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Abstract: Gradient formation of Poml is a key regulator of cell cycle and cell growth in
fission yeast (Schizosaccharomyces pombe). A variety of models to explain Poml gradient
formation have been proposed, a quantitative analysis and comparison of these models is,
however, still missing. In this work we present four models from the literature and perform
a quantitative comparison using published single-cell images of the gradient formation process.
For the comparison of these partial differential equation (PDE) models we use state-of-the-art
techniques for parameter estimation together with model selection. The model selection supports
the hypothesis that buffering of the gradient is achieved via clustering. The selected model does,
however, not ensure mass conservation, which might be considered as problematic.
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1. INTRODUCTION

The size of a cell can have a strong effect on intracellular
processes (Farnier et al., 2003). The precise mechanisms
by which cells control their size and achieve cell size
homeostasis is however still poorly understood (Taheri-
Araghi et al., 2015). For the model organism fission
yeast Schizosaccharomyces pombe it has been established
that Poml plays an essential role (Almeida and Tyers,
2009; Moseley et al., 2009; Martin and Berthelot-Grosjean,
2009). Fission yeast is a rod shaped eucaryotic cell, which
divides along the middle axis to form two daughter cells.
It has been discovered that the polarity factor Pom1 forms
a gradient in the cell membranes. Its concentration is
highest at the tips and decreases towards the cell middle.
As long as the cell is still small Pom1 inhibits the cell
division mechanism positioned at the cell middle. When
the cell grows, however, the concentration of Pom1 at the
division axis in the middle of the cell decreases and the
cell division machinery becomes activated. See Figure 1A
for a schematic of the process.

While the general role of Pom1 in gradient formation was
confirmed by knock-out experiments the detailed mech-
anism behind the formation and the stabilization of the
gradient against noise and fluctuations in the Pom1 con-
centration at the tips of the cell remains unclear. A mini-
mal model that does not describe the stabilization against
noise was introduced by Saunders et al. (2012). Subse-
quently, three mechanisms were proposed for the formation
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of the Pom1 gradient and its stabilization against fluctua-
tions: cluster formation (Saunders et al., 2012; Saunders,
2015), autophosphorylation (Hachet et al., 2011, 2012) and
transphosphorylation (Hersch et al., 2015). Figure 1 pro-
vides schematics for all four models. While all models could
reproduce some qualitative properties of Poml gradient
formation, a quantitative comparison is missing.

To compare the spatio-temporal models of Pom1 gradient
formation, we used published single-cell imaging data.
We estimated the parameters of all models via maximum
likelihood methods. To ensure efficiency and reliability,
we employed state-of-the-art numerical schemes, providing
forward sensitivities. The parameter estimation results are
employed for model selection, providing insights into the
relevance of different mechanisms. Our study provides the
first quantitative evaluation of models proposed in several
studies, providing an essential step towards a mechanistic
understanding of the process.

2. MATHEMATICAL MODELING

We consider four different models for Poml gradient
formation:

e the minimal description by the source-diffusion
degradation model (SDD) (Saunders et al., 2012);

e the non-linear cluster formation model (NLIC)
(Saunders et al., 2012);

e the autophosphorylation model (AP) (Hachet
et al., 2011); and

e the multiple site phosphorylation model (MSP)
(Hersch et al., 2015).

2405-8963 © 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2016.12.136



Sabrina Hross et al. / IFAC-PapersOnLine 49-26 (2016) 264—269 265

growth

[

-~ Tassociation >

disassociatio
° e

«

cluster formation
00 —§

source-diffusion-degradation
(SDD) model
cluster formation (NLIC)
model

B
d=L
\ \
1 1
I
%‘- d:0 1 :
) | [
c’ ! !
=1 1 1
5
@ d=-L
@® Poml protein
@ Poml cluster
@ Poml phosphorylated (single site)
® Pom! phosphorylated (multiple sites)
=
2
=
=, 3 9 é‘ kS 3
53¢ g E >
2Z 55 *
& A =94 b
£ = '
8 autophosphorylation = transphosphorylation
: e—@® | £ ee——ve
g

Fig. 1. Schematic of the Pom1 model. A) Cell size control in fission yeast. The gradient from the tips is constant
and if the cell grows the concentration at the cell middle reduces until a region with low concentration arises. This
is where division will take place. B) Schematic of the fission yeast geometry. Along the cyan line the models are
considered. C) Schematic of the four Poml gradient formation models considered. All share the same process of
association and disassociation but differ regarding cluster formation or phosphorylation processes.

All models assume that the cells have a rod shape and are
symmetrical with respect to the horizontal and vertical
axis, hence, a cylindrical body with half spheres as tips is
considered. The gradient formation is modeled along one
line on the surface with spatial position d € Q = [-L, L]
and length L = 7um (Figure 1B). Analogously to Hachet
et al. (2011), we discretize the process on a line of the
surface of the cell. This enables us to simulate the whole
tip region in one step, in contrast to (Saunders et al.,
2012) where the singularity due to the projection had to be
treated by artificial boundary conditions. The units used
in the following equations are micrometers (um), seconds
(s), mol and units of fluorescence intensity (UT).

Source-diffusion-degradation (SDD) model. In the SDD
model by Saunders et al. (2012) Poml associates to the
cell membrane in a circular region at the tip of the cell,
i.e., at d = 0 (see Figure 1). The rate of molecule binding
is denoted by J, and the association frequency at point
d € Q is assumed to follow a Gaussian distribution with
mean zero and width p. Once associated to the membrane
Poml diffuses along the membrane with diffusion constant
D and disassociates with rate p. The resulting PDE model
is given by

Ju 6211, J 2 2
= _p=— _ _ Y /2 1
ot~ o M ot W

for d €  and parameter 6 = (D, u, J, p)T.

Non-linear interacting cluster formation (NLIC) model.
The NLIC model proposed by Saunders et al. (2012)
assumes that the Poml1 gradient is stabilized against fluc-
tuations in the input rate by cluster formation, i.e., the
formation of a fast and a slow moving Poml component
which is formed by non-linear interaction of both. Follow-
ing the model, Pom1 can either occur as fast moving single
molecules denoted by u or as slow moving clusters denoted
by u.. Both types of Pom1, v and ., diffuse along the cell
membrane with diffusion constants D and D, respectively.
Slow clusters are assumed to form mainly at the tips, which
is also the space where most of the association of single
molecules happens. A fraction ¢ of the Pom1 associated
to the membrane at the tips are single molecules and the
other fraction of 1 — ¢ are clusters. It is assumed that only
single molecules can disassociate from the membrane with
rate . Saunders et al. (2012) assume that a single molecule
becomes part of a cluster with rate 5. A cluster fragments
into the single molecule state with rate «. Hence, the
model is given by
ou 0%u

J _d2/2,2
E:Dw—s—auc—ﬁuuc—uu—i—aiyﬂpe /2p
0%u,

Ou,
- = Dci - c c 1—¢)———
B B U + Buu. + (1 —¢) Nz

276 2
ed/2p

(2)
for d € Q and parameter 0 = (D, D, i, o, 3, J, p,€)T. The
diffusion coefficient of the Pom1 clusters is parameterized
as fraction & < 1 of the diffusion coefficient of free
Poml, D, = &.D. A weakness of this model is that it
does not ensure mass conservation of Poml molecules in
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the membrane. Clusters with more than two molecule are
transformed to a single molecule upon fragmentation.

Autophosphorylation (AP) model. The AP model was
introduced by Hachet et al. (2011) and considers slow
diffusing phosphorylated, u,, and fast diffusing unphos-
phorylated, u, forms of Poml. In this model Poml is
associated to the membrane in unphosphorylated form
and autophosphorylates with rate a. The phosphorylated
form disassociates from the membrane with rate p. The
phosphorylated and unphosphorylated forms have diffu-
sion constants D, and D, respectively. This yields the
model
ou 0u
=D— —au-+

ou _ a2
6t 8d2 vV 27Tp (3)
0?u,,

% = + au — pu
ot P o Hip

with d € Q, 0 = (D, Dy, pu, o, J,p)* and D, = £,D with

g <1

Multiple-site phosphorylation (MSP) model. The MSP
model was introduced by Hersch et al. (2015). In contrast
to the AP model, Pom1 is assumed to be phosphorylated
at multiple phosphorylation sites (up to 6 possible sites
have been found in Poml (Hachet et al., 2011)). The
phosphorylation is acquired via transphosphorylation, i.e.,
two Poml molecules meet and phosphorylate each other
with rate «. The full model considers eight Pom1 species.
Hersch et al. (2015) reduced the model and showed that
a one dimensional model with concentration depended
disassociation is a good approximation to the full model.
Following Hersch et al. (2015), we consider the model

= _ _ _d a2’ 4
ot od? \/271'/)6 ( )

for d €  and with parameters 6 = (D, a, J, p)7.

Initial and boundary conditions. We assume no-flux
boundary conditions at the division axis of the cells for
all biochemical species. In the unperturbed system, the
initial conditions for all biochemical species are assumed to
be in steady state. For FRAP experiments (see description
below), the species are zero in the bleached region @ C Q,
e.g.
0 ford e Q
u(0,d) = {u"o(d; 0) otherwise 5)

where u™(d; ) denotes the steady state of the model
considered for parameter 6.

Numerical simulation. For numerical simulation of the
PDE models, we employed the method of lines. The sys-
tems of ODEs are implemented in MATLAB and com-
piled and simulated using AMICI (Kazeroonian et al.,
2016). AMICI provides an interface to the SUNDIALS
solver suite (Hindmarsh et al., 2005). As the numerical
simulation using AMICI was computationally efficient and
robust, we also used it to compute the steady state of the
models.

3. PARAMETER ESTIMATION AND MODEL
SELECTION

To select the best suited model of Poml gradient for-
mation, we assess the capability of the models to de-
scribe the available experimental data. We use maximum
likelihood estimation to infer the unknown parameters.
The likelihood function, L(6), describes the conditional
probability of observing the data given a particular set
of model parameters. For numerical reasons the negative
log-likelihood, J(6) = —log(L(#)), is minimized to find the
maximum likelihood estimator (MLE),

0 = argr%in J(6). (6)

In the following, we will present the measurement data
considered and the negative log-likelihood function.

3.1 Measurement data

We use the single-cell imaging data collected by Saunders
et al. (2012), the only publicly available dataset regarding
Pom1 gradient formation. These experimental data were
obtained by fluorescent labeling of Pom1. Saunders et al.
(2012) reported:

e the intensity profile along the membrane in the un-
perturbed system,

e the fluorescence recovery after photobleaching of the
full and the half tip; and

e the total protein abundance.

For the detailed experimental methods and measurement
techniques we refer the reader to the original work of
Saunders et al. (2012).

All experiments provide information about the total Pom1
concentration, utot(d, t). As SDD and MSP each only con-
sider one form of Poml, u. corresponds directly to wu.
NLIC and AP consider additionally u. and wu,, respec-
tively. The clusters in u, consist of an undetermined num-
ber of Poml molecules. To account for this we introduce
scaling factor s., that can be interpreted as the average
cluster size and can range between one and the maximal
cluster size of 200 (Saunders, 2015), ie., 1 < s. < 200.
This scaling factor is estimated from the data as well.
Accordingly, we get

u(d, t;0) + scuc(d,t;0) for NLIC
Utot(d,;0) = < u(d, t;0) + up(d,t;60)  for AP
u(d, t;0) for SDD, MSP.

(7)

In the following, we describe each of the four datasets.

Mean intensity curves. For the mean intensity curves,
cells were imaged and for each cell a cortical mask, i.e.,
a line along the cell membrane, was defined. Along this
mask the Pom1 intensities were measured. Measurements
were taken at 60 equally spaced spatial points with dj, € €2,
k=1,...,60. For each point the normalized mean 7, ;, and
the standard error of the mean (SEM) Ei , were assessed.
We introduced an additional scaling factor s; to account
for the normalization. The observation for normalized
mean intensity curves is given by

1.1:(0) = s1upe (d; 0), for k=1,...,60 (8)
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with ugs, denoting the stationary limit of utt. We consider
here the stationary limit as the system is measured in the
absence of perturbations.

FRAP measurements. To assess the dynamics of the
process, two fluorescence recovery after photobleaching
experiments were performed. In the first experiment, the
full tip (Q2 = [—2.75, 2.75]um) was bleached and cells were
imaged for 300 seconds. In the second experiment only one
half tip (Q3 = [0,2.75]um) was bleached and cells were
imaged for 60 seconds. Based on those images the mean
recovery curves of the intensity, {7, , };2; and {73, }72,,
and the standard error of the mean in the bleaching region
was calculated for both (see Figure 2D). For parameter
estimation we calculated the overall intensity in the prede-
fined bleaching region d € @); at each time point from the
model. We assumed that the fluorescence intensity scales
linearly with the concentration of Poml. The scaling for
those measurements is unknown. We, hence, introduced
scaling factors yielding

ia) =5 [ wan(d 6:60.Qdd, €23 ()
in which st (d, t; 6, Q;) denotes the solution of model for
initial condition (5) with @ = @;.

Pom1 protein abundance. The last set of measurements
is the total Pom1 protein abundance in each cell. The flu-
orescence intensities of Rlcl and Spn4, two other proteins
of fission yeast with well known protein abundances, were
imaged with the same exposure. Based on the intensities
of those reference proteins the total amount, ¥,, of 5000 £
1900 Pom1 molecules in the cells was estimated (Saunders
et al., 2012). For parameter estimation we assumed that
the amount of protein is split equally between the tips.
Accordingly, the observable is the integral over the tip
region,

ya(8) = /Q 35, (d: 0)dd. (10)

3.2 Parameter estimation

To estimate the parameter of the different models from
the experimental data, we formulated likelihood functions.
Following the law of large numbers, we assumed that the
error of the measured mean ¥, . is normally distributed.
The standard deviation of the distribution is set to the
empirically determined standard error of mean, &; ;. The
negative log-likelihood function for dataset i is then given
as

1 _ (i — vin(0))?
Ji(6) = 3 Zlog(%raik) 4 Tk ARV — , (11)
k=1 ik

in which n; denotes the number of spatial points or the
number of time points, respectively. If (1) the numerical
simulation failed or (2) the numerical simulation did not
yield a steady state for the unperturbed system (steady
state condition: du/dt < 1076 for t = 2.5 - 10%), we set
Ji(0) to infinity.

The negative log-likelihood is the sum of the negative
log-likelihoods for the individual experiments, yielding the
estimation problem
4
min J(0,y) = > Ji(0)

i=1

(12)

in which © € R™ denotes the parameter regime. The num-
ber of parameters ng and the parameter regime depend on
the model.

To determine the minimum of (12) — the MLE — we per-
formed multi-start local optimization using the Parameter
EStimation TOolbox (PESTO) (Hross and Hasenauer,
2016). The starting points for the local optimizations are
drawn from a latin hypercube spanning seven orders of
magnitude for most parameters. For each of the models
we performed the estimation by multi-start local optimiza-
tion with PESTO, which uses the MATLAB optimization
function fmincon.

3.8 Model selection

For model selection we employed the Akaike information
criterion (AIC) and the Bayesian information criterion

(BIC) (Burnham and Anderson, 2002). With the MLE 6,
the number of parameters ng, and the overall number of

data points M = 2?21 n;, the AIC can be calculated as
AIC = 2J(0) + 2ng (13)
and the BIC as
BIC = 2J() 4 ng log(M). (14)

Models with smaller AIC and BIC values are preferable.
For both criteria we considered a difference of 10 between
AIC and BIC values of competing models as substantial.

4. RESULTS

In the following, we describe the results of parameter esti-
mation and model selection for Pom1 gradient formation.

4.1 Model-data comparison

The parameter estimation methods described in Section 3
were used to infer the parameters of the model alterna-
tives. For the SDD and the MSP, we performed 100 local
optimizations. Based on the convergence of the multi-
starts we concluded that the global optimum was found
for both models. The optimization results for all models
are visualized in Figure 2A.

The comparison of the data and the best fit reveals
that all models, even the simplest, qualitatively reproduce
the observed behavior. In particular the distribution of
the intensity profiles (Figure 2B) and the overall protein
abundance (Figure 2C) are well described.

Also for full and half tip FRAP, the model fit is mostly
within the uncertainty of the measurement. For the full
tip FRAP it appears however that the model dynamics
are slower than suggested by the data. To confirm this,
additional data would be required.
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Fig. 2. Estimation results for Pom1 models. A) Results of multi-start local optimization. The best 100 optimizer
runs are depicted (total number of runs: 100 for SDD and MSP; 500 for AP; 1200 for NLIC). B-D) Measurement
and simulation results for B) mean intensity profile, C) total protein abundance and D) half and full tip FRAP
recovery curve. The mean of the measured values along with its uncertainty (3 x SEM) is indicated.

Table 1. Model selection for the Pom1 measurement data. AIC and BIC values calculated
for each model. The model with the lowest AIC/BIC value is selected. A difference between two
BIC/AIC values smaller than 10 is considered to be indecisive.

| AIC | AAIC | decision | BIC | ABIC | decision |
Source-diffusion-degradation model (SDD) 1206.3 | 1529.7 | rejected | 1223.9 | 1517.2 | rejected
Non-linear interacting cluster formation model (NLIC) | -323.4 0 optimal | -293.2 0 optimal
Autophosphorylation model (AP) 1142.7 | 1466.1 | rejected | 1165.3 | 1458.6 | rejected
Multiple-site phosphorylation model (MSP) -131.6 | 191.7 | rejected | -114.1 | 179.2 | rejected

4.2 Ewvaluation of clustering and phosphorylation
hypotheses

The results of the multi-starts depicted in Figure 2A
already indicated that the SDD and the AP model are
outperformed by the NLIC and the MSP model. The
evaluation of AIC and BIC revealed that the fit of NLIC
is substantially better than that of all other models (Ta~
ble 4.2).

In summary, we found that a model with clustering as
buffering mechanism provides a better description of the
considered dataset than the other models.

5. CONCLUSION

Single-cell images combined with fluorescent protein fu-
sions and photobleaching are a widely used tool to study
gradient formation in biological processes. The mechanis-
tic mathematical modeling of these data is, however, often
challenging as spatial models have to be considered. In
this study, we demonstrated that it is feasible using state-
of-the-art numerical and optimization methods (see Hock
et al. (2013) and references therein).

We considered Poml gradient formation, a process for
which published data is available. We performed param-
eter estimation for four competing models, describing
different biological hypothesis. The parameter estimation
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facilitated the integration of multiple data types and the
subsequent model selection. While all models were able to
explain the data qualitatively, we found that the NLIC
model, incorporating clustering as buffering mechanism,
outperformed the other models. Unfortunately, the NLIC
model does not ensure mass conservation which might be
considered as problematic. Recently, a new cluster for-
mation model was introduced by Saunders (2015), which
should be analyzed in future work.

In addition to the consideration of additional mechanistic
models, also the statistical description, parameter estima-
tion and model selection can be improved further. We
found that the measurement noise of neighboring pixels
often appears to be correlated. This correlation could
be incorporated into the objective function. Furthermore,
differences between individual cells should be assessed in
more detail. Complementary, maximum likelihood based
methods for parameter estimation and model selection
could be replaced by Bayesian methods (Vyshemirsky and
Girolami, 2008; Hug et al., 2015). Model selection using
Bayes factors (Kass and Raftery, 1995) would for instance
account for parameter uncertainties.

In conclusion, we illustrated the importance of rigorous
parameter estimation and model selection for the study
of spatio-temporal processes. Using these approaches,
datasets can be integrated to achieve a coherent picture.
Furthermore, the use of statistical approaches promises the
reduction of the researcher related bias and the improve-
ment of reproducibility.
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