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Editorial summary

The advent of mitochondrial replacement techniques
poses many scientific, regulatory, and ethical questions.
Previous studies suggest good safety and efficacy
profiles of these techniques, but challenges remain
for clinical implementation and international consensus
is needed on the regulation of these approaches.

Mitochondrial disorders and their genetic
background

Mitochondrial disorders are a heterogeneous group of
rare inherited diseases of energy metabolism that range
in severity from fatal childhood-onset to mild late-
onset syndromes. There are more than 1500 mitochon-
drial proteins, most of which are nuclear-encoded, with
only 13 encoded by mitochondrial DNA (mtDNA).
Genetic counseling and prenatal or preimplantation
diagnostics are available options for nuclear gene de-
fects as the mutations segregate in a Mendelian way
(mostly autosomal recessive). However, the situation is
much more complicated for mtDNA mutations, which
are exclusively transmitted through the maternal line.
As the mutation load might differ from cell to cell and
from tissue to tissue, recurrence risks are difficult to esti-
mate and prenatal and preimplantation genetic diagnoses
are unreliable. Mitochondrial replacement techniques
(MRTs) could be used to enable women who carry
mtDNA mutations to have a genetically related child with
a greatly reduced risk of mtDNA disease.

Mitochondrial replacement

Two mitochondrial replacement techniques have been
developed, maternal spindle transfer and pronuclear
transfer. In maternal spindle transfer, the chromosome
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spindle apparatus of the carrier mother is removed
from her unfertilized oocyte and inserted into the
donor mother’s unfertilized and enucleated oocyte that
contains normal mtDNA. The hybrid oocyte is then fer-
tilized in vitro by the father’s sperm and implanted into
the carrier mother by standard in vitro fertilization
(IVF) procedures. In pronuclear transfer, both carrier
mother’s and donor mother’s oocytes are first fertilized
in vitro. The carrier mother’s pronucleus is inserted
into the donor mother’s enucleated oocyte containing
normal mtDNA, and the embryo is implanted into the
carrier mother by IVF. The mitochondrial replacement
approach is generic; instead of targeting a specific mu-
tation, MRTs replace nearly all mitochondria and their
resident mtDNA and so could be applied to any inher-
ited mtDNA disease.

Safety and efficacy

The technical feasibility of MRTs has been demon-
strated in animal models, including primates, and
apparently healthy offspring have been born. One of
the main concerns is that some carry-over of the mater-
nal mtDNA is unavoidable, which means that a few
thousand mtDNA copies of the carrier mother (a per-
centage of them mutant) are introduced into the donor
mother’s egg (which contains several hundred thousand
copies of a different but normal mtDNA). Although the
resulting proportion of mutant mtDNA might be fairly
low initially, this could change rapidly within a single
generation. Therefore, leakage of mutant mtDNA could
still lead to disease in the resulting offspring and in
future generations. A model of mtDNA inheritance
showed that the chance of disease recurrence in subse-
quent generations could be reduced dramatically by
lowering the proportion of mutant mtDNA to less than
5% [1]. Indeed, optimization of the pronuclear transfer
protocol in early preclinical studies reduced mtDNA
carryover to less than 2% heteroplasmy in the majority
(79%) of blastocysts and none had more than 5%
heteroplasmy [2]. In conclusion, MRT can markedly
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reduce the risk of mtDNA disease but cannot guarantee
prevention. The same study [2] showed that refine-
ments in the protocol, which included pronuclear
transfer shortly after completion of meiosis, promoted
efficient development to good quality blastocysts with
improved survival. Importantly, gene expression pat-
terns and incidence of aneuploidy were the same for
these blastocysts and controls.

Another safety issue that is currently debated is the
possible incompatibility between mtDNA and nuclear
DNA if originating from different mothers. Reciprocal
mitochondrial replacement in zygotes between widely
divergent mouse lines revealed an interspecies repro-
ductive barrier as a result of functional incompatibility
between mitochondrial and nuclear genomes [3]. How-
ever, intraspecies mitochondrial replacement in mice
and non-human primates resulted in viable fertile off-
spring that were indistinguishable from controls, with
normal growth and development to adults [4]. Likewise,
mitochondrial replacement resulted in no apparent ab-
normalities in human embryos and embryonic stem
cells with unmatched donor mtDNA [5]. In light of the
comparably low sequence difference even between human
mtDNA haplotypes of distantly related populations, in-
compatibilities between mtDNA and the nuclear genome
are unlikely among human populations. Nevertheless,
matching donor and recipient mtDNA haplotypes in clin-
ical mitochondrial replacement might still be judicious,
but might be limited by donor egg availability.

The current status of clinical implementation

and regulation

Legislation in most countries prohibits germline modifi-
cation procedures owing to safety concerns and ethical
and societal issues (Box 1). However, should mitochon-
drial replacement be considered a form of human germ-
line modification? Some say it is because the procedures
alter the genetic content of human oocytes or embryos
which is transmitted to future generations in the case of
female offspring. Others say mitochondrial replacement
involves only an exchange of mtDNA without modifica-
tion, thus being a kind of organelle transplantation,
analogous to organ transplantations later in life. Un-
doubtedly, a restriction of mitochondrial replacement to
male offspring would circumvent the germline modifica-
tion issue, as this would preclude transmission of the
donor mtDNA to future generations.

Accordingly, mitochondrial replacement has led to
considerable divergence in global policy [6]. To date, the
UK and USA are the only countries moving forward
with this technology. In the UK, after years of construct-
ive discussions and consultations guided by the Human
Fertilization and Embryology Authority (HFEA), Parlia-
ment approved the licensed clinical use of both spindle
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Box 1. Ethical and societal challenges

Progress in reproductive medicine poses a myriad of ethical and
societal questions. Here, we give our views on two of these
questions:

Will approval of mitochondrial replacement open the door to
germline manipulation? With technological advances in
reproductive medicine, are societies prepared to allow progress,
to welcome prevention and extinction of severe diseases, to
concede patient autonomy on the one hand and to value,
respect, and protect human life and dignity by setting limits to
unrealistic expectations on the other? Previous experience
indicates that the application of novel techniques is mostly
driven by their feasibility, less so by the regulatory frameworks.
Accordingly, we do not think that policy (approval or the lack
of approval) regarding mitochondrial replacement will affect
the progress of other techniques that can be used for germline
manipulation, such as genome editing.

Do children born from mitochondrial replacement have three
parents, that is, two mothers? Mitochondrial replacement does
not constitute any legal, social, or psychological component of
motherhood and constitutes only a small contribution to
biological motherhood. Therefore, the designation “three-parent
baby”, as often used in the media, is unfortunate and should
not, in our opinion, be used by medical doctors and scientists.
Currently, mitochondrial replacement is mostly propagated for
families with a segregation of extremely severe mtDNA-related
disorders. However, if a family harboring a mtDNA mutation
responsible for a relatively less severe disease such as Leber’s
hereditary optic neuropathy asks for mitochondrial replacement to
protect their children from an increased risk of visual deterioration,
who could argue against this? These decisions cannot be taken by
individual physicians but require a framework with inclusion and
exclusion criteria and a multidisciplinary team including ethicists

for case-by-case decisions.

and pronuclear transfer in October 2015. Clinical appli-
cation is imminent, subject firstly to HFEA’s implemen-
tation of a licensing framework for mitochondrial
replacement clinics, and secondly to three outstanding
pre-clinical safety and efficacy reports [6]. The first
mitochondrial replacement services are expected to as-
sess safety and efficacy in a clinical study, which will
enroll ten applicants per year [7]. In the USA, a more
cautionary approach has been taken: a Food and Drug
Administration (FDA) expert panel concluded to fur-
ther delay the approval of mitochondrial replacement
until more preclinical data were available, and notably,
a National Academies of Sciences expert committee
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recommended that mitochondrial replacement should
only create male embryos to preclude the transmission
of the donor mtDNA to future generations, thereby
avoiding the germline modification issue [8].

However, recently a US fertility specialist circum-
vented US regulations and applied mitochondrial re-
placement in Mexico, a country without any rules in this
field [9]. The procedure was conducted for a Jordanian
couple who had previously lost two children to Leigh
syndrome due to a mtDNA mutation and led to the
birth (in April 2016) of a seemingly healthy boy. While
some experts hailed the action as overdue progress in
the field, there is also considerable disapproval of the
circumvention of regulations by carrying out the proced-
ure in unregulated countries [10].

Conclusions

It seems that Pandora’s Box has been opened regarding
mitochondrial replacement. Now, it is of utmost im-
portance to avoid uncontrolled proliferation of the
technique. There should be an international consensus
that the first human applications are carried out in the
well-regulated framework of a clinical trial in expert
centers, as is the case for other first-in-man studies.
Until this is successfully set up, a voluntary restriction
of “solo efforts” by scientists and fertility doctors would
be highly desirable. On the other hand, regulatory agen-
cies and public debates about ethical implications and
limitations need to speed up to avoid frustration of affected
families and experts who are in favor of mitochondrial re-
placement. Recent developments have shown, however, that
national legislation is not sufficient. International govern-
ance structures are needed to take decisions on the imple-
mentation of biomedical innovations. One possible forum
for this could be the Biotechnology Initiative Program of
the United Nations, which already has the appropriate
remit to tackle complex bioethical issues [6].
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