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Rationale: Exposure to ambient particulate matter (PM) and ozone has been associated with cardiovascular dis-
ease (CVD). However, the mechanisms linking PM and ozone exposure to CVD remain poorly understood.
Objective: This study explored associations between short-term exposures to PM with a diameter b2.5 μm
(PM2.5) and ozone with plasma metabolite concentrations.
Methods and results:Weused cross-sectional data from a cardiac catheterization cohort at DukeUniversity, North
Carolina (NC), USA, accumulated between 2001 and 2007. Amino acids, acylcarnitines, ketones and total non-
esterified fatty acid plasma concentrations were determined in fasting samples. Daily concentrations of PM2.5

and ozone were obtained from a Bayesian space-time hierarchical model, matched to each patient's residential
address. Tenmetaboliteswere selected for the analysis based on quality criteria and cluster analysis. Associations
between metabolites and PM2.5 or ozone were analyzed using linear regression models adjusting for long-term
trend and seasonality, calendar effects, meteorological parameters, and participant characteristics.
We found delayed associations between PM2.5 or ozone and changes in metabolite levels of the glycine-
ornithine-arginine metabolic axis and incomplete fatty acid oxidation associated with mitochondrial dysfunc-
tion. The strongest association was seen for an increase of 8.1 μg/m3 in PM2.5 with a lag of one day and decreased
mean glycine concentrations (−2.5% [95% confidence interval: −3.8%; −1.2%]).
Conclusions: Short-term exposures to ambient PM2.5 and ozone is associated with changes in plasma concentra-
tions ofmetabolites in a cohort of cardiac catheterization patients. Our findingsmight help to understand the link
between air pollution and cardiovascular disease.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

Exposure to ambient air pollution affects a range of cardiovascular
events (Brook et al., 2010; Rückerl et al., 2011). Acute (day-to-day) ex-
posure to particulate matter (PM) with an aerodynamic diameter
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rations from ground monitors;
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en.de (S. Breitner).
b2.5 μm(PM2.5) is associatedwith increased risk of cardiovascularmor-
tality, myocardial infarction, heart failure exacerbation, stroke
(Atkinson et al., 2014; Mustafic et al., 2012; Shah et al., 2013, 2015)
and induction of a variety of adverse cardiovascular outcomes (Brook
et al., 2010; McGuinn et al., 2015). Epidemiological and controlled-ex-
posure studies also suggest that exposure to ambient ozone may in-
crease cardiovascular morbidity (Arjomandi et al., 2015; Devlin et al.,
2012; Green et al., 2016; Hampel et al., 2012; Lanzinger et al., 2014).
The elderly and those with underlying diseases, for example, cardiovas-
cular diseases or diabetes, are particularly susceptible to the health ef-
fects of PM2.5 (Lanzinger et al., 2014; Rückerl et al., 2011; Shumake et
al., 2013; Stafoggia et al., 2010); however, current evidence for the
risks of ozone are inconclusive (Goodman et al., 2014).

The physiological mechanisms linking PM2.5 exposure to cardiovas-
cular disease have yet to be fully elucidated. Biological pathways
thought to be important include: systemic inflammation; changes in
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the autonomic balance; local inflammatory response; and oxidative
stress due to translocation of particles or particle constituents (Brook
et al., 2010; Peters et al., 2011). Further, inhalation of ozone may cause
systemic inflammation and autonomic dysfunction (Brook et al., 2010;
Devlin et al., 2012; Hampel et al., 2012). However, exploring the possi-
bility that PM2.5- or ozone-induced changes inmetabolic pathwaysmay
contribute to or mediate cardiometabolic outcomes is becoming in-
creasing important for understanding potential mechanisms of these
effects.

Metabolomics, or metabolomic profiling, refers to the comprehen-
sive analysis of metabolites - lowmolecular weight chemicals including
sugars, acylcarnitines, amino acids, and lipids - present in biological
specimens (Rhee and Gerszten, 2012). Metabolomics has the potential
for identifying novel biomarkers contributing to the onset or progres-
sion of cardiovascular disease (Shah et al., 2012a). Specificmetabolomic
profiles are associated with coronary artery disease (CAD) and athero-
sclerosis, andwithmajor adverse cardiovascular events, includingmyo-
cardial infarction, stroke, heart failure and death (Kordalewska and
Markuszewski, 2015; Shah et al., 2012a; Würtz et al., 2015).

Current literature on short-term exposures to air pollution and
blood chemistries has focused on traditional clinical parameters such
as C-reactive protein or cytokines (e.g. Chuang et al., 2007; Rückerl et
al., 2007; Tsai et al., 2012). However, evaluating associations between
air pollution and metabolite levels could provide further evidence of
air pollution-related physiologic changes and offer further insights
into the pathophysiologic mechanisms by which short-term exposures
to air pollution may increase the risk of acute cardiovascular events.
So far, there has been only one epidemiological study exploring the as-
sociation betweenair pollution and changes inmetabolite levels (Menni
et al., 2015). In this study using a subset of the TwinsUK cohort, long-
term exposures to PM10 and PM2.5 were linkedwithmetabolites related
to reduced lung function. Only a small number of animal or toxicological
studies have reported associations between inhaled toxicants and me-
tabolite levels (Miller et al., 2015, 2016; Wang et al., 2012, 2015; Wei
et al., 2013).

This study aimed to explore the influence of short-term exposures to
PM2.5 and ozone on selected metabolites in a cohort of individuals un-
dergoing cardiac catheterization for suspected CAD. Moreover, we eval-
uated whether these associations were modified by participant or
lifestyle characteristics. Since the study population was at high risk for
cardiovascular disease, our findings may help to uncover and clarify
air pollution-metabolomics associations in a population particularly
susceptible to the health effects of air pollution.

2. Methods

2.1. Study population

This study was conducted using data from the CATHeterization GE-
Netics (CATHGEN) cohort, a large cohort of patients undergoing cardiac
catheterization for suspected cardiovascular disease between 2001 and
2010 at the Duke University Cardiac Catheterization Clinic (Durham,
NC)(Kraus et al., 2015).

For each of these patients, home addresses were extracted from
medical records. Addresses were geocoded within the Children's Envi-
ronmental Health Initiative (http://cehi.snre.umich.edu/), adding lati-
tude and longitude information to each record (McGuinn et al., 2015;
Ward-Caviness et al., 2015). Out of the entire cohort of 9334 individuals,
8071 (86%) addresses were successfully geocoded; 7118 (76.3%) resid-
ed in North Carolina (Supplemental Material, Fig. 1). For participants
whose addresses changed over time, we used the most recent address
entered into their records at catheterization. The average time at an ad-
dress prior to the catheterization procedure was 587 days (Ward-
Caviness et al., 2015).

Subjects fasted for a minimum of 6 h before blood collection. Blood
was drawn from the femoral artery at the time of arterial access for
catheterization, immediately processed to separate plasma, and frozen
at −80 °C (Shah et al., 2010). Clinical data and patient characteristics
were provided by the Duke Databank for Cardiovascular Disease
(DDCD), a database of patients undergoing catheterization at Duke Uni-
versity since 1969.

The CATHGEN study was approved by the Duke University Institu-
tional Review Board; written informed consent was obtained from all
subjects prior to participation.

2.2. Metabolite data

Metabolomic profiling was available for 3873 individuals in the in-
terval 2001 to 2007. The plasma concentrations of 45 acylcarnitines
and 15 amino acids were quantitatively determined using a targeted
mass spectrometry–based approach (Kraus et al., 2015). Proteins were
first removed by precipitation with methanol; aliquoted supernatants
were dried and esterified with hot, acidic methanol (acylcarnitines) or
n-butanol (amino acids). For analysis, tandem mass spectrometry with
a Quattro Micro instrument (Waters Corp, Milford, MA) was used.
Adding mixtures of known quantities of stable-isotope internal stan-
dards facilitated quantification of “targeted” intermediary metabolites.
Assay ranges are 0.05 to 50 μmol (acylcarnitines) and 5 to 1000 μmol
(amino acids). Two acylcarnitines (C6 and C7DC) did notmeet the qual-
ity standards and were, therefore, excluded for further analyses.

Quantitative determination of total ketones, β-hydroxybutyrate, and
total non-esterified fatty acids (NEFA) was performed. Ketones (total
and β-hydroxybutyrate) and NEFAwere measured on a Beckman Coul-
ter DxC600 clinical chemistry analyzer, using reagents from Wako
(Richmond, VA) (Kraus et al., 2015). Methodology and measures of
intra-individual variability have been previously reported (Shah et al.,
2010). A complete list of all 61 metabolites can be found in Supplemen-
tal Material, Table 1.

2.3. Exposure data

Daily predictive surfaces of PM2.5 (daily average in μg/m3) and ozone
(daily 8-h maximum in ppb) were provided by the U.S. Environmental
Protection Agency (U.S. EPA) for the years 2001 to 2008
(www.epa.gov/esd/land-sci/lcb/lcb_faqsd.html). A Bayesian space-
time “downscaler” fusion modeling approach was used to develop
these predictive surfaces (Berrocal et al., 2010a, b, 2012). The approach
uses input data from two sources: air quality monitoring data from the
EPAAirQuality System(AQS) repository database andnumerical output
from the Models-3/Community Multiscale Air Quality (CMAQ; http://
www.epa.gov/asmdnerl/CMAQ) model run at a 12 km spatial resolu-
tion. The fused model combines the two data sources attempting to ad-
just for the existing bias in the CMAQ model and produces predictions
for census tract centroids across the entire state of North Carolina
(Gray et al., 2013). Further details and descriptions of the modeling
technique and predictive performance are available (Berrocal et al.,
2012). Geocoded residential addresses of the study participants were
assigned the exposure as estimated at the closest census tract centroid
based on spatial location and date.

We obtained daily PM2.5 concentrations from a second source to bet-
ter compare the metabolic effects of PM2.5 exposure with previously
published cardiovascular effects in the CATHGEN cohort (McGuinn et
al., 2015). Based on a combination of satellite-based aerosol optical
depth (AOD) retrievals and PM2.5 concentrations from groundmonitors
(McGuinn et al., 2015), PM2.5 concentration levels (μg/m3) were pre-
dicted at a 10 × 10 km spatial resolution for the state of North Carolina
for 2002–2009 using recently developed statistical prediction models.
Geocoded addresses were matched to the centroid of the nearest
10 × 10 km grid location based on spatial location and date.

Daily mean air temperature and relative humidity were obtained
from the North American Regional Reanalysis (NARR) project
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Table 1
Descriptive statistics of the study population (n = 2869).

Mean (SD)

Age (years) 59.4 (12.1)
BMI (kg/m2) 30.3 (7.4)
SBP (mm Hg) 149.9 (25.1)
DBP (mm Hg) 79.8 (14.7)

N (%)

Gender
Male 1671 (58.2)
Female 1198 (41.8)

Race European-American 1991 (69.4)
African-American 639 (22.3)
Other 239 (8.3)

Smoking Current 1464 (51.0)
Never/former 1405 (49.0)

History of Coronary artery disease 1445 (50.4)
Myocardial infarction 854 (29.8)
Diabetes 854 (29.8)
Hypertension 1948 (67.9)

Family history of Coronary disease 1160 (40.4)

SD: standarddeviation; BMI: bodymass index; SBP: systolic blood pressure; DBP: diastolic
blood pressure.
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(Mesinger et al., 2006). Geocoded addresseswerematched to themete-
orological data based on spatial location and date.

2.4. Statistical analysis

We restricted our analysis population to those residing in North Car-
olina and participants with complete information on exposure, covari-
ates and metabolomics markers. The final analysis population
consisted of 2869 individuals. We selected only metabolites with
b10% of values below the limit of detection and with a high measure-
ment accuracy based on repeated profiling (R2 ≥ 0.85) reported in pre-
vious analyses (Shah et al., 2009). This reduced the large number of
(correlated)metabolites to 23 (see Supplemental Table 1 for a complete
list of metabolites). With these 23 remaining metabolites, we per-
formed a hierarchical cluster analysis using Euclidian distances and
theWard method (Murtagh and Legendre, 2014). The number of suffi-
cient clusters was chosen based on various indices (e.g. Calinski and
Harabasz index, Duda index, C-index) provided by the R package
NbClust (Charrad et al., 2014). In general, all indices measure the
inter- and intra-cluster variability. While the variability of observations
within a cluster should be low, the between-cluster variance should be
high. Of each of the resulting clusters, we chose themetabolite with the
highest measurement accuracy (=highest R2) and the lowest number
of values below the detection limit as the “main”metabolite for the clus-
ter. Metabolites within the same cluster which showed low correlation
with the main metabolite (|r| b 0.4) were also considered as metabo-
lites of interest. At first, the metabolite showing the lowest correlation
with themainmetabolitewas chosen. If a furthermetabolite also exhib-
ited a low correlationwith themainmetabolite, it was only selected if it
also showed low correlation with the metabolite selected in the previ-
ous step. This approach greatly reduced the number of analyzedmetab-
olites and therefore reduced the multiple comparisons in the statistical
analysis. Further, our approach allows the discussion of the study results
to be streamlined by allowing each biologically relevant cluster to be
represented by (a) single outcome(s). Metabolite levels were natural-
log transformed prior to analysis.

To evaluate the associations of metabolite levels with air pollution
concentrations, we used additive regression models in an a priori de-
fined adjustment model. Penalized splines based on B-spline bases
were used to allow for non-linear confounding effects (Eilers and
Marx, 1996). To control for systematic variation over time, we intro-
duced a time trend term (using date order) as well as dummy variables
for season and day of theweek. We further included a fixed intercept at
the county level to account for unmeasured variation due to population-
level characteristics. As other potential confounders, we considered air
temperature and relative humidity, and the subject-related variables
age, body mass index (BMI), gender, race (European-Americans, Afri-
can-American, and other race/ethnicity) and smoking status (current
vs. never/former smoker). Time trend was modeled using penalized
splines with four degrees of freedom per year. Adjustment for air tem-
perature was done by modeling high and low temperatures separately
(Stafoggia et al., 2013). Specifically, to control for heat effects, we calcu-
lated the average temperature on the current and previous day (lag 0–
1) and fit a natural spline with three degrees of freedom only for days
on which the temperature was higher than the median annual temper-
ature. Similarly, only for days onwhich temperaturewas below theme-
dian annual value, we adjusted for low temperatures by fitting a natural
spline with two degrees of freedom for the average temperature on the
previous four days (lag 1–4). Relative humidity wasmodeled using a 5-
day average (lag 0–4) assuming that three degrees of freedom should
suffice.

In the last step of the analysis, air pollutants were added separately
to the model and associations estimated linearly. We analyzed single-
day lags from 0 to 4 days and the average of lags 0–4 (5-day average).
Effect estimates from our models and their 95% confidence intervals
(95% CI) were transformed into percent changes of geometric mean
outcome levels and reported per interquartile range (IQR) increase of
pollutants.

Interaction terms for age (≤60 vs. N60 years), gender (male vs. fe-
male), race (European-Americans vs. African-Americans vs. other
race/ethnicity), history of hypertension (yes vs. no) and diabetes (yes
vs. no), and smoking status (current vs. never/former smoker) were
used to investigate effect modification of the association between the
air pollution and metabolite levels.

2.4.1. Sensitivity analyses
We performed a number of sensitivity analyses to assess the robust-

ness of the main findings. We adjusted the degrees of freedom for the
trend spline to control for seasonal effects; we also varied the lag pat-
tern and the degrees of freedom for air temperature and relative humid-
ity. We estimated models without adjusting for counties, season or
subject-related covariates. Two-pollutant models examined the inde-
pendent effects of PM2.5 and ozone. Finally, we checked the exposure–
response functions for deviations from linearity by replacing the linear
term of the particle metrics with a fixed 4-degree of freedom regression
spline. We used a likelihood ratio test with three degrees of freedom
comparing the original mainmodel with the smoothedmodel and visu-
al inspection to assess whether the smoothed exposure–response curve
resembled a straight line.

All the analyses were performed with R project for statistical com-
puting (V.2.14.2; http://www.r-project.org/) using the ‘mcgv’ package.

3. Results

3.1. Participant characteristics

Table 1 describes the study population. On average, participants
were 59 years old with a mean BMI of 30 kg/m2. About 58% of the par-
ticipants were men; approximately half were current smokers. The
prevalence of CAD and hypertensionwas 50.4% and 67.9%, respectively;
this reflects a population with increased risk for CAD.

3.2. Cluster analysis

Twenty-three of the 61metabolitesmet all the inclusion criteria. Re-
sults of the cluster analysis are shown in Fig. 1. Most of the indices used
to determine the relevant number of clusters identified five clusters as
optimal to group the metabolites. These five clusters represent long

http://www.r-project.org/


Fig. 1. Results of hierarchical cluster analysis. Main metabolites within each cluster are framed. Additionally selected metabolites are underlined.
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neutral amino acids, their metabolites and alanine (Cluster 1), urea
cycle- related amino acids and glycine (Cluster 2), acylcarnitines-ad-
ducts of ß-oxidation of fatty acid metabolism (Clusters 3 and 5) and ke-
tonemetabolites (Cluster 4). Based on our described selection approach,
we chose to represent the clusters: alanine and leucine/isoleucine
(Cluster 1); arginine, aspartic acid/asparagine, ornithine and glycine
(Cluster 2); decenoyl carnitine (C10:1) and 3-hydroxy-hexadecanoyl
carnitine/tetradecanedioyl carnitine (C16-OH:C14-DC) (Cluster 3);
total ketones (Cluster 4); and palmitoleyl carnitine (C16:1) (Cluster 5)
as our outcomes of interest.
Table 2
Summary statistics of metabolite concentrations, air pollution concentrations and meteorologi

Metabolites N Mean SD

Cluster 1
Alanine (μM) 2869 316.7 94.4
Leucine/isoleucine (μM) 2869 67.0 14.2

Cluster 2
Arginine (μM) 2869 65.5 19.6
Aspartic acid/asparagine (μM) 2869 87.3 21.1
Ornithine (μM) 2869 76.6 21.9
Glycine (μM) 2869 309.0 83.0

Cluster 3
C10:1 (μM) 2864 0.15 0.08
C16-OH:C14-DC (μM) 2796 0.0047 0.0045

Cluster 4
Total ketones (μM) 2868 303.3 291.4

Cluster 5
C16:1 (μM) 2856 0.027 0.016

Meteorology and air pollution
Air temperature (°C) 2869 16.1 8.6
Relative humidity (%) 2869 73.8 10.8
PM2.5 (daily mean; μg/m3) - BDFM 2869 13.3 6.1
Ozone (8-hour max; ppb) – BDFM 2869 43.3 15.9
PM2.5 (daily mean; μg/m3) – AOD + GM 2587 12.6 5.9

SD: standard deviation; Min: minimum; 25%: 25th percentile; Med: median; 75%: 75th perce
BDFM: Bayesian space-time “downscaler” fusion modeling approach; AOD + GM: combinatio
3.3. Metabolites and air pollution

Descriptive statistics of metabolites, modeled air pollutants andme-
teorology are presented in Table 2. The daily mean values of PM2.5 and
ozone derived from the downscaler fusion model were 13.3 μg/m3 and
43.3 ppb, respectively. The daily mean value of PM2.5 based on a combi-
nation of satellite-based aerosol optical depth (AOD) retrievals and
PM2.5 concentrations from ground monitors (AOD + GM) was
12.6 μg/m3. Correlations between the metabolites can be found in Sup-
plemental Material, Table 2. There was little or no correlation among
cal variables for the period 2001–2007. Metabolites selected first are marked in bold.

Min 25% Med 75% Max

104.4 250.6 302.9 369.2 944.4
21.6 57.8 65.4 73.8 217.7

12.7 52.3 64.2 77.0 178.3
13.8 73.5 84.0 98.4 223.0
24.4 61.5 74.0 88.1 230.8
115.2 251.1 302.0 354.6 739.2

0.02 0.10 0.13 0.18 0.67
0.0001 0.0026 0.0039 0.0057 0.1007

9.5 101.2 202.6 415.0 3220.9

0.005 0.018 0.024 0.033 0.332

−8.1 9.2 16.8 23.5 33.0
38.5 66.5 75.3 82.2 95.3
0.6 8.7 12.3 16.8 49.4
3.8 31.2 41.2 53.9 99.7
2.0 8.1 11.7 15.6 52.1

ntile; Max: maximum, PM2.5: particulate matter with an aerodynamic diameter b2.5 μm;
n of satellite-based aerosol optical depth retrievals and ground monitoring data.

Image of Fig. 1
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PM2.5, ozone and themeteorological parameters (SupplementalMateri-
al, Table 3). As expected, the PM2.5 values predicted by the two different
models were highly correlated (Spearman correlation coefficient =
0.857).

Fig. 2 and Supplemental Material, Table 4 show the associations be-
tween air pollutants and the selected amino acids. For alanine and leu-
cine/isoleucine (Cluster 1), no associations with air pollution were
found; whereas arginine (Cluster 2) was negatively associated with
PM2.5 and ozone. The strongest effects were found for lag 1 exposures
with a −2.6% decrease (95% CI: −4.4%; −0.8%) per IQR increase
(8.1 μg/m3) in PM2.5 and −2.8% decrease (95% CI: −5.5%; −0.1%) per
IQR increase (22.7 ppb) in ozone. An IQR increase in PM2.5 also resulted
in decreased glycine levels with a lag of one day. Lag 1 ozone exposure
showed an effect in the same direction; however, the association was
not significant (on a significance level of 0.05). Both pollutants were
consistently associated with increases in ornithine levels across several
lags. For example, ornithine (Cluster 2) levels increased by 2.3% (95% CI:
0.8%; 3.9%) and 6.8% (95% CI: 3.1%; 10.7%) per IQR increase in 5-day
average PM2.5 and ozone, respectively.

Results further suggest an association between ozone at lag 1 and
C10:1 (Cluster 3), total ketones (Cluster 4) and C16:1 (Cluster 5) (Fig.
3). Moreover, increases in PM2.5 were associatedwith delayed increases
in C16:1 levels; the strongest effect was a 3-day lagged 2.8% increase
(95% CI: 0.3%; 5.4%).

Statistically significant effect modifications were only observed for
arginine and C16:1.Modifications of both PM2.5 and ozone effects on ar-
ginine levels were observed for diabetes status; stronger associations
were with those without diabetes (Fig. 4). As further shown in Fig. 4,
both PM2.5 and ozone effects on C16:1weremodified by race; the stron-
gest increases were for those in the Other race/ethnicity category (for
each IQR increase in PM2.5, lag 3 or ozone, lag 1 C16:1 levels increased
by 14.3% [95% CI: 4.9%; 24.4%] or 13.6% [95% CI: 3.7%; 24.4%], respective-
ly). This category is composedmainly by self-declaredNative Americans
living in Southeastern North Carolina, with some minor composition
from Asian, Hispanic, and unknown/undeclared individuals. Results
also suggest that PM2.5 and ozone effects on ornithine were more pro-
nounced in African-Americans and individuals in the Other race/
ethnicity category (Supplemental Material, Fig. 2); moreover, effects
of PM2.5 on C16:1 were only observed in individuals younger than
60 years. Sex, smoking status, and history of hypertension did not
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Fig. 2. Associations between PM2.5, ozone (based on the Bayesian space-time “downscaler”
pollutantsa. aModels were adjusted for time trend, air temperature, relative humidity, age, gen
have any modifying effects on the association between air pollution
and metabolite levels (data not shown).

Using PM2.5 data based on a combination of satellite-based aerosol
optical depth retrievals and ground monitoring data (AOD + GM)
gave similar results for the three amino acids arginine, glycine and orni-
thine compared with data from the Bayesian space-time “downscaler”
fusion modeling approach (Table 3).

3.4. Sensitivity analyses

As mentioned, we performed several sensitivity analyses: among
them we tested increasing the degrees of freedom for the trend spline
or excluding some of the confounders. None of the sensitivity analyses
changed the significant associations between air pollution andmetabo-
lites (Supplemental Material, Table 5).

PM2.5 showed independent effects on arginine and glycine, whereas
ozone effects were attenuated in the two-pollutant models (Supple-
mental Material, Fig. 3 and Table 6). Both pollutants exhibited slightly
weaker associations with ornithine while ozone showed stronger ef-
fects on acylcarnitine C10:1 in the two-pollutant model. For all other
metabolites except C16:1, the two-pollutant models did not change
the effect estimates (Supplemental Material, Table 6). For C16:1,
ozone effects exhibited stronger effects in the two-pollutant model.

Finally, we checked the exposure–response functions of metabolites
and PM2.5 or ozone for selected lags; as shown for arginine, glycine or
ornithine, there was no indication for a deviation from linearity (Sup-
plemental Material, Figs. 4–6).

4. Discussion

4.1. Summary

Prior day (1-day lag) increases in PM2.5 were associated with de-
creases in the concentrations of the amino acids arginine and glycine;
PM2.5 was also associated with delayed increases in ornithine and
C16:1. Increases in short-term exposures to ozone resulted in immedi-
ate and delayed increases of the amino acids aspartic acid/asparagine
and ornithine; delayed increases were found for the acylcarnitines
C10:1 and C16:1 as well as for total ketones. Results also suggested
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that there was effect modification by race on the associations of PM2.5

and ozone with C16:1, C10:1 and ornithine.

4.2. Air pollution and metabolites

To our knowledge, there has been only one epidemiological study
exploring the association between air pollution and small molecular
blood-borne metabolites levels (Menni et al., 2015). Using a subset of
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the TwinsUK cohort, long-term exposure to PM10 and PM2.5 were asso-
ciated withmetabolites related to reduced lung function. Eightmetabo-
lites were significantly negatively associated with PM, including
asparagine and glycine. We also observed significant negative associa-
tions between glycine levels and prior day (1-day lag) increases in
PM2.5; however we did not observe significant relations between
PM2.5 and aspartic acid/asparagine. A small number of animal or toxico-
logical studies have investigated the associations between welding
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Table 3
Percent change (95% confidence intervals) of the geometric mean of Cluster 2 amino acid
levels per interquartile range increase in PM2.5 based on the Bayesian space-time
“downscaler” fusion modeling approach (BDFM) and based on a combination of satel-
lite-based aerosol optical depth retrievals and ground monitoring data (AOD+ GM).†

Amino acids Lag

PM2.5 (BDFM) PM2.5 (AOD + GM)

% change (95% CI) % change (95% CI)

Arginine 0 −1.05 (−2.76;0.68) −1.36 (−3.11;0.42)
1 −2.61 (−4.35;−0.84)⁎⁎ −3.19 (−4.92;−1.43)†

2 −1.71 (−3.46;0.08) −2.10 (−3.92;−0.25)⁎

3 −0.14 (−1.90;1.65) −1.13 (−2.94;0.71)
4 0.41 (−1.31;2.17) 0.94 (−0.86;2.78)
5-day −1.65 (−3.41;0.14) −1.36 (−2.98;0.27)

Glycine 0 −0.44 (−1.70;0.84) −0.64 (−1.93;0.67)
1 −2.46 (−3.75;−1.16)† −1.63 (−2.91;−0.33)⁎

2 −1.31 (−2.61;0.01) −0.87 (−2.22;0.49)
3 0.90 (−0.41;2.23) 0.17 (−1.17;1.53)
4 0.92 (−0.36;2.22) 0.42 (−0.89;1.75)
5-day −0.75 (−2.07;0.58) −0.94 (−2.13;0.26)

Ornithine 0 0.92 (−0.52;2.39) 0.78 (−0.69;2.27)
1 0.96 (−0.54;2.49) 1.20 (−0.28;2.70)
2 0.93 (−0.57;2.46) 1.17 (−0.37;2.74)
3 1.84 (0.35;3.36)⁎ 1.31 (−0.21;2.86)
4 2.23 (0.77;3.72)⁎⁎ 1.64 (0.16;3.15)⁎

5-day 2.31 (0.79;3.85)⁎⁎ 2.10 (0.55;3.67)⁎⁎

% change: percent change of geometric mean; 95% CI: 95% confidence interval; 5-day: 5-
day average concentration; Interquartile ranges for PM2.5 (BDFM): lags 0–4 8.1 μg/m3, 5-
day average 5.1 μg/m3; Interquartile ranges for PM2.5 (AOD + GM): lags 0–4 7.5 μg/m3,
5-day average 4.6 μg/m3.
⁎ p-Value b 0.05.
⁎⁎ p-Value b 0.01.
† p-Value b 0.001.
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fumes or ozone andmetabolite levels (Miller et al., 2015, 2016;Wang et
al., 2012, 2015; Wei et al., 2013). However, results of these studies are
not directly comparable to our study because of differences in the
study design, pollutants (e.g., welding fumes), time points of collection
and fluid sampled.

4.3. Metabolites and cardiovascular disease

Metabolic profiling has the potential to identify novel biological me-
diators of cardiovascular disease (Shah et al., 2012a). Metabolic profiles
are associatedwith CAD, atherosclerosis andwithmajor adverse cardio-
vascular events including: myocardial infarction, stroke, heart failure
and death (Kordalewska and Markuszewski, 2015; Shah et al., 2012a;
Würtz et al., 2015). Tang et al. (2009)(Tang et al., 2009) reported a
strong association of arginine - and its downstream metabolites orni-
thine and citrulline - with CAD and incidentmajor adverse cardiovascu-
lar events: death, myocardial infarction, and stroke. Individuals with
CAD have significantly lower arginine, but greater ornithine and citrul-
line concentrations compared to CAD free individuals; this may be an
indication of lower arginine bioavailability (Tang et al., 2009). Arginine
is necessary for production of nitric oxide (NO); andNO is important for
maintaining vascular health and homeostasis. Ornithine is produced by
the cleavage of urea from arginine; this results in less arginine bioavail-
ability. Low arginine bioavailability ratios (arginine:ornithine) are in-
versely associated with markers of endothelial function (Sourij et al.,
2011).

In a recent study, plasma glycine was inversely associated with risk
of subsequent myocardial infarction in individuals with suspected sta-
ble angina pectoris (Ding et al., 2016). Several metabolomic investiga-
tions have recorded an association of decreased glycine concentrations
with diabetes (Ferrannini et al., 2013; Floegel et al., 2013) and obesity
(Newgard et al., 2009). Further, lower glycine concentrations are a pre-
dictor of individuals who develop glucose intolerance and diabetes
(Wang-Sattler et al., 2012). The mechanisms linking blood plasma gly-
cine and diabetes are related but remain unexplained. However, it has
been speculated that insulin resistancemight result in increased expres-
sion of δ-aminolevulinic acid synthase 1 (ALAS1) and production of 5-
aminolevulinic acid from glycine; alternatively, oxidative stress associ-
ated with diabetes leads to increased demand for glutathione and de-
pletion of circulating glycine (Roberts et al., 2014). Further, glycine is
the end product of a series of reactions from choline, through sarcosine
whereby single carbon units are donated to the one-carbon folate pool
— important for defense against oxidative stress. Finally, glycine, orni-
thine and arginine are involved in the condensation reaction producing
creatine. The intriguing inverse associations among glycine and arginine
with ornithine and air pollutants in this study should be noted. This ob-
servation may provide an important clue to the involvement of the cre-
atine condensation reaction as a mediator of short-term air quality
effects on cardiometabolic diseases.

Medium-chain acylcarnitines and long-chain dicarboxylacylcarnitines
were positively associatedwith an increased risk for all-causemortality in
participants from the CATHGEN cohort (Shah et al., 2012b). Moreover, a
metabolic factor related to medium- and long-chain acylcarnitines was
associatedwith an increased risk for cardiovascular events in elderly indi-
viduals (Rizza et al., 2014). Higher levels of acylcarnitines indicate ineffi-
cient β-oxidation and mitochondrial dysfunction; and medium- and
long-chained acylcarnitines are assumed to be an indicator of the defect
in mitochondrial oxidative capacity associated with insulin resistance
(Schooneman et al., 2013). Incomplete fatty acid oxidation in bodily tis-
sues would be expected to yield a higher plasma ketone concentration
(total ketone and beta-hydroxybutyrate)—as observed in our study.

The observed short-term associations between air pollution andme-
tabolite levels in our study are currently of unknown clinical signifi-
cance; however, they provide evidence of air pollution-related
physiologic changes and offer further insights into the pathophysiologic
mechanisms by which air pollution may increase the risk of acute car-
diovascular events.
4.4. Air pollution effects in potentially susceptible subgroups

Infants, the elderly, the obese, and those with underlying disease -
particularly cardiovascular disease or type-2 diabetes - are particularly
susceptible to the health effects of PM2.5 and ozone (Lanzinger et al.,
2014; Rückerl et al., 2011; Shumake et al., 2013; Stafoggia et al.,
2010). Effect modifications were mostly non-significant in our study
and confined to single metabolites. We observed stronger PM2.5 effects
on C16:1 levels in individuals younger than 60 years. Interestingly, air
pollution effects on arginine were stronger in those without diabetes.
This is contrary tomanyother studies that found individualswith diabe-
tes to bemore susceptible to the effects from air pollution (Dubowsky et
al., 2006; O'Neill et al., 2007; Schneider et al., 2010); we are at a loss to
explain this inconsistency. We observed stronger associations between
short-term PM2.5 or ozone exposure and C16:1, C10:1 and ornithine in
the Other race/ethnicity category; a substantial number of these partic-
ipants reside in Robeson County, where many people of Native Ameri-
can descent reside. Although these data suggest this population might
be more susceptible to air pollution, additional research to better iden-
tifyNative American participants in the CATHGEN cohortwill be needed
before definitive conclusions can be reached.

There is additional evidence for environmental effects on some of
our selectedmetabolites. In a previous genetic study including 100 indi-
viduals in 10 families with early onset cardiovascular disease, we exam-
ined the heritability of metabolites as indicated by the correlation
structures observed among parent-offspring, siblings and spouses
(Shah et al., 2009). Spouses are generally genetically unrelated and
thus, highly correlatedmetabolites between spouses could be attributed
to the environments they share. We re-examined the correlations and
found moderate to high spouse correlations (r N 0.5) for arginine, gly-
cine, ornithine, and C18:1. The latter showed an environmental influ-
ence on C16:1 (r = 0.73).
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4.5. Strengths and limitations

A strength of CATHGEN is the availability of detailed information on
demographics and cardiometabolic risk factors; this enables appropri-
ate adjustment for potential confounders (Kraus et al., 2015). Moreover,
all variables were assessed prospectively prior to catheterization in a
fasting state.

A further strength is the confirmation of observations using alterna-
tive methods for determining air quality exposures. We obtained daily
PM2.5 concentrations from two different sources; using data based on
a combination of satellite-based aerosol optical depth retrievals and
ground monitoring data (AOD + GM) led to similar effects compared
to results obtained from the Bayesian space-time “downscaler” fusion
modeling approach.

One potential weakness is the risk for false discovery; in an explor-
atory analytic approach, we performed a large number of analyses in
tenmetabolites.We sought tominimize the risk of false discovery by re-
ducing the number of metabolites through cluster analysis.We selected
for analysis only metabolites having high measurement accuracy, a low
percentage of values below the detection limit, and/or which were un-
correlated with other metabolites within the same cluster. By
conducting appropriate sensitivity analyses we are confident of our
findings. Irrespective of the risk of multiple comparisons, and given
the limited knowledge concerning the effects of air pollution onmetab-
olite exposures, these exploratory analyses hold substantial value; they
may be useful for generating hypotheses regarding the biological mech-
anisms of cardiovascular disease.

No repeatedmeasurements of metabolite levels for each participant
are available; therefore, potential variation of metabolite levels within
one individual could not be taken into account. In contrast, a large num-
ber of individuals were included in the analyses; this made possible the
investigation of potential air pollution effect modifications by intrinsic
individual characteristics. We were not able to adjust for medication,
as this information was only available for a few hundred participants;
however, medication use has not influenced previous studies in this
population (Shah et al., 2010, 2012a, 2012b). A more detailed adjust-
ment for smoking was not possible: only current smoking status was
obtained in the study. Finally, one should be cautious in generalizing
our observations to a community sample; only patients undergoing car-
diac catheterization and with a high risk of CAD were included. Never-
theless, these studies may provide useful mechanistic clues to the
metabolic underpinnings of cardiovascular disease.

4.6. Conclusions

Short-term ambient PM2.5 and ozone exposures were associated
with plasma concentrations of metabolites in a cohort of cardiac cathe-
terization patients. Our findings suggest that environmental stressors—
such as air pollution— are important factors to consider when examin-
ing the metabolic mechanisms of cardiovascular disease. The glycine-
ornithine-arginine metabolic axis and incomplete fatty acid oxidation
associated with mitochondrial dysfunction as mediators of cardiometa-
bolic risk are of particular interest for further investigation.
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