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Abstract

Genetic data are known to harbor information about human demographics, and genotyping data

are commonly used for capturing ancestry information by leveraging genome-wide differences between

populations. In contrast, it is not clear to what extent population structure is captured by whole-genome

DNA methylation data. We demonstrate, using three large cohort 450K methylation array data sets, that

ancestry information signal is mirrored in genome-wide DNA methylation data, and that it can be further

isolated more effectively by leveraging the correlation structure of CpGs with cis-located SNPs. Based on

these insights, we propose a method, Epistructure, for the inference of ancestry from methylation data,

without the need for genotype data. Epistructure can be used to correct epignome-wide association

studies (EWAS) for confounding due to population structure.
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1 Introduction

The relation between ancestry and genetic variation has been repeatedly established over the last decade [1,2].

Several methods now provide accurate estimates of ancestry information by leveraging genome-wide sys-

tematic difference in allele frequencies between subpopulations, commonly referred to as population struc-

ture [3–7]. These methods often apply Principal Component Analysis (PCA) or variants of PCA.

Inferring population structure across individuals provides a powerful source of information for various fields,

including genetic epidemiology, pharmacogenomics and anthropology. For instance, in genetic and molecular

epidemiology, in which identifying genetic associations with disease or exposure is of primary interest, it is

essential to have ancestry information in order to distinguish effects of demographic processes from biological

or environmental effects. Specifically, the importance of controlling for population structure in genome-

wide association studies (GWAS) is now well appreciated. Unless appropriately accounted for, population

structure in GWAS can lead to numerous spurious associations and might obscure true signal [4, 8].

Emerging epigenome-wide association studies (EWAS) revealed thousands of CpG methylation sites corre-

lated with genetics and with ancestry [9–20]. Not surprisingly, due to the genetic signal present in many

CpGs, several studies have shown that the first several principal components (PCs) of methylation data

capture population structure in some instances of data sets composed of European and African individu-

als [15, 21]. However, unlike the case of genotyping data in which global ancestry information is robustly

captured by the top PCs, the first several PCs of methylation data were also shown to capture other factors in

different scenarios, mainly cell type composition in case of data collected from heterogeneous source [22,23],

but also other factors, including technical variables, age and sex [15, 21]. Moreover, it is now appreciated

that collecting methylation using probes with polymorphic CpGs is affected by hybridization sensitivity and

thus not necessarily reflecting methylation variability but rather genetic variability [24], and therefore it is

not clear to what extent global whole-genome DNA methylation states are affected by population structure

when these artifacts are removed.

We hereby introduce Epistructure, a method for capturing ancestry information from DNA methylation.

Epistructure is based on the observation that PCA computed from a set of methylation CpG sites that are

highly correlated with SNPs efficiently captures population structure. Thus, we use a large reference data set

that includes both genotypes and methylation in order to find correlations of CpGs with cis-located SNPs,

and compile a reference list of genetically-informative CpGs. Then, given new methylation data we compute
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the principal components (PCs) of the methylation levels from the same sites included in the reference list.

We evaluate the correlation between the methylation-inferred ancestry and the genetically inferred ancestry

on two additional large methylation data sets.

In order to shed additional light on the relation between genetic ancestry and methylation-based ancestry,

we further explore the unsupervised detection of ancestry from methylation data. We show that genome-

wide methylation mirrors ancestry information in admixed populations after properly adjusting for known

variability in genome-wide methylation, and after properly removing artificial artifacts, particularly probes

that include SNPs that may confound the results. Thus, unlike previous studies that were potentially

confounded by these artifacts, here we show that ancestry is indeed robustly mirrored by methylation data

as one of the main principal variance components.

2 Results

Inferring ancestry from methylation data using Epistructure. Ancestry information signal in

methylation is mostly expected to exist due to the large number of correlations between methylation sites

and genetics [9–20]. We developed Epistructure, a method for the inference of ancestry from methylation

data, which relies on reference data in which both genotype and methylation data are available. In a nutshell,

Epistructure selects a set of CpGs that are highly correlated with genotype information in the reference data,

and then, given new methylation data, performs principal component analysis on these sites while taking

into account the cell type composition effects. More specifically, we use the KORA cohort of European adults

(n=1,799), for which both whole-blood methylation and genotyping data are available [25] (see Methods).

We fitted a regularized linear regression model for each CpG from SNPs in cis, and evaluated it based on a

cross-validated linear correlation (see Methods). Since the vast majority of reported CpG-SNP associations

are between CpGs and cis-located SNPs [9–11], we only considered cis-located SNPs in capturing the genetic

component of each CpG. We observed that for most CpGs only a small fraction of the variance can be

explained by cis-SNPs (R2 < 0.1 for 92.9% of the CpGs tested; Supplementary Figure S1), thus motivating

the use of only a relatively small subset of the CpGs for inferring ancestry information.

In order to test the performance of Epistructure we applied it on the GALA II data set (n = 479), a

pediatric Latino population study with Mexican (MX) and Puerto-Rican (PR) individuals [26], for which
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both genotypes and 450K methylation array data (whole-blood) were available (see Methods). First, we

computed the largest (first) two PCs of the genotypes (genotype-based PCs), known to capture population

structure [4]. We observed that the first PC of Epistructure captured the top genotype-based PC well

(R2 = 0.82), as compared to the first PC of the methylation data (methylation-based PC; R2 = 0.01) and

as compared to the methylation-based PC computed only from CpGs residing in close proximity to nearby

SNPs (R2 = 0.01), as was suggested in a recent study for capturing ancestry information in methylation

data [21]. More generally, we observed that Epistructure provides substantially improved correlation with

the first two genotype-based PCs as compared with the alternatives (Figure 1).

Figure 1: The fraction of variance explained in the first two genotype-based PCs of the GALA II data using
several methods. Presented are linear predictors using increasing number of Epistructure PCs (in blue),
methylation-based PCs (in red) and methylation-based PCs after feature selection based on a previous
study [21] (in yellow) for capturing (a) the first genotype-based PC and (b) the second genotype-based PC.

Next, as an alternative measure of population structure, we used the ADMIXTURE software [5] to esti-

mate for each individual ancestry proportions of the three ancestries known to compose the MX and PR

populations: European (EU), Native-American (NA) and African (AF). In this case, the top two principal

components of Epistructure capture very well both the Native American ancestry and the African Ances-

try (R2 = 0.81 and R2 = 0.56 respectively), while the European ancestry was captured to a lesser extent

(R2 = 0.32, see Supplementary Figure S2).

We further tested whether ancestry information can be captured using Epistructure in case there is a weaker
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population structure in the data. We observed that the first two PCs of Epistructure could capture ancestry

information well in both subpopulations of the GALA II data (R2 = 0.33 in the PR group and R2 = 0.76 in

the MX group; Supplementary Figure S3). These results suggest that Epistructure can be used as an easy

and efficient method for capturing ancestry information in methylation, even in data sets with relatively

modest population structure.

Unsupervised Ancestry Inference from Methylation Data Epistructure is a supervised approach

since it uses a reference data set in which both methylation and genotype data are available. In order to

shed light on the extent to which ancestry is reflected by methylation data, we also explored unsupervised

approaches for the inference of ancestry from methylation data. Consistent with a previous study of indi-

viduals from the same population [27], the first two genotype-based PCs of the GALA II data clustered the

samples into two groups, generally corresponding to MX and PR subpopulations (Figure 2a). Since PCA

has been shown to mirror ancestry very accurately in the case of genetic data [1], we first computed the top

two methylation-based PCs while accounting for known technical factors as well as for age and sex, which

are known to affect methylation genome-wide [28,29]. Considering the population structure captured by the

first two genotype-based PCs as the ground truth, the first two methylation-based PCs could not capture

the population structure in the data (Figure 2b).

We then applied a few more sophisticated procedures, as follows. First, as before, we applied a feature selec-

tion step prior to calculating the methylation-based PCs according to a recent study, suggesting to consider

only CpGs residing in close proximity to nearby SNPs in order to capture ancestry information in the first

few PCs of the data [21]. We found that this procedure could not capture population structure in methy-

lation data (Figure 2c). Next, since the first several PCs in methylation data coming from heterogeneous

source such as blood are known to be dominated by cell type composition [22,23], we adjusted the data for

cell type composition using the ReFACTor software [23] and recalculated the first two PCs. This approach

effectively reconstructed most of the separation determined by the genotype-based PCs (Figure 2d).

The above results show that methylation data indeed capture genotype data. Specifically, after accounting

properly for known confounders, the top methylation-based PCs capture the genotype-based PCs. How-

ever, these results can potentially be driven by artifacts. Specifically, it is now acknowledged that many

probes in the 450K methylation array contain single nucleotide polymorphisms (SNPs) in their target CpGs.

Such polymorphic CpGs were shown to bias measured methylation levels as a function of the individual’s

6



genotypes, apparently due to changes in probe binding specificity [24]. Thus, our results so far might be

biased by these probes. We therefore recalculated the first two methylation-based PCs after excluding 70,889

CpGs that are known to be polymorphic (see Methods). We found that the new methylation-based PCs

could still capture well the first genotype-based PC (R2 = 0.77 as opposed to R2 = 0.83 before removing the

polymorphic CpGs), accounting for the separation found using the first two genotype-based PCs (Figure 2e).

In addition, we performed a more conservative analysis by repeating the last step after further excluding

167,738 probes containing at least one common SNP anywhere in the probe (i.e. not only in the target CpG;

see Methods). We found that in this case as well the reconstruction using the top two methylation-based

PCs provided almost the same separation determined by the genotype-based PCs (Figure 2f; R2 = 0.70 with

the first genotype-based PC).

We note that repeating the last two experiments while accounting for estimated cell proportions computed

using a commonly applied reference-based method [30] as an alternative approach for correction of cell

composition effects in methylation could not achieve the same results (R2 = 0.23 and R2 = 0.14 in the

experiments without the polymorphic sites and in the experiment removing all probes with common SNPs,

respectively).

We also compared the different approaches using the ancestry estimates of the ADMIXTURE software [5].

The results were consistent with our previous experiment - while the first two methylation-based PCs could

not capture the ancestry estimates (R2 = 0.02 with the EU fraction, R2 = 0.01 with NA and R2 = 0.02

with AF), we found the first two methylation-based PCs after adjusting for cell composition to capture the

ancestry estimates well, even after excluding from the data all probes containing common SNPs (R2 = 0.28

with the EU fraction, R2 = 0.69 with NA and R2 = 0.47 with AF; Supplementary Figure S4).

We further tested whether ancestry information can be captured in the same manner when applied to each

of the two subpopulations in the data (MX and PR) separately. We found the methylation-based PCs to

capture well only the first genotype-based PC of the Mexican group when not excluding probes containing

common SNPs (R2 = 0.08 for the PR cluster and R2 = 0.74 for the MX cluster). After excluding the

167,738 probes containing at least one common SNP from the data the methylation-based PCs could not

capture a substantial fraction of the first genotype-based PC in either clusters (R2 = 0.05 for the PR

cluster and R2 = 0.05 also for the MX cluster). Thus, we conclude that under weak population structure

unsupervised approaches currently do not mirror well the ancestry, and therefore supervised approaches such

as Epistructure are needed.
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Figure 2: Capturing population structure in the GALA II data. (a) The first two PCs of the genotypes,
considered as the ground truth, separates the samples into two subpopulations: Puerto-Ricans (in blue) and
Mexicans (in red). (b) The first two PCs of the methylation levels (methylation PCs) cannot reconstruct the
separation found in the genotypes. (c) Recalculating the first two PCs after applying a feature selection based
on proximity of CpGs to nearby SNPs as was proposed by Barfield et al. [21] (d) The first two PCs of the
methylation after adjusting the data for cell type composition (adjusted methylation PCs) can reconstruct
most of the separation found in the genotypes either. (e) Using adjusted methylation PCs after excluding
the 70,889 polymorphic sites from data. (f) Using adjusted methylation PCs after excluding the 167,738
probes containing at least one common SNP.

Validation using the CHAMACOS study data We further validated the effectiveness of Epistructure

and the unsupervised approaches using data from the primarily Mexican-American CHAMACOS cohort [31,

32]. We used whole-blood methylation levels from nine years old participants (n=227) for which we had

106 ancestry informative markers (AIMs) [33], previously shown to approximate ancestry information well

in another Hispanic admixed population [34].

We computed the first two PCs of the available AIMs (genotype-based PCs) in order to capture the ancestry

information of the samples. Since the CHAMACOS cohort primarily consists of Mexican-American individu-

als, we observed no separation into distinct subpopulations in the first several genotype-based PCs. We then

computed the first two methylation-based PCs, before and after adjusting the data for cell composition. In
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addition, we computed the first two Epistructure PCs of the data, and measured how much of the variance of

the first genotype-based PC can be explained by each of the approaches. As shown in Figure 3, the first two

methylation-based PCs could capture only a small portion of the first genotype-based PC (R2 = 0.04 before

adjusting for cell composition and R2 = 0.16 after adjusting for cell composition), as opposed with the first

two Epistructure PCs which could capture the first genotype-based PC substantially better (R2 = 0.38). As

in the GALA II data, applying feature selection based on proximity of CpGs to SNPs [21] could capture

only a small portion of the ancestry information (R2 = 0.05).

As before, we used the ADMIXTURE software [5] as an alternative measure of population structure. For

each individual we estimated the ancestry proportions of the three ancestries known to compose Mexican

individuals: European (EU), Native-American (NA) and African (AF). The first two Epistructure PCs were

found to explain a large portion of the EU and NA fraction estimates (R2 = 0.46 for EU and R2 = 0.6

for NA ancestry), as opposed with the first two methylation-based PCs (R2 = 0.11 for EU and R2 = 0.14

for NA ancestry, after adjusting for cell type composition; Supplementary Figure S5). The estimates of

African proportions, however, were not captured well by neither approach. This result was expected due to

the low average proportion of African ancestry in Mexican samples (less than 10%) [35]. All the results are

summarized in Table 1.
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Figure 3: Capturing population structure in the CHAMACOS data. Presented are linear predictors of
the first genotype-based PC using (a) the first two methylation PCs of the data, (b) the first two PCs
after adjusting the data for cell type composition (adjusted methylation PCs), (c) the first two adjusted
methylation PCs after excluding 167,738 probes containing SNPs from the data, (d) the first two PCs
calculated based on a previously suggested feature selection [21] and (e) the using the first two Epistructure
PCs.
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Results summary

data set Meth PCs Adj PCs Adj PCs II Barfield et al. Epistructure Measurement

GALA II

R2 = 0.01 R2 = 0.83 R2 = 0.70 R2 = 0.02 R2 = 0.83 Genotypes PC 1

R2 = 0.02 R2 = 0.32 R2 = 0.27 R2 = 0.03 R2 = 0.32 EU fraction

R2 = 0.01 R2 = 0.81 R2 = 0.69 R2 = 0.03 R2 = 0.81 NA fraction

R2 < 0.01 R2 = 0.79 R2 = 0.67 R2 < 0.01 R2 = 0.78 AF fraction

CHAMACOS

R2 = 0.04 R2 = 0.15 R2 = 0.14 R2 = 0.05 R2 = 0.38 Genotypes PC 1

R2 = 0.03 R2 = 0.11 R2 = 0.08 R2 = 0.01 R2 = 0.46 EU fraction

R2 = 0.04 R2 = 0.14 R2 = 0.11 R2 = 0.01 R2 = 0.60 NA fraction

R2 = 0.01 R2 = 0.01 R2 = 0.01 R2 = 0.01 R2 = 0.06 AF fraction

Table 1: Summary of the results in the GALA II data set and in the CHAMACOS data set. Linear squared
correlations were measured between several measurements of ancestry information and linear predictors
using the first two PCs of the data (Meth PCs), the first two PCs after adjusting the data for cell type
composition (Adj PCs), the first two PCs after adjusting the data for cell type composition and excluding
probes containing SNPs from the data (Adj PCs II), the first two PCs when considering only CpGs in close
proximity to SNPs (Barfield et al.) and the first two Epistructure PCs.
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3 Methods

Data and quality control The longitudinal KORA study (Cooperative health research in the Region of

Augsburg) consists of independent population-based subjects from the general population living in the region

of Augsburg, southern Germany [25]. Whole blood samples of the KORA F4 study were used (n = 1, 799) as

described elsewhere [36]. Briefly, DNA methylation levels were collected using the Infinium HumanMethyla-

tion450K BeadChip array (Illumina). Beta Mixture Quantile (BMIQ) [37] normalization was applied to the

methylation levels using the R package wateRmelon, version 1.0.3 [38]. In total 431,360 probes were available

for the analysis. As described elsewhere [39], genotyping was performed with the Affymetrix 6.0 SNP Array

(534,174 SNP markers after quality control), with further imputation using HapMap2 as a reference panel.

A total of 657,103 probes remained for the analysis.

We used whole-genome DNA methylation levels and genotyping data from the Genes-environments & Ad-

mixture in Latino Americans (GALA II) data set, a pediatric Latino population study. Details of genotyp-

ing data including quality control procedures for single nucleotide polymorphisms (SNPs) and individuals

have been described elsewhere [35]. Briefly, participants were genotyped at 818,154 SNPs on the Axiom R©

Genome-Wide LAT 1, World Array 4 (Affymetrix, Santa Clara, CA) [40]. Non-autosomal SNPs and SNPs

with missing data (> 0.05) and/or failing platform-specific SNP quality criteria (n = 63, 328) were excluded

as well as SNPs not in Hardy-Weinberg equilibrium (n = 1, 845; p < 10−6) within their respective popula-

tions (Puerto Rican, Mexican, and other Latino). Study participants were filtered based on 0.95 call rates

and sex discrepancies, identity by descent and standard Affymetrix Axiom metrics. Finally, SNPs with low

MAF (< 0.05; n = 334, 975) were excluded. The total number of SNPs passing QC was 411,787.

Whole-blood methylation data for a subset of the GALA II participants (n = 573) are publicly available

in the Gene Expression Omnibus (GEO) database (accession number GSE77716) and have been described

elsewhere [13, 23]. Briefly, methylation levels were measured using the Infinium HumanMethylation450K

BeadChip array and raw methylation data were processed using the R minfi package [41] and assessed for

basic quality control metrics, including determination of poorly performing probes with insignificant detection

P-values above background control probes and exclusion of probes on X and Y chromosomes. Finally, beta-

normalized values of the the data were SWAN normalized [42], corrected for batch using COMBAT [43] and

adjusted for age, gender and chip assignment information using linear regression. The number of participants

with both methylation and genotyping data was 525. We further excluded 46 individuals collected in a
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separate batch since they were all Puerto-Ricans. A total of 479 individuals and 473,838 probes remained

for the analysis.

In order to further evaluate and validate the performance of Epistructure we used data from the CHAMACOS

longitudinal birth cohort study [31]. For this analysis, we had a subset of subjects that had Infinium

HumanMethylation450K BeadChip array data available at 9 years of age. Briefly, samples were retained

only if 95% of the sites assayed had insignificant detection P-value and samples demonstrating extremes

level in the first two PCs of the data were removed. Probes where 95% of the samples had insignificant

detection P-value (> 0.01; n = 460) as well as cross-reactive probes (n = 29, 233) identified by Chen et

al. [24] were dropped. At total, 227 samples and 455,590 probes remained for the analysis. Color channel

bias, batch effects and difference in Infinium chemistry were minimized by application of All Sample Mean

Normalization (ASMN) algorithm [44], followed by BMIQ normalization [37]. The data were adjusted for

gender and technical batch information using linear regression.

In line with a previous study showing that a panel of small size is sufficient to approximate genetic ancestry

in Latino populations well [45], 106 SNPs were collected and used as AIMs for estimating genetic ancestry of

the CHAMACOS individuals [33]. The panel of AIMs was selected according to previously reported studies

of Latino populations [12, 33, 46, 47]. Briefly, only SNPs with large differences in allele frequencies between

ancestries were selected.

450K Human Methylation array This state of the art methodology allows for examination of > 450, 000

CpG sites across the genome, representing 99% of RefSeq genes. Sites include promoters, gene bodies, and

96% of UCSC database CpG islands (dense concentrations of CpGs), many of which are known to be associ-

ated with transcriptional control [48–53]. This platform has been especially amenable to population studies

because of its relative cost effectiveness and low sample requirements. Several studies have identified CpG

sites differentially methylated by environmental exposures [54,55] (e.g. arsenic and tobacco smoke) and health

outcomes including obesity [56], rheumatoid arthritis [57], and Crohns disease [58] demonstrating its utility

in environmental and molecular epidemiology studies. The relative methylation (beta-normalized values) for

each CpG site is calculated as the ratio of methylated-probe signal to total (methylated + unmethylated)

fluorescent signal intensity. The Infinium pipeline is streamlined with excellent reproducibility [59].
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Model and algorithm Previous studies reported a large number of correlations between DNA methylation

and genetics, mainly cis-correlations between CpGs and nearby SNPs [9–12]. We therefore assume that cis-

located SNPs can capture the genetic variability accounting for the methylation levels of a given CpGs. For

a given CpG m we assume the following linear model:

m = β0 +
∑

si∈Sm

βisi + ε

where Sm is a group of w SNPs, cis-located with respect to m, βi values are their corresponding effects on

the methylation levels and ε represents an error term, assumed to be independent between different samples.

Given reference data of methylation levels and genotypes for the same individuals we fit the above linear

model for each CpG. We regard the CpGs for which the model fits well as linear combinations of SNPs. We

define the set of these genetically-informative CpGs as the reference list. Given methylation data for new

individuals, we can estimate the population structure in the data by applying a standard PCA on the sites

in the reference list. PCA is well-known to efficiently capture ancestry when applied to genotypes data [4],

therefore applying PCA on CpGs that are linear combinations of SNPs is expected to capture population

structure as well (see Appendix A for more details).

Given reference methylation and genotypes data, our suggested algorithm can be summarized as follows:

1. For each CpG m fit a linear model using w SNPs that are closest to m.

2. Define a reference list G of all the CpGs for which the linear model fits well. Evaluate model fit based

on cross-validated squared linear correlation.

3. Given a new methylation data set, apply PCA on the sites defined by G and consider the first k

principal components as the estimate of the population structure.

Note that creating a reference list, described in the first two steps of the algorithm, needs to be performed only

once. Population structure can be then inferred in future data sets using this list of genetically-informative

CpGs. In practice, an appropriate w may be relatively large (i.e. large number of predictors), while the

sample size is typically limited. We therefore apply a regularized regression with `1 penalty, also known

as LASSO regression [60]. For the same reason, we define a parameter p to limit the maximal number of

predictors in each model. Furthermore, in order to avoid over-fitting of the model, we perform a k-fold cross-
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validation procedure for each CpG. The score of a CpG is defined as the median squared linear correlation

of its predicted values with the real values across the k folds. Finally, a reference list of the CpGs is defined

as the set of sites with highest scores.

In principle one could use the same approach taken here in order to create and use a reference list of

CpGs which explain SNPs well rather than CpGs which are captured well by SNPs. However, modeling

methylation levels as a function of SNPs is more natural with respect to the causality relations assumed

between SNPs and methylation. Moreover, many methylation sites are known to be affected by several

factors (e.g. age [28], gender [29] and smoking [61]), and therefore considering a group of methylation sites

explaining a given SNP may introduce into the data more, potentially unknown, variance in addition to

genetic variance. This potential problem is expected to be less severe in the opposite direction of modeling

methylation using SNPs. In this case, methylation sites that are well explained by genetics are less likely to

be highly explained by more factors. In particular, by including a CpG in the reference list only if at least

50% of its variance is explained by SNPs, we can ensure that the signal coming from genetics in each of the

sites in the reference is the most dominant one.

Compiling a reference list from the KORA cohort The reference list of genetically-informative CpGs

was created using the KORA cohort for which whole-blood methylation data as well as genotypes data were

available for 1,799 European individuals. Following the algorithm described above, a score was computed

for each CpG using k-fold cross-validation with k = 10 and using the parameters w = 50 and p = 10.

A reference list was then compiled from CpGs with median correlation of R2 > 0.5 in the cross-validated

prediction procedure, resulting in a total of 4,913 CpGs, out of which 2,436 are polymorphic CpGs and

additional 801 CpGs have at least on common SNP in their probe outside the CpG target. The number of

these reference CpGs available in the GALA II data set and in the CHAMACOS data set were 4,912 and

4,450, respectively. Removing probes with polymorphic CpGs results in 2,476 and 2,229 CpGs, and further

removing probes with common SNPs results in 1,676 and 1,554 CpGs for GALA II and CHAMACOS,

respectively. We note that the Epistructure PCs in our experiments throughout the paper were computed

using the entire reference list, including the polymorphic sites and CpGs with common SNPs in their probes,

for capturing population structure better.
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Detecting 450K probes containing SNPs Probes with a SNP in their CpG target (polymorphic CpGs)

were shown to be biased with underlying genetic polymorphisms rather than capture methylation signals

solely [24]. The authors reported a list of 70,889 such polymorphic CpGs in the 450k DNA methylation

array, as well as a list of common SNPs residing in probes of the 450K array outside the CpG target (MAF

> 0.01 according to at least one of the major continental groups in the 1000 Genome database [62]). The

total number of probes containing SNPs reported is 167,738.

Estimating ancestry information Proportions of European, Native-American and African ancestries

were estimated for each individual in both the GALA II and the CHAMACOS cohorts using the software

ADMIXTURE [5] and the default reference data provided by the software. For the GALA II individuals we

used the 411,787 SNPs remained after QC as an input, and for the CHAMACOS individuals we used the

106 available AIMs. The genotype based PCs were computed by applying PCA on the standardized values

of the available genotypes in each data set. For the CHAMACOS data set, prior to computing PCA, we

excluded sites with more than 5% missing values and completed the remaining missing values by assigning

the mean. This resulted in a total of 99 SNPs.

Adjusting methylation levels for tissue heterogeneity Methylation levels of the GALA II and

CHAMACOS data sets were adjusted for cell type composition using ReFACTor, a reference-free method

for the correction of cell type heterogeneity in EWAS [23]. Each data set was adjusted for cell composition

by regressing out the first six ReFACTor components computed using the default parameters and K = 6.

For one of the experiments in the GALA II data we used an alternative approach for cell type composition

correction - we obtained estimates of blood cell proportions using the default implementation available in

the minfi package [41], defined and assembled for the 450K array [63] based on the approach suggested by

Houseman et al [30] and a 450K reference data set [64].

Feature selection based on proximity to SNPs For evaluating our suggested method, we calculated

alternative methylation-based PCs after applying a feature selection that was previously suggested as a

method for capturing population structure [21]. Following the authors’ recommendation, we considered a

list of the CpGs residing within 50 bp from SNPs, as provided by the authors.
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4 Discussion

We demonstrated that genome-wide DNA methylation data can capture population structure in admixed

populations. In particular, we observed that in the presence of a relatively strong population structure

(GALA II) the dominant genome-wide signal of ancestry information could be revealed once appropriately

correcting for tissue heterogeneity. In contrast, we observed that in the presence of weaker population

structure in the data (CHAMACOS) the genome-wide signal of ancestry methylation is only moderately

reflected by the dominant axes of variance in the data after accounting for tissue heterogeneity.

Using a large data set for which both methylation levels and genotypes were available, we generated a

reference list of genetically-informative CpGs and successfully used it to estimate ancestry information in

new data sets by applying PCA on the reference sites. As we showed, by taking this approach, Epistructure

was able to effectively isolate and capture ancestry information in the data. While we observed strong

correlations of the Epistructure PCs with the genotype-based population structure estimates of the GALA

II individuals, only moderate correlations were found in the CHAMACOS data set (though substantially

better than unsupervised approaches, in which only negligible correlations to the true ancestry were found).

These results can be explained by the fact that only 106 AIMs were available for us in the CHAMACOS for

capturing ancestry information, as opposed with the dense genotype array information used in the GALA

II analysis. Therefore, it is likely that our inference of population structure by methylation data is in fact

more accurate than reflected in the experiments conducted on the CHAMACOS samples.

The reference-list of CpGs was generated using methylation states and genotypes collected from European

individuals, therefore it may not be optimized for capturing ancestry information in non-European popula-

tions. However, since we successfully used this list for the inference of ancestry in the Latino GALA II and

CHAMACOS individuals, we expect it to prove useful for some other non European populations as well.

We further note that all of our experiments were conducted on methylation data collected from whole-blood

specimens, and cell type specific correlations of methylation with genetics can potentially affect the selection

of reference CpGs. However, to the best of our knowledge, there is currently no evidence in the literature

for a dramatic impact on a reference list of thousands of CpGs due to interactions of cell type composition

with genetics.

Finally, in line with previous works showing many associations of methylation with genetic variation and

ancestry, our results further emphasize the importance of accounting for ancestry information in methylation
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studies of diverse populations, and therefore in the absence of genotyping data we suggest that Epistructure

can be used in EWAS for adjusting methylation data for population structure.
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Appendix A

PCA is well-known to efficiently capture ancestry information when applied to genotypes data [4]. In this

appendix we show why applying PCA on CpGs that are linear combinations of SNPs is expected to capture

population structure as well. The algorithm of Epistructure can be divided into two main steps. First, a

reference list of genetically-informative methylation sites is complied from a group of CpGs, each found to be

well approximated by its cis-located SNPs. Second, given a new methylation data set, the first several PCs

of the data are calculated only from the same sites that were included in the reference list. The reason for

applying PCA in the second part of the algorithm is motivated by the success of PCA to capture ancestry

information in genotyping data. In the case of genotyping data coming from different populations, the first

several PCs capture population structure by highlighting groups of individuals differing at the level of allele

frequencies. Given an n× s centered genotyping data matrix G of s SNPs collected from n individuals, the

generative model underlying PCA assumes:

G = ZW + Σ (1)

Σj ∼MVN
(
0, τ2In

)
where Z is an n× k matrix representing k-dimensional latent structure of the ancestry information for each

individual and W is a k × s matrix representing ancestry-specific differences in allele frequencies for each

SNP. Σ is an n×s error term, typically assumed to have independent entries (that is, no relatedness between

the n individuals and independence between the SNPs).

Any methylation site can be modeled as a linear function of SNPs and additional error term, and therefore

the methylation level of this site in a given individual can be approximated to some extent using merely the

individual’s SNPs. Formally, given an n ×m centered methylation data matrix O of m methylation sites

coming from the same n individuals in G, we can describe Oj , the j-th column of O as:

Oj = GBj + Ej (2)

Ej ∼MVN
(
0, σ2

j

)
where Bj is an s × 1 coefficients vector of the linear model and Ej is an n × 1 error term. In particular,

methylation site j that cannot be even partially explained by SNPs will have a corresponding Bj vector of
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only zeros. In the first step of the Epistructure algorithm we find a group of methylation sites which can

be well explained by their cis-located SNPs. Restricting the data matrix O to be consisted only of such

increases the signal-to-noise ratio in the data.

Plugging (1) into (2) we get

Oj = (ZW + Σ)Bj + Ej

= ZWBj + ΣBj + Ej

where ΣBj and Ej are normally distributed as before. This model can be equivalently described as follows:

Oj ∼MVN
(
ZWBj ,

(
Bt

jBjτ
2 + σ2

j

)
In
)

Under this formulation there is a dependency between every two methylation sites. However, based on

previous reports showing clear predominance of associations between CpGs and cis-located SNPs over trans-

located SNPs [10–12], we assume that only cis-located SNPs are informative for explaining a given methyla-

tion site. As a result, B is expected to be very sparse with values concentrated around the diagonal, assuming

the SNPs and CpGs are ordered by physical position. In particular, every two distant methylation sites are

independent. In our case the matrix B was estimated from the KORA data for which both genotyping and

methylation levels were available. We observed that the vast majority of the rows in the estimated matrix

are sparse and only rarely have more than one non-zero entry (Supplementary Figure S6). The main reason

for this is the fact that we consider only a sparse set of methylation sites from the genome, resulting from the

first step of the algorithm in which only sites that can be well approximated by SNPs are selected. Therefore,

we neglect the theoretical dependency between close sites and assume no dependency between any of the

columns in B. Now, the model can be summarized as:

Oj ∼MVN(ZW̃j , ψ
2
j In) (3)

where W̃j = WBj and we are interested in extracting Z, the latent ancestry information structure of the

individuals in the data. The maximum likelihood solution to the model in (3) is given by factor analysis,

and the first k factors can be used as estimates of the latent population structure Z. In practice, factor

analysis iteratively scales each site and the first iteration is equivalent to PCA after standardization of each
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of the sites. Empirically, applying more than one iteration did not improve the performance, therefore, in

the second step of the Epistructure algorithm we suggest to perform a standardized PCA and to consider

the first k PCs as the estimate of the population structure.
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