðt; xÞ: The maximal reentry rate is denoted by kremax.

Necrotic cells emerge from proliferating and quiescent cells with propensity

knecðt; xÞ= knecmaxH
�
kneca � kaðt; xÞ

� lðt; xÞ2
lðt; xÞ2 + ðlnecÞ2

which at low ATP synthesis levels increases with the local lactate concentration. The ATP synthesis necrosis threshold and lactate

necrosis threshold are kneca and lnec, respectively. Necrotic cells are lysed with constant propensity klys and afterward removed from

the corresponding lattice site.

The initial cell population at time point t = 0 occupies all lattice sites within a sphere of radius Linit around the center of the unstruc-

tured lattice. The individual cells are quiescent with probability qinit and otherwise proliferating (with m= 1).

A detailed discussion of the transition propensities and reentering probabilities is provided in (Jagiella, 2012; Jagiella et al., 2016).

Precise numerical values for the thresholds (ediv, kdiva , kneca , ldiv, lnec,wdiv, nw;o;max, and Ldiv) at which cells change their behavior as well

as the properties of the initial cell population (Linit and qinit) are mostly unknown. The considered parameter regimes are pro-

vided below.

Continuum-based description of the dynamics of extracellular substances
The dynamics of the extracellular molecular species are governed by a system of partial differential equations (PDEs), accounting for

different processes. In the following, we describe the models for the individual extracellular substances and the coupling to the

single-cell dynamics.

Glucose and oxygen, the primary energy sources, are subject to diffusive transport and consumption,

vgðt; xÞ
vt

=DgVxgðt; xÞ � qgðt; xÞcðt; xÞ; with qgðt; xÞ=Vm;gðt; xÞ gðt; xÞ
gðt; xÞ+ km;g

;
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voðt; xÞ
vt

=DoVxoðt; xÞ � qoðt; xÞcðt; xÞ; with qoðt; xÞ=Vm;oðt; xÞ oðt; xÞ
oðt; xÞ+ km;o

;

with diffusion coefficientsDg andDo, maximum consumption rates Vm;gðt; xÞ and Vm;oðt; xÞ, andMichaelis-Menten constants km;g and

km;o. Cells lacking one of the metabolites, glucose or oxygen, were observed to compensate for it by upregulating the consumption

rates of the other one in order to keep the net production of ATP molecules constant. The maximum consumption rates of glucose

Vm;gðt; xÞ and oxygen Vm;oðt; xÞ account for these cross-dependencies,

Vm;gðt; xÞ=qmax
g

 
1�

 
1� qmin

g

qmax
g

!
oðt; xÞ

oðt; xÞ+ ko

!
;

� �

Vm;oðt; xÞ=qmax

o 1� 1� qmin
o

qmax
o

�
gðt; xÞ

gðt; xÞ+ kg

�
;

with consumption parameters qmin
g ; qmax

g ; kg; q
min
o ; qmax

o ; and ko: As glucose and oxygen are merely consumed by proliferating and

quiescent cells, we introduce the indicator function cðt; xÞwhich is 1 if a proliferating or a quiescent cell occupies x at time point t and

0 otherwise. The Michaelis-Menten constants and the consumption parameters are available from the literature (see (Jagiella, 2012)

and references therein) and listed below. Glucose and oxygen enter the simulation domain U from the surrounding medium and we

assume Dirichlet boundary condition, gðt; xÞ=g0 and oðt; xÞ=o0 for x˛vU. Initially, glucose and oxygen concentrations are equivalent

to this boundary conditions, gð0; xÞ=g0 and oð0; xÞ=o0 for x˛U.
Lactate is a by-product of the anaerobic energy metabolism. It is produced by proliferating and quiescent cells with rate

2ðqgðt; xÞ+minfqgðt; xÞ;1=6qoðt; xÞgÞ and diffuses. This leads to the model

vlðt; xÞ
vt

=DlVxlðt; xÞ+ 2

�
qgðt; xÞ+min

�
qgðt; xÞ;1

6
qoðt; xÞ

	�
cðt; xÞ:

We assume that lactate dilutes and zero Dirichlet boundary conditions, lðt; xÞ= 0 for x˛vU. At the start of the experiment, the lactate

concentration is zero everywhere, lð0; xÞ= 0 for x˛U.
Extracellular matrix is a collection of extracellular molecules. The extracellular matrix provides structural support for cells and is

involved in cell adhesion as well as cell-to-cell communication. The components of the extracellular matrix are synthesized and

secreted by cells and can be degraded. This yields the governing equations for the dynamics of the concentration of extracellular

matrix,

veðt; xÞ
vt

= kproe cðt; xÞ � kdege eðt; xÞ:

The production rate kproe and degradation rate kde eg are assumed to be constant. Note that the production rate kproe as well as

the division threshold kde eg is in units of intensity, as the absolute extracellular matrix concentration cannot be assessed experi-

mentally. The boundary and initial concentration of extracellular matrix are assumed to be zero, eðt; xÞ= 0 for x˛vU and eð0; xÞ= 0

for x˛U.
Wastematerials are produced by necrotic cells and absorbed by living cells with a constant rate. Accordingly, the evolution equa-

tion for the waste concentration is

vwðt; xÞ
vt

= kprow cnecðt; xÞ � kuptw wðt; xÞcðt; xÞ

with the indicator function cnecðt; xÞ being 1 if a necrotic cell occupies x at time point t and 0 otherwise. Waste production and uptake

rates are denoted by kprow and kuptw . As initially merely proliferation and quiescent cells are present, the initial waste concentration is

zero,wð0; xÞ= 0 for x˛U. Furthermore, as waste is not transported and as no cells are at the boundary, we use zero Dirichlet boundary

conditions, wðt; xÞ= 0 for x˛vU.
A detailed list of the boundary conditions for the different scenarios and experimental conditions is provided below.

Numerical simulation
To simulate the individual scenarios we exploit a hybrid approach. The cellular dynamics are simulated using Gillespie’s algorithm

(Gillespie, 1977), which accounts for the stochasticity of cellular processes and decision making. The PDEs governing the spatio-

temporal evolution of glucose, oxygen, lactate, extracellular matrix and waste concentration are discretised using finite differences

and solved using an implicit scheme.
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We use this hybrid simulation approach to study two scenarios:

Scenario I – no nutrition limitation: Glucose and oxygen are assumed to be available in excess. Hence, the propensities for the

cellular dynamics simplify and neither lactate nor waste material is produced. Extracellular matrix dynamics are still modeled using

the aforementioned PDE. Cells becoming quiescent are assumed to be permanently arrest in G0 phase. To capture this scenario,

different parameters are set to zero or infinity, effectively reducing the dimensionality of the PDE system.

Scenario I is studied in the section Performance and reliability of pABC SMC algorithm and section Consistency of parameter

estimates for 2D and 3D model of the main manuscript. The reference parameters used for the generation of artificial data and

the lower and upper bounds are used for statistical inference are:
NAME SYMBOL UNIT REFERENCE VALUE LOWER BOUND LOWER BOUND

Division rate kdivmax 1/h 4.17 3 10�2 10�3 10�1

Division depth Ldiv mm 102 101 103

Initial spheroid radius Linit mm 1.2 3 101 100 1.59 3 101

Initial quiescent cell fraction qinit - 7.5 3 10�1 10�5 100

ECM production rate kproe au/h 5.0 3 10�3 10�5 100

ECM degradation rate kdege 1/h 8.0 3 10�4 10�5 100

ECM division threshold ediv au 10�2 10�5 100
Scenario II – nutrition limitation: Glucose and oxygen are potentially limiting and all afore-described variables are simulated. Due

to more possible reasons for cells to end up in G0, we in addition allow them to reenter the cell cycle with rate kre. We considered four

experimental conditions with different glucose and oxygen concentrations.

Scenario II is studied in the sectionMulti-experiment Data Integration and sectionUncertainty-aware Prediction of Tumor Spheroid

Growth of the main manuscript. The lower and upper bounds for statistical inference are derived from the reference value qref pro-

vided by (Jagiella, 2012), qi;min = 10�23qrefi and qi;max = 1023qrefi and are:
NAME SYMBOL UNIT LOWER BOUND LOWER BOUND

Division rate kdivmax 1/h 3.2 3 10�4 3.2 3 100

Division depth Ldiv mm 1.3 3 100 1.3 3 104

Initial spheroid radius Linit mm 1.2 3 10�1 1.2 3 103

Initial quiescent cell fraction qinit - 7.5 3 10�3 7.5 3 101

ECM production rate kproe au/h 5.0 3 10�6 5.0 3 10�2

ECM degradation rate kdege 1/h 3.3 3 10�5 3.3 3 10�1

ECM division threshold ediv au 3.0 3 10�5 3.0 3 10�1

Cell cycle reentrance rate kremax 1/h 10�5 10�1

Necrosis rate knec 1/h 10�4 100

Lysis rate klys 1/h 10�4 100

ATP synthesis division threshold kdega mM/h 9.0 3 100 9.0 3 104

ATP necrosis division threshold kneca mM/h 6.0 3 100 6.0 3 104

Lactate division threshold ldiv mM 2.0 3 10�1 2.0 3 103

Lactate necrosis threshold lnec mM 2.0 3 10�1 2.0 3 103

Waste diffusion coefficient Dw mm2/h 103 107

Waste degradation rate kuptw 1/h 10�8 10�4

Waste division threshold wdiv mM 8.0 3 10�5 8.0 3 10�1

Maximum number of cell cycles under

waste exposure / oxygen deprivation

no,w,max - 8.0 3 10�2 8.0 3 102

Cell Systems 4, 1–13.e1–e9, February 22, 2017 e4



Please cite this article in press as: Jagiella et al., Parallelization and High-Performance Computing Enables Automated Statistical Inference of Multi-
scale Models, Cell Systems (2016), http://dx.doi.org/10.1016/j.cels.2016.12.002
For Scenario I (no nutrient limitation) and Scenario II (nutrient limitation), some model parameters are fixed to previously published

values:
NAME SYMBOL UNIT VALUE REFERENCE

Oxygen diffusion coefficient Do mm2/h 6.3 3 106 (Schaller and Meyer-Hermann, 2005)

Glucose diffusion coefficient Dg mm2/h 3.78 3 105 (Schaller and Meyer-Hermann, 2005)

Lactate diffusion coefficient Dl mm2/h 7.56 3 106 (Rong et al., 2008)

Glucose uptake km,g mM 6.8 3 10�2 (Jagiella et al., 2016)

ko mM 3.1 3 10�2

qmin
g mM/h 1.87 3 102

qmax
g mM/h 7.07 3 102

Oxygen uptake km,o mM 3.1 3 10�2 (Jagiella et al., 2016)

kg mM 1.0 3 10�1

qmin
o mM/h 1.2 3 102

qmax
o mM/h 3.07 3 102

Cycle steps until growth mg - 2 (Jagiella et al., 2016)

Cycle steps until division md - 10 (Jagiella et al., 2016)

Oxygen division threshold odiv mM 7.0 3 10�2 (Jagiella et al., 2016)
The boundary conditions for molecular species are.
MOLECULE SCENARIO I

SCENARIO II

CONDITION I CONDITION II CONDITION III CONDITION IV

Glucose, g * 25 mM 5 mM 1 mM 25 mM

Oxygen, o * 0.28 mM 0.28 mM 0.28 mM 0.07 mM

Lactate, l * 0 mM 0 mM 0 mM 0 mM

ECM, e 0 mM 0 mM 0 mM 0 mM 0 mM

Waste, w 0 mM 0 mM 0 mM 0 mM 0 mM
In Scenario I, glucose and oxygen are available in excess and there is no lactate. This is indicated by an asterisk, *

The hybrid discrete-continuum model for tumor spheroid growth is implemented in C++.

QUANTIFICATION AND STATISTICAL ANALYSIS

Parallel Approximate Bayesian Computing Sequential Monte Carlo method
For this study we developed a simple parallelised version of the ABC SMCmethod introduced by (Toni et al., 2009). The master node

runs the main routine which iteratively samples T generations, t = 0 to t = T � 1, with decreasing thresholds, ε0 >.> εT�1. To exploit

multiple cores, candidate parameters are evaluated in parallel. To ensure convergence of the sampling to the true posterior, the main

routine keeps track of the order of the candidate parameters. Only if the evaluation for the candidate parameters j = 1,., J is finished

and if these candidate parameters resulted in N accepted points, the algorithm continues with the next generation (Figure 2). The

pseudocode of the main routine is:

Main routine: pABC SMC

In: Number of generations T, number of samples per generation N and number of available computing cores C.

S1 Set the generation indicator t = 0.

Set the initial threshold ε0 =N.

S2 Set the candidate number j = 1.

S3 If number of jobs on queue is below or drops below C, determine from stored files the smallest candidate number J+ 1 for

which no results are available.
N N
e5 C
d If number of accepted candidates in the set j = 1;.; J is N, load parameters fqðiÞt�1gi =1 and unnormalized weights fwðiÞ
t�1gi = 1

and normalize the weights.

d Else, start new job on computing cluster by executing the subroutine getSampleðt; εt; j; fqðiÞt�1g
N

i =1; fwðiÞ
t�1g

N

i = 1Þ, set j = j + 1

and go to S3.
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S4 If t < T set t = t + 1, εt = fðfdðiÞ
t�1g

N

i = 1Þ and go to S2.

Else, stop algorithm and output results.

Out: Samples fqðiÞt gNi = 1 and weights fwðiÞ
t gNi = 1:

The main routine calls a subroutine which runs on a slave and initiates an individual sample. In generation t a sample from gener-

ation t � 1 is selected and perturbed using the perturbation kernel Ktðq j q0Þ to obtain a new candidate parameter. If a stochastic simu-

lation using these candidate parameters yields a distance d between simulation and data below the threshold εt, this candidate is

accepted. Otherwise, it is rejected. The pseudocode for this subroutine is:

Subroutine: Sampling and evaluation of candidate parameter, getSample (,)

In: Generation number t, threshold εt, candidate number j, sample fqðiÞt�1g
N

i = 1 and weights fwðiÞ
t�1g

N

i = 1 from previous generation.

S1 If t = 0, sample candidate parameter q� independently from the prior, q� � pðqÞ.
Else, sample q0 from the previous generation fqðiÞt�1g

N

i =1 with probabilities fwðiÞ
t�1g

N

i =1 and perturb it to obtain the candidate

parameter q� � Ktðq j q0Þ. If prior probability of q� is zero, pðq�Þ= 0, return to S1.

S2 Sample candidate dataset D* by simulating the model, D� � pðD j q�Þ.
S3 Create a file indicating the generation and candidate number, t and j, and write the parameter candidate q�, distance

dðD�;D;NÞ and weight

w
ðjÞ
t�1 =

8>><
>>:

1; if t= 0;

pðq�ÞXN

i = 1
w

ðiÞ
t�1 Kt



q
ðiÞ
t�1jq�

�; otherwise;
in the file created.
In order to increase computational efficiency, we stop themodel simulation in step S2 as soon as the threshold εt is reached. In this

case, dðD�;D;NÞ> εt is returned. This is possible as we use a distance dðD�;D; tsimÞ> εt which monotonically increases in the

simulation time tsim.

Distance measure
In this study, we consider artificial and measured data for

d the time-dependent spheroid radius, rmðtg;kÞ,
d the time-dependent fraction of proliferation cells at different distances from the spheroid rim, pmðth;k ;dlÞ,
d the time-dependent fraction of necrotic cells at different distances from the spheroid rim, nmðth;k ;dlÞ, and
d the time-dependent ECM intensity at different distances from the spheroid rim, emðth;k ;dlÞ.

The artificial and measured data are the averages over all available replicates.

We use as distance measure the sum of weighted least-squares,

dðD�;D; tsimÞ= 1

ng

Xng
k =1

H
�
tsim � tg;k

�
wr

k

�
rm
�
tg;k
� r

�
tg;k ; q

�2
n

+
1

nhnd

Xh

k = 1

H½tsim � th;k �
Xnd
l =1

wp
k;lðpmðth;k ;dlÞ � pðth;k ;dl; q

�ÞÞ2
n

+
1

nhnd

Xh

k = 1

H½tsim � th;k �
Xnd
l = 1

wn
k;lðnmðth;k ;dlÞ � nðth;k ;dl; q

�ÞÞ2
nh
+
1

nhnd

X
k = 1

H½tsim � th;k �
Xnd
l = 1

we
k;lðemðth;k ;dlÞ � eðth;k ;dl; q

�ÞÞ2

in which the simulation results for a proposed parameter q� are denoted by rðtg;k ; q�Þ, pðth;k ;dl; q
�Þ, nðth;k ;dl; q

�Þ and eðth;k ;dl; q
�Þ and

the weights are denoted bywr
k ,w

p
k;l,w

n
k;l, andwe

k;l. The sums in the individual lines penalize the error in the spheroid radius, the error in

the fraction of proliferation cells, the error in the fraction of necrotic cells and the error in the ECM intensity, respectively. All contri-

butions are normalized with the corresponding number of measurements to facilitate an equal weighting of different datasets. As the
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simulation is run till time point tsim, merely measurements with tk > tsim are considered. For tsim >maxftng; tnhg, all measurement data

are considered. The final distance is denoted by dðD�;D;NÞ.
For the artificial data, the number of replicates is sufficiently high to obtain robust estimates of the standard deviations of individual

observations. Accordingly, we set the weights to wr
k , w

p
k;l, w

n
k;l, and we

k;l to inverses of the squared standard deviations. For the

measured data the number of replicates is too small – for some settings only two – to compute robust estimates of the standard de-

viations. Therefore, we set the weights to inverse of the squared dynamic rang of the signal,

wr
k =

1

R2
r

with Rr = max
k0

rm
�
tg;k0
�min

k0
rm
�
tg;k0

;

wp
k;l =

1

R2
p

with Rp = max
k0 ;l0

pm
�
tg;k0 ;dl0

�min
k0 ;l0

pm
�
tg;k0 ;dl0


;

wn
k;l =

1

R2
n

with Rn = max
k0 ;l0

nm
�
tg;k0 ;dl0

�min
k0 ;l0

nm
�
tg;k0 ;dl0


;

we
k;l =

1

R2
e

with Re = max
k0 ;l0

em
�
tg;k0 ;dl0

�min
k0 ;l0

em
�
tg;k0 ;dl0


:

The use of these weights yields dimensionless residuals and should facilitate the comparability of residuals associate to different

observables.

Remark: ABCmethods are to a certain degree robust with respect to the choice of the distance measure. For a detailed discussion

we refer to (Toni et al., 2009; Toni and Stumpf, 2010; Nunes and Balding, 2010).

In parts of themanuscript, several experimental conditions are considered simultaneously. In this case, the overall distance d is the

sum of the distances for the individual conditions.

Adaptation of perturbation kernel and threshold
The efficiency of ABC SMCmethods depends critically on the perturbation kernels (Filippi et al., 2013) and the threshold sequences

(Silk et al., 2013). To facilitate the applicability of the algorithms to a wide range of inference problems, we implemented adaptive

methods. As perturbation kernel in generation t we use a multi-variate normal distribution,

Ktðq j q0Þ=Nðq j q0;StÞ;
with covariance matrix

St =N
� 2
nq + 4Ct�1

Here nq denotes the number of parameters and Ct�1 denotes the sample covariance matrix of generation t � 1,

Ct�1 =
1

N� 1

XN
i = 1



q
ðiÞ
t�1 �mt�1

�

q
ðiÞ
t�1 �mt�1

�T
with mt�1 =

XN
i = 1

q
ðiÞ
t�1:

The choice of the proposal covariance matrix St is inspired by kernel density estimation, namely, Scott’s rule (Scott, 1992). This

perturbation kernel adapts to the correlation structure of the sample, thereby improving the representation of the distribution. The

threshold for generation t is set to the median of the accepted distances in generation t � 1.

Parameterization, prior distribution and parameter bounds
In this manuscript we sample the log-transformed parameter xi = logðqiÞ instead of the parameter qi. Previous studies revealed that

this improves the computational efficiency (Raue et al., 2013; Hug et al., 2013). For the log-transformed parameters xi we used lower

and upper bounds which are consistent with previous publications. To account for the large uncertainty of the model parameters, we

assumed uniform prior distributions for the log-transformed parameters xi between lower and upper bounds.

Population size and analysis of convergence
In the manuscript we employed population size of N= 100 and N= 1000. These population sizes are rather low but proved to be

appropriate for the respective problems in a series of test scenarios. The use of a large population size would increase the robustness

and the accuracy of the method, however, the computation time increases proportionally with the population size.
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The convergence of pABC SMC and the sufficiency of the population size N was monitored manually by assessing

d the inter-quantile ranges and the objective function values of subsequent populations and

d the effective sample size.

The effective sample size assessed using the approximation by Kong et al. (1994) and Liu (1996),

EESt =
N

1+ var


w

ðjÞ
t

� with var


w

ðjÞ
t

�
=

1

N� 1

XN
j = 1



w

ðjÞ
t � 1

�2

with normalized weights w
ðjÞ
t . Complementary to the online evaluation, we performed for the 2D model test runs with altered popu-

lation size N to ensure that N was sufficiently high.

Analysis of parameter and prediction uncertainties
The pABC SMC algorithm provided a parameter sample fqðiÞgNi =1 and a corresponding sample of simulation results. The uncertainty

of parameters and simulation results was assessed by evaluating the (Bayesian) confidence intervals, more precisely, the percentile

intervals of the samples. The confidence regions for parameter pairs were computed using kernel density estimation and subsequent

thresholding. To assess the parameter uncertainty analysis in the high-dimensional space, we carried out a Principal Component

Analysis (PCA) und the MATLAB Statistics Toolbox.

Prediction of spheroid growth characteristics
We used the 2D model to predict the depth of the proliferating zone, the depth of the viable rim zone and the initial growth rate. We

computed the depth of the proliferating zone by evaluating the percentage of proliferating cells at different distances from the

spheroid rim and subsequent integration over the distance. The calculation of the depth of the viable zones is performed accordingly

by considering the percentage of all cells which are viable (not necrotic). To calculate the initial growth rate, the trajectory of the

spheroid radius and the linear growth regime is detected. The observed spheroid radii in the linear regime are fitted with a regression

model, providing the initial growth rate.

Assessment of the importance of individual data types
Beyond the studies discussed in themain manuscript, we employed the pABC SMC algorithm to study for Scenario I the necessity of

the different datasets for reliable prediction of tumor spheroid growth. We considered the following datasets:

d Dataset 1: Spheroid radius.

d Dataset 2: Spheroid radius and fraction of proliferating cells.

d Dataset 3: Spheroid radius and ECM abundance.

d Dataset 4: Spheroid radius, fraction of proliferating cells and ECM abundance.

Datasets 1-3 provided reduced sets of information compared to Dataset 4, which has been used in the previous section. The

spheroid radius is included in all datasets as it is easy to assess compared to the histological information. We used pABC SMC

to estimate the model parameters from the Dataset 1-4. The algorithm was terminated as soon as the acceptance rate dropped

substantially.

We found that only a subset of the systempropertieswere predicted correctly if reduced datasets are used for inference (Figure S2).

In particular, the model predictions for the fraction of proliferating cells and the ECM abundance were only consistent with the exper-

imental data if the respective datasets were used in the fitting. This indicated that the histological information was essential and that a

further reduction of the dataset was not possible. Accordingly, Dataset 4 already provided a minimal dataset for the development of

predictive models of tumor spheroid growth.

Implementation of the statistical analysis
The pABC SMC algorithm and the scripts used for the evaluation were implemented in MATLAB.

Random number generation: Sampling methods like the pABC SMC algorithm rely on (pseudo) random number generators. In this

study, we employed the default random number generator implemented in MATLAB (‘mt1993ar’), which is a Mersenne Twister algo-

rithm (Matsumoto and Nishimura, 1998). This random number generator is a 32-bit multiplicative congruential generator with an

approximate period in full precision of 219937 � 1. Mersenne Twister algorithms are widely used in practice. As they do however

not pass the CRUSH test in the TestU01 software suite of random number tests (L’Ecuyer and Simard, 2007) and are computationally

expensive, we also implemented the Random123 (Salmon et al., 2011) in our routines. Random123 produces better streams of

random numbers is easy to parallelise.
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DATA AND SOFTWARE AVAILABILITY

Data resources
The growth curves and the radial profiles of the histological stainings have been deposited in GitHub (https://github.com/ICB-DCM/

pABC-SMC).

Software resources
The code for the simulation and inference has been deposited in GitHub (https://github.com/ICB-DCM/pABC-SMC). The implemen-

tation of the sampling is tailored to our local grid infrastructure.
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