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Abstract

Motivation: Ordinary differential equation (ODE) models are frequently used to describe the dy-

namic behaviour of biochemical processes. Such ODE models are often extended by events to de-

scribe the effect of fast latent processes on the process dynamics. To exploit the predictive power

of ODE models, their parameters have to be inferred from experimental data. For models without

events, gradient based optimization schemes perform well for parameter estimation, when

sensitivity equations are used for gradient computation. Yet, sensitivity equations for models with

parameter- and state-dependent events and event-triggered observations are not supported by

existing toolboxes.

Results: In this manuscript, we describe the sensitivity equations for differential equation models

with events and demonstrate how to estimate parameters from event-resolved data using event-

triggered observations in parameter estimation. We consider a model for GFP expression after

transfection and a model for spiking neurons and demonstrate that we can improve computational

efficiency and robustness of parameter estimation by using sensitivity equations for systems with

events. Moreover, we demonstrate that, by using event-outputs, it is possible to consider event-

resolved data, such as time-to-event data, for parameter estimation with ODE models. By providing

a user-friendly, modular implementation in the toolbox AMICI, the developed methods are made

publicly available and can be integrated in other systems biology toolboxes.

Availability and Implementation: We implement the methods in the open-source toolbox

Advanced MATLAB Interface for CVODES and IDAS (AMICI, https://github.com/ICB-DCM/AMICI).

Contact: jan.hasenauer@helmholtz-muenchen.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Systems and computational biology aim at a holistic understanding of

biological processes. To achieve this, mechanistic mathematical mod-

els are developed which recast their essential properties (Kitano,

2002). These mathematical models—mostly ordinary differential

equations (ODEs) (Klipp et al., 2005)—describe the temporal evolu-

tion of states of biological processes by accounting for continuous

changes (e.g. synthesis, interconversion and degradation) as well as

discrete transitions and logical operations. Transitions can be trig-

gered by internal or external events, e.g. bolus injections or fast proc-

esses. Exemplarily, in the firing of neurones, the event trigger is the

membrane voltage reaching a threshold voltage, which results in an

instantaneous decrease of the membrane voltage and an increase in

the ion flux across the membrane (Izhikevich, 2003). Logical
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operations appear in the presence of latent state and discrete decisions,

e.g. in the context of coupled models of gene regulation and signal

transduction (Le Novère, 2015; McAdams and Shapiro, 1995).

In this study, we consider ODE models with discrete events, i.e.

event-triggered state transitions and observations, and logical oper-

ations. This broad model class becomes increasingly relevant as it

allows for the coupling of biological processes operating on different

time-scales (Le Novère, 2015) and involved observation processes

(Geissen et al., 2016). While the Systems Biology Markup Language

(SBML) (Hucka et al., 2003) facilitates the description of discrete

events and logical operations, the functionality supported by soft-

ware toolboxes is limited (Table 1). Many toolboxes are restricted

to time-triggered events and do not support trigger functions which

depend on the state variables or parameters of the ODE model. Of

the toolboxes supporting parameter- and state-dependent trigger

functions, only SloppyCell (Myers et al., 2007) allows for sensitivity

analysis using symbolically derived forward sensitivity equations.

However, no existing toolbox supports sensitivity analysis for event-

triggered observations which yield event-resolved data, e.g. neuronal

spike trains (Perkel et al., 1967). Currently, such event-triggered ob-

servations are rarely linked to mechanistic models, but instead

described by statistical models (Geissen et al., 2016; Holford, 2013),

which limits the understanding of the underlying processes.

The shortcomings of the available software toolboxes complicate

the analysis of ODE models with discrete events and logical oper-

ations, especially for gradient based parameter estimation. Most

ODE models possess unknown parameters, such as reaction rates,

which have to be estimated from experimental data. The corres-

ponding nonlinear optimization problems can be solved using local

and global optimization schemes (Egea et al., 2014; Raue et al.,

2015). Both approaches benefit from reliable gradient computation

via forward sensitivity equations (Raue et al., 2013). For ODE mod-

els with events for which no sensitivity equations are available, nu-

merical differentiation has to be employed to assess the gradient of

the objective function with respect to the parameters. This results in

inferior performance. Beyond gradient computation, sensitivity

equations can be used to gain insight into model properties (Dai

et al., 2014; Schilling et al., 2009), to guide experimental design

(Balsa-Canto et al., 2010; Raue et al., 2011; Vanlier et al., 2012)

and to accelerate uncertainty analysis (Girolami and Calderhead,

2011; Raue et al., 2009).

In this manuscript we present the governing equations for state

and output sensitivities for ODE models with discrete events and

logical operations. The equations have been derived in the context

of hybrid models by Barton et al. (1998) and Rozenvasser (1967),

but were neither broadly adopted nor evaluated in the systems

biology community. Furthermore, we introduce an objective func-

tion that allows the consideration of event-triggered observations

through mechanistic models. All relevant methods are imple-

mented in the open-source software toolbox Advanced Matlab

Interface for CVODES and IDAS (AMICI, originally presented by

Fröhlich et al., 2016). AMICI provides a user-friendly MATLAB

interface to the SUNDIALS solvers CVODES (Serban and

Hindmarsh, 2005) and IDAS (Hindmarsh et al., 2005) and auto-

matically handles events, which are not natively supported by

CVODES or IDAS. The methods and their implementation are

evaluated using two examples: A model for GFP expression after

transfection which includes the instantaneous release of mRNA

molecules and a model for a spiking neuron, in which the after-

spike reset of the membrane potential is instantaneous. For these

models we evaluate the optimizer efficiency and convergence using

sensitivity based gradients as well as finite difference based gradi-

ents. For the model of a spiking neuron, parameters are estimated

solely from event-resolved data, in this case the time points of the

after-spike resets.

2 Methods

In this section, we will introduce ODE models with discrete events

and logical operations and formulate the respective sensitivity

Table 1. Sensitivity and event related features for a selection of toolboxes
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Events � � � � � � � � � � � � � � � � �

with time dependent trigger � � � � � � � � � � � � � � � � �

with state/parameter dependent trigger � � � � � � � � � � � � � � � � �

with event observable � � � � � � � � � � � � � � � � �

with missing event penalization � � � � � � � � � � � � � � � � �

Symbolic sensitivity equations � � � � � � � � � � � � � � � � �

for time dependent trigger � � � � � � � � � � � � � � � � �

for state/parameter dependent trigger � � � � � � � � � � � � � � � � �

for event observable � � � � � � � � � � � � � � � � �

for missing event penalization � � � � � � � � � � � � � � � � �
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equations. Furthermore, we will formulate the objective function for

parameter estimation which allows the consideration of data which

is not time-resolved, but event-resolved, such as time-to-event.

2.1 Biochemical processes with events
For biochemical processes, the continuous change of the concentra-

tion of different chemical species and other biological quantities is

often formulated as system of ODEs,

_x ¼ f ðt;x; hÞ; xðt0; hÞ ¼ x0ðhÞ; (1)

where xðt; hÞ 2 R
nx denotes the state vector at time t 2 T ¼ ½t0; tf �

and h 2 R
nh denotes the parameter vector. Usually, The parameters

of such a model are kinetic constants, initial conditions and scaling

factors, but can also define event related information such as thresh-

olds, bolus, or event-times. The function x0 : Rnh 7!R
nx provides the,

possibly parameter dependent, initial condition at time t0. The vec-

tor field f : T� R
nx � R

nh 7!R
nx models the temporal evolution of

the states and can have a piecewise definition.

Every model can include multiple different events which we dis-

tinguish by specifying ne different event types. The jth event type is

defined by a trigger function gðjÞðt;x; hÞ : T� R
nx � R

nh 7!R and up-

date function vðjÞðt;x; hÞ : T�R
nx �R

nh 7!R
nx . The time point of the

‘th occurrence sðjÞ‘ of the jth event type is defined by the roots of the

trigger function gðjÞ:

8 ‘; j : gðjÞðsðjÞ‘ ; xðs
ðjÞ
‘ ; hÞ; hÞ ¼ 0 with t0 < sðjÞ1 < sðjÞ2 < . . . :

For Boolean trigger functions gðjÞ, output values true are mapped to

positive values and output values false are mapped to negative values

such that gðjÞ has a root at every change of the Boolean value (see

Supplementary Information, Section 2). The changes which are induced

at every event occurrence are defined by the update function vðjÞ:

xðsðjÞ‘;þ; hÞ � xðsðjÞ‘ ; hÞ ¼ vðjÞðsðjÞ‘ ;xðs
ðjÞ
‘ ; hÞ; hÞ ; (2)

where sðjÞ‘;þ ¼ lim�!0 sðjÞ‘ þ �; � > 0. If multiple different events occur

simultaneously the cumulative change in the states is computed by

summing over all triggered updates. The special case vðjÞ � 0 can be

used to treat discontinuities in the vector field f or define events that

only produce model outputs.

Model outputs describe the observed quantities in the measure-

ment process (see Fig. 1a–c). In this manuscript, we consider time-

resolved outputs y (Fig. 1b) and event-resolved outputs z (Fig. 1c).

Time-resolved outputs y model measurements which are collected at

predefined time points. As in most applications only partial observa-

tions are available, we introduce the output function

hðt; x; hÞ : T� R
nx � R

nh 7!R
ny , which defines the time-resolved out-

put yðt; hÞ 2 R
ny at measurement time point t:

yðt; hÞ ¼ hðt; xðt; hÞ; hÞ : (3)

The event-resolved outputs z describe measurements which are trig-

gered by events and ordered accordingly. To allow for arbitrary

event-resolved outputs, we introduce the output functions

kðt; x; hÞðjÞ : T�R
nx �R

nh 7!R
n
ðjÞ
z , which defines the event-resolved

output for the ‘th occurence of the jth event type

z
ðjÞ
‘ ðhÞ ¼ kðjÞðsðjÞ‘ ;xðs

ðjÞ
‘ ; hÞ; hÞ : (4)

In the following we will derive the forward sensitivity equation

for states and outputs. To improve the readability, we will partially

omit the arguments of f, h, x0, g, v and their respective partial de-

rivatives with respect to t, x and h. Where necessary, we will denote

a pointwise evaluation by js, i.e. kðjÞjs ¼ kðjÞðs; xðs; hÞ; hÞ.

2.2 Sensitivity equation for state and output variables
The dependence of the state variables on the parameter values is

described by the sensitivity equations. The differential equations for

the sensitivities sx
kðt; hÞ : T� R

nh 7!R
nx of the states x to the param-

eter hk can be obtained by differentiating (1) with respect to hk and

reordering the derivatives. This yields

_sx
k ¼

@f

@x
sx
k þ

@f

@hk
; sx

kðt0; hÞ ¼
@x0

@hk
: (5)

The events must also be taken into account as they can induce jumps

in the solutions to the sensitivity equations. The formula for these

jumps was originally derived by Rozenvasser (1967) and can be ob-

tained by taking the derivative of (2) with respect to hk and

reordering:

sx
kðs
ðjÞ
‘;þÞ� sx

kðs
ðjÞ
‘ Þ ¼ �ð _xðs

ðjÞ
‘;þÞ� _xðsðjÞ‘ ÞÞs

sðjÞ
‘

k

þ @vðjÞ

@x
sx
k þ _xs

sðjÞ
‘

k

� ������
sðjÞ
‘

þ @vðjÞ

@t
s
sðjÞ
‘

k

�����
sðjÞ
‘

þ @vðjÞ

@h

�����
sðjÞ
‘

;

where s
sðjÞ
‘

k is the sensitivity of the event-time of the ‘th occurrence of

the jth event type with respect to hk. The formula for this sensitivity

follows from the implicit function theorem as:

s
sðjÞ
‘

k ¼
@sðjÞ‘
@hk
¼ � @gðjÞ

@t

� ��1
@gðjÞ

@hk

����
sðjÞ
‘

:

For the time-resolved outputs y as well as the event-resolved out-

puts z the sensitivities can be computed by applying the chain rule to

Equations (3) and (4). The sensitivity of time-resolved output yi; i ¼
1; . . . ;ny at measurement time points t with respect to parameter hk

is denoted by syi

k ðt; hÞ : R�R
nh 7!R. These sensitivities can be com-

puted according to

syi

k ¼
@hi

@x
sx
k þ

@hi

@hk
:

(a) (c)

(b) (d)

Fig. 1. Illustration of time-resolved and event-resolved outputs. (a) Time-de-

pendent state of the process. (b) Time-resolved outputs pre-specified time

points. (c) Trigger fuctions of the system. Events are triggered at the roots of

the trigger functions. (d) Event-resolved outputs at event occurrences. The re-

lation between elements of different subplots are indicated by arcs and

arrows
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The sensitivity of z
ðjÞ
‘;q, the qth out of n

ðjÞ
z event-resolved outputs of

the ‘th occurrence of the jth event type with respect to hk, is denoted

by s
z
ðjÞ
‘;q

k ðhÞ : Rnh 7!R and can be computed according to

s
z
ðjÞ
‘;q

k ¼
@kðjÞq

@t
s
sðjÞ
‘

k þ
@kðjÞq

@x
sx
k þ

@kðjÞq

@hk
:

2.3 Objective function
We consider experimental data

D ¼ ftm; f�ym;ig
ny

i¼1g
nt

m¼1; f�z
ðjÞ
‘;qg

n
ðjÞ
z ;n

ðjÞ
s ;ne

q¼1;l¼1;j¼1

n o
;

q with nt time points tm at which ny different measurements �ym;i are

taken. Furthermore D includes the n
ðjÞ
z different outputs �zq;j;l for the nðjÞs

occurrences of the jth out of ne different event types. To estimate the par-

ameters h from D, we use maximum likelihood estimation. Accordingly,

we minimize the negative log-likelihood function JðhÞ, which provides a

measure for the distance of the experimental data and the model simula-

tion. In the following we will split the objective in two parts:

JðhÞ ¼ JyðhÞ þ JzðhÞ ;

with JyðhÞ to account for time-resolved data and JzðhÞ to account for

event-resolved data.

We assume independent, normally distributed measurement

noise with mean zero for time-resolved and event-resolved data. For

time-resolved data, this yields the negative log-likelihood

JyðhÞ ¼
1

2

Xny

i¼1

Xnt

m¼1

�ym;i � yiðtm; hÞ
rðyÞm;iðhÞ

 !2

þ log 2prðyÞ2m;i ðhÞ
� �

;

with standard deviation of the time-resolved measurements rðyÞm;i. The

negative log-likelihood function for event-resolved data is the sum of

negative log-likelihood functions J zðjÞ

‘;q for the individual measurements,

JzðhÞ ¼
Xne

j¼1

XnðjÞz

q¼1

XnðjÞs
‘¼1

J zðjÞ

‘;q :

In accordance with the noise model, the obvious choice for J zðjÞ

‘;q

would be

J zðjÞ

‘;q ¼
1

2

�z
ðjÞ
‘;q � z

ðjÞ
‘;qðhÞ

xðjÞ‘;qðhÞ

0
@

1
A2

þ 1

2
log 2pxðjÞ2‘;q ðhÞ
� �

; (6)

with standard deviation of the event-resolved measurements xðjÞ‘;q. The

evaluation of J zðjÞ

‘;q , however, requires all event time points sðjÞ‘ to be

computed. For certain parameter values, these events might occur at

very late time points sðjÞ‘ � 1 or not at all. To enable objective func-

tion evaluation for such parameter values, we set the maximum simu-

lation time to a reasonable value tf > t0, at which all remaining event

outputs are evaluated at tf. As the gradient to the objective function

for these remaining event outputs would be flat, we add an additional

event penalization term based on the corresponding trigger function:

J zðjÞ

‘;q ¼
1

2

�z
ðjÞ
‘;q � kðjÞq jminðsðjÞ

‘
;tf Þ

xðjÞ‘;qðhÞ

0
@

1
A

2

þ1

2

gðjÞj
minðsðjÞ

‘
;tf Þ

xðlÞ‘;qðhÞ

0
@

1
A

2

þ 1

2
log ð2pxðjÞ2‘;q ðhÞÞ :

(7)

For sðjÞ‘ > tf ; gðjÞðminðsðjÞ‘ ðhÞ; tf Þ;x; hÞ acts as a proxy for the remain-

ing time until event occurrence, while for sðjÞ‘ ðhÞ < tf the penalty is

set to zero. This event penalization is only applied when the simula-

tion yields less than the experimentally observed number of event

occurrances nj
s. When the simulation yields more than the experi-

mentally observed number of event occurrances nj
s, only the first nj

s

are considered. The gradient of this objective function is provided in

the Supplementary Information, Section 1.

2.4 Parameter optimization
For parameter estimation, the objective function JðhÞ needs to be

minimized. For this optimization we used the MATLAB function

fmincon with the interior-point algorithm, a local optimizer. Other

optimization schemes such as fmincon with the trust-region-

reflective algorithm or lsqnonlin are also applicable, but require

user-defined gradients. In contrast, the interior-point algorithm in

MATLAB can compute finite difference gradients using a sophisti-

cated method for automatic step-size selection and is thereby applic-

able to all settings considered in this manuscript. This facilitates a

more consistent comparison.

For most applications, the minimization of the objective function

is a non-convex optimization problem that possesses multiple local

minima. As globalization strategy we initialized the optimization at

100 different starting points. Moreover, all parameters were log-

transformed to increase optimization efficiency and ensure positivity

of estimated parameters (Raue et al., 2013). We allowed a max-

imum of 500 iterations and specified an objective function tolerance

of 0 and an optimization variable tolerance of 10�8.

2.5 Practical identifiability
Measurement data are limited and noise-corrupted, potentially ren-

dering model parameter non-identifiable. In this study, we assess

practical identifiability using profile likelihoods (Kreutz et al.,

2013), a method which is also applicable to ODE models with dis-

crete events and logical operators. Profile likelihoods provide par-

ameter confidence intervals by solving a sequence of constrained

local optimization problems.

2.6 Implementation
We implemented the numerical simulation of ODE models with

events in the MATLAB toolbox AMICI (Fröhlich et al., 2016).

AMICI uses CVODES for numerical simulation. In AMICI events can

be directly defined in the vector field f. Several discontinuous or non-

differentiable functions can be used in the model definition in AMICI

(see Supplementary Information, Section 2), including Heaviside and

Dirac delta distributions. These functions are automatically parsed by

AMICI and transformed into appropriate event definitions.

Additionally, events can also be specified in the event field of the

model definition struct via the amievent(trigger,update,z) command

or imported from SBML models via libSBML (Bornstein et al., 2008).

3 Results

In the following, we illustrate and evaluate the accuracy of the nu-

merical simulation of ODE models with events and the benefit of ac-

curate sensitivities for parameter estimation. For this purpose, we

consider one application and one simulation example.

3.1 Application example: mRNA transfection
In this section, we evaluate the numerical accuracy of the simulation

for a model with a parameter-dependent state transition.

Furthermore, we estimate the model parameters from published

time-resolved data (Leonhardt et al., 2014).
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3.2 Model of mRNA transfection
We consider a model for the transfection of a cell with mRNA cod-

ing for GFP (Fig. 2a). The mRNA coding for GFP is encapsulated in

lipoplexes and added to the extracellular medium. The lipoplexes

are absorbed via endocytosis and dissolved, resulting in the release

of GFP mRNA which becomes accessible for translation (Ligon

et al., 2014). The release of mRNA into the cytoplasm is modeled as

a parameter dependent event, where the parameters describe the

time point of mRNA release and the amount of released mRNA.

Both mRNA and protein are degraded. The process is described by

the following ODE:

dx1

dt
¼ �bx1; x1ð0Þ ¼ 0 ;

dx2

dt
¼ k2x1 � cx2; x2ð0Þ ¼ 0 ;

gð1Þ ¼ t � tr; vð1Þ ¼ ½m0; 0�T ;

where x1 denotes the mRNA concentration, x2 denotes the GFP con-

centration, b is the mRNA degradation rate, m0 is the released

amount of mRNA, tr is the time point of release, k2 is the translation

rate and c is the degradation rate of GFP. For optimization, the model

is reparametrized such that all remaining parameters are structurally

identifiable (see Supplementary Information, Section 3).

The GFP expression after mRNA transfection has been assessed

using single cell time-lapse fluorescence microscopy (Leonhardt

et al., 2014). These measurements are corrupted by background

fluorescence b. Furthermore, as our analysis revealed that the meas-

urement noise is additively normally distributed on the log-scale, we

consider the output y ¼ log ðsx2 þ bÞ.

3.3 Accuracy of numerical simulation and sensitivity

analysis
The model for mRNA transfection is linear and can be solved ana-

lytically (see Supplementary Information, Section 3). To verify the

implementation in AMICI, we compared the numerically computed

sensitivities to their analytical counterparts. This revealed the high

accuracy of the simulation results (see Fig. 2b).

3.4 Improvement of parameter optimization for time-

resolved data using sensitivity equations
The parameters influencing mRNA transfection are not experi-

mentally accessible. Here, we estimated those parameters from a

representative single-cell trajectory reported by Leonhardt et al.

(2014). To evaluate the importance of accurate gradient informa-

tion, we performed multi-start local optimization using sensitivity

equations and finite differences for gradient calculation. For both

methods, local optimization was initialized at the same 100 start-

ing points.

The assessment of the optimization results revealed that both

methods yielded fits which are consistent with the experimental data

(Fig. 3a). To evaluate the efficiency of the two approaches we com-

pared the computation time per local optimization. We found that

the sensitivity based approach required on average 0.67 s per opti-

mization while the finite difference based approach required on

average 1.22 s (Fig. 3b). To evaluate the robustness of the two

approaches we compared the consistency with which the lowest ob-

jective function value was achieved. For both approaches we observe

pronounced plateaus in the final objective function value (Fig. 3c),

implying good convergence of both approaches. In a fixed timespan,

the sensitivity based approach will yield 2.2 times as many con-

verged starts as the finite differences based approach (Fig. 3d).

These results suggest that already for small ODE models with

events, the sensitivity based approach is more efficient than the finite

difference based approach.

3.5 Simulation example: spiking neurons
In this section, we use the numerical simulation and optimization

methods to study a system with state-dependent trigger function and

event-resolved data. Such models are widely used in computational

neurosciences. In this section we will consider a model for the mem-

brane potential in neurons introduced by Izhikevich (2003). The model

can describe a variety of spiking and bursting patterns of the mem-

brane potential which are typical for all known types of cortical neu-

rons. For the model of spiking neurons the after-spike reset is modeled

as an event with a state-dependent trigger function (see Fig. 2c).
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3.6 Model of spiking neurons
We consider the Izhikevich model for spiking neurons (Izhikevich,

2003). This model describes the membrane potential x1 of a neuron,

which is influenced via a negative feedback by the membrane recov-

ery variable x2. The ODEs are:

_x1 ¼ Vðx1Þ � x1 þ IðtÞ
_x2 ¼ aðb � x1 � x2Þ

gð1Þ ¼ x1 � 30

vð1Þ ¼ ½�c� x1; d�T ;

where VðxÞ ¼ 0:04x2 þ 5xþ 140 defines the spike initiation dy-

namics and IðtÞ ¼ 10 �Hðt � 1Þ describes the induction current. The

parameter a defines the time-scale of the recovery variable x2, b de-

fines the sensitivity of the recovery variable on the membrane poten-

tial, c defines the after-spike reset value of the membrane potential v

and d describes the after-spike reset of the recovery variable x2. The

event implements the after-spike reset when the potential x1 exceeds

the threshold 30 and resets the value of the membrane potential x1 to

c and increases the value of the recovery variable x2 by d. In experi-

ments usually the time points of spikes, so called spike trains are re-

corded. Therefore, we specify the time point of the event as event-

output: kð1Þ ¼ t. As for the considered process no analytical solution

is known, we verified the correctness of sensitivity equations for this

event-resolved output by comparing the simulation results to the sen-

sitivities computed via finite differences (see Fig. 2d). As the finite dif-

ferences results are noise-corrupted, this comparison does not yield an

exact quantification of the error.

3.7 Improvement of parameter optimization for event-

resolved data using sensitivity equations and event

penalization
For the model of spiking neurons we generated synthetic data by

simulating the model for h ¼ ða;b; c;dÞ with a¼0.02, b¼0.3,

c¼65 and d¼0.9 and reporting the first 22 spike-times. The spike-

times were perturbed by adding Gaussian noise with standard devi-

ation rs ¼ 0:5, yielding the artificial data.

Several toolboxes for fitting of spike-train data have been de-

veloped (e.g. Rossant et al., 2011). None of these toolboxes exploit

sensitivity equations for gradient computation although sensitivity

based methods are known to be more efficient for a variety of appli-

cations in systems biology (Raue et al., 2013). To assess whether the

use of sensitivity equations for gradient calculation is also advanta-

geous for time-to-event fitting we carried out parameter estimation

on spike trains using both finite differences and sensitivity equa-

tions. The comparison of model simulation and experimental data

(Fig. 3e) revealed that both methods yield a best fit which agrees

well with the experimental data.

To evaluate the efficiency of the two approaches, we compared

the computation time per optimization. We found that for the neu-

ron model the sensitivity based approach required on average 8.2 s

per local optimization while the finite difference based approach

required on average 11.3 s (Fig. 3f). To evaluate the robustness of

the two approaches we compared the consistency with which the

lowest objective function value was achieved. For forward sensitiv-

ities three times as many optimization runs converged to the lowest

objective value of 8.05 (Fig. 3g), implying better convergence for the

sensitivity based approach. In a fixed timespan, the sensitivity based

approach will yield 3.9 times as many converged starts as the finite

differences based approach (Fig. 3h). When the event penalization

(7) is not employed for the objective function, over 50% of the opti-

mization runs stop after the first iteration as no event occurred and

the gradient was evaluated to zero. These optimization runs resulted

in a pronounced plateau in the objective function value at

1:85 � 105. This demonstrates that optimization using sensitivity

equations for time-ordered data is more reliable and more efficient

compared to finite differences and that event penalization is essential

for optimization.

Assessment of practical identifiability for event-

resolved data
To assess the identifiability of parameters for the model for spiking

neurons from event-resolved data, we computed confidence intervals

for all parameters using the profile likelihood method. This analysis
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revealed that all parameters are practically identifiable (Fig. 4). The

confidence intervals contain the parameter values used to generate

the data. This emphasizes the reliability of the proposed method for

handling event-resolved data.

4 Discussion

Discrete events and logical operators are frequently used in system

biology to describe involved dynamics and are particular relevant in

multi-scale modeling. For models with multiple time-scales, the fast

processes can be described as Boolean model and linked to the slow

processes via events, giving rise to hybrid models (Le Novère, 2015;

McAdams and Shapiro, 1995). In this manuscript, we formulated

the sensitivity equations for time-resolved and event-resolved out-

puts for ODE models with discrete events and logical operations.

These sensitivity equations provide means to efficiently and accur-

ately compute objective function gradients, which are essential for

parameter estimation. All methods are provided to the systems and

computational biology community in the easy-to-use software tool-

box AMICI. AMICI provides full support for sensitivity calculation

for models with discrete events and logical operations. In contrast to

available toolboxes, event-triggered observations are considered and

a penalization strategy for missing events is provided to facilitate ob-

servations. AMICI has been tested on Windows, Unix and Mac OS

X based operating systems. Due to its modular implementation,

AMICI can be easily integrated with other toolbox to provide simu-

lation results and sensitivities to various systems biology toolboxes.

The import of SBML models provides access to a large number of

models stored in databases, such as BIOMODELS (Le Novère et al.,

2006) and allows for model editing using tools with graphical user

interfaces, such as COPASI (Hoops et al., 2006)).

We compared the performance of multi-start local optimization

using sensitivity equations and finite differences for gradient evalu-

ation for one simulation and one application example. For both ex-

amples we found that the optimization has better convergence and is

faster when using sensitivity equations compared to finite differ-

ences. These results are in line with previous comparisons of sensi-

tivity based and finite difference based parameter estimation in

systems biology (Hross and Hasenauer, 2016; Raue et al., 2013).

Optimization and practical identifiability analysis for the model

of a spiking neuron revealed that estimation for event-resolved data

is practically feasible and can yield robust parameter estimates. For

the investigated model, all parameters were practically identifiably

solely from event-resolved data. The direct examination of struc-

tural identifiability of parameters remains elusive as existing meth-

ods are not applicable.

The presented framework enables the consideration of event-

resolved observations, such as event-times. Time to event measure-

ments for cellular events such as transfection, differentiation, div-

ision or apoptosis could provide additional insight into the

underlying process when described by mechanistic models.

Moreover, by using events with Boolean trigger functions (i.e.

derived from Signal Temporal Logic (Donzé and Maler, 2010) for-

mulas), transitions in the qualitative behaviour (Toni et al., 2011) of

a system could be used for parameter estimation by considering the

respective transition time-points as event-resolved observables.

In conclusion, the developed methods facilitate the simulation

and sensitivity analysis for a more general class of ODE models and

make event-resolved data accessible for parameter estimation. This

will facilitate the analysis of more involved models and the mechan-

istic description of cellular events in a variety of novel applications.
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