Colonization of barley (*Hordeum vulgare*) with *Salmonella enterica* and *Listeria* spp.

Stefan Kutter, Anton Hartmann & Michael Schmid

GSF-National Research Center for Environment and Health, Department of Rhizosphere Biology, Institute of Soil Ecology, Neuherberg, Germany

Correspondence: Dr Michael Schmid, GSF-National Research Center for Environment and Health, Institute of Soil Ecology, Department of Rhizosphere Biology, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany. Tel.: +49 89 3187 3415; fax: +49 89 3187 3376; e-mail: michael.schmid@qsf.de

Received 13 May 2005; revised 9 August 2005; accepted 20 September 2005. First published online 10 January 2006.

doi:10.1111/j.1574-6941.2005.00053.x

Editor: Angela Sessitsch

Keywords

food-borne pathogens; endophytic bacteria; confocal laser scanning microscopy; fluorescence *in situ* hybridization; PCR; rhizosphere.

Abstract

Colonization of barley plants by the food-borne pathogens Salmonella enterica serovar typhimurium and three Listeria spp. (L. monocytogenes, L. ivanovii, L. innocua) was investigated in a monoxenic system. Herbaspirillum sp. N3 was used as a positive control and Escherichia coli HB101 as a negative control for endophytic root colonization. Colonization of the plants was tested 1-4 weeks after inoculation by determination of CFU, specific PCR assays and fluorescence in situ hybridization (FISH) with fluorescently labelled oligonucleotide probes in combination with confocal laser scanning microscopy (CLSM). Both S. enterica strains were found as endophytic colonizers of barley roots and reached up to 2.3×10^6 CFU per g root fresh weight after surface sterilization. The three *Listeria* strains had 10-fold fewer cell numbers after surface sterilization on the roots and therefore were similar to the results of nonendophytic colonizers, such as E. coli HB101. The FISH/CSLM approach demonstrated not only high-density colonization of the root hairs and the root surface by S. enterica but also a spreading to subjacent rhizodermis layers and the inner root cortex. By contrast, the inoculated Listeria spp. colonized the root hair zone but did not colonize other parts of the root surface. Endophytic colonization of *Listeria* spp. was not observed. Finally, a systemic spreading of S. enterica to the plant shoot (stems and leaves) was demonstrated using a specific PCR analysis and plate count technique.

Introduction

In recent years, the increase in food-borne infections has become an important public health concern worldwide. The epidemiology of microbial food-borne illnesses has changed, not only because the human population is increasingly susceptible to diseases and because of changing eating styles, more convenient foods and less time devoted to food preparation, but also because of the emergence of newly recognized microbial pathogens and ever-evolving technologies for food production, processing and distribution (Meng & Doyle, 1998).

Salmonellosis has been linked to tomatoes, apple or orange juice, and seed shoots (Beuchat, 2002). Moreover, *Salmonella* species have been identified in soils that were treated with cattle manure and cropped to grain such as spring wheat and barley (De Freitas *et al.*, 2003). *Salmonella* serovariations cause severe diarrhoea in humans and are estimated to cause approximately 1.3 million cases of foodborne infection each year in the United States, with 15 000 hospitalizations and 500 deaths (Mead *et al.*, 1999). Out-

breaks of Listeriosis have been linked to, for example, cabbage and lettuce. Listeria monocytogenes has been linked to potentially severe food-borne diseases characterized by meningitis, encephalitis or septicaemia in immunocompromised patients, infants and the elderly (Farber & Peterkin, 1991). The ubiquity of *Listeria monocytogenes* in nature and its acknowledged presence in food-processing environments (Gravani, 1999) have focused attention on cross-contamination of processed foods from environmental sources and explain the difficulty in producing minimally processed foods free of pathogenic bacteria. By contrast, preharvest contamination with food-borne pathogens such as Salmonella sp. can occur via (improperly treated) manure application rather than chemical fertilizers, untreated sewage or irrigation water, or use of contaminated seed (Beuchat & Ryu, 1997). Bacterial colonization and biofilm development can occur and result in spoilage of food sources by bacterial pathogens (Burnett & Beuchat, 2000; Beuchat, 2002).

Although much is known about the ecology of bacterial pathogens in foods of animal origin such as meat and dairy products, the behaviour of these bacteria in association with cereal plants in the field environment is less well known. The persistence of food-borne pathogens such as Salmonella enterica servovar typhimurium in soils has been reported (De Freitas et al., 2003). Colonization of different parts of dicotyledoneous plants such as Medicago sativa and Medicago truncatula (Dong et al., 2003), Arabidopsis thaliana (Vasse et al., 1995), tomato (Guo et al., 2002) or radish sprouts (Itoh et al., 1998) by human pathogens, e.g. Eschericia coli O157:H7, Salmonella typhimurium and Listeria monocytogenes, and by a variety of other enteric bacteria has been investigated. However, monocotyledoneous plants such as Gramineae have not been studied at all in this respect. In Gramineae, colonization of roots by plant growth-promoting bacteria has been well studied (e.g. Rothballer et al., 2003). These investigations demonstrated that not only the root surface but also the root interior and finally the whole plant can be colonized systemically by certain rhizosphere bacteria, e.g. Azoarcus sp. BH72 (Reinhold-Hurek & Hurek, 1998a, b), Herbaspirillum spp. (James & Olivares, 1998) or Gluconacetobacter spp. (Sevilla et al.,

Gramineae, for example barley, may be colonized starting from the rhizosphere by food-borne pathogenic bacteria. In this respect, the roots of gramineous plants could function as a host for better survival of these bacteria in soils or to scavenge these bacteria and thus prevent further spreading. However, colonization may also lead to propagation of these pathogenic bacteria in agricultural production and food-processing systems. Because of the abundance of genomic information and micro-array systems for barley, specific bacteria—root interactions and even systemic colonization and spreading of the plant are able to be tested.

With the increase in reports of food-borne infections, considerable attention has been given to the development of methods for detecting microbial pathogens; these methods include culture isolation, serological tests, DNA probes and PCR assays (Rahn *et al.*, 1992; Wagner *et al.*, 1998; Schmid *et al.*, 2003). In real agricultural production systems, numer-

ous interactions of human pathogenic bacteria occur with the vast diversity of resident microflora present in plant roots in the complex soil and rhizosphere environment. To study the potential of selected strains of typical food-borne pathogens with roots of potential host plants, colonization and interaction studies performed in an axenic system are necessary.

Therefore, we investigated the colonization behaviour of different food-borne pathogenic bacteria of roots and shoots of barley plants in a monoxenic model system. We selected two strains of *Salmonella enterica* serovar *typhimurium* (LT2 and S1) and pathogenic as well as apathogenic strains of the genus *Listeria* (*L. monocytogenes*, *L. ivanovii* and *L. innocua*) for these investigations.

Materials and methods

Bacterial strains and culture conditions

Details of the strains used in this study are summarized in Table 1. Herbaspirillum sp. N3 and Escherichia coli HB101 served as reference strains for positive and negative control of root colonization, respectively. Two Salmonella enterica serovar typhimurium strains were used: S. typhimurium LT2, a widely used strain for laboratory experiments, and S. typhimurium S1, originally isolated from an organic waste fermentation plant. To compare different (a) pathogenic strains among one genus, three Listeria species were chosen: Listeria monocytogenes sv4b, as a representative human pathogen, Listeria ivanovii, a pathogen for sheep and cattle, and Listeria innocua, an apathogenic species.

Salmonella enterica strains were grown aerobically at $37\,^{\circ}\text{C}$ in liquid standard Luria Bertani (LB) broth (tryptone, $10.0\,\mathrm{g\,L^{-1}}$; yeast extract, $5.0\,\mathrm{g\,L^{-1}}$; NaCl, $10.0\,\mathrm{g\,L^{-1}}$; pH = 7.0) or on solid XLD agar (xyline–lysine–desoxycholate; Merck, Darmstadt, Germany) as selective medium for plate count experiments. Listeria strains were grown aerobically at $37\,^{\circ}\text{C}$ in brain heart infusion broth (BHI; Difco Laboratories, Franklin Lakes, NJ) or on OXFORD selective agar plus

Table 1. All strains used in this study and their colonization behaviour

Strain	Serovar	Reference	Rhizosphere colonization (surface)	Root colonization (endophytic)
Salmonella enterica	typhimurium LT2	TUMSal8	+++	+++
Salmonella enterica	typhimurium DT104h	Isolate, Schmid, M., unpublished	+++	+++
Listeria monocytogenes	4b	SLCC4013	+	_
Listeria ivanovii		ATCC19119	++	_
Listeria innocua	6a	NCTC11288	+	_
Escherichia coli		Invitrogen, Karlsruhe, Germany	_	_
Herbaspirillum sp. N3		Isolate, Klein, I., unpublished	+++	+++

SLCC, Special Listeria Culture Collection, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany; ATCC, American Type Culture Collection, University Boulevard, Manassas, USA; NCTC, National Collection of Type Cultures, Central Public Health Laboratory, London, UK.

selective supplement (Fluka, Buchs, Switzerland). *Herbaspirillum* sp. N3 and *E. coli* HB101 were grown aerobically at 37 °C in/on LB medium.

Surface sterilization and germination of barley seeds

Barley seeds (Hordeum vulgare var. Barke) were obtained from 'Saatzucht Josef Breun GdbR' (Herzogenaurach, Germany). The seeds were surface sterilized with ethanol and sodium hypochlorite. After seed incubation in 1% [volume in volume (v/v)] Tween 20 (Sigma-Aldrich, Steinheim, Germany) in sterile deionized water for 2 min the seeds were immersed in 70% ethanol for 5 min followed by three washes in sterile deionized water. Subsequently, the seeds were incubated in sodium hypochlorite solution with 6-14% active chloride for 20 min (Riedel-de-Häen, Seelze, Germany) and washed five times with sterile deionized water. Seeds were then allowed to swell in sterile water for 2-4 h and treated again with sodium hypochlorite solution for 10 min followed by five washes with sterile deionized water. Sterility of the seeds was tested by placing them on NB medium agar plates (meat extract, 1 g L⁻¹; peptone, $5 \,\mathrm{g} \,\mathrm{L}^{-1}$; NaCl, $5 \,\mathrm{g} \,\mathrm{L}^{-1}$; yeast extract, $2 \,\mathrm{g} \,\mathrm{L}^{-1}$; pH = 7.1 \pm 0.2; Sigma-Aldrich). After incubation in a growth chamber at 30 °C for several days, seedlings showing no visible bacterial contamination on the agar plate were then transplanted into sterile test tubes (see below).

Monoxenic plant growth conditions

As an axenic system, large glass tubes (3 cm wide, 20 cm long) filled with washed, dried (overnight at 105 °C) and autoclaved quartz sand were used. The tubes were filled about 5 cm of quartz sand of particle size 2–3.5 mm, overlaid with 2 cm of quartz sand of particle size 1.0–2.5 mm. The glass tubes were filled under sterile conditions with 10 mL Hoagland medium (Terry, 1980), and germinated axenic seedlings were planted in the sand layer. Glass tubes were covered with a cap to prevent contamination. During the inoculation period the tubes were incubated at room temperature under normal light conditions. After 1 week the tubes were extended with another sterile test tube placed upside down on the first tube and fixed with parafilm. In this system the plants grow up to a length of 30 cm.

After the appropriate experimental period (1–4 weeks), the plants were harvested under sterile conditions. For PCR experiments samples were taken every week. Samples for microscopic analysis and for CFU studies were taken after 2 weeks. The plants were carefully removed from the glass tubes and sand with tweezers to avoid damaging the roots. Adherent particles of sand and loosely adhesive bacterial cells were washed away with sterile phosphate-buffered

saline (PBS) solution; the remaining shoot part of the plants was treated in the same way.

Inoculation of barley plants

Prior to inoculation bacterial strains were grown in the respective medium described above. Cell numbers were determined by dilution series and plate counting. Cells were harvested, and cell suspensions containing 1×10^8 CFU mL⁻¹ PBS (pH 7.2–7.4) were used for inoculation.

Barley plants were inoculated by pipetting 1 mL of the suspension onto the surface of the quartz sand 1–2 days after planting the seedling into the axenic system. To control for sterility of the system, several plants were inoculated with 1 mL of sterile PBS solution only.

Determination of CFU

To determine the number of CFU after the inoculation period (both attached and endophytic bacteria), roots and shoots were first air dried for 10 min at room temperature. Cell count determinations of root colonization were made in triplicate. For each replicate the roots of three plants were sampled and pooled to obtain sufficient root material. One part of each pooled root sample remained untreated for the CFU determination. The other part was surface sterilized with 1% chloramine T solution (Sigma-Aldrich) for 10 min at room temperature (Baldani et al., 1986). Following five washes with sterile PBS solution, to determine the efficiency of surface sterilization, roots and shoots were placed on the respective solid media. The roots and shoots were then removed and the plate was further incubated at the given temperature overnight. After this procedure surface contamination could no longer be detected.

The samples were then homogenized manually with a pestle and mortar for about 5 min until a homogeneous suspension was produced. For each 100 mg of root and shoot fresh weight material, 1 mL PBS solution was added. The suspension was serially diluted and CFU counts were determined on NB agar (*E. coli* HB101, *Herbaspirillum* sp. N3), XLD agar (*Salmonella enterica*) or OXFORD medium with selective supplement (*Listeria* spp.) after 1 day of incubation (Miles & Misra, 1938).

Determination of colonization behaviour using fluorescence *in situ* hybridization

Radial slices were prepared over the whole length of the root to identify possible preferred colonization sites. Freshly harvested roots were placed between two small blocks of Styrofoam and radial slices of about $50-100\,\mu m$ thickness were cut off with a razor blade. These slices were transferred on to an eight-well adhesive Teflon-coated slide (Paul Marienfeld, Bad Mergentheim, Germany) immobilized by

incubation at 70 °C for 30 min. After heat immobilization, root slices were fixed in 4% (w/v) paraformaldehyde solution (gram-negative bacteria) or in 50% (v/v) absolute ethanol (gram-positive bacteria) for 1.5 h at 4 °C as described by Amann et al. (1990). For the culture-independent detection of inoculated bacteria we used fluorescence in situ hybridization (FISH) with phylogenetic fluorescently labelled oligonucleotide probes. All probes used in this study, the strength of the deionized formamide used in the hybridization buffer and probe specificity are given in Table 2. The probes were synthesized and purchased from Thermo Electron, Division Interactiva (Ulm, Germany). Hybridization with fluorochrome-labelled oligonucleotide probes (Cy3, Cy5) was performed according to the standard FISH protocol as described previously (Amann et al., 1992; Manz et al., 1992).

For three-dimensional microscopic analyses, confocal laser scanning microscopy (CLSM; LSM-510-META, Zeiss, Oberkochen, Germany) was used. Two He–Ne lasers provided excitation wavelengths of 543 nm (for Cy3 excitation) and 633 nm (for Cy5 excitation) with LP 560 and LP 650 long-pass filters, respectively. The Cy5 fluorescent dye emits in the far-red spectrum but blue colour is assigned for illustration, whereas Cy3 is shown with its red fluorescence colour. The remaining third colour channel (Ar ion laser, 488 nm excitation wavelength, with BP 500–550 band-pass filter) was used to show autofluorescence and thus the structure of plant and roots.

DNA isolation

For preparation of high-molecular-weight DNA, plants were harvested and adhering sand particles were removed from the roots. Then, homogenates were prepared from surface-sterilized roots and shoots separately. Chromosomal DNA of bacterial cultures as well as from plant material was isolated using the FastDNA SPIN Kit for Soil (Bio101, MP-Biomedicals, Heidelberg, Germany) according to the manufacturer's instructions.

PCR assay for the detection of *Listeria* and *Salmonella* sp.

All oligonucleotides used in this study (Table 2) were purchased from Thermo Electron. PCR assays were performed in a total reaction mix volume of 50 μL, Reaction mix contained 1× PCR/*Taq* buffer, MgCl₂ (2.5 mM), dNTPs (200 μM each), primers (50 pM of each forward and reverse primer), *Taq* polymerase (0.5 U; MBI Fermentas, Vilnius, Lithuania) and DNA of the respective sample (100 ng). PCR was performed in a programmable thermal cycler (Primus 96 or 25, MWG Biotech, Ebersberg, Germany). The cycling programme starts with a primary denaturation at 94 °C for 4 min, followed by 35 (for primer pairs MonoA/MonoB, Siwi2/Lis1B and S139/S141) or 30 cycles (for primer pair Ino2/Lis1B) of 94 °C for 1 min, annealing at 50–65 °C for 30–60 s (depending on the primer set used; see Table 2), and elongation at 72 °C for

Table 2. All probes (a) and primers (b) used and their specificities and references

(a)										
Probe	Specificity			Target [rRNA]	Binding position in Escherichia coli †		quence 5′–3′		% FA [‡]	Reference
EUB-338	Bacteria (except * and **	*)		16S	338–355	GC	CTGCCTCCCG	TAGGAGT	35	Amann et al. (1990)
EUB-338-I	8-II *Planctomycetales			16S	338-355	GC	CAGCCACCC	STAGGTGT	35	Daims et al. (1999)
EUB-338-I	II ** Verrumicrobiales			16S	338–355	GC	CTGCCACCC	TAGGTGT	35	Daims et al. (1999)
Lis-1255	Genus Listeria, Bacillus tl	hermospha	acta,	16S	1255-1272	AC	CCTCGCGGCT	TCGCGAC	35	Wagner et al. (1998)
	Bacillus campestris									
Salm-63	Salmonella spp., Plesiom	onas shige	elloides	235	1742–1760	TC	GACTGACTTC	AGCTCC	35	W. Ludwig, unpublished
(b)										
		Target					Size of PCR			
Primer	Specificity	gene	Sequ	ience 5'–3'			product (bp)	Anealing	(°C)/(s) Reference
MonoA	Listeria	iap	CAA	ACTGCTAACA	CAGCTACT		396	50/30		Bubert <i>et al</i> . (1992)
MonoB	Listeria	iap	GCA	CTTGAATTGC	TGTTATTG		396	50/30		Bubert et al. (1992)
Siwi2	Listeria ivanovii	iap	TAA	CTGAGGTAGC	AAGCGAA		1200	58/45		Bubert et al. (1992)
Lis1B	Listeria monocytogenes	iap	TTAT	ACGCGACCG	AAGCCAA		850	58/45		Bubert et al. (1992)
lno2	Listeria innocua	iap	ACT	AGCACTCCAG	TTGTTAAAC		870	62/60		Bubert et al. (1992)
S139	Salmonella	invA	GTG	AAATTATCGC	CACGTTCGGGCAA	Ą	284	65/30		Rahn <i>et al</i> . (1992)
S141	Salmonella	invA	TCA	TCGCACCGTC	AAAGGAACC		284	65/30		Malorny et al. (2003)

[†]Position in rRNA of *E. coli* (Brosius et al., 1981).

[‡]% FA, formamide concentration (v/v) used in the hybridization buffer.

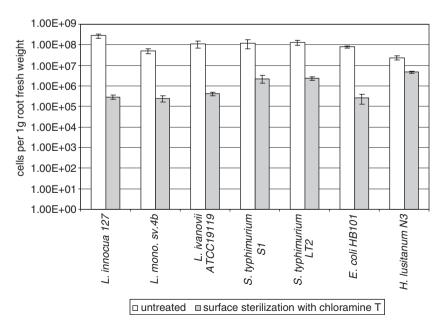
30 s (primer pairs MonoA/MonoB and S139/S141), 45 s (for primer pair Ino2/Lis1B) or 60 s (for primer pair Ino2/Lis1B). A final extension at 72 °C for 10 min completed the reaction. Results and success of the PCR were analysed after horizontal agarose electrophoresis and ethidium bromide staining according to standard techniques.

The primers specific for *Salmonella* DNA detection target the *invA* gene, which is essential for the pathogenicity of all *Salmonella enterica* strains. Because it encodes a component of the type III secretion system located on the 40-kb pathogenicity island (SPI-1) in the *S. enterica* chromosome, this system provides a species-level detection of *Salmonella* organisms (Rahn *et al.*, 1992; Malorny *et al.*, 2003).

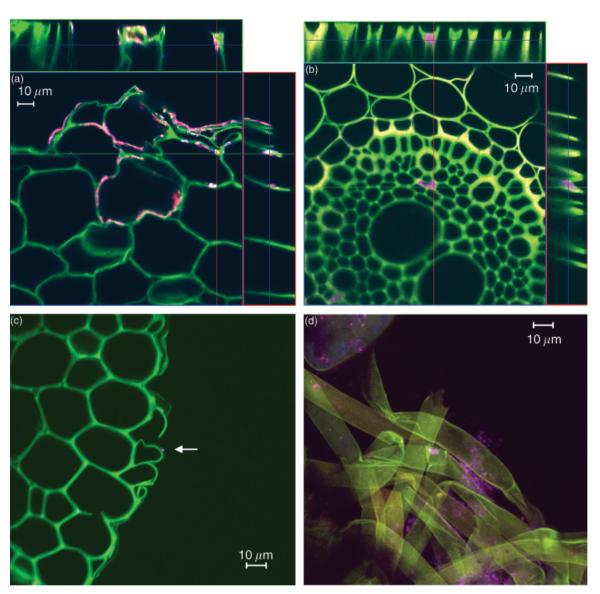
All primer sets used for the detection of *Listeria* DNA in this study target the *iap* gene, coding for the invasion-associated protein. This is an important virulence factor present in all *Listeria* species. The *iap* gene contains variable and conserved regions, which allows the design of primers for the specific detection of each *Listeria* spp. (Bubert *et al.*, 1992). For the detection of *Listeria monocytogenes*, primers MonoA and MonoB were chosen. *Listeria ivanovii* was verified through primer pair Siwi 2/Lis1B and *Listeria innocua* through primers Ino2/Lis1B.

The primer sets for *Salmonella* and *Listeria* (Table 2) were tested on DNA extracted from uninoculated barley seedlings (roots and shoots), grown for 2 weeks in the axenic system as a negative control. With none of the primer sets was an amplification product obtained with root or shoot DNA (data not shown).

Results


Colonization of barley roots and shoots

For inoculation experiments we used Herbaspirillum sp. N3 (positive control), Escherichia coli HB101 (negative control), Salmonella enterica serovar typhimurium strains LT2 and S1, Listeria monocytogenes sv4b, Listeria ivanovii and Listeria innocua. Together with noninoculated control plants, the inoculated barley plants were grown under monoxenic conditions on quartz sand with Hoagland's solution for 2 weeks. Roots and shoots were harvested, and CFU of each strain were determined in triplicate before and after surface sterilization. Cell counts of between 2.4×10^7 and 2.7×10^8 CFU per g root fresh weight were found without surface sterilization. After surface sterilization bacterial cell numbers decreased to between 4.6×10^6 and $2.5 \times$ 10⁵ CFU per g root fresh weight (Fig. 1). Highest levels of reduction were found for all Listeria strains and for E. coli. The lowest reduction after surface sterilization, only a 10-fold decline, was found for Herbaspirillum sp. N3 as the inoculant. With Salmonella typhimurium strains about 100-fold reductions of cell numbers were detected.


Cell counts of surface-sterilized shoots of plants inoculated with the *Salmonella typhimurium* strains ranged from 4.3×10^4 (strain LT2) to 5.2×10^6 CFU per g shoot fresh weight (strain S1).

In situ analysis of root colonization

Because the plate count method provides no detailed information about the colonization behaviour of the inoculated strain on barley roots, we applied a microscopic

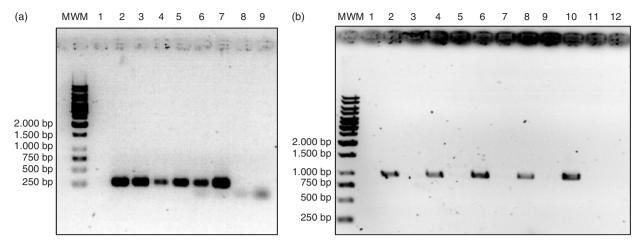

Fig. 1. CFU determination of root-associated bacterial strains per gram root fresh weight of monoxenically grown barley plants before (white columns) and after (shaded columns) surface sterilization. Incubation period: 2 weeks after inoculation.

Fig. 2. *In situ* detection of *Salmonella typhimurium* LT2 by fluorescence *in situ* hybridization analysis after hybridization with probe EUB-338-mix-Cy5 (blue) and SALM-63-Cy3 (red) in root slices. Orthogonal views of a three-dimensional confocal image created from a z-stack of xy-scans. Thirty stacks of 1 μm thickness were taken to create the orthogonal image. (a) Radial slice from the lower part of the root obtained 2 weeks after inoculation (between root tip and the root hair zone). *Salmonella typhimurium* LT2 cells are stained in magenta, (combination of both of the fluorescent signals). Arrows indicate positive hybridization signals within the root cortex. (b) Radial slice from the root inoculated with *Salmonella typhimurium* LT2 3 weeks after inoculation. *Salmonella* cells (magenta) are colonizing the central cylinder of the root endophytically at high density. (c,d) Confocal laser scanning microscopy images after inoculation of barley roots with *Listeria ivanovii* after 2 weeks of incubation and hybridization with the probes EUB-338-mix-Cy5 (blue) and Lis-1255-Cy3 (red). *Listeria* cells are stained pink (mixture of red and blue).

approach together with FISH analysis. It was not possible to design a specific probe to target the 16S rRNA gene because of the high similarity between *Salmonella* species and serovariations and other related members of the *Enterobacteriaceae*. Therefore, we designed a probe that detects all members of the genus *Salmonella* with the 23S rRNA coding gene as target site. This probe, SALM-63, is suitable for the specific *in situ* detection of all *Salmonella enterica* strains

used in this study under stringent hybridization conditions. After inoculation to barley roots, *S. enterica* strains LT2 (Fig. 2a,b) and S1 (data not shown) could be detected with this probe in great numbers colonizing the surfaces of the main root (Fig. 2a), side roots and root hairs in the monoxenic system. Furthermore, it was noticeable that colonization of subjacent rhizodermis cell layers also occurred at high cell density (Fig. 2a). The *Salmonella* cells formed microcolony-

Fig. 3. (a) Detection of *Salmonella typhimurium* LT2 DNA on inoculated barley seedlings. Plants were grown for 1-4 weeks. PCR with primer set S139/S141. MWM, molecular weight marker. Lane 1, empty; lanes 2–5, roots inoculated for 1, 2, 3 or 4 weeks, respectively; lane 6, shoot from plant inoculated for 4 weeks; lane 7, positive control with *S. typhimurium* LT2 DNA; lane 8, negative control with *Escherichia coli* HB101 DNA; lane 9, control with deionized water (no DNA). (b) Detection of *Listeria innocua* 127 DNA on inoculated barley seedlings. Plants were grown for 1–4 weeks. PCR with the primer set Ino2/Lis1B was used to identify *Listeria* in different parts of the plant. MWM, molecular weight marker. Lane 1, empty; lanes 2, 4, 6 and 8, roots inoculated for 1, 2, 3 and 4 weeks, respectively; lanes 3, 5, 7 and 9, shoots from plants inoculated for 1, 2, 3 and 4 weeks, respectively; lane 10, positive control with *L. innocua* 127 DNA; lane 11, negative control with *E. coli* HB101 DNA; lane 12, control with deionized water (no DNA).

like structures. Numerous *S. enterica* cells colonized root cells, probably after dispersion through the intercellular spaces (i.e. apoplast). It appeared that penetration of epidermis cell walls had occurred. Furthermore, numerous microcolonies could be found in the inner cortex of the central cylinder (Fig. 2b). Preferential colonization of a specific root area was not be observed. We found the same colonization pattern on all parts of the root.

For the specific detection of the Listeria strains we applied the previously described FISH probe Lis-1255 (Wagner et al., 1998). Root colonization patterns were also examined for the different Listeria strains, but in contrast to Salmonella, no endophytic colonization could be detected after the same incubation time for any of the three strains (data for L. ivanovii are shown in Figs 2c,d). Colonization of root hairs appeared at the same high cell density as for Salmonella, and these appeared to be the preferred area of settlement (Fig. 2d). Colonization of the root surface by Listeria strains occurred only rarely and only by a few single cells throughout all scanned samples (Fig. 2c). No colony formation was observed on the root surface (data not shown). In some cases, L. monocytogenes established a strong colonization of the root surface, but again, no endophytic behaviour of the bacteria was observed.

The colonization behaviour of *E. coli* HB101 was similar to that of the three *Listeria* species. The bacteria were found on the root hairs but no colonization of the root surface or endophytic bacteria were observed (data not shown).

Herbaspirillum sp. N3 showed a typical endophytic colonization behaviour of barley roots with rapid colonization of cells in the root central cylinder (data not shown). In this case, more single cells of Herbaspirillum sp. N3 than microcolonies were found distributed in the inner cortex and central cylinder of the roots.

The colonization behaviour of strains used in this study is summarized in Table 2.

Specific PCR detection of the inoculated strains in different parts of the plant

To confirm the viable cell count data and microscopic FISH experiments and to investigate possible systemic spreading of *Salmonella* through the vascular system towards the shoot we used a PCR-based approach to detect bacterial DNA in and on the roots, as well as in the shoot. For detection of the two *Salmonella enterica* strains we used the primer pair \$139/\$141.

Using DNA isolated from roots and shoots of plants inoculated with the *Salmonella* strains and the PCR system specific for *Salmonella* DNA, *S. enterica* serovar *typhimurium* LT2 could be detected not only in barley roots after 4 weeks (Fig. 3a, lanes 3–6) but also in the shoot after 4 weeks (Fig. 3a, lane 7). Identical results were achieved with strain S1 as the inoculant (data not shown).

Results of PCR performed with DNA extracted from plants inoculated with *L. ivanovii*, *L. monocytogenes* sv. 4b or *L. innocua* and the species-specific primer sets (Table 2)

are summarized in Fig. 3. Figure 3(b) shows results for *L. innocua* 127, which was taken as representative for all three *Listeria* strains. In contrast to *Salmonella*, no evidence for colonization of the shoots by *Listeria* spp. after 4 weeks could be found (Fig. 3b, lanes 3, 5, 7, 9). However, detection via PCR in the roots was possible (Fig. 3b, lanes 2, 4, 6, 8).

Discussion

In a monoxenic hydroponic model system it could be demonstrated that the food-borne pathogenic bacteria *Salmonella enterica* serovar *typhimurium* and *Listeria* spp. colonize barley plants differently. This was demonstrated not only by applying the plate count technique with and without surface sterilization, but also by *in situ* localization of the bacteria using the FISH technique with specific oligonucleotide probes in combination with CLSM as well as by specific PCR assays performed with DNA from different parts of the plant.

Applying the microscopic in situ labelling approach with FISH and CSLM, localization of the inoculated bacteria on or within barley roots was much clearer. Bacteria located at the root surface, which are protected by their localization in crevices or when embedded in the mucigel layer of the rhizoplane, may survive surface sterilization and mimic true endophytic colonization. Application of microscopic in situ detection techniques enabled us to demonstrate endophytic colonization of barley roots by S. enterica. By producing three-dimensional images from a z-stack of optical sections an exact determination of the position of colonizing cells in the tissue down to a depth of 40 µm was possible (orthogonal images). Because of the low accessibility of deeper root tissues for the probes it was necessary to prepare radial slices not exceeding a thickness of about 100 µm. Cells that were transferred during the cutting process from their original position to a location within the tissue were probably washed away during subsequent fixation, dehydration, hybridization and washing (Rothballer et al., 2003). The complete absence of *Listeria* cells inside the roots supports this conclusion. By contrast, both Salmonella strains were repeatedly found in the intercellular space of the root cortex of barley plants.

Systemic spreading in the whole plant could be found using the PCR-based detection system only for the *Salmonella* strains used in this study. They were detectable by PCR and CFU counts in the stem and leaves of root-inoculated barley plants. This systemic spreading could have occurred through water transport in the vascular system, but could also have been actively supported by the *Salmonella* cells in a hitherto unknown way (Dong *et al.*, 2003). A similar invasion process for colonizing plants is also known for plant pathogens. Vasse *et al.* (1995) characterized a three-phase process in which roots of hydroponically grown

tomato plants become infected with *Ralstonia solanacearum*. Colonization of the root surface, followed by infection of the vascular parenchyma and invasion of the xylem, was described. Penetration into the xylem leads to systemic colonization of the plants with the pathogen. Endophytic colonization by nitrogen-fixing bacteria such as *Gluconoacetobacter diazotrophicus*, *Herbaspirillum seropedicae* or *Azoarcus* sp. in different crop plants, such as sugar cane, rice or grasses (Boddey *et al.*, 1995; Reinhold-Hurek & Hurek, 1998a, b) has also been described. These bacteria colonize lateral root junctions in high numbers, making these junctions a likely site of plant entry. These bacteria also enter the xylem and may infect the stem cortex through the xylem (James & Olivares, 1998; James *et al.*, 2002).

Despite the widely held view that the inner tissues of plants are usually free of bacteria, Guo et al. (2002) found high numbers of Salmonellae in some hypocotyls, cotyledons, stems and leaves of hydroponically grown tomato plants via viable cell count determination. Through inoculation studies with different types of vegetables, Jablasone et al. (2005) showed internalization of Salmonella typhimurium into lettuce and radish. Similar to our study, Jablasone et al. found that L. monocytogenes did not internalize within seedlings, but did persist on the surface of plants throughout the cultivation period. Invasion of Medicago truncatula and M. sativa by enteric bacteria was demonstrated by Dong et al. (2003), where extensive colonization of lateral root cracks by enteric bacteria, similar to the colonization by nitrogen-fixing endophytes, leads to plant entry. Infection of root hairs is unlikely, as observed by rhizobia with legumes, although there is a higher level of nutrients than in the rhizosphere. However, Cooley et al. (2003) pointed out that colonization of Arabidopsis thaliana by S. enterica takes place at many locations. Salmonella enterica is concentrated initially at the root tips and the branch points of lateral roots, but at later incubation times the apoplast of roots (intercellular) were often found to be colonized. Salmonella typhimurium appears not to need wounded tissue or root cracks to invade the root. This seems to be a new mode of entry as plant pathogens often invade through breaks of the epidermis upon development of lateral roots (Gough et al., 1997).

Gandhi *et al.* (2001) showed that a *Salmonella stanley* strain could reside within the interior tissues of alfalfa shoots only to a depth of 18 µm from the surface. By contrast, by using immunofluorescence microscopy and scanning electron microscopy, Itoh *et al.* (1998) showed invasion of *E. coli* O157:H7 in radish tissue on shoots grown from contaminated seeds. The bacteria were found in and on xylem elements of the hypocotyls, supporting a conclusion that *E. coli* O157:H7 can move through the vascular system. In another recent study, Solomon *et al.* (2002) also concluded that *E. coli* O157:H7 was moving within the

plant, presumably via the vasculature system, when the bacteria were shown to be present within surface-sterilized lettuce leaves after root inoculation.

There is evidence that invasion into the roots by human pathogens could lead to systemic spreading and contamination of seeds and fruits of plants. Guo *et al.* (2001) inoculated different *Salmonella* strains into stems of tomato plants by injection at flowering and early stages of fruit development, and observed their survival through fruit ripening.

It is reasonable to propose that interactions occur frequently between human-pathogenic bacteria and plants because enteric bacteria are able to survive outside their host organisms, e.g. in soils. Salmonella enterica has been shown to persist for extended periods in soil and on plant surfaces (Baloda et al., 2001). Furthermore, enteric bacteria frequently come into contact with plants once they are shed from their animal host, and survival on plants would help ensure that they are again ingested. Seemingly, there is a benefit to survival of enteric bacteria in the plant environment long enough and in sufficient numbers to ensure infection of a new host. By contrast, it is quite possible that colonization of plant roots and human tissue may require similar traits, which make the rhizosphere a natural source of bacteria having the potential to invade human tissues (Berg et al., 2005).

Although these results may be of interest with regard to public health concern, it is important to note that this, and many other, study was carried out in monoxenical hydroponic systems. Such controlled environments do not imitate the multiple biotic and abiotic environmental influences that may stimulate or suppress infection. Factors that influence internalization of bacteria in plant tissues may also be different in hydroponically grown plants and in plants grown in soil. The macrostructures of roots may differ substantially in the two systems, thus potentially affecting the behaviour of endophytic bacteria. However, axenical growing plants offer the unique ability to demonstrate the potential of colonization by a particular bacterium and to test the response of the plant towards bacterial colonization. Cooley et al. (2003) showed differences in the survival of different Salmonella strains with Arabidopsis thaliana growing in three different soils (autoclaved, unautoclaved and amended with the strain of interest). In soil, cell counts of pathogenic bacteria colonizing the root were reduced compared with the hydroponically grown plants. Enterobacter asburiae mainly affected the persistence of S. enterica in a hydroponic system in the form of reduced survival. It is not only competition with other microbes that affects survival and fitness of human pathogenic bacteria in the rhizosphere; bacterial and host genotypes also influence the infection by genetic determinants. Dong et al. (2003) demonstrated enhanced colonization by S. enterica of an

Medicago trunculata mutant, which is deficient in root nodulation by Sinorhizobium meliloti and/or mycorrhizal infection by Glomus.

Although the gnotobiotic method described does not mimic the complexity of the natural environment, it does mimic commercial shoot production and hydroponic farming. It is an important tool towards discovery of bacterial and host genes involved in the interactions between microbes and plants. Some of these genes may also be important in crop plants grown in nature and may therefore provide clues to developing new methods to minimize contamination of products with human pathogens.

References

Amann RI, Krumholz L & Stahl DA (1990) Fluorescentoligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. *J Bacteriol* **172**: 762–770.

Amann RI, Zarda B, Stahl DA & Schleifer KH (1992)
Identification of individual prokaryotic cells by using enzymelabeled, rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 58: 3007–3011.

Baldani VL, Alvarez I, Baldani I & Döbereiner J (1986) Establishment of inoculated Azospirillum spp. in the rhizosphere and in the roots of field grown wheat and sorghum. Plant Soil 90: 35–46.

Baloda SB, Christensen L & Trajcevska S (2001) Persistence of a Salmonella enterica serovar typhimurium DT12 clone in a piggery and in agricultural soil amended with Salmonellacontaminated slurry. Appl Environ Microbiol 67: 2859–2862.

Berg G, Eberl L & Hartmann A (2005) The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. *Environ Microbiol* 7: 1678–1685.

Beuchat LR (2002) Ecological factors influencing survival and growth of human pathogens on raw fruits and vegetables. *Microbes Infect* 4: 413–443.

Beuchat LR & Ryu JH (1997) Produce handling and processing practices. *Emerg Infect Dis* **3**: 459–465.

Boddey RM, de Oliveira OC, Urquiagas , Reis VM, Olivares FL, Baldani VLD & Dőbereiner J (1995) Biological nitrogen fixation associated with sugar cane and rice: contributions and prospects for improvement. *Plant Soil* **174**: 195–209.

Brosius J, Dull TJ, Sleeter DD & Noller HF (1981) Gene organization and primary structure of a ribosomal RNA operon from *Escherichia coli*. *J Mol Biol* **148**: 107–127.

Bubert A, Kohler S & Goebel W (1992) The homologous and heterologous regions within the *iap* gene allow genus- and species-specific identification of *Listeria* spp. by polymerase chain reaction. *Appl Environ Microbiol* **58**: 2625–2632.

Burnett SL & Beuchat LR (2000) Human pathogens associated with raw produce and unpasteurized juices, and difficulties in decontamination. *J Ind Microbiol Biotechnol* **25**: 281–287.

- Cooley MB, Miller WG & Mandrell RE (2003) Colonization of Arabidopsis thaliana with Salmonella enterica and enterohemorrhagic Escherichia coli O157:H7 and competition by Enterobacter asburiae. Appl Environ Microbiol 69: 4915–4926.
- Daims H, Bruhl A, Amann R, Schleifer KH & Wagner M (1999) The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. *Syst Appl Microbiol* 22: 434–444.
- Dong Y, Iniguez AL, Ahmer BM & Triplett EW (2003) Kinetics and strain specificity of rhizosphere and endophytic colonization by enteric bacteria on seedlings of *Medicago sativa* and *Medicago truncatula*. *Appl Environ Microbiol* **69**: 1783–1790.
- Farber JM & Peterkin PI (1991) Listeria monocytogenes, a foodborne pathogen. Microbiol Rev 55: 476–511.
- De Freitas JR, Schoenau JJ, Boyetchko SM & Cyrenne SA (2003) Soil microbial populations, community composition, and activity as affected by repeated applications of hog and cattle manure in eastern Saskatchewan. *Can J Microbiol* **49**: 538–548.
- Gandhi M, Golding S, Yaron S & Matthews KR (2001) Use of green fluorescent protein expressing *Salmonella stanley* to investigate survival, spatial location, and control on alfalfa sprouts. *J Food Prot* **64**: 1891–1898.
- Gough C, Galera C, Vasse J, Webster G, Cocking EC & Denarie J (1997) Specific flavonoids promote intercellular root colonization of Arabidopsis thaliana by Azorhizobium caulinodans ORS571. Mol Plant Microbe Interact 10: 560–570.
- Gravani R (1999) Incidence and control of *Listeria* in foodprocessing facilities. *Listeria*, *listeriosis*, *and food safety* (Ryser ET & Marth EH, eds), pp. 657–709. Marcel Dekker, Inc., New York, NY.
- Guo X, Chen J, Brackett RE & Beuchat LR (2001) Survival of *Salmonellae* on and in tomato plants from the time of inoculation at flowering and early stages of fruit development through fruit ripening. *Appl Environ Microbiol* **67**: 4760–4764.
- Guo X, van Iersel MW, Chen J, Brackett RE & Beuchat LR (2002) Evidence of association of salmonellae with tomato plants grown hydroponically in inoculated nutrient solution. *Appl Environ Microbiol* **68**: 3639–3643.
- Itoh Y, Sugita-Konishi Y, Kasuga F, Iwaki M, Hara-Kudo Y, Saito N, Noguchi Y, Konuma H & Kumagai S (1998)
 Enterohemorrhagic Escherichia coli O157:H7 present in radish sprouts. Appl Environ Microbiol 64: 1532–1535.
- Jablasone J, Warriner K & Griffiths M (2005) Interactions of Escherichia coli O157:H7, Salmonella typhimurium and Listeria monocytogenes plants cultivated in a gnotobiotic system. Int J Food Microbiol 99: 7–18.
- James EK & Olivares FL (1998) Infection and colonization of sugar-cane and other gramineous plants by endophytic diazotrophs. Crit Rev Plant Sci 17: 77–119.
- James EK, Gyaneshwar P, Mathan N, Barraquio WL, Reddy PM, Iannetta PP, Olivares FL & Ladha JK (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium *Herbaspirillum seropedicae* Z67. *Mol Plant Microbe Interact* 15: 894–906.

- Malorny B, Hoorfar J, Bunge C & Helmuth R (2003) Multicenter validation of the analytical accuracy of Salmonella PCR: towards an international standard. *Appl Environ Microbiol* **69**: 290–296.
- Manz W, Amann R, Ludwig W, Wagner M & Schleifer K-H (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions. *Syst Appl Microbiol* **25**: 593–600.
- Mead PS, Slutsker L, Griffin PM & Tauxe RV (1999) Food-related illness and death in the United States. *Emerg Infect Dis* 5: 841–842.
- Meng J & Doyle MP (1998) Emerging and evolving microbial food-borne pathogens. *Bull Inst Pasteur* **96**: 151–164.
- Miles AA & Misra SS (1938) The estimation of the bactericidal power of the blood. *J Hyg* **38**: 723–749.
- Rahn K, De Grandis SA, Clarke RC, McEwen SA, Galan JE, Ginocchio C, Curtiss R & Gyles CL (1992) Amplification of an *invA* gene sequence of *Salmonella typhimurium* by polymerase chain reaction as a specific method of detection of *Salmonella*. *Mol Cell Probes* 6: 271–279.
- Reinhold-Hurek B & Hurek T (1998a) Life in grasses: diazotrophic endophytes. *Trends Microbiol* **6**: 139–144.
- Reinhold-Hurek B & Hurek T (1998b) Interaction of gramineous plants with *Azoarcus* spp. and other diazotrophs: identification, localization and perspectives to study their function. *Crit Rev Plant Sci* 17: 29–54.
- Rothballer M, Schmid M & Hartmann A (2003) *In situ* localization and PGPR-effect of *Azospirillum brasilense* strains colonizing roots of different wheat varieties. *Symbiosis* **34**: 261–279.
- Schmid M, Walcher M, Bubert A, Wagner M & Schleifer K-H (2003) Nucleic acid-based, cultivation-independent detection of *Listeria* spp and genotypes of *L monocytogenes*. FEMS Immunol Med Microbiol 35: 215–225.
- Sevilla M, Burris RH, Gunapala N & Kennedy C (2001) Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with *Acetobacter diazotrophicus* wild-type and Nif- mutants strains. *Mol Plant Microbe Interact* 14: 358–366.
- Solomon EB, Yaron S & Matthews KR (2002) Transmission of Escherichia coli O157:H7 from contaminated manure and irrigation water to lettuce plant tissue and its subsequent internalization. Appl Environ Microbiol 68: 397–400.
- Terry N (1980) Limiting factors in photosynthesis. I. Use of iron stress to control phytochemical capacity in vivo. *Plant Physiol* **65**: 114–120.
- Vasse J, Frey P & Trigalet A (1995) Microscopic studies of intercellular infection and protoxylem invasion of tomato roots by *Pseudomonas solanacearum*. *Mol Plant Microbe Interact* 8: 241–251.
- Wagner M, Schmid M, Juretschko S, Trebesius K-H, Bubert A, Goebel W & Schleifer K-H (1998) *In situ* detection of a virulence factor mRNA and 16S rRNA in *Listeria monocytogenes*. *FEMS Microbiol Lett* **160**: 159–168.