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1 Derivation of Forward and Adjoint Sensitivity Analysis for Gra-
dient Evaluation

AMICI supports first and second order forward sensitivities and first order adjoint sensitivities. In the
following we will provide all necessary equations for sensitivity and gradient calculation.

1.1 Objective function

We consider the objective function

J(θ) =
1

2

N∑
j=1

ny∑
i=1

log(2πσ2
ij(θ)) +

(
ȳij − hi(x(tj), θ)

σij(θ)

)2

, (1)

with parameter dependent noise variance σ2
ij(θ). For simplicity of notation we assume that t0 ≤ t1 < ... < tN .
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The derivative of the objective function with respect to parameter θk, i = 1, ..., nθ, is given by

∂J

∂θk
=

N∑
j=1

ny∑
i=1

1

σij(θ)

(
1

2
− (ȳij − hi(x(tj), θ))

2

σ2
ij(θ)

)
∂σij
∂θk

∣∣∣∣
(θ)

− (ȳij − hi(x(tj), θ))

σ2
ij(θ)

syi,k(tj) (2)

in which syi,k(tj) denotes the sensitivity of the output yi = hi(x, θ) at time tj with respect to parameter θk.
The sensitivity of the output can be expressed in terms of the sensitivity of the state

syi,k(tj) =
∂hi
∂x

∣∣∣∣T
(x(tj),θ)

sxk(tj) +
∂hi
∂θk

∣∣∣∣
(x(tj),θ)

. (3)

1.2 First and second order forward sensitivity analysis

The governing equations for first order forward sensitivities sxk(t) : [t0, tN ] 7→ Rnx×nθ are

ṡxk(t) =
∂fi
∂x

∣∣∣∣
(x(t),θ)

sxk(t) +
∂fi
∂θk

∣∣∣∣
(x(t),θ)

, with sxk(t0) =
∂x0
∂θk

∣∣∣∣
(θ)

. (4)

Second order equations can be obtained by differentiating both sides of (4) with respect to the parameter θl:

ṡ
(2),x
kl (t) =

∂f

∂x

∣∣∣∣
(x(t),θ)

s
(2),x
kl (t) + sxl (t)T

∂2f

∂x2

∣∣∣∣
(x(t),θ)

sxk(t) +
∂2f

∂θk∂θl

∣∣∣∣
(x(t),θ)

, with s
(2),x
kl (t0) =

∂2x0
∂θk∂θl

∣∣∣∣
(θ)

,

where s
(2),x
kl (t) : [t0, tN ] 7→ Rnx×nθ×nθ denotes the second order sensitivity of states x with respect to param-

eters θk and θl. Note that for two times continuously differentiable functions f the second order sensitivities
are, according to Schwarz’ Theorem, symmetric in k and l.

1.3 Adjoint sensitivity analysis

The evaluation of every gradient entry ∂J/∂θk using (2) requires the solution of (4) which can be prohibitively
computationally demanding for complex systems with a large number of parameters. In the following we will
derive an evaluation scheme of this gradient of objective functions of the form (1) which does depend on the
state sensitivities sxk(t) and thus does not require a solution to (4). This will be achieved by reformulating
the term which contains the sensitivity of the state with respect to the parameters,

N∑
j=1

ny∑
i=1

∂hi
∂x

∣∣∣∣T
(x(tj),θ)

(ȳij − hi(x(tj), θ))

σ2
ij(θ)

sxk(tj). (5)

We introduce the adjoint state p(t) : [t0, tN ] 7→ Rnx as the solution to the backward differential equation

lim
t→t+j

p(t) = 0

for j = N : −1 : 1

ṗ(t) = − ∂f

∂x

∣∣∣∣T
(x(t),θ)

p(t), t ∈ (tj−1, tj)

with p(tj) = lim
t→t+j

p(t) +

ny∑
i=1

∂hi
∂x

∣∣∣∣T
(x(t),θ)

(ȳij − hi(x(tj), θ))

σ2
ij(θ)

(6)

which is defined on intervals (tj−1, tj), j = 1, . . . , N . The dimension of the adjoint state p(t) equals the
number of state equations, which is usually the same as the number of state variables x(t). From (6) it
follows that for each of the individual subintervals with j ∈ {0, . . . , N − 1} it holds that:

0 =

∫ tj+1

tj

(
ṗ(t) +

∂f

∂x

∣∣∣∣T
(x(t),θ)

p(t)

)T
sxk(t)dt , (7)

By integration by parts of (7) we obtain

0 =

∫ tj+1

tj

p(t)T

(
−ṡxk(t) +

∂f

∂x

∣∣∣∣T
(x(t),θ)

sxk(t)

)
dt+ lim

t→t−j+1

p(t)T sxk(t)− lim
t→t+j

p(t)T sxk(t) (8)
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We proceed by simplifying the second term of the integral by using the forward sensitivity equation (4) and
by evaluating the limit from above limt→t+j

p(t) using the definition of the end value on the intervals, see the

last line of (6). This yields

0 = −
∫ tj+1

tj

p(t)T
∂f

∂θk
(x(t), θ)dt+ p(tj+1)T sxk(tj+1)− p(tj)T sxk(tj)

+

ny∑
i=1

∂hi
∂x

∣∣∣∣T
(x(tj),θ)

(ȳij − hi(x(tj), θ))

σ2
ij(θ)

sxk(tj).

(9)

Note that the latter only holds for j > 0 while for j = 0 (for which no measurement is available), the last
summand is 0. Summing (9) over j from 0 to N − 1 yields

0 = −
N−1∑
j=0

∫ tj+1

tj

p(t)T
∂f

∂θk

∣∣∣∣
(x(t),θ)

dt+

N−1∑
j=0

p(tj+1)sxk(tj+1)−
N−1∑
j=0

p(tj)s
x
k(tj)︸ ︷︷ ︸

(∗)

+

N−1∑
j=1

ny∑
i=1

∂hi
∂x

∣∣∣∣T
(x(t),θ)

(ȳij − hi(x(tj), θ))

σ2
ij(θ)

sxk(tj)

All terms in (∗) either cancel or evaluate to 0 except for p(tN )sxk(tN ) and p(t0)T sxk(t0). Additionally merging
the sum over integrals into one integral and using the last line of (6) for expressing the term p(tN )sxk(tN )
yields

0 = −
∫ tN

t0

p(t)T
∂f

∂θk

∣∣∣∣
(x(t),θ)

dt− p(t0)T sxk(t0) +

N∑
j=1

ny∑
i=1

∂hi
∂x

∣∣∣∣T
(x(t),θ)

(ȳij − hi(x(tj), θ))

σ2
ij(θ)

sxk(tj).

By replacing p(t0)T sxk(t0) with the definition of the initial condition of the forward sensitivity equation in (4)
we obtain an expression for (5) which is independent of the state sensitivities sxk(t0):

N∑
j=1

ny∑
i=1

∂hi
∂x

∣∣∣∣T
(x(tj),θ)

(ȳij − hi(x(tj), θ))

σ2
ij(θ)

sxk(tj) =

∫ tN

t0

p(t)T
∂f

∂θk

∣∣∣∣
(x(t),θ)

dt+ p(t0)T
∂x0
∂θk

∣∣∣∣
(θ)

.

This alternative formulation of the problematic term (5) is then used to formulate the gradient (2). We
obtain the objective function gradient

∂J

∂θk
=

N∑
j=1

ny∑
i=1

1

σij(θ)

(
1

2
− (ȳij − hi(x(tj), θ))

2

σ2
ij(θ)

)
∂σij
∂θk

∣∣∣∣
(θ)

− (ȳij − hi(x(tj), θ))

σ2
ij(θ)

∂hi
∂θk

∣∣∣∣
(x(tj),θ)

−
∫ tN

t0

p(t)T
∂f

∂θk

∣∣∣∣
(x(t),θ)

dt− p(t0)T
∂x0
∂θk

∣∣∣∣
(θ)

,

(10)

with k = 1, ..., nθ. This expression no longer depends on the state sensitivities sxk(t) but instead on the adjoint
state p(t). In contrast to the state sensitivities, the adjoint state does not depend on parameters und thus
only needs to be evaluated once. This reduces the computational complexity of one gradient evaluation from
np + 1 systems of the size nx to 2 systems of the size nx. The computational complexity of the numerical
integration required to evaluate (10) is usually negligible.

2 Accuracy of the Numerically Computed Gradient

We compared the numerical gradient approximations obtained by finite differences, forward sensitivity anal-
ysis and adjoint sensitivity analysis. To evaluate the accuracy of the individual appraoches we investigated
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Supplement Figure 1: Dependence of the computation time on the number of time points for the B2 and
B4 model. Data used for the adjoint approach was generated by simulating the system at nominal parameter
and adding artificial noise.

the maximum relative difference

∆i,rel =



0 if ∂J
∂θi

adjoint
= 0, ∂J

∂θi

method
= 0∣∣∣∣∣ ∂J∂θimethod− ∂J

∂θi

adjoint

∂J
∂θi

adjoint

∣∣∣∣∣ if ∂J
∂θi

adjoint 6= 0, ∂J
∂θi

method
= 0∣∣∣∣∣ ∂J∂θimethod− ∂J

∂θi

adjoint

∂J
∂θi

method

∣∣∣∣∣ if ∂J
∂θi

adjoint
= 0, ∂J

∂θi

method 6= 0

max

(∣∣∣∣∣ ∂J∂θimethod− ∂J
∂θi

adjoint

∂J
∂θi

adjoint

∣∣∣∣∣ ,
∣∣∣∣∣ ∂J∂θimethod− ∂J

∂θi

adjoint

∂J
∂θi

method

∣∣∣∣∣
)

otherwise

,

where method ∈ {adjoint’, forward,finite difference} indicates the employed gradient approximation scheme.
For method ∈ {adjoint, forward,finite difference} we used default tolerances default accuracies (absolute error
< 10−16, relative error < 10−8)) and for method=adjoint’ we used high accuracies (absolute error < 10−32,
relative error < 10−16). For finite differences we used a step size of 10−3. The maximum over both relative
error variants ensures symmetry with respect to the choice of methods and accounts for the fact that we do
not know the ground truth.

3 Scaling of Forward and Adjoint Sensitivity Analysis with respect
to the Number of Time Points

We compared the scaling of adjoint and forward sensitivity analysis with respect to the number of time points
at which data is available. We found that for both appraoches the computation time increases linearly with
the number of time points (see Figure 2). An additional analysis suggests that for forward sensitivity analysis
this is caused by the need to evaluate the sensitivities at more time points than required by the employed
multi-step solver. This appears to a slight shortcoming of the the multi-step solver in CVODES [1], which
requires the evaluation of a polynomial equation for each sensitivity. For adjoint sensitivity analysis the
increase in computation time is caused by the reinitialization of adjoint sensitivities at the discontinuities at
the data time points. This is also a shortcoming of using a multi-step solver as the order of the solver and
the time-step needs are reset to small values at every discontinuity. For both, forward and adjoint sensitivity
analysis, the adverse scaling with the number of time points could be eliminated by switching to a single-step
solver. We are, however, not aware of any publicly available general purpose differential equation solvers with
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Supplement Figure 2: Eigenvalue spectrum of the Fisher Information Matrix at the nominal parameter
value for the ErbB signalling model.

similar capabilities, such as rootfinding and sensitivity support, as CVODES.

4 Eigenvalue Spectrum of the Fisher Information Matrix for the
model of ErbB signaling.

A key challenge for large-scale mathematical modeling is data availability. Insufficient data can easily result in
structural and practical identifiability problems. To assess the identifiability of the model for ErbB signalling
we investigated the eigenvalue spectrum of the Fisher Information Matrix at the nominal parameter value.
We found that the nonzero eigenvalues span almost 30 orders of magnitude and that there are 73 eigenvalues
equal to zero. This suggests that most parameters in the model are poorly or not at all identifiable from the
considered experimental data.

5 Comparison of AMICI and odeSD

We compared AMICI and odeSD [2], a specialized ODE integrator for the efficient computation of forward
sensitivities. For our evaluation we used the newest publicly available version of odeSD (odeSD v1.1) and
considered the Kholodenko model [3]. This model has been studied by [2]. To avoid spurious effects from
thread starvation, MATLAB was started with the -singeCompThread flag to ensure single-threading. This
was necessary as odeSD uses multi-threaded routines from the MATLAB Math Kernel Library, which resulted
in generally slower computation times during high computational load on the testing machine.

For the Kholodenko model with ten equidistantly spaced time points between t = 0 and t = 50, odeSD with
mex right hand side required 14 seconds for 100 repeated integrations while AMICI required 17 seconds for
100 repeated integrations for the calculation of the solution. Accordingly, the computation time is comparable
while AMICI offers additional options, including adjoint sensitivity analysis. If the number of intermediate
time points increases, the computation time for odeSD remains roughly the same. For AMICI the overall
computation time increases slightly as the time requirement for evaluating the (differentiated) interpolating
polynomial becomes increasingly important for the total computation time.
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