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with human diseases.

An enormous amount of molecular and phenotypic information of drugs as well
as diseases is now available in public repositories. Computational analysis of these datasets
is facilitating the acquisition of a systems view of how drugs act on our human organism and
interfere with diseases. Here, | highlight recent approaches integrating large-scale information
of drugs and diseases that are contributing to change our current view on how drugs interfere

© 2016 Beilstein-Institut. Published by Elsevier GmbH. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by/4.0/).

Introduction

Small molecules are the substances most often used as
therapeutic agents. However, despite the huge investment
of pharmaceutical companies in the development of new
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drugs, only few novel compounds are approved annually for
medical treatment (Emanuel, 2015). The high drug attrition
rate is due to a lack of efficacy and unexpected toxicity of
drugs (Waring et al., 2015), indicating that our understand-
ing on how compounds affect human biological circuits and
interfere with diseases is far from complete.

The recent explosion of biological information of drugs
in the public domain is facilitating the study of drug action
on the human organism in an unprecedented scale. Over
the last two decades, several databases storing molecu-
lar and phenotypic information of drugs have appeared on
the public domain. Examples of drug target databases are
DrugBank (Wishart et al., 2006), ChEMBL (Gaulton et al.,
2011) and Matador (Gunther et al., 2008). Repositories of
in vivo and in vivo phenotypic effects of drugs include SIDER
(Kuhn et al., 2010, 2016), a database of side effects of
marketed drugs, warehouses of high-throughput chemical

2213-0209/© 2016 Beilstein-lnstitut. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by/4.0/).


dx.doi.org/10.1016/j.pisc.2016.08.001
http://www.sciencedirect.com/science/journal/22130209
www.elsevier.com/pisc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.pisc.2016.08.001&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:monica.campillos@helmholtz-muenchen.de
dx.doi.org/10.1016/j.pisc.2016.08.001
http://creativecommons.org/licenses/by/4.0/

50

M. Campillos

Drugs

Figure 1
‘‘many drugs, many targets and many diseases’’ (B).

genetics experiments such as ChemBank (Seiler et al., 2008)
and PubChem Biassay (Wang et al., 2009) and repositories of
gene expression profiles after drug perturbation in cancer
cell lines (Lamb et al., 2006).

Resources containing large-scale information of diseases
have existed since more than three decades. The first
database collecting clinical as well as molecular information
of inherited diseases was the ‘Online Mendelian Inheritance
in Man (OMIM)’ (http://omim.org/). More recently, dedi-
cated databases storing genome-wide association disease
studies (GWAS), such as the NHGRI GWAS Catalog (Welter
et al., 2014) and molecular information of diseases (Pinero
etal., 2015) as well as resources offering clinical phenotypes
of more than 5000 common and rare diseases (Kohler et al.,
2014; Vogt et al., 2014a,b) such as Orphanet and Decipher
(Firth et al., 2009) have been released in the public domain.

The integrative analysis of chemical and disease infor-
mation is changing our view on drug mechanisms of action
as well as how drugs interfere with disease mechanisms.
The analysis of large-scale drug target information soon
evidenced the polypharmacological activity of drugs, that is,
the property of drugs to interfere with many protein targets
(Anighoro et al., 2014; Jalencas and Mestres, 2013; Peters,
2013). The classical view of ‘‘one drug, one target, one dis-
ease’’ (Imming et al., 2006) is evolving to a more complex
scenario of ‘‘many drugs, many targets and many diseases’’
(Mestres et al., 2008; Yildirim et al., 2007) (Fig. 1). Here,
I will highlight recent computational efforts that have con-
tributed to enhance our knowledge of drug modes of action
and disease relationships.
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Results

Elucidation of drug targets

Due to the medical and biological relevance of the discovery
of novel drug targets, uncovering new targets of drugs has
been an active area on drug discovery research in the last
years. Diverse chemo and bio-informatics approaches have
been developed to predict drug targets. Chemo-informatics
approaches exploit similarities on two and three dimen-
sional structural features of compounds to assign novel
targets to compounds (Keiser et al., 2007; Liu et al.,
2013; Paolini et al., 2006; Xia et al., 2004), while bio-
informatics approaches rely on the analysis of biological
properties of drugs. These properties include side effects
(Campillos et al., 2008), gene expression profiles after
drug perturbation (Lamb et al., 2006; Xia et al., 2004),
cytotoxicity profiles of chemicals across a panel of can-
cer cell lines (Shoemaker, 2006) and bioactivity profiles of
chemicals on chemical genetics screens (Petrone et al.,
2012).

Biological and chemical properties of compounds have
also been exploited in combination to uncover molecu-
lar information of compounds, for example in docking
approaches where the interaction between compounds and
proteins are modeled based on the compound and protein
structures (Laird and Blake, 2004) and machine-learning
methods that incorporate chemical structure and protein
target information (Li et al., 2015).
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Drug—disease relationships

Recent computational approaches exploit large scale infor-
mation on drugs and diseases to infer novel drug—disease
connections (Guney et al., 2016; Vogt et al., 2014a; Hopkins
and Groom, 2002; Yildirim et al., 2007). Profiling meth-
ods where signatures of phenotypic features such as gene
expression profiles of drugs and diseases are compared is a
common approach to link drugs and diseases. In this context,
anticorrelations of gene expression profiles after drug per-
turbation in cancer cell lines with gene expression signatures
of diseases have revealed novel drug—disease connections
(Lamb et al., 2006).

Recently, a semantic similarity method comparing signa-
tures of organismal phenotypes of drugs and diseases has
shown that drug—disease pairs sharing organismal pheno-
types are often molecularly as well as clinically related (Vogt
et al., 2014a), that is, phenotypically similar drug—disease
pairs are enriched in drugs whose protein targets are func-
tionally related to proteins encoded in disease genes. In
addition, in these pairs, the drug is often indicated or
contraindicated for the disease. Interestingly, we found
that contraindicated drug—disease pairs are preferentially
enriched in molecularly related associations, suggesting that
by targeting the protein causally related to the disease, the
drug can cause the disease and thereby produce side effects
resembling disease symptoms. This finding was exploited
to propose drug contraindications based on the phenotypic
similarity of drugs and diseases.

Another rich source of drug—disease associations are
chemical screens where the activity of a library of small
molecules is tested in phenotypic assays modeling diseases.
Methods that combine phenotypic high-throughput chemical
screens stored in public repositories with predicted protein
targets of compounds have proven useful to uncover not
only drug molecular mechanisms responsible for the phe-
notypic activity of compounds in chemical screens disease
relationships but also drug—disease relationships (Liu and
Campillos, 2014; Petrone et al., 2012; Wassermann et al.,
2015). High-throughput chemical screening in cancer cell
lines is opening novel opportunities for the discovery of
personalized treatments in cancer. Computational analyses
exploiting cell cytotoxicity information of thousands of small
molecules and an extensive molecular information of cell
lines such as gene mutations and transcriptomics informa-
tion are uncovering molecular biomarkers of drug sensitivity
as well as drug mechanism of actions (Garnett et al., 2012;
Rees et al., 2016; Shoemaker, 2006).

Methods that analyze drug—disease connections using
molecular networks have contributed to obtain a systems
view of drug therapeutic action (Yildirim et al., 2007). These
analyses have revealed that only a small number of drugs tar-
get disease mechanisms directly, implying that the majority
of drugs have a palliative effect, treating disease symptoms
rather than disease molecular causes (Guney et al., 2016;
Vogt et al., 2014a; Yildirim et al., 2007).

Concluding remarks

The studies mentioned above illustrate the possibilities of
integrative computational methods for the discovery of
novel insights of drugs and diseases. It is envisioned that

the upcoming clinical and molecular information of patients
including individual genome sequences and epigenomes,
detailed clinical information on patients, histopathologi-
cal features and even single-cell information will open new
avenues for a deeper understanding of the individual drug
response. The analysis of this amount of information will
certainly require advanced methods crossing the bioinfor-
matics, system biology and systems medicine disciplines to
precisely determine the best individual treatment option.
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