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Abstract: 

A 3D microtissues using T47D and JIMT-1 cells were generated to analyze 

tissue-like response of breast cancer cells after combined HER2-targeted 
treatment and radiation. Following lentiviral knockdown of HER2, we 
compared growth rate alterations using 2D monolayers, 3D microtissues 
and mouse xenografts. Additionally, to model combined therapeutic 
strategies, we treated HER2-depleted T47D cells and 3D microtissues using 
trastuzumab (anti-HER2 antibody) in combination with irradiation.          
Comparison of HER2 knockdown with corresponding controls revealed 
growth impairment due to HER2 knockdown in T47D 2D monolayers, 3D 
microtissues and xenografts (after 2 days, 12 days and ≥ 40 days, 
respectively). In contrast, HER2 knockdown was less effective in inhibiting 
growth of trastuzumab-resistant JIMT-1 cells in vitro and in vivo. Combined 
administration of trastuzumab and radiation treatment was also analyzed 

using T47D 3D microtissues. Administration of both, radiation (5 Gy) and 
trastuzumab, significantly enhanced the growth inhibiting effect in 3D 
microtissues. To improve the predictive power of potential drugs - as single 
agents or in combination – here, we show that regarding tumor growth 
analyses, 3D microtissues are highly comparable to outcomes derived from 
xenografts. Considering increased limitations for animal experiments on 
the one hand and strong need of novel drugs on the other hand, it is 
indispensable to include highly reproducible 3D microtissue platform in pre-
clinical analyses to validate more accurately the capacity of future drug-
combined radiotherapy.  
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Abstract  

A 3D microtissues using T47D and JIMT-1 cells were generated to analyze tissue-

like response of breast cancer cells after combined HER2-targeted treatment and 

radiation. Following lentiviral knockdown of HER2, we compared growth rate 

alterations using 2D monolayers, 3D microtissues and mouse xenografts. 

Additionally, to model combined therapeutic strategies, we treated HER2-depleted 

T47D cells and 3D microtissues using trastuzumab (anti-HER2 antibody) in 

combination with irradiation.         

Comparison of HER2 knockdown with corresponding controls revealed growth 

impairment due to HER2 knockdown in T47D 2D monolayers, 3D microtissues and 

xenografts (after 2 days, 12 days and ≥ 40 days, respectively). In contrast, HER2 

knockdown was less effective in inhibiting growth of trastuzumab-resistant JIMT-1 

cells in vitro and in vivo. Combined administration of trastuzumab and radiation 

treatment was also analyzed using T47D 3D microtissues. Administration of both, 

radiation (5 Gy) and trastuzumab, significantly enhanced the growth inhibiting effect 

in 3D microtissues. To improve the predictive power of potential drugs - as single 

agents or in combination – here, we show that regarding tumor growth analyses, 3D 

microtissues are highly comparable to outcomes derived from xenografts. 

Considering increased limitations for animal experiments on the one hand and strong 

need of novel drugs on the other hand, it is indispensable to include highly 

reproducible 3D microtissue platform in pre-clinical analyses to validate more 

accurately the capacity of future drug-combined radiotherapy. 

 
Keywords: 3D microtissue, spheroid, mouse xenografts, trastuzumab, radiation, 

HER2 knockdown, combination, model 
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1. Introduction 

Proliferation assays of two-dimensional (2D) monolayer cancer cells are too artificial 

for anti-cancer drug screening and fail to model three-dimensional (3D) solid tumor 1, 

2. Meanwhile, the limitations of 2D models are considered as one major reason that 

around 95% of potential anti-cancer drugs fail in clinical trials although initially 

showing high anti-tumor activity in vitro 3. Multicellular 3D spheroid models have been 

proven to be more physiologically relevant to in vivo tumors. Regarding cancer 

research, Sutherland and colleagues pioneered in 3D cell culture model generating 

Chinese hamster lung spheroids in rotary flasks 4. Since then, various systems have 

been developed including spontaneous aggregation in drops 5, 6, spinner flasks 7 and 

scaffold-based systems 8. 3D models can help investigating the interplay between 

different physiological conditions (oxygen or nutrient deprivation), irradiation or other 

physical and chemical stimuli 9, 10. Additionally, they allow for long-term studies of 

several weeks 9, 11, 12. Nevertheless, further studies are needed to verify that 3D 

models can mimic in vivo tumors. 

We focused on the therapeutically relevant oncogene HER2 (human epidermal 

growth factor receptor 2) regulating mammary gland tumorigenesis 13, 14.  HER2 

overexpression occurs in approximately 30% of breast tumors and is associated with 

malignancy and a poor prognosis 15. In 1998, the antibody-based targeted therapy for 

HER2-positive tumors using trastuzumab has shown a survival benefit 16. Here, the 

growth rates of HER2-depleted trastuzumab-sensitive T47D cells and trastuzumab-

resistant JIMT-1 cells were analyzed in 2D monolayer cultures, 3D microtissues and 
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in xenografts. To improve HER2-targeted therapy, we treated T47D microtissues with 

trastuzumab combined with radiation in 2D and 3D. 

 

2. Materials and methods 

2.1. 2D monolayer cultivation and stable knockdowns 

The trastuzumab-sensitive T47D and the trastuzumab-resistant JIMT-1 breast cancer 

cell lines were used. The T47D cells (HTB-133) were acquired from the American 

Type Culture Collection and were maintained in RPMI 1640 with GlutaMAX (Roswell 

Park Memorial Institute, Life Technologies GmbH, Darmstadt, DE). The JIMT-1 cells 

(ACC-589) were acquired from the German Collection of Microorganisms and Cell 

Cultures (Heidelberg, DE) and were maintained in DMEM (Dulbecco´s modified 

eagles medium) with GlutaMAX. Both media were supplemented with 10% fetal 

bovine serum (both from Life Technologies GmbH) and with human insulin (10 µg/ml, 

Sigma, St. Louis, MO, USA) and the cells were incubated at 37°C in 5% CO2. Two 

independent infections with lentiviral particles using LentiBoost adjuvant (Sirion 

Biotech GmbH, Martinsried, DE) were conducted as described 14, 17, 18.  

 

2.2. Cell proliferation assays 

Cell proliferation was anlayzed using water-soluble tetrazolium 1 (WST-1) in a 

colorimetric assay in quadruplicates (Roche Diagnostics, Mannheim, DE) or using 

CellTiterGlo Luciferase assay (Promega, Madison, USA) according to the 

manufacturers’ protocol. 

 

2.3. 3D microtissues and treatments  

The breast cancer cells were seeded with 500 cells per drop into scaffold-free 96-well 

InSphero culture GravityPLUSTM plates (InSphero AG, Schlieren, CH). 3D 
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microtissues were produced within 3 days and transferred into InSphero 

GravityTRAPTM plates. Growth of six spheroids per approach was analysed every 3 

days by the high content screening system Operetta (Perkin Elmer, Waltham, MA, 

USA) and quantified in maximal area of GFP-expressing microtissue (µm2) using the 

Harmony analysis Software (Perkin Elmer) 19. Medium was refreshed at day 6 post-

transfer to assay plates. T47D monolayers and 3D microtissues were irradiated with 

a Cs-137 irradiator (HWM D-2000, Siemens, Erlangen, DE) at 0.95 Gy/minute. A 

dose of 5 Gy at room temperature was administered and control monolayers and 

microtissues were sham irradiated. After 30 minutes, trastuzumab (10 µg/ml, Roche 

Diagnostics, Mannheim, DE) was added when appropriate. 

 

2.4. Immunofluorescence of 3D microtissue sections 

Six microtissues were pooled in PBS at indicated time points and fixed for 1 h in 4% 

PBS-buffered paraformaldehyde. 50 µl of human plasma were mixed with the 

microtissues, 50 µl of thrombin (1,000 U/ml, both Sigma) were pipetted in the lid of an 

Eppendorf tube. By centrifugation at 300 g for 10 min the fluids clot. The microtissue 

clot was placed in a tissue cassette, processed in a vacuum Tissue-Tek VIP 6 device 

(Sakura, Torrance, CA, USA) and embedded in paraffin. Sections of 4 µm were cut 

from each paraffin-embedded microtissue block and dried on glass slides. For 

staining, sections were deparaffinized and one section was stained with hematoxylin 

and eosin (H&E, Carl Roth, Karlsruhe, DE). Sections of 3D microtissues grown for 12 

days were incubated with a primary antibody against Ki67 for proliferative cells (clone 

SP6, Novus Biologicals, Littleton, CO, USA) or with a primary antibody against 

cleaved Caspase-3 specific for apoptotic cells (Abcam, Cambridge, UK) and 

analysed by fluorescence microscopy using anti-rabbit Alexa488- or Cy3-conjugated 
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secondary antibodies (Life Technologies GmbH). Nuclei were visualized with DAPI 

(Vectashield, Vector Laboratories Inc, Burlingame, CA, USA). Appropriate negative 

controls were obtained.  

 

2.5. In vivo xenograft model 

The animal studies were performed in accordance with the German and European 

laws on animal welfare. A total of 106 cells was orthotopically injected into female 

mice as described 14. Tumor sizes in mm2 area were quantified from at least 6 

animals per group once a week for up to 6 weeks.  

 

2.6. Western blots of cryopreserved and FFPE xenograft samples 

Since a pool of sections per sample was necessary to extract proteins, only JIMT-1 

xenografts ≥ 1 cm3 were used, due to sufficient xenograft material for extractions and 

analysis (Supplementary Fig. S2A). For protein extraction from cryopreserved 

xenografts, 20 x 20 µm thick sections were lysed in 150 µl TPER buffer and 

sonicated (Sonoplus, Bandelin, Berlin, DE). For protein isolation from FFPE 

xenografts, a minimum of 5 x 20 µm sections were lysed as previously described 20 

with minor modifications: the sections were de-paraffinized, rehydrated, washed in 

0.5% β-D-octylglucopyranosid and lysed in TPER protein isolation buffer additionally 

containing 20 mM TrisHCl pH 8.8, 2% SDS, 1% β-D-octylglucopyranosid, 200 mM 

Glycine. The samples were incubated for 20 minutes at 95°C, followed by 2 h at 80°C 

and sonicated. The suspensions were centrifuged, the supernatants were applied for 

immunoblotting as described 14 using the following antibodies: anti-HER2 (DAKO, 

Glostrup, DK) and anti-Tubulin (Sigma-Aldrich, Taufkirchen, DE).  
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2.7. Statistics  

For statistical analysis Student’s t-test was used (SigmaPlot, Systat Software GmbH, 

Erkrath, DE) and statistical significance was considered at p<0.05. 

 

3.  Results  

3.1. Growth analysis of tumor cells cultivated as 3D microtissues is more 

comparable to in vivo xenografts than to outcomes of 2D monolayers 

To compare short- with long-term analysis of growth rates, T47D and JIMT-1 cells 

were cultured in 2D, 3D or as xenografts (Figure 1 and Supplementary Fig. S1A and 

S1C). Breast cancer cells were transduced with a GFP-encoding empty vector 

control (EV) or a HER2 knockdown vector (shHER2). In 2D, HER2-depleted T47D 

breast cancer cells (-90% of HER2 protein expression, Fig. 1A, left, upper figure) 

showed reduced cell proliferation compared with non-transduced (control) and empty 

vector transduced cells (Fig. 1A, left). Although T47D cells moderately express HER2 

21, its knockdown significantly reduced cell proliferation (-25%; p<0.033). In 

trastuzumab-resistant JIMT-1 cells, knockdown of HER2 reduces protein expression 

(-35% or -70%, Fig. 1B left, lower figure), but cell proliferation in 2D was not 

significantly altered (-10%; Fig. 1B).  

Remarkably, in 3D, compared with control empty vector, HER2-depleted T47D 

microtissue growth was strongly and significantly reduced (-46%; p<0.001, Fig. 1A). 

Considering that the same tumor cells were applied for 2D and 3D assays, this result 

demonstrates that the effect on proliferation in 3D was more prominent than in 2D. 

Regarding JIMT-1 cell growth in 3D, the HER2 knockdown led to a significant growth 

reduction of approximately 20% compared with control empty vector (Fig. 1B, 

p=0.025) indicating a stronger effect in 3D. In T47D cells (Supplementary Fig. S1B) 
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and in JIMT-1 cells (Supplementary Fig. S1D), the HER2 RNA expression was 

reduced to approximately 35% (after 12 days), demonstrating efficient and stable 

HER2 lentiviral knockdown  in both breast cancer cell lines. 

Xenografts were generated either using T47D or JIMT-1 transduced cells. Control 

tumor xenografts differed in absolute tumor sizes as JIMT-1 xenografts developed 

more tumor mass (Supplementary Fig. S2A). Compared with T47D controls (EV), 

HER2-depleted xenografts show a significantly reduced size (-42%, p=0.002, Fig. 1A, 

right, upper figure). JIMT-1 control xenografts (EV) compared with HER2-depleted 

xenografts (-50% HER2 protein expression, Supplementary Fig. S2B, right) also 

exhibit a significantly reduced size (-34%, p=0.036, Fig. 1B, right, lower figure). In 

summary, two differentially HER2-expressing breast cancer cell lines were analyzed 

in 2D monolayers, 3D microtissues and xenografts for effects on proliferation 

following stable HER2 knockdown. In all three models, HER2 knockdown affected the 

proliferation of T47D cells more than of JIMT-1 cells. Interestingly, the impact was 

stronger, more considerable and more similar in 3D models (up to 12 days) and 

xenografts (up to 40 days) than observed in 2D (2 days).  

 

3.2. T47D cells form functional tumor tissue–like 3D microtissues  

A scaffold-free system for 3D spheroid growth in a hanging drop was adapted for 

immunofluorescence analysis (Figure 2). Middle parts of T47D 3D microtissues after 

3 days growth show dense but homogenous cell assembly (Fig. 2A). Nine days later 

(Fig. 2B), spheroids display a gradient of Ki67-positive proliferating cells located in 

the outer cell layers (Fig. 2C), whereas cleaved Caspase-3-positive apoptotic cells 

are located in the core region (Fig. 2D). These variations to physiological nutrient and 

oxygen gradients resemble changes in early neoplasia. 
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3.3. Additive growth inhibition is detected using T47D 3D microtissues followed 

by HER2 knockdown or anti-HER2 treatment combined with irradiation  

T47D cells grown in 3D microtissues or as xenografts have demonstrated substantial 

growth reduction following HER2 downregulation. To evaluate therapeutic 

interventions based on HER2 signaling in HER2-dependent cells, we treated control 

cells and HER2-depleted T47D 3D microtissues with a single dose of irradiation (5 

Gy, Fig. 3A). Though downregulation of HER2 has a very potent effect on 3D 

microtissue growth (-50% vs. w/o, Fig. 3A), the combination with irradiation led to 

further significant inhibition compared to HER2 knockdown alone (-56% vs. w/o, 

p=0.003, Fig. 3A). 

In 2D and 3D, trastuzumab inhibited T47D cell growth (Fig. 3B, p=0.008; Fig. 3C, 

right, p<0.001), whereas growth of JIMT-1 3D microtissues was not altered in the 

presence of trastuzumab (Supplementary Fig. S1E). Trastuzumab combined with 

radiation using T47D cells cultured in 2D showed a minor inhibitory effect (Fig. 3B). 

Remarkably, in 3D microtissues, additive reduced growth following radiation with 

combined trastuzumab treatment was observed (-55% vs. -33% (5Gy) or -17% 

(trastuzumab), Fig. 3C, p<0.001). In summary, T47D cells in 2D and 3D models were 

exposed to radiation and trastuzumab to demonstrate combination treatments as 

more powerful than single treatment regarding cancer therapies. Here, an additional 

and statistically significant inhibition following the combined treatment was observed 

using the physiologically more relevant 3D model. 

 

4. Discussion 
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Since HER2 is therapeutically used in breast cancer 14, we applied a novel technique 

to culture tumor cells as three-dimensional microtissues. Presented data demonstrate 

the feasibility of 3D microtissues for efficient drug evaluation and validation in pre-

clinical analyses. Additionally, there is an emerging body of evidence showing that 

e.g. proliferation inhibitors differently affect 3D models compared to 2D monolayers. 

Significant anti-proliferative effects of the PI3K-inhibitor PX-866 were observed in 

spheroids derived from several cancer cells, whereas there was no effect on these 

cells grown as monolayers 21. Furthermore, a greater tumor proliferation inhibition 

was demonstrated when T47D 3D spheroids were exposed to trastuzumab in 

contrast to 2D models 22. Recent paper by Rodriguez et al., describes that 3D 

organization could decrease trastuzumab sensitivity of HER2 over-expressing cells 

compared to monolayer cell culture. Probably, the changed organization of cells 

grown in 2D or 3D system may lead to different outcomes due to changed access of 

nutrients, oxygen or drugs 3, 9.  

In the present study we have compared 2D and 3D assays using JIMT-1 trastuzumab 

resistant cells 14, 23. In contrast to JIMT-1 cells, T47D cells do respond to anti-HER2 

trastuzumab treatment 14. In pre-clinical studies, combining radiotherapy with 

trastuzumab has been described as beneficial because trastuzumab elevates 

radiosensitivity by oxygenating tumor tissue 22. Combined HER2-targeted 

immunotherapy using trastuzumab with radiotherapy has been considered to 

potentially decrease mammary tumor growth in vitro and in vivo 24. In addition, 

radiation can increase expression levels of HER2 as target antigen of trastuzumab 24, 

25. Therefore, applying trastuzumab treatment before or concurrent with irradiation 

could potentially further increase observed radiosensitizing effect.  
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Several studies including different 3D systems were applied 26, 27 (add Pickl and 

Ries REF) however, little is known regarding 3D breast cancer cell spheroids 

exposed to radiation although radiotherapy is widely applied for breast cancer 

therapy 28. 

Cultivating 3D microtissues using a hanging drop technology guarantees minor 

deviations within replicates 6, 19 and allows easy handling regarding single or 

combined radiation and drug treatment. Starting with only 500 tumor cells per 

hanging drop, 12 days follow-up allows “long-term” investigations, comparisons of 

immediate, mediate and late effects of oncogene knockdown and further analysis of 

combined treatments. To demonstrate the power of 3D microtissues for combination 

therapies, we treated T47D cells with trastuzumab and irradiation in 2D and 3D 

models. We observed remarkable additive proliferation inhibition only in 3D 

microtissues enabling long-term analysis and better correlation to native tumor 

architecture. 

Meanwhile, the numerous advantages of such 3D systems dominate and have the 

potential to predict therapeutic windows including combined treatments more 

accurately. Considering increased limitations for animal experiments but increasing 

need of novel drugs, usage of highly reproducible 3D models is indispensable. 

Subsequent in vivo studies will benefit from smaller cohort sizes saving animals and 

general costs. Instead of injecting millions gel-embedded cells from cell lines or 

tumors, pre-cultured 3D microtissues can be pooled and injected orthotopically. 

Higher engraftment rates of these 3D cultured cells and minor deviations in xenograft 

growth have been shown; both factors that improve the performance of in vivo 

studies 29. Furthermore, ex vivo approaches using tumor biopsies may be cultured 

using such 3D system 3 and then treated with therapeutically relevant compounds 
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and radiation to predict the tumor response to the combined treatment. Studying in 

vitro long-term effects of potential therapeutics as single agents or in combination, 3D 

microtissues essentially contribute to a more accurate tool predicting tumor growth 

and therapeutic outcomes. 
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Figure legends: 

Fig. 1: Comparison of growth rates after HER2 downregulation using 2D 

monolayers, 3D microtissues and in vivo xenografts reveals 3D and in vivo 

models as more comparable and significant than 2D monolayers. T47D cells (A) 

and JIMT-1 cells (B) lentivirally transduced with a GFP-encoding control empty vector 

(EV, blue) or shHER2 knockdown vector (shHER2, red) were cultured in 2D 

monolayers (quantified with CellTiterGlo cell proliferation assay after 48 h, n = 4, left; 

the band intensities were quantified in relation to control as described 14, the mean 

values of two independent infections are shown, 3D microtissues (quantified using 

GFP area determination over 12 days, n ≥ 4, middle) and in vivo xenografts grown in 

nude mice (quantified via calipers over 5 to 6 weeks, n ≥ 6, right) (*p<0.05, **p<0.01, 

***p<0.001). 

Fig. 2: T47D cells form functional 3D spheroids in a scaffold-free system. 

Upper line images show H&E stainings of microtissues grown for 3 days (A) and 12 

days (B) after the drop in a GravityTRAPTM plate. In addition, sections of 3D 

microtissues grown for 12 days were incubated with DAPI and an antibody against 

Ki67 (green) to stain proliferative cells (C) or with an antibody against cleaved 

Caspase-3 (red) specific to stain apoptotic cells (D) and analyzed by fluorescence 

microscopy. Nuclei were visualized with DAPI (blue).  

 

Fig. 3: Additive growth inhibition of T47D cells following knockdown of HER2 

or anti-HER2 treatment combined with irradiation is significant in 3D and not in 

2D. A: Growth of T47D 3D microtissues without (w/o, blue) or after HER2 

downregulation (shHER2, red) was followed up to 12 days in combination with a 
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single dose of radiation at day 0 (5 Gy; green and purple). B: T47D cells (2D 

monolayers) were analyzed without (w/o, blue) or after single (yellow) or combined 

(purple) treatment with the anti-HER2 antibody trastuzumab (10 µg/ml) and radiation 

(5 Gy, green). Cell proliferation was quantified by WST-1 cell proliferation assay after 

48 h (n = 5). C: Representative captions of T47D 3D microtissues without treatment 

(w/o) or after single or combined treatment with trastuzumab (10 µg/ml) and radiation 

(5 Gy). Microscopic analysis was performed using the Operetta screening system 

(left, scale bar = 200 µm). T47D 3D microtissue growth was quantified using GFP 

area determination over 12 days (n ≥ 4, right) (**p<0.01, ***p<0.001).  

 

Supplementary Fig. S1: T47D and JIMT-1 3D microtissue analyses after HER2 

downregulation. A, C: Example of GFP detection for 3D microtissues generated 

from T47D (A) and JIMT-1 cells (C) at day 3 (upper line) and day 12 (lower line) 

using an empty vector control encoding GFP (EV) and a HER2-downregulating 

vector (shHER2). B, D:  Relative HER2 mRNA expression in T47D (B) and JIMT-1 

(D) 3D microtissues lentivirally transduced with a GFP-encoding control vector (EV) 

or a HER2-downregulating vector (shHER2) and grown for 12 days. For quantitative 

reverse transcription PCR (qRT-PCR), 6 T47D or JIMT-1 3D microtissues grown for 

12 days with and without treatment were pooled and RNA was isolated using 

phenol/chloroform buffer peqGOLD TriFast (Peqlab, Erlangen, DE) followed by 

automated purification using a Maxwell16 device according to manufacturer’s 

instructions (Promega, Madison, Wisconsin, USA). RNA was converted to cDNA by a 

reverse transcription kit (QuantiTect by Qiagen, Hilden, DE) and quantified by 

TaqMan gene expression assays for HER2 (Hs01001580_m1) and TBP as internal 

control (Hs00427620_m1) using the StepOne RT-PCR System following the 
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manufacturer’s instructions (Life Technologies). (E) JIMT-1 3D microtissues were 

analysed without (w/o, blue) or after single (yellow) treatment with the anti-HER2 

antibody trastuzumab (10 µg/ml). 3D microtissue growth was quantified using GFP 

area determination over 12 days (n ≥ 4). 

    

Supplementary Fig. S2: T47D and JIMT-1 xenografts analyses after HER2 

knockdown. A: Representative examples of in vivo xenografts 6 weeks (T47D) and 

5 weeks (JIMT-1) post inoculation (p.i.) after extraction, formalin fixation and paraffin 

embedding (FFPE). B: Western blot analysis of FFPE protein extracts from 

xenografts derived from JIMT-1 cells lentivirally transduced with a GFP-encoding 

control vector (EV) or a HER2 knockdown vector (shHER2). 
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Suppl. Fig. 2 
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