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Abstract

Background: The analysis of DNA methylation is a key component in the development of personalized treatment
approaches. A common way to measure DNA methylation is the calculation of beta values, which are bounded
variables of the formM/(M + U) that are generated by Illumina’s 450k BeadChip array. The statistical analysis of beta
values is considered to be challenging, as traditional methods for the analysis of bounded variables, such as M-value
regression and beta regression, are based on regularity assumptions that are often too strong to adequately describe
the distribution of beta values.

Results: We develop a statistical model for the analysis of beta values that is derived from a bivariate gamma
distribution for the signal intensitiesM and U. By allowing for possible correlations betweenM and U, the proposed
model explicitly takes into account the data-generating process underlying the calculation of beta values. Using
simulated data and a real sample of DNA methylation data from the Heinz Nixdorf Recall cohort study, we
demonstrate that the proposed model fits our data significantly better than beta regression and M-value regression.

Conclusion: The proposed model contributes to an improved identification of associations between beta values and
covariates such as clinical variables and lifestyle factors in epigenome-wide association studies. It is as easy to apply to
a sample of beta values as beta regression and M-value regression.

Keywords: Bounded response variables, DNA methylation, Gamma Regression, Gradient Boosting,
HumanMethylation450k BeadChip

Background
The analysis of DNAmethylation has become of consider-
able interest in biomedical research, as epigenetic studies
have shown numerous associations between methyla-
tion levels and diseases such as cancer and cardiovascu-
lar disease [1–5]. Today, most research focuses on the
cytosine-guanine dinucleotide (“CpG”) sites of the DNA,
which are the locations where methylation is primar-
ily found in humans [6]. One of the most widely used
techniques to measure DNA methylation is the Illumina
Infinium HumanMethylation450 BeadChip array, which
covers approximately 450,000 CpG sites. At each CpG
site, methylation is quantified by the beta value b :=
M/(M + U + a), where M > 0 and U > 0 denote the
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methylated and unmethylated signal intensities, respec-
tively, measured by the Illumina 450k array. The offset
a ≥ 0 is usually set equal to 100 and is added toM + U to
stabilize beta values when bothM and U are small.
An important goal of methylation analysis is to identify

DNA regions wheremethylation is associated with disease
status, lifestyle factors and other clinical or sociodemo-
graphic variables [7–10]. This is often achieved by fitting
site-wise regressionmodels with dependent variable b and
a vector of covariates X that may also include poten-
tial confounders. After model fitting, a common strategy
is to carry out downstream hypothesis tests to iden-
tify those CpG sites that show significant associations
between methylation status and the variables of interest.
Because, by definition, b is bounded between 0 and 1,

Gaussian regression with untransformed beta values is
problematic in the context of DNA methylation anal-
ysis. In particular, the variance of b is usually smaller
near the boundaries than near the middle of the inter-
val (0,1), implying that the homoscedasticity assumption
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in Gaussian regression is violated [11–13]. To address
this problem, several modeling strategies have been
developed, including Gaussian regression with logit-
transformed beta values (“M-values”, [11]) and generalized
regression models for untransformed bounded responses,
e.g. beta regression [14]. Regarding the analysis of DNA
methylation, both strategies may become problematic: In
case of M-value regression, the assumptions of a Gaussian
model are often not met despite the transformation of
the data, and the interpretation of the coefficient esti-
mates is only possible on the transformed scale but not
on the original scale of b [14, 15]. Beta regression, on the
other hand, requires the ratioM/(M + U + a) to follow a
beta distribution, implicitly assuming that the variablesM
and U are independently gamma distributed [16]. While
M and U can indeed be described by gamma distributed
random variables [17, 18], the independence assumption
for the two signal intensities is often not met in prac-
tice. For example, Laird [12] reported that the methylated
and unmethylated signal intensities, as produced by the
Illumina 450k array, are usually positively correlated. The
same finding was obtained from the analysis of the Heinz
Nixdorf Recall Study data in the “Results” section of this
article. These issues, along with the results of two recent
empirical studies [8, 18], suggest that more methodologi-
cal research is needed to describe the distribution of b in
a statistically sound way.
To address this problem, we propose a novel analysis

technique for beta values that relaxes the independence
assumption between the signal intensities M and U. The
idea is to start with a model for the bivariate distribution
ofM and U and to derive the probability density function
of the ratioM/(M+U). This function is subsequently used
to construct the log-likelihood function of a generalized
regression model that relates beta values to linear func-
tions of the covariates. Because estimation of the model
parameters is based on the maximum likelihood principle,
asymptotic confidence intervals and normally distributed
test statistics can be derived by evaluating the inverse of
the observed information matrix. This strategy allows for
downstream hypothesis tests on the associations between
a covariate of interest and the methylation status at indi-
vidual CpG sites. For the rest of this article, we will refer
to the proposed model as “RCG” (Ratio of Correlated
Gammas) model.
Using simulated data and a real sample of Illumina 450k

methylation data from the Heinz Nixdorf Recall (HNR)
cohort study [19], we demonstrate that the proposed RCG
model fits our data significantly better than beta regres-
sion and M-value regression (“Results” section). Our
numerical results further suggest that the RCG method
may lead to an increased power of downstream tests
on the association(s) between methylation status and the
covariates under consideration.

Methods
In section “Notation and definitions” we introduce basic
notation and definitions. Section “Regression mo-
dels for the analysis of beta values” briefly reviews
beta regression and M-value regression and dis-
cusses the limitations of the two methods. In the
section “A statistical model for the ratio of correlated
gamma distributed random variables” the proposed RCG
model for the analysis of beta values is derived. Section
“Estimation and hypothesis tests” provides details on
model fitting and on the construction of downstream
hypothesis tests.

Notation and definitions
At each CpG site, the Illumina 450k array produces a
sample of methylated and unmethylated signal intensities
(Mi,Ui)i=1,...,n, where n is the number of analyzed per-
sons. The corresponding set of beta values is calculated
by bi = Mi/(Mi + Ui + a), i = 1, . . . , n. To facili-
tate the derivation of distributional results, we will set
a = 0 throughout this section. The predictor variable(s)
of interest and the confounding variables are collected in
vectors X i = (1,Xi1, . . . ,Xip)�, i = 1, . . . , n. For each CpG
site, the aim is to analyze the associations between the
variables in X and the methylation status b.
Following [17] and [18], we assume that the stochas-

tic behavior of the signal intensities M and U can be
described by gamma distributed random variables with
densities

fM(m) = λm
�(αm)

(λmm)αm−1 exp(−λmm) , (1)

fU(u) = λu
�(αu)

(λuu)αu−1 exp(−λuu) , (2)

where αm,αu and λm, λu are the shape and rate parame-
ters of fM and fU , respectively. From (1) it follows that the
means and variances of M, U are given by αm/λm, αu/λu
and αm/λ2m, αu/λ2u, respectively [20].

Regression models for the analysis of beta values
Since the ratio b = M/(M+U) is bounded between 0 and
1, it has been argued that a linear regression model of the
form

b = X�γ + ε , γ ∈ R
p+1 , ε ∼ N

(
0, σ 2) , (3)

is not appropriate to model DNA methylation. In particu-
lar, the variance of b is usually smaller near the boundaries
than near themiddle of the interval (0,1), implying that the
homoscedasticity assumption var(ε) = σ 2 is violated [11].
In view of this problem, several statistical models for

bounded response variables have been developed (see [13]
for an overview). A simple approach is to calculate logit-
transformed beta values (“M-values”, [11]) and to fit a
linear regression model of the form
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log2
(

b
1 − b

)
= X�γ + ε , ε ∼ N

(
0, σ 2) . (4)

Although this strategy has become popular in the anal-
ysis of DNA methylation, it has the drawback that the
methylation status (as quantified by the value of b) is not
analyzed on its original scale but on a transformed scale
[14]. Furthermore, as shown by Wahl et al. [8], the empir-
ical distribution of logit-transformed beta values usually
deviates from normality.
An alternative approach that operates on the untrans-

formed scale of b is beta regression, which is characterized
by a beta distributed outcome variable with probability
density function

ϕ(b) = �(φ)

�(μφ)�((1 − μ)φ)
bμφ−1 (1 − b)(1−μ)φ−1 ,

(5)

where μ and φ denote the mean and precision param-
eters, respectively, of the probability density function ϕ.
The predictor-response relationship is usually defined by
amonotone increasing link function g(·) and by the model
equation g(μ|X) = X�γ [14]. A common choice for g is
the logit transformation log(μ/(1−μ)). Since the variance
of a beta distributed random variable is given byμ(1−μ)/
(1 + φ), beta regression accounts for heteroscedasticity
and for small variances near the boundaries of the inter-
val (0,1). On the other hand, a major shortcoming of (5) in
the context of DNA methylation analysis is that the signal
intensitiesM andU are implicitly assumed to be indepen-
dent and to share a common rate parameter. Under these
assumptions, the ratio b = M/(M + U) can be shown
to follow a beta distribution ([16], Chapter 9). The inde-
pendence assumption, however, cannot be confirmed by
empirical findings, which show that the signal intensities
obtained from the Illumina 450k array are often positively
correlated (see [12] and “Analysis of the Heinz Nixdorf
recall study data” section of this article).

A statistical model for the ratio of correlated gamma
distributed random variables
To address the issues described in the section “Regres-
sion models for the analysis of beta values”, we propose
a statistical model (“Ratio of Correlated Gammas (RCG)
model”) that is based on the bivariate distribution of the
signal intensities M and U. In contrast to beta regres-
sion, we assume that M and U are not independent but
can be described by a bivariate gamma distribution with
probability density function

fM,U(m,u) = (λmλu)α

(1 − ρ) �(α)

(
mu

ρ λmλu

) α−1
2

exp
(

− λmm
1 − ρ

)

× exp
(

− λuu
1 − ρ

)
Iα−1

(
2
√

ρλmλumu
1 − ρ

)
,

(6)

where λm, λu,α > 0, 0 < ρ < 1, and Iα−1 is the modified
Bessel function of the first kind of order α − 1. The dis-
tribution in (6) is due to Kibble [21] and is often referred
to as “Wicksell-Kibble bivariate gamma distribution” [20].
As stated in various articles and monographs (e.g. [22]),
the marginal densities fM, fU ofM and U, respectively, are
given by

fM(m) = λm
�(α)

(λmm)α−1 exp(−λmm) , (7)

fU(u) = λu
�(α)

(λuu)α−1 exp(−λuu) . (8)

The equations in (7) and (8) imply that M and U
are gamma distributed random variables with a com-
mon shape parameter α and with means and variances
given by α/λm, α/λu and α/λ2m, α/λ2u, respectively. The
restriction to a common shape parameter ensures that
all measured signal intensities refer to probability density
functions sharing the same basic form. On the other hand,
the unequal rate parameters λm and λu guarantee suffi-
cient flexibility inmodeling the differences in themarginal
densities of M and U (see (11) and (12)). It can further be
shown that the Pearson correlation ofM andU is equal to
ρ, implying that (6) imposes a correlation structure on the
two signal intensities (see [20]).
In the next step, the distribution of the ratio b =

M/(M + U) is derived:

Proposition 1 Let the distribution of (M,U) be defined
by the probability density function in (6). Then the ratio
b = M/(M + U) follows a univariate distribution with
probability density function

fb(b) = �(2α)

�2(α)
(λmλu)

α (1 − ρ)α (b(1 − b))α−1

× (λmb + λu(1 − b))
(
(λmb + λu(1 − b))2 − 4ρλmλub(1 − b)

)α+0.5 .

(9)

Proof The proof of Proposition 1, which is related to the
work of Nadarajah and Kotz [23], is given in Additional
file 1.

The result stated in Proposition 1 can be used to derive
the log-likelihood function of a sample of beta values
b1, . . . , bn:

Proposition 2 For independent sample values
b1, . . . , bn, the log-likelihood function derived from (9) is
given by
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n∑

i=1
log(fb(bi;α, ρ, θ)) =

n∑

i=1

[
log(�(2α)) − 2 log (�(α))

+ α log (θ) + α log (1 − ρ)

+ log ((θ − 1) bi + 1)
+ (α − 1) log (bi (1 − bi))

− (α + 0.5) log
(
((θ − 1) bi + 1)2

− 4ρθ bi(1 − bi))
]
,

(10)

where θ := λm/λu.

Proof See Additional file 1.
Proposition 2 implies that the log-likelihood function

derived from (9) is a function of the mean ratio θ =
λm/λu = E(U)/E(M).
To quantify the associations between the covariates X

and the signal intensities M and U, we consider linear
predictors X�ζm and X�ζu, ζm, ζu ∈ R

p+1, that relate
the vector X = (1,X1, . . . ,Xp)� to the marginal means
α/λm and α/λu, respectively. A convenient link function
that guarantees the positivity of λm and λu is the logarith-
mic transformation, resulting in the predictor-response
relationships

log(E(M|X)) = log(α) − X�ζm , (11)
log(E(U|X)) = log(α) − X�ζu , (12)

with log(λm) = X�ζm and log(λu) = X�ζu. Note that
the term log(α) can be incorporated into the intercept
terms of the coefficient vectors ζm = (ζ0m, ζ1m, . . . , ζpm)�
and ζu = (ζ0u, ζ1u, . . . , ζpu)�. The model equations in
(11) and (12) are therefore in line with traditional uni-
variate gamma regression approaches that relate the log-
transformed mean of the response variable to a linear
function of the predictors.
Defining γ = (γ0, γ1, . . . , γp)� := ζm − ζu, the

mean ratio E(U|X)/E(M|X) can be written as θ |X =
exp(X�γ ), and the log-likelihood function of a sample
(b1,X�

1 ), . . . , (bn,X�
n ) becomes

n∑

i=1
log(fb(bi,Xi;α, ρ, γ )) =

n∑

i=1

[
log(�(2α)) − 2 log(�(α)) + α XT

i γ

+ α log(1−ρ)+log
((
exp

(
XT
i γ

)
−1

)
bi+1

)

+ (α − 1) log(bi(1 − bi))

− (α+0.5) log
(((

exp
(
XT
i γ

)
−1

)
bi+1

)2

− 4 ρ exp
(
XT
i γ

)
bi(1 − bi)

(
XT
i γ

)) ]
.

(13)

Equations (11) to (13) define a statistical model in which
the association between the methylation status b and the
covariates X is quantified by the coefficient vector γ . If

γk = 0, k ∈ {1, . . . , p}, the predictor-response relation-
ships in (11) and (12) imply that ζkm = ζku and E(M|X) =
E(U|X) (provided that the values of the other covariates
remain constant). Hence, if γk = 0, the k-th covariate Xk
has the same effect on both M and U, implying that Xk
is not associated with the methylation status at the CpG
site under consideration. On the other hand, large val-
ues of |γk| result from large differences in the coefficients
ζkm and ζku, implying that DNAmethylation varies greatly
with the value of Xk . Assessing the hypotheses “H0 :γk =0
vs. H1 : γk �= 0” is therefore equivalent to a statistical test
on the association between b and Xk .

Estimation and hypothesis tests
To obtain a consistent estimator of the coefficient vector
γ , the log-likelihood function in (13) needs to be max-
imized over both γ and the hyperparameters α and ρ.
To this purpose, we propose the application of a gradient
boosting algorithm with linear base-learning functions,
as described in [24]. For given data (bi,X�

i )i=1,...,n, gradi-
ent boosting is a generic optimizer that minimizes a risk
function R(f , (bi,X�

i )i=1,...,n) over an unknown predic-
tion function f (X), with the only requirement being the
existence of the derivative ∂R/∂f [25].
Because the base-learning functions are chosen to be

linear in X, the space of the prediction function f is
restricted to the subspace defined by f (X) = X�γ , imply-
ing that estimation of f reduces to the estimation of the
coefficient vector γ (see [26] for a detailed description of
the algorithm). Furthermore, gradient boosting allows for
the additional estimation of the hyperparameters α and ρ

[27]. Maximum likelihood (ML) estimates of γ , α and ρ

can therefore be obtained by setting R equal to the nega-
tive of the log-likelihood in (13) and by running gradient
boosting until convergence.
By standard maximum likelihood arguments, the

hypotheses “H0 : γk = 0 vs. H1 : γk �= 0”
can be investigated by plugging the ML estimates γ̂ , α̂

and ρ̂ in the observed information matrix J(α, ρ, γ ) =
− ∑n

i=1 ∂2 log(fb(bi,X i;α, ρ, γ ))/∂2γ and by calculating
the test statistic

Zk = γ̂k

/√
J−1
kk (α̂, ρ̂, γ̂ ) , k ∈ {1, . . . , p} , (14)

where J−1
kk denotes the k-th diagonal element of J−1. Under

the null hypothesis, Zk is asymptotically standard nor-
mally distributed as n → ∞. Details on the calculation of
J are given in Additional file 1.

Results
Description and pre-processing of the HNR study data
To investigate the properties of the RCGmodel derived in
the section “A statistical model for the ratio of correlated
gamma distributed random variables”, we analyzed both
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simulated data and a real sample of Illumina 450k methy-
lation data from the Heinz Nixdorf Recall Study [19]. The
HNR Study is an ongoing cohort study in the German
cities of Mülheim, Essen and Bochum that enrolled a total
of 4,814 participants aged 45-75 years between 2000 and
2003. Data collection included health, lifestyle and envi-
ronmental variables; the 10-year follow-up of the study
was completed in 2014.
For the present analysis, we considered a random sam-

ple of n = 1,144 study participants whose DNA sam-
ples were sodium-bisulfite converted and processed using
Illumina Infinium HumanMethylation450 BeadChips
v1.1. Processing was done according to the manufacturer’s
manual on a fully automated iScan system between April
2013 and January 2015. Technical quality control was
performed using GenomeStudio V2011.1.
Pre-processing of the methylation data was based on

the R add-on package minfi [28]. Briefly, persons that
contained > 20% low-confidence beta values (detec-
tion P-values > 0.01) and CpG sites with more than
5% low-confidence beta values were dropped. CpG sites
that contained either a SNP at the CpG interrogation
or at the single nucleotide extension were also excluded
from statistical analysis. In addition, CpG sites referring
to cross-reactive probes were removed, followed by the
exclusion of X and Y chromosomal sites. Normalization of
the beta values was carried out using the functional nor-
malization algorithm [29], which was applied separately to
type I and type II probes. The k-nearest-neighbor method
with k = 10 was used to impute missing beta values.
After pre-processing, a total of n = 1,118 persons and

429,750 CpG sites remained in the analysis set. The dis-
tribution of the 429,750 Pearson correlation coefficients
between the signal intensitiesM and U is shown in Fig. 1.
The majority of the coefficients was substantially larger
than zero, indicating that the independence assumption
for M and U was not justified. More than 99.2% of
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Fig. 1 Analysis of the HNR Study data. The figure shows a kernel
density plot of the Pearson correlations between the signal intensities
M and U across the full set of 429,750 CpG sites

the correlation coefficients were positive (mean = 0.452,
sd = 0.140).
In addition to the beta values, we considered the covari-

ates “gender” (47.9% women), “age” (mean = 58.3 years,
sd = 7.3 years), “body mass index” (mean = 27.4 kg/m2,
sd = 7.3 kg/m2), “CES-D depression score” ([30],
median = 6, interquartile range 3–10) and “smoking
status” (18.9% smokers). We selected these covariates
because they are generally considered to be relevant for
the analysis of DNA methylation (e.g. [10, 31, 32]).

Simulation study
One of the main goals of a DNA methylation study is
to identify CpG sites that are “significantly” associated
with one or more covariates of interest. We therefore con-
ducted a simulation study on the power of downstream
hypothesis tests, as obtained from M-value regression,
beta regression and the proposed RCG model.

Power analysis at a single CpG site
In the first part of the simulation study, we considered a
random CpG site (“cg00786084”) and based the study on
the effect sizes obtained from the HNR Study data (RCG
model with five covariates). The maximum likelihood
estimates were

γ̂ = (γ̂0, γ̂gender, γ̂age, γ̂bmi, γ̂smoke, γ̂depression)�

= (−1.099, 0.096,−0.007,−0.004, 0.003, 0.001)� ,

α̂ = 5.84 and ρ̂ = 0.93. Setting the values of
α, γ0, γage, γbmi, γsmoke and γdepression equal to the maxi-
mum likelihood estimates and using the covariate values
of the HNR Study data (n = 1,118), we calculated the lin-
ear predictors X�γ for varying values of γgender. Three
values of ρ were considered (0.2, 0.5 and 0.93, the latter
value being the original sample estimate). For each com-
bination of γgender and ρ, we generated 10,000 beta values
from the distribution of the ratio in (9). Based on the sim-
ulated beta values and the real covariate values of the HNR
Study, we analyzed the power of the test on the hypotheses
“H0 : γgender = 0 vs. H1 : γgender �= 0”. For the RCG model
we used the asymptotic test described in the section
“Estimation and hypothesis tests”. Beta regression and M-
value regression models were also analyzed using test
statistics of the form (14).
Figure 2 shows the differences in the fractions of tests

that rejected the null hypothesis “H0 : γgender = 0”
at the 5% level for varying values of γgender and ρ. It
is seen that the RCG model performed better than beta
and M-value regression, especially in situations where the
effect size γgender took moderately high values. For large
effect sizes, the power of the three models was simi-
lar. This result is explained by the fact that large effect
sizes resulted in high rejection rates of the null hypothesis
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Fig. 2 Results obtained from the first part of the simulation study. The plots show the differences in the estimated rejection rates of the null
hypothesis “H0 : γgender = 0”, as obtained from the RCG model, beta regression, and M-value regression (10,000 simulation runs). The covariate
values of the HNR Study (n = 1,118) were used to generate the linear predictors X�γ . Beta values were generated from the distribution of the ratio
in (9) using the sample estimates at CpG site cg00786084. High levels of the black and blue lines correspond to a high power of the RCG-based tests.
The vertical gray line refers to the null hypothesis H0

“H0 : γgender = 0” regardless of whether the correlation
between signal intensities was taken into account or not.
As expected, the differences between the RCG model and
competing approaches increased with the value of ρ. At
the same time, RCG-based type I error rates were close
to the nominal level of significance (0.054,0.049,0.050 for
ρ = 0.2, 0.5, 0.93, respectively).

Sensitivity analysis
In the second part of the simulation study, we carried out
a sensitivity analysis and investigated the power of down-
stream hypothesis tests in situations where the bivariate
distribution of the signal intensities M and U deviated
from the Wicksell-Kibble distribution. To this purpose,
we repeated the analysis of CpG site cg00786084 and
generated correlated gamma distributed signal intensities
using a copula-based approach. More specifically, we gen-
erated standard uniformly distributed values (M̃i, Ũi), i =
1, . . . , 1118, from a Gumbel copula of the form

C(M̃, Ũ) = exp
(

−
(
(− log(M̃))ρ̃ + (− log(Ũ))ρ̃

)1/ρ̃)
.

(15)

The parameter ρ̃ was adjusted such that M̃ and Ũ had the
desired correlation (ρ ∈ {0.2, 0.5, 0.93}). Setting ζm and ζu
equal to the sample estimates, i.e.

ζm = (ζ0,m, ζgender,m, ζage,m, ζbmi,m, ζsmoke,m, ζdepression,m)�

= (−6.2777, ζgender,m, 0.0003,−0.0001,−0.0199, 0.0010)�,

ζu = (ζ0,u, ζgender,u, ζage,u, ζbmi,u, ζsmoke,u, ζdepression,u)�

= (−5.6424,−0.0731, 0.0088, 0.0016,−0.0073,−0.0014)�,

the values of (M̃, Ũ) were transformed to (0,∞) by apply-
ing the quantile functions of two gamma distributions
with shape parameters αm = 20.2, αu = 12.760 and

rate parameters λm = exp(X�ζm), λu = exp(X�ζm).
The coefficient ζgender,m was varied such that it resulted
in the values of γgender in Fig. 3. The transformed
values of (M̃, Ũ) (representing the gamma distributed
signal intensities M and U) were used to calculate
10,000 beta values for each combination of ρ and
ζgender,m.
Figure 3 shows the differences in the fractions of tests

that rejected the null hypothesis “H0 : γgender = 0” at
the 5% level. Similar to the results presented in Fig. 2,
the RCG model performed better than beta and M-
value regression with regard to the power of downstream
hypothesis tests. The differences between the models
were even stronger than in the first part of the simula-
tion study, despite the fact that the distribution of the
beta values deviated from the Wicksell-Kibble distribu-
tion. Again, RCG-based type I error rates were close to
the nominal level of significance (0.051,0.050,0.049 for
ρ = 0.2, 0.5, 0.93, respectively).

Extension to 1,000 CpG sites
In the third part of the simulation study, we extended the
power analysis of part one and investigated the behav-
ior of downstream hypothesis tests using 1,000 “real-life”
combinations of the parameters α, ρ and γ . To this pur-
pose, we randomly selected 1,000 CpG sites and fitted the
respective RCG models to the HNR Study data. At each
site, we used the RCG estimates to generate 1,000 beta
values from the distribution of the ratio in (9). Using the
1,000×1,000 beta values, we estimated the power of the
test on the hypotheses “H0 : γgender = 0 vs.H1 :γgender �=0”
at each CpG site.
Figure 4 visualizes the fractions of tests that rejected

the null hypothesis “H0 : γgender = 0”. The upper panel
shows the differences in the rejection rates obtained from
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Fig. 3 Results obtained from the second part of the simulation study. The plots show the differences in the estimated rejection rates of the null
hypothesis “H0 : γgender = 0”, as obtained from the RCG model, beta regression, and M-value regression (10,000 simulation runs). The covariate
values of the HNR Study (n = 1,118) were used to generate the linear predictors X�γ . Beta values were generated from a Gumbel copula using the
sample estimates at CpG site cg00786084. High values in the black and blue lines correspond to a high power of the RCG-based tests. The vertical
gray line refers to the null hypothesis H0

the RCG model and from beta regression, whereas the
lower panel depicts the respective differences between the
RCGmodel andM-value regression. The RCGmodel per-
formed better than beta and M-value regression at the
majority of the 1,000 CpG sites. Again, the differences
between the RCG model and competing approaches were
largest for moderate sizes of γgender.

Analysis of the Heinz Nixdorf recall study data
Analysis of model fit
In the first part of the analysis, we analyzed and compared
the fits obtained from the RCG, beta regression and M-
value regression models. To this purpose, the data were
randomly subdivided into ten pairs of training and test
data sets, each of sizes 750 and 368, respectively. Using all
five covariates, RCG, beta regression and M-value regres-
sion models were fitted to the ten learning data sets at
each of the 429,750 CpG sites. To evaluate the model fits,
we calculated the predictive log-likelihood values (“log-
scores”) obtained from the respective test data sets. Being
a “proper” performance measure, the log-score is max-
imized by the log-likelihood of the true data-generating
model [33]. In addition to the full models, we also evalu-
ated the intercept models (“null models”) that contained
no covariates at all.
The average log-score differences obtained from beta

regression, M-value regression and the RCG model are
shown Fig. 5. The RCG model fitted the HNR Study data
systematically better than beta and M-value regression
(P-values of Wilcoxon signed rank tests < 0.001). This
result was obtained for both the full model containing all
five covariates (left panel of Fig. 5) and the covariate-free
null model (right panel of Fig. 5).

Rejection rates of downstream hypothesis tests
In the second part of the analysis, we reconsidered the
429,750 CpG sites analyzed in part one and calculated the
P-values of downstream tests on the hypotheses “H0 :
γgender = 0 vs. H1 : γgender �= 0”. To correct the P-values
for multiple comparisons, we applied the procedures by
Benjamini & Hochberg and Benjamini & Yekutieli using
various levels of false discovery rate (FDR) control. As
demonstrated in Fig. 6, the number of “significant” asso-
ciations was largest for the RCG model at the majority of
FDR levels. For example, the numbers of “significant” CpG
sites were 22,997, 22,199 and 21,779 for the RCG,M-value
and beta regression models, respectively, at FDR = 0.05.
These numbers are in line with earlier results by Singman
et al. [10] who, after a Bonferroni correction of 391,885
P-values, identified 11,010 autosomal sex-methylation asso-
ciations in the population-based KORA F4 study. Of note,
our result implies that the application of the RCG model
would have led to the discovery of (22,997 – 22,199)≈ 800
additional significant CpG sites at the 5% FDR level. We
point out that the true number of non-zero associations
among the 429,750 CpG sites is unknown, so that the
aforementioned higher rejection rates obtained from the
RCGmodel do not necessarily imply a higher true positive
rate. Still, Fig. 6 is in line with the high(er) power obtained
from the RCG-based tests in “Simulation study” section.

Analysis of CpG sites that are known to be associated with
age and/or smoking behavior
In the third part of the analysis, we validated the RCG
methodology by focusing on subsets of CpG sites that
were previously reported to be associated with age or
smoking behavior. The idea of this analysis was to
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Fig. 4 Results obtained from the third part of the simulation study.
The boxplots contain the differences in the estimated rejection rates
of the null hypothesis “H0 : γgender = 0”, as obtained from the RCG
model, beta regression, and M-value regression. The grouping on the
x-axes refers to the deciles of the effect γgender at 1,000 randomly
selected CpG sites. The covariate values of the HNR Study (n = 1,118)
were used to generate the linear predictors X�γ . Beta values were
generated from the distribution of the ratio in (9). The estimated
power of the RCG model was 0.053 in the interval [−0.003, 0.001],
indicating that the RCG-based type I error rates were close to the
nominal level of significance

investigate whether the RCG rejection rates at these “true
positive” CpG sites were comparable to the respective
rejection rates obtained from beta and M-value regres-
sion. Four subsets of CpG sites were considered: The first
subset comprised the 187 smoking-associated CpG sites

that were identified by Zeilinger et al. [34] in a replication
sample of n = 468 persons (P < 5 · 10−5). Of these CpG
sites, a total of 182 CpG sites were used in our analysis,
as they passed the quality checks applied the HNR Study
data. The second subset comprised the 215 smoking-
associated CpG sites reported by Harlid et al. [35], of
which 209 sites passed the quality checks applied to the
HNR Study data. The third subset comprised the 162 age-
associated CpG sites that were identified by Florath et al.
[36] in a test sample of n = 498 persons (P < 2.5 · 10−4).
Of these CpG sites, a total of 156 CpG sites passed the
quality checks applied the HNR Study data. The fourth
subset comprised the 589 age-associated CpG sites iden-
tified by Teschendorff et al. [37] (n = 261, FDR < 0.05),
of which 536 sites passed the quality checks applied to the
HNR study data. The full list of these CpG sites, which
include numerous PCGT CpGs as well as CpGs mapping
to AHRR, is contained in Additional file 2.
At each of the aforementioned CpG sites we analyzed

the P-values obtained from the RCG method, M-value
regression and beta regression. In a subsequent step we
computed the rejection rates of the three methods in each
subset. To ensure the comparability of the results across
the four subsets, we used a global significance level of P <

10−7, which was approximately equal to the Bonferroni-
corrected 5% alpha level [34]. The agreement between
the rejection rates of the three modeling techniques was
measured by the percentage of CpG sites with identical
test results for the three techniques, and also by Cohen’s
kappa.
The results, which are presented in full detail in

Additional file 2, demonstrate a very high agreement
between the RCG,M-value regression and beta regression
models in each of the four subsets. The rejection rates
obtained from the three methods were almost identical in
each of the four subsets (∼ 55% in the Zeilinger et al. sub-
set,∼ 49% in theHarlid et al. subset,∼ 96% in the Florath
et al. subset and ∼ 62% in the Teschendorff et al. sub-
set). The percentage of agreement ranged between 95.6%
and 98.7%; Cohen’s kappa values ranged between 0.72 and
0.79 in the Florath et al. subset and were throughout larger
than 0.91 in the Zeilinger et al., Harlid et al. and Teschen-
dorff et al. subsets. These findings demonstrate that the
RCG methodology resulted in a valid number of “true
hits” at CpG sites with confirmed associations between
methylation status and age / smoking behavior.

Discussion and conclusions
The development of statistical models to analyze DNA
methylation is the subject of intense and ongoing research
[9, 38–40]. In this article, we proposed a likelihood-based
approach to analyze and infer the associations between
covariates and methylation levels in Illumina 450k data.
In contrast to beta regression, the proposed RCG model
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Fig. 5 First part of the analysis of the HNR Study data. The boxplots show the average log-score differences obtained from beta regression, M-value
regression and the RCG model. The left panel refers to the full models with five covariates, whereas the right panel refers to the covariate-free null
models. At each of the 429,750 CpG sites, models were fitted to ten randomly sampled learning data sets of size n = 750 each. Log-scores were
calculated by evaluating the model fits on the respective independent test data sets (n = 368). The boxplots refer to the 429,750 averages of the
ten log-score differences

accounts for possible correlations between methylated
and unmethylated signal intensities, thereby increasing
the flexibility of themodel in describing the distribution of
methylation levels at individual CpG sites. The analysis of
the HeinzNixdorf Recall Study data suggests that the RCG
model fitted the data systematically better than traditional
approaches like beta and M-value regression. This result
is in line with our previous findings, which suggest that
“at the majority of CpG sites, methylation follows neither
a beta distribution, nor a normal distribution after any of
the investigated transformations” [8].
In our simulation study, the RCG model resulted in

higher true positive rates for the associations between

DNA methylation and the covariates than beta and M-
value regression. As expected, the differences between
the RCG model and competing methods were largest at
CpG sites with high correlations between methylated and
unmethylated signal intensities. At the same time, the sim-
ulation study showed that RCG-based type I error rates
were close to the nominal level of significance. By using
combinations of site-wise P-values, it is straightforward
to extend the RCG methodology to wider regions on the
DNA such as CpG islands or island shores.
A crucial issue in DNA methylation analysis is the

selection of an appropriate procedure for normalization
and quality control [7, 41]. To this purpose, numerous

Fig. 6 Second part of the analysis of the HNR Study data. The figure contains the number of “significant” associations between methylation status
and gender, as obtained from beta regression, M-value regression and the RCG model at various levels of FDR control. P-values refer to the test of
the hypotheses “H0 : γgender = 0 vs. H1 : γgender �= 0” in the full model with all five covariates. The procedures by Benjamini & Hochberg and
Benjamini & Yekutieli were used to correct the P-values for multiple comparisons. Note the different ranges of the y-axes
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pre-processing techniques have been developed, with the
minfi pipeline used in this paper being a popular exam-
ple.When deriving the RCGmodel, we implicitly assumed
that all observed beta values were properly normalized
and were observed without measurement error. While
proper normalization and quality control should be taken
for granted in any high-quality DNA methylation study,
it might be worth investigating the effect of various pre-
processing techniques on the behavior of the RCG model
(and also on beta regression and M-value regression).
The use of a gradient boosting algorithm to optimize the

parameters of the RCGmodel lays the ground for a variety
of additional modeling options. For example, it is straight-
forward to account for nonlinear covariate effects and to
extend the linear predictor in (13) by a set of spline func-
tions. Furthermore, it is possible to embed the RCGmodel
in the GAMLSS framework [42] and to increase its flexi-
bility by relating the parameters α and ρ to separate linear
or additive predictors. For details, see [43] and [44].
While the proposed RCG model was tested using

methylation data from Illumina’s 450k array, we expect the
analysis of beta values to gain even more importance with
the recent launch of the InfiniumMethylationEPIC Bead-
Chip array covering more than 850,000 CpG sites [45].
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