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METHODOLOGY

Genome‑wide methylation data mirror 
ancestry information
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Abstract 

Background:  Genetic data are known to harbor information about human demographics, and genotyping data are 
commonly used for capturing ancestry information by leveraging genome-wide differences between populations. In 
contrast, it is not clear to what extent population structure is captured by whole-genome DNA methylation data.

Results:  We demonstrate, using three large-cohort 450K methylation array data sets, that ancestry information signal 
is mirrored in genome-wide DNA methylation data and that it can be further isolated more effectively by leveraging 
the correlation structure of CpGs with cis-located SNPs. Based on these insights, we propose a method, EPISTRUC-
TURE, for the inference of ancestry from methylation data, without the need for genotype data.

Conclusions:  EPISTRUCTURE can be used to infer ancestry information of individuals based on their methylation 
data in the absence of corresponding genetic data. Although genetic data are often collected in epigenetic studies of 
large cohorts, these are typically not made publicly available, making the application of EPISTRUCTURE especially use-
ful for anyone working on public data. Implementation of EPISTRUCTURE is available in GLINT, our recently released 
toolset for DNA methylation analysis at: http://glint-epigenetics.readthedocs.io.
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Background
The relation between ancestry and genetic variation 
has been repeatedly established over the last decade [1, 
2]. Several methods now provide accurate estimates of 
ancestry information by leveraging genome-wide sys-
tematic difference in allele frequencies between subpop-
ulations, commonly referred to as population structure 
[3–7]. These methods often apply principal component 
analysis (PCA) or variants of PCA.

Inferring population structure across individuals pro-
vides a powerful source of information for various fields, 
including genetic epidemiology, pharmacogenomics and 

anthropology. For instance, in genetic and molecular epi-
demiology, in which identifying genetic associations with 
disease or exposure is of primary interest, it is essential to 
have ancestry information in order to distinguish effects 
of demographic processes from biological or environ-
mental effects. Specifically, the importance of control-
ling for population structure in genome-wide association 
studies (GWAS) is now well appreciated. Unless appro-
priately accounted for, population structure in GWAS 
can lead to numerous spurious associations and might 
obscure true signals [4, 8].

Emerging epigenome-wide association studies (EWAS) 
revealed thousands of CpG methylation sites correlated 
with genetics and with ancestry [9–20]. Not surprisingly, 
due to the genetic signal present in many CpGs, several 
studies have shown that the first several principal compo-
nents (PCs) of methylation data can capture population 
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structure in cohorts composed of European and African 
individuals [15, 21]. However, unlike the case of genotyp-
ing data in which global ancestry information is robustly 
reflected by the top PCs, the first several PCs of meth-
ylation data were also shown to capture other factors in 
different scenarios, mainly cell-type composition in case 
of data collected from heterogeneous tissues [22, 23], 
but also other factors, including technical variables, age 
and sex [15, 21]. Moreover, it is now appreciated that 
collecting methylation using probes with polymorphic 
CpGs is affected by hybridization sensitivity and does 
not necessarily reflect methylation variability but rather 
genetic variability [24]. Therefore, it is not clear to what 
extent global whole-genome DNA methylation states are 
affected by population structure when these artifacts are 
removed.

We hereby introduce EPISTRUCTURE, a method for 
capturing ancestry information from DNA methylation 
data. EPISTRUCTURE is based on the observation that 
PCA computed from a set of methylation CpG sites that 
are highly correlated with SNPs efficiently captures popu-
lation structure. Thus, we use a large reference data set 
that includes both genotypes and methylation in order to 
find correlations of CpGs with cis-located SNPs and to 
generate a reference list of genetically informative CpGs. 
Then, given new methylation data we compute the PCs of 
the methylation levels from the same sites included in the 
reference list. We validate the robustness of this method 
by assessing the correlation between the methylation-
inferred ancestry and the genetically inferred ancestry on 
two additional large methylation data sets.

In order to shed light on the relation between genetic 
ancestry and methylation-based ancestry, we further 
explore the unsupervised detection of ancestry from 
methylation data. We show that genome-wide methyla-
tion mirrors ancestry information in admixed popula-
tions after properly adjusting for known variability in 
genome-wide methylation, and after properly remov-
ing technical artifacts, particularly probes that include 
SNPs that may confound the results. Thus, unlike previ-
ous studies that were potentially confounded by these 
artifacts, here we show that ancestry is indeed robustly 
mirrored by methylation data as one of the main variance 
components in the data.

EPISTRUCTURE can be used to infer ancestry infor-
mation from methylation data in the absence of genetic 
data. Although genetic data are often collected in epi-
genetic studies of large cohorts, these are typically not 
made publicly available, making the application of EPI-
STRUCTURE especially useful for anyone working on 
public data.

Results
Inferring ancestry from methylation data using 
EPISTRUCTURE
Ancestry information signal in methylation is expected 
to exist mostly  due to the large number of correlations 
between methylation sites and genetics [9–20]. We devel-
oped EPISTRUCTURE, a method for the inference of 
ancestry from methylation data, which relies on refer-
ence data in which both genotype and methylation data 
are available. Briefly, EPISTRUCTURE selects a set of 
CpGs that are highly correlated with genotype informa-
tion in the reference data, and then, given new meth-
ylation data, performs principal component analysis on 
these sites while taking into account the cell-type com-
position effects. More specifically, we use the KORA 
cohort of European adults (n = 1799), for which both 
whole-blood methylation and genotyping data are avail-
able [25] (see “Methods” section). We fitted a regularized 
linear regression model for each CpG from SNPs in cis 
and evaluated it based on a cross-validated linear correla-
tion (see “Methods” section). Since the vast majority of 
reported CpG–SNP associations are between CpGs and 
cis-located SNPs [9–11], we only considered cis-located 
SNPs in capturing the genetic component of each CpG. 
We observed that for most CpGs only a small fraction of 
the variance can be explained by cis-SNPs (R2 < 0.1 for 
92.9% of the CpGs tested; Additional file  1: Figure S1), 
thus motivating the use of only a relatively small subset 
of the CpGs for inferring ancestry information. Consider-
ing only sites that most of their variance can be explained 
by cis-SNPs (R2 > 0.5) resulted in a reference list of 4913 
genetically informative CpGs (see “Methods” section). 
We note that polymorphic CpGs were not excluded 
from the KORA data set before learning the reference 
of informative CpGs; therefore, polymorphic CpGs that 
can be well explained by cis-SNPs (R2 > 0.5) were also 
included in the reference list. In most cases, polymor-
phic CpGs should be excluded before any data analysis; 
however, in our case, EPISTRUCTURE leverages the true 
genetic signal underlying in the probes of these CpGs. 
We later demonstrate the difference in performance 
when excluding these probes.

In order to test the performance of EPISTRUCTURE, 
we applied it on the GALA II data set (n = 479), a pedi-
atric Latino population study with Mexican (MX) and 
Puerto Rican (PR) individuals [26], for which both gen-
otypes and 450K methylation array data (whole-blood) 
were available (see “Methods” section). First, we com-
puted the largest (first) two PCs of the genotypes (geno-
type-based PCs), known to capture population structure 
[4]. We observed that the first PC of EPISTRUCTURE 
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captured the top genotype-based PC well (R2
= 0.82 ), as 

compared to the first PC of the methylation data (meth-
ylation-based PC; R2

= 0.01) and as compared to the 
methylation-based PC computed only from CpGs resid-
ing in close proximity to nearby SNPs (R2

= 0.01), as was 
suggested in a recent study for capturing ancestry infor-
mation in methylation data [21]. Further, we observed 
that EPISTRUCTURE provides substantially improved 
correlation with the first two genotype-based PCs as 
compared with the alternatives (Fig. 1).

Next, as an alternative measure of population struc-
ture, we used the ADMIXTURE software [5] to estimate, 
for each individual, ancestry proportions of the three 
ancestries known to compose the MX and PR popula-
tions: European (EU), Native American (NA) and Afri-
can (AF). In this case, the top two principal components 
of EPISTRUCTURE capture very well both the Native 
American ancestry and the African Ancestry (R2

= 0.81 
and R2

= 0.56 respectively), while the European ancestry 
was captured to a lesser extent (R2

= 0.32, see Additional 
file 1: Figure S2).

We further tested whether ancestry information can 
be captured using EPISTRUCTURE in case there is a 
weaker population structure in the data. We observed 
that the first two PCs of EPISTRUCTURE could capture 

ancestry information well in both subpopulations of the 
GALA II data (R2

= 0.33 in the PR group and R2
= 0.76 

in the MX group; Additional file  1: Figure S3). These 
results suggest that EPISTRUCTURE can be used as an 
easy and efficient method for capturing ancestry infor-
mation in methylation, even in data sets with relatively 
modest population structure.

Unsupervised ancestry inference from methylation data
EPISTRUCTURE is a supervised approach since it uses 
a reference data set in which both methylation and 
genotype data are available. In order to shed light on 
the extent to which ancestry is reflected by methylation 
data, we also explored unsupervised approaches for the 
inference of ancestry from methylation data. Consist-
ent with a previous study of individuals from the same 
population [27], the first two genotype-based PCs of the 
GALA II data clustered the samples into two groups, 
generally corresponding to MX and PR subpopulations 
(Fig. 2a). Since PCA has been shown to mirror ancestry 
very accurately in the case of genetic data [1], we first 
computed the top two methylation-based PCs while 
accounting for known technical factors as well as for age 
and sex, which are known to affect methylation genome-
wide [28–30]. Considering the population structure 
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Fig. 1  Fraction of variance explained in the first two genotype-based PCs of the GALA II data using several methods. Presented are linear predictors 
using increasing number of EPISTRUCTURE PCs (in blue), methylation-based PCs (in red) and methylation-based PCs after feature selection based on 
a previous study [21] (in yellow) for capturing a the first genotype-based PC and b the second genotype-based PC
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characterized by the first two genotype-based PCs as 
the “gold standard,” the first two methylation-based PCs 
could not sufficiently capture the population structure in 
the data (Fig. 2b).

We then applied a few more sophisticated procedures, 
as follows. First, as before, we applied a feature selec-
tion step prior to calculating the methylation-based PCs 
according to a recent study, that suggested to consider 
only CpGs residing in close proximity to nearby SNPs 
in order to capture ancestry information in the first few 
PCs of the data [21]. We found that this procedure did 
not sufficiently reflect population structure in meth-
ylation data (Fig.  2c). Next, since the first several PCs 
in methylation data coming from heterogeneous source 
such as blood are known to be dominated by cell-type 
composition [22, 23, 31], we adjusted the data for cell-
type composition using the ReFACTor software [23] and 
recalculated the first two PCs. This approach effectively 
reconstructed most of the separation determined by the 
genotype-based PCs (Fig. 2d).

These results show that 450K-probed methylation 
data indeed reflect genotype data well. Specifically, after 
accounting properly for known confounders, the top 
methylation-based PCs capture the genotype-based 
PCs. However, these results can potentially be driven by 
artifacts. Specifically, it is now acknowledged that many 
probes in the 450K methylation array contain single 
nucleotide polymorphisms (SNPs) in their target CpGs. 
Such polymorphic CpGs were shown to bias meas-
ured methylation levels as a function of the individual’s 
genotypes, apparently due to changes in probe binding 
specificity [24]. Thus, our results so far might be biased 
by these probes. To address this possibility, we recalcu-
lated the first two methylation-based PCs after exclud-
ing 70,889 CpGs that are known to be polymorphic (see 
“Methods” section). We found that the new methylation-
based PCs could still capture well the first genotype-
based PC (R2

= 0.77 as opposed to R2
= 0.83 before 

removing the polymorphic CpGs), accounting for the 
separation found using the first two genotype-based PCs 
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Fig. 2  Capturing population structure in the GALA II data using an unsupervised approach. a The first two PCs of the genotypes, considered as the 
gold standard, separate the samples into two subpopulations: Puerto Ricans (in blue) and Mexicans (in red), b the first two PCs of the methylation 
levels (methylation PCs) cannot reconstruct the separation found with the genotype data, c recalculating the first two PCs after applying a feature 
selection based on proximity of CpGs to nearby SNPs as was proposed by Barfield et al. [21], d the first two PCs of the methylation after adjusting 
the data for cell-type composition (adjusted methylation PCs) can reconstruct most of the separation found in the genotypes, e using adjusted 
methylation PCs after excluding the 70,889 polymorphic sites from the data, f using adjusted methylation PCs after excluding the 167,738 probes 
containing at least one common SNP
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(Fig. 2e). In addition, we performed a more conservative 
analysis by repeating the last step after further exclud-
ing 167,738 probes containing at least one common SNP 
anywhere in the probe (i.e., not only in the target CpG; 
see “Methods” section). We found that in this case as well 
the reconstruction using the top two methylation-based 
PCs provided almost the same separation determined by 
the genotype-based PCs (Fig. 2f; R2

= 0.70 with the first 
genotype-based PC).

We note that repeating the last two experiments while 
accounting for estimated cell proportions computed 
using a commonly applied reference-based method [32] 
as an alternative approach for correction of cell compo-
sition effects in methylation could not achieve the same 
results (R2

= 0.23 and R2
= 0.14 in the experiments 

without the polymorphic sites and in the experiment 
removing all probes with common SNPs, respectively). 
This can be explained by the additional cell-type compo-
sition signal captured by ReFACTor but not by the refer-
ence-based approach, as was previously demonstrated on 
the GALA II data [23]. Substantial difference in perfor-
mance is especially expected in cases where the reference 
methylation data used by the reference-based method do 
not represent the target population well [23, 33]. Remov-
ing only part of the cell-type composition signal from the 
data results in PCs that are likely to be still dominated 
by tissue composition information rather than by popu-
lation structure. Alternatively, it may be the case that 
ReFACTor also removed another sparse confounder, in 
addition to the cell-type composition signal.

We also compared the different approaches using the 
ancestry estimates of the ADMIXTURE software [5]. The 
results were consistent with our previous experiment—
while the first two methylation-based PCs could not 
capture the ancestry estimates (R2

= 0.02 with the EU 
fraction, R2

= 0.01 with NA and R2
= 0.02 with AF), we 

found the first two methylation-based PCs after adjust-
ing for cell composition to capture the ancestry estimates 
well, even after excluding from the data all probes con-
taining common SNPs (R2

= 0.28 with the EU fraction, 
R2

= 0.69 with NA and R2
= 0.47 with AF; Additional 

file 1: Figure S4).
We further tested whether ancestry information can 

be captured in the same manner when applied to each of 
the two subpopulations in the data (MX and PR) sepa-
rately. We found the methylation-based PCs to capture 
well only the first genotype-based PC of the Mexican 
group when not excluding probes containing common 
SNPs (R2

= 0.08 for the PR cluster and R2
= 0.74 for 

the MX cluster). After excluding the 167,738 probes 
containing at least one common SNP from the data, the 
methylation-based PCs could not capture a substantial 
fraction of the first genotype-based PC in either clusters 

(R2
= 0.05 for the PR cluster and R2

= 0.05 also for the 
MX cluster). Thus, we conclude that under weak popula-
tion structure the current unsupervised approach do not 
mirror ancestry well. However, as we demonstrated ear-
lier, the supervised approach of EPISTRUCTURE, using 
only a relatively small subset of highly informative CpGs 
(including highly informative polymorphic CpGs), per-
formed well in this case.

Validation using the CHAMACOS study data
We further validated the effectiveness of EPISTRUC-
TURE and the unsupervised approaches using data from 
the primarily Mexican-American CHAMACOS cohort 
[34, 35]. We used whole-blood methylation levels from 
9 years old participants (n = 227) for which we had 106 
ancestry informative markers (AIMs) [36], previously 
shown to approximate ancestry information well in 
another Hispanic admixed population [37].

We computed the first two PCs of the available AIMs 
(genotype-based PCs) in order to capture the ances-
try information of the samples. Since the CHAMACOS 
cohort primarily consists of Mexican-American individu-
als, we observed no separation into distinct subpopula-
tions in the first several genotype-based PCs. We then 
computed the first two methylation-based PCs, before 
and after adjusting the data for cell composition. In addi-
tion, we computed the first two EPISTRUCTURE PCs of 
the data and measured how much of the variance of the 
first genotype-based PC can be explained by each of the 
approaches. As shown in Fig. 3, the first two methylation-
based PCs could capture only a small portion of the first 
genotype-based PC (R2

= 0.04 before adjusting for cell 
composition and R2

= 0.16 after adjusting for cell com-
position), as opposed with the first two EPISTRUCTURE 
PCs which could capture the first genotype-based PC 
substantially better (R2

= 0.38). As in the GALA II data, 
applying feature selection based on proximity of CpGs 
to SNPs [21] could capture only a small portion of the 
ancestry information (R2

= 0.05).
As before, we used the ADMIXTURE software [5] as 

an alternative measure of population structure. For each 
individual, we estimated the ancestry proportions of the 
three ancestries known to compose Mexican individu-
als: European (EU), Native American (NA) and African 
(AF). The first two EPISTRUCTURE PCs were found to 
explain a large portion of the EU and NA fraction esti-
mates (R2

= 0.46 for EU and R2
= 0.6 for NA ancestry), 

as opposed with the first two methylation-based PCs 
(R2

= 0.11 for EU and R2
= 0.14 for NA ancestry, after 

adjusting for cell-type composition; Additional file  1: 
Figure S5). The estimates of African proportions, how-
ever, were not captured well by either approach. This 
result was expected due to the low average proportion of 
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African ancestry in Mexican samples (less than 10%) [38]. 
All the results are summarized in Additional file 1: Table 
S1.

Implications for the EPIC (850K) array
The recently introduced EPIC array by Illumina, which 
allows to probe a set of approximately 850K CpGs, is 
likely to be used in many future methylation data col-
lection efforts. Since genotype data and corresponding 
EPIC array data for the same individuals were not pub-
licly available at the time of this study, we were not able 
to compile a reference list of CpGs for the EPIC array. 
However, inspection of the probes available in each array 
reveals that only 32,425 of the probes in the 450K array 
were not included in the EPIC array. We further found 
that 94% of the CpGs in the 450K-based reference list 
we constructed (4616 CpGs out of 4913) were included 
in the EPIC array. Therefore, our suggested 450K-based 
reference list is expected to perform similarly on data 
generated from the EPIC array. In order to test that, 
we repeated all of the experiments we performed so 

far, only this time we removed from the data the set of 
32,425 sites that were not included in the EPIC array. 
The results, summarized in Additional file  1: Table S1, 
show that removing these sites leads to only a marginal 
decrease in the R2 values. Clearly, as more EPIC array 
data will become available, EPIC-based reference list of 
CpGs is expected to further improve the performance of 
EPISTRUCTURE.

Discussion
We demonstrated that 450K DNA methylation data can 
capture population structure in admixed populations. In 
particular, we observed that in the presence of a relatively 
strong population structure (GALA II) the dominant 
genome-wide signal of ancestry information could be 
revealed once appropriately correcting for tissue hetero-
geneity. In contrast, we observed that in the presence of 
weaker population structure in the data (CHAMACOS) 
the genome-wide signal of ancestry methylation is only 
moderately reflected by the dominant axes of variance in 
the data after accounting for tissue heterogeneity.
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Fig. 3  Capturing population structure in the CHAMACOS data. Presented are linear predictors of the first genotype-based PC using a the first two 
methylation PCs of the data, b the first two PCs calculated after applying a feature selection based on proximity of CpGs to nearby SNPs [21], c the 
first two PCs after adjusting the data for cell-type composition (adjusted methylation PCs), d the first two adjusted methylation PCs after excluding 
167,738 probes containing SNPs from the data and e using the first two EPISTRUCTURE PCs
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Using KORA, a large data set for which both methyla-
tion levels and genotypes were available, we generated a 
reference list of genetically informative CpGs and suc-
cessfully used it to estimate ancestry information in 
new data sets by applying PCA on the reference sites. 
Polymorphic CpGs that were found to be highly cor-
related with genetics were also include in the reference 
list. Although these CpGs are generally teated as arti-
facts, they represent true genetic signal and therefore 
were used in order to further increase the signal cap-
tured by EPISTRUCTURE. As we showed, by taking this 
approach, EPISTRUCTURE was able to effectively isolate 
and capture ancestry information in methylation data.

While we observed strong correlations between the 
EPISTRUCTURE PCs and the genotype-based popula-
tion structure estimates of the GALA II individuals, only 
moderate correlations were found in the CHAMACOS 
data set (though substantially better than unsupervised 
approaches, in which only negligible correlations to the 
true ancestry were found). These results can be explained 
by the fact that only 106 AIMs were available for us in the 
CHAMACOS data for capturing ancestry information, as 
opposed with the dense genotype array information used 
in the GALA II analysis. Therefore, it is likely that our 
inference of population structure by methylation data is 
in fact more accurate than reflected in the experiments 
conducted on the CHAMACOS samples.

The reference list of CpGs was generated using meth-
ylation states and genotypes collected from European 
individuals; therefore, it may not be optimized for cap-
turing ancestry information in non-European popula-
tions. However, since we successfully used this list for the 
inference of ancestry in the Latino GALA II and CHA-
MACOS individuals, we expect it to prove useful for 
some other non-European populations as well. We fur-
ther note that when constructing the linear models for 
each CpG from its cis-SNPs in the whole-blood KORA 
data, we decided not to account for tissue heterogeneity. 
To the best of our knowledge, there is currently no evi-
dence for dramatic genome-wide effects of genotypes on 
the cell-type composition. Therefore, in the vast major-
ity of CpGs, the cell-type composition is expected to be 
orthogonal to the genetic signal they contain. As a result, 
accounting for tissue heterogeneity in this case is more 
likely to reduce the accuracy of the model due to inaccu-
racies of the cell-type composition estimates rather than 
to bias the selection of CpGs into the reference list.

Conclusions
Genome-wide DNA methylation levels reflect ances-
try information, which can be effectively isolated using 
CpGs that are highly correlated with their cis-SNPs. In 
line with previous works showing many associations 

of methylation with genetic variation and ancestry, our 
results further emphasize the importance of accounting 
for ancestry information in methylation studies of diverse 
populations. In the absence of genotype data, we suggest 
that our proposed method, EPISTRUCTURE, can be 
used in EWAS for accounting for population structure.

Methods
Data and quality control
The longitudinal KORA study (Cooperative health 
research in the Region of Augsburg) consists of independ-
ent population-based subjects from the general popula-
tion living in the region of Augsburg, southern Germany 
[25]. Whole-blood samples of the KORA F4 study were 
used (n = 1799) as described elsewhere [39]. Briefly, 
DNA methylation levels were collected using the Infinium 
HumanMethylation450K BeadChip array (Illumina). Beta 
Mixture Quantile (BMIQ) [40] normalization was applied 
to the methylation levels using the R package wateR-
melon, version 1.0.3 [41]. In total 431,360 probes were 
available for the analysis. As described elsewhere [42], 
genotyping was performed with the Affymetrix 6.0 SNP 
Array (534,174 SNP markers after quality control), with 
further imputation using HapMap2 as a reference panel. 
A total of 657,103 probes remained for the analysis.

We used whole-genome DNA methylation levels 
and genotyping data from the Genes-environments & 
Admixture in Latino Americans (GALA II) data set, a 
pediatric Latino population study. Details of genotyp-
ing data including quality control procedures for single 
nucleotide polymorphisms (SNPs) and individuals have 
been described elsewhere [38]. Briefly, participants were 
genotyped at 818,154 SNPs on the Axiom Genome-Wide 
LAT 1, World Array 4 (Affymetrix, Santa Clara, CA) [43]. 
Non-autosomal SNPs and SNPs with missing data (>0.05) 
and/or failing platform-specific SNP quality criteria 
(n = 63, 328) were excluded as well as SNPs not in Hardy–
Weinberg equilibrium (n = 1845; P < 10−6) within their 
respective populations (Puerto Rican, Mexican, and other 
Latino). Study participants were filtered based on 0.95 call 
rates and sex discrepancies, identity by descent and stand-
ard Affymetrix Axiom metrics. Finally, SNPs with low 
MAF (<0.05; n = 334, 975) were excluded. The total num-
ber of SNPs passing QC was 411,787. The data are avail-
able in dbGaP (accession ID phs000920.v1.p1).

Whole-blood methylation data for a subset of the 
GALA II participants (n = 573) are publicly available in 
the Gene Expression Omnibus (GEO) database (acces-
sion number GSE77716) and have been described else-
where [13, 23]. Briefly, methylation levels were measured 
using the Infinium HumanMethylation450K BeadChip 
array and raw methylation data were processed using 
the R minfi package [44] and assessed for basic quality 
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control metrics, including determination of poorly per-
forming probes with insignificant detection P values 
above background control probes and exclusion of 
probes on X and Y chromosomes. Finally, beta-normal-
ized values of the data were SWAN normalized [45], 
corrected for batch using COMBAT [46] and adjusted 
for age, gender and chip assignment information using 
linear regression. The number of participants with both 
methylation and genotyping data was 525. We further 
excluded 46 individuals collected in a separate batch 
since they were all Puerto Ricans. A total of 479 individ-
uals and 473,838 probes remained for the analysis.

In order to further evaluate and validate the perfor-
mance of EPISTRUCTURE, we used data from the CHA-
MACOS longitudinal birth cohort study [34]. For this 
analysis, we had a subset of subjects that had Infinium 
HumanMethylation450K BeadChip array data available at 
9 years of age. Briefly, samples were retained only if 95% of 
the sites assayed had insignificant detection P value and 
samples demonstrating extreme levels in the first two PCs 
of the data were removed. Probes where 95% of the sam-
ples had insignificant detection P value (>0.01; n = 460)  
and cross-reactive probes (n = 29, 233 ) identified by 
Chen et al. [24] were dropped. A total of 227 samples and 
455,590 probes remained for the analysis. Color channel 
bias, batch effects and difference in Infinium chemistry 
were minimized by application of All Sample Mean Nor-
malization (ASMN) algorithm [47], followed by BMIQ 
normalization [40]. The data were adjusted for gender and 
technical batch information using linear regression.

In line with a previous study showing that a panel of 
small size is sufficient to approximate genetic ances-
try in Latino populations well [48], 106 SNPs were col-
lected and used as AIMs for estimating genetic ancestry 
of the CHAMACOS individuals [36]. The panel of AIMs 
was selected according to previously reported stud-
ies of Latino populations [12, 36, 49, 50]. Briefly, only 
SNPs with large differences in allele frequencies between 
ancestries were selected.

450K human methylation array
This state-of-the-art technology allows for examination 
of >450,000 CpG sites across the genome, representing 
99% of RefSeq genes. Sites include promoters, gene bod-
ies and 96% of UCSC database CpG islands (dense con-
centrations of CpGs), many of which are known to be 
associated with transcriptional control [51–56]. This plat-
form has been especially amenable to population studies 
because of its relative cost effectiveness and low sample 
requirements. Several studies have identified CpG sites 
differentially methylated by environmental exposures 
(e.g., arsenic and tobacco smoke  [57, 58]) and health 
outcomes, including obesity [59], rheumatoid arthritis 

[60] and Crohn’s disease [61], demonstrating its utility in 
environmental and molecular epidemiology studies. The 
relative methylation (beta-normalized values) for each 
CpG site is calculated as the ratio of methylated-probe 
signal to total (methylated +  unmethylated) fluorescent 
signal intensity. The Infinium pipeline is streamlined with 
excellent reproducibility [62].

Model and algorithm
Previous studies reported a large number of correlations 
between DNA methylation and genetics, mainly cis-cor-
relations between CpGs and nearby SNPs [9–12]. We 
therefore assume that cis-located SNPs can capture the 
genetic variability accounting for the methylation levels 
of a given CpGs. For a given CpG m, we assume the fol-
lowing linear model:

where Sm is a group of w SNPs, cis-located with respect to 
m, βi values are their corresponding effects on the meth-
ylation levels and ǫ represents an error term, assumed to 
be independent between different samples.

Given reference data of methylation levels and geno-
types for the same individuals, we fit the above linear 
model for each CpG. We regard the CpGs for which the 
model fits well as linear combinations of SNPs. We define 
the set of these genetically informative CpGs as the ref-
erence list. Given methylation data for new individuals, 
we can estimate the population structure in the data by 
applying a standard PCA on the sites in the reference list. 
The first several PCs of PCA are well known to efficiently 
capture ancestry information when applied to genotypes 
data [4], therefore applying PCA on CpGs that are linear 
combinations of SNPs is expected to capture population 
structure as well (see Additional file 1).

Given reference methylation and genotypes data, our 
suggested algorithm can be summarized as follows:

1	 For each CpG m, fit a linear model using w SNPs that 
are closest to m.

2	 Define a reference list G of all the CpGs for which 
the linear model fits well. Evaluate model fit based on 
cross-validated squared linear correlation.

3	 Given a new methylation data set, apply PCA on the 
sites defined by G and consider the first k principal 
components as the estimate of the population struc-
ture.

Note that creating a reference list, described in the first 
two steps of the algorithm, needs to be performed only 
once. Population structure can be then inferred in future 
data sets using this list of genetically informative CpGs. 

m = β0 +
∑

si∈Sm

βisi + ǫ
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In practice, an appropriate w may be relatively large (i.e., 
large number of predictors), while the sample size is typi-
cally limited. We therefore apply a regularized regression 
with ℓ1 penalty, also known as LASSO regression [63]. 
For the same reason, we define a parameter p to limit the 
maximal number of predictors in each model. Further-
more, in order to avoid over-fitting of the model, we per-
form a k-fold cross-validation procedure for each CpG. 
The score of a CpG is defined as the median squared lin-
ear correlation of its predicted values with the real values 
across the k folds. Finally, a reference list of the CpGs is 
defined as the set of sites with highest scores.

In principle, one could use the same approach taken 
here in order to create and use a reference list of CpGs 
which explain SNPs well rather than CpGs which are cap-
tured well by SNPs. However, modeling methylation lev-
els as a function of SNPs is more natural with respect to 
the causality relations assumed between SNPs and meth-
ylation. Moreover, many methylation sites are known to 
be affected by several factors (e.g., age [28], gender [29] 
and smoking [64]), and therefore, considering a group 
of methylation sites explaining a given SNP may intro-
duce into the data more, potentially unknown, variance 
in addition to genetic variance. This potential problem 
is expected to be less severe in the opposite direction of 
modeling methylation using SNPs. In this case, methyla-
tion sites that are well explained by genetics are less likely 
to be highly explained by more factors.

Compiling a reference list from the KORA cohort
The reference list of genetically informative CpGs was 
created using the KORA cohort for which whole-blood 
methylation data as well as genotype data were available 
for 1799 European individuals. Following the algorithm 
described above, a score was computed for each CpG 
using k-fold cross-validation with k = 10 and using the 
parameters w = 50 and p = 10 (Additional file 2). A ref-
erence list was then compiled from CpGs with median 
correlation of R2 > 0.5 in the cross-validated prediction 
procedure, resulting in a total of 4913 CpGs (Additional 
file  3), out of which 2436 are polymorphic CpGs and 
additional 801 CpGs have at least on common SNP in 
their probe outside the CpG target. The number of these 
reference CpGs available in the GALA II data set and in 
the CHAMACOS data set were 4912 and 4450, respec-
tively. Removing probes with polymorphic CpGs results 
in 2476 and 2229 CpGs, and further removing probes 
with common SNPs results in 1676 and 1554 CpGs for 
GALA II and CHAMACOS, respectively. Unless stated 
otherwise, polymorphic CpGs were not excluded from 
the reference of informative CpGs in the executions of 
EPISTRUCTURE; therefore, highly informative polymor-
phic CpGs (R2 > 0.5) were also included in the reference 

list. In most cases, polymorphic CpGs are excluded as a 
preprocessing step in epigenetic studies; however, here 
we leverage the true genetic signal underlying in these 
probes for capturing the ancestry information better.

Detecting 450K probes containing SNPs
Probes with a SNP in their CpG target (polymorphic 
CpGs) were shown to be biased by underlying genetic 
polymorphisms rather than capture methylation signals 
solely [24]. The authors reported a list of 70,889 such pol-
ymorphic CpGs in the 450K DNA methylation array, as 
well as a list of common SNPs residing in probes of the 
450K array outside the CpG target (MAF > 0.01 accord-
ing to at least one of the major continental groups in the 
1000 Genome database [65]). The total number of probes 
containing SNPs reported is 167,738.

Estimating ancestry information
Proportions of European, Native American and African 
ancestries were estimated for each individual in both the 
GALA II and the CHAMACOS cohorts using the soft-
ware ADMIXTURE [5] and the default reference data 
provided by the software. For the GALA II individuals, 
we used the 411,787 SNPs remained after QC as an input, 
and for the CHAMACOS individuals we used the 106 
available AIMs. The genotype-based PCs were computed 
by applying PCA on the standardized values of the avail-
able genotypes in each data set. For the CHAMACOS 
data set, prior to computing PCA, we excluded sites with 
more than 5% missing values and completed the remain-
ing missing values by assigning the mean. This resulted in 
a total of 99 SNPs.

Adjusting methylation levels for tissue heterogeneity
Methylation levels of the GALA II and CHAMACOS 
data sets were adjusted for cell-type composition using 
ReFACTor, a reference-free method for the correction of 
cell-type heterogeneity in EWAS [23]. Each data set was 
adjusted for cell composition by regressing out the first 
six ReFACTor components, resulting in adjusted beta 
values. ReFACTor was executed using the default param-
eters and K = 6. For one of the experiments in the GALA 
II data, we used an alternative approach for cell-type 
composition correction. Similarly, as with the ReFACTor 
components, we generated beta adjusted values, only this 
time we used reference-based cell proportion estimates 
of main leukocyte cell types. Specifically, we obtained 
cell proportion estimates of six cell types (granulocytes, 
monocytes, B cells, NK cells, CD8T and CD4T cells) 
using the default implementation available in the minfi 
package [44], defined and assembled for the 450K array 
[66] based on the approach suggested by Houseman et al. 
[32] and a 450K reference data set [67].
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Feature selection based on proximity to SNPs.
For evaluating our suggested method, we calculated alter-
native methylation-based PCs after applying a feature 
selection that was previously suggested as a method for 
capturing population structure [21]. Following the authors’ 
recommendation, we considered a list of the CpGs resid-
ing within 50 bp from SNPs, as provided by the authors.
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