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Abstract
Cigarette smoking is a leading modifiable cause of death worldwide. We hypothesized that cigarette smoking induces
extensive transcriptomic changes that lead to target-organ damage and smoking-related diseases. We performed a meta-
analysis of transcriptome-wide gene expression using whole blood-derived RNA from 10,233 participants of European ances-
try in six cohorts (including 1421 current and 3955 former smokers) to identify associations between smoking and altered
gene expression levels. At a false discovery rate (FDR)<0.1, we identified 1270 differentially expressed genes in current vs.
never smokers, and 39 genes in former vs. never smokers. Expression levels of 12 genes remained elevated up to 30 years af-
ter smoking cessation, suggesting that the molecular consequence of smoking may persist for decades. Gene ontology analy-
sis revealed enrichment of smoking-related genes for activation of platelets and lymphocytes, immune response, and apo-
ptosis. Many of the top smoking-related differentially expressed genes, including LRRN3 and GPR15, have DNA methylation
loci in promoter regions that were recently reported to be hypomethylated among smokers. By linking differential gene ex-
pression with smoking-related disease phenotypes, we demonstrated that stroke and pulmonary function show enrichment
for smoking-related gene expression signatures. Mediation analysis revealed the expression of several genes (e.g. ALAS2) to
be putative mediators of the associations between smoking and inflammatory biomarkers (IL6 and C-reactive protein levels).
Our transcriptomic study provides potential insights into the effects of cigarette smoking on gene expression in whole blood
and their relations to smoking-related diseases. The results of such analyses may highlight attractive targets for treating or
preventing smoking-related health effects.

Introduction
For more than a half century, numerous studies have character-
ized the deleterious health effects of cigarette smoking includ-
ing cancers, cardiovascular disease (CVD), and chronic
obstructive pulmonary disease (1). Cigarette smoking is the
leading cause of preventable death in the United States, ac-
counting for more than 443,000 deaths each year (2). Cessation
campaigns have had an effect; since 2002, the number of former
smokers in the United States has exceeded the number of cur-
rent smokers (3), which is estimated at 43.8 million, or 19% of all
adults aged 18 years or older (4).

Research also has characterized persisting long-term health
risks of cigarette smoking, even decades after cessation (5).
While the risks for some diseases may quickly return to those of
never-smokers, risks for some diseases remain elevated for
years, including risks for lung cancer (5), many other cancers (6),
and stroke (7).

Previous studies have reported a genetic predisposition (8–
11) to cigarette smoking. Other studies have reported smoking-
related DNA methylation patterns (12–18). Gene expression is
under strong genetic and epigenetic control (19,20).
Transcriptomic analyses may expand our understanding of mo-
lecular mechanisms affected by smoking. Several previous

studies investigated the associations between cigarette smok-
ing and transcriptomic changes in lung tissues (21–23), mono-
cytes (24,25), and peripheral whole blood (26–29). These studies,
however, had small sample sizes (<300 current smokers) that
limited their statistical power to detect modest transcriptomic
changes due to tobacco exposure. In addition, most of the previ-
ously identified smoking-related gene expression signatures
have not replicated. For example, only four genes (<1%) over-
lapped between two published studies of smoking-related gene
expression signatures in lung tissues (21,23), and 18 genes (�3%)
overlapped in any two of the four published studies in whole
blood (26–29). In addition, the long-term effects of cigarette
smoking on the transcriptome remain poorly characterized.

We conducted a meta-analysis of the associations of ciga-
rette smoking with gene expression in whole blood-derived
RNA in over 10,000 individuals across six cohort studies, includ-
ing 1421 current smokers and 3955 former smokers. We sought
to characterize both the short-term and long-term impact of
smoking on the transcriptome, and to identify affected path-
ways. We also sought to link the transcriptomic changes associ-
ated with smoking-related diseases. Understanding the long-
term molecular consequences of cigarette smoking may identify
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targets for the treatment and primary prevention of smoking-
related diseases.

Results
Study sample characteristics

Characteristics of the study participants in each cohort are pro-
vided in Supplementary Material, Table S1. Among the 10,233
participants in the six cohorts, 14% were current smokers
(n¼ 1421, mean age ranging from 34 to 68, 50% were men), 39%
were former smokers (n¼ 3955, mean age ranging from 43 to 74,
53% were men), 47% were never smokers (n¼ 4860, mean age
ranging from 38 to 70, 40% were men). The average white blood
cell counts were 7.2, 6.1, and 5.9 cells per cubic mm in current,
former, and never smokers respectively.

Identify and replicate gene expression signatures of
cigarette smoking

At FDR<0.1, we identified 1270 differentially expressed genes in
current vs. never smokers (Supplementary Material, Table S2).
Of the 1270 smoking-related gene expression signatures, 717
(56%) were upregulated and 553 (44%) were down-regulated (Fig.
1A). The top 25 (by P-value) differentially expressed genes are
listed in Table 1. Secondary analyses of pack-years smoked
yielded about the same genes as those for current vs. never
smokers (Supplementary Material, Fig. S1). Adjustment for body
mass index (BMI), coronary heart disease (CHD), forced expira-
tory volume in 1 second (FEV1), physical activity, and alcohol
consumption did not significantly alter the differentially ex-
pressed genes associated with smoking in the FHS.
Supplementary Material, Figure S2 shows the correlations of T
statistic values with and without additional covariate adjust-
ment (Pearson correlation coefficient>0.99).

In order to evaluate the replicability of our results, we split
the overall samples into discovery (n ¼ 4610) and replication
(n¼ 5623) sets. Samples in the discovery and replication sets
were from independent studies (see Methods). The T statistics
of each gene in the smoking-related gene expression signatures

were highly consistent between the discovery and replication
sets (Pearson correlation is 0.87, Supplementary Material, Fig.
S3). Sixty-four percent of genes identified in the discovery set at
FDR< 0.1 replicated in the replication set at FDR< 0.1.

By comparing our results with previously reported results,
we found that 68 genes identified in our study overlapped with
previously identified smoking-related gene expression signa-
tures in whole blood (enrichment P¼ 5.06 � 10� 7) (26–29), 137
genes overlapped with previously identified genes in monocytes
(enrichment P< 1 � 10� 32) (24,25), and 31 genes including

Figure 1. Volcano plots of meta-analysis of differentially expressed genes for smoking. (A) Current vs. never smokers; (B) Former vs. never smokers.

Table 1. Top 25 smoking gene signatures for current vs. never smok-
ers based on meta-analysis of six studies

Entrez Gene ID Gene Symbol Chr Beta Std.Err P.Value FDR

54674 LRRN3 7 0.64 0.02 1.17E-281 2.94E-277
23328 SASH1 6 0.18 0.01 1.09E-98 1.36E-94
56650 CLDND1 3 0.18 0.01 1.00E-66 8.40E-63
55022 PID1 2 0.25 0.02 1.67E-53 1.05E-49
10462 CLEC10A 17 0.09 0.01 6.00E-51 3.01E-47
4118 MAL 2 0.17 0.01 9.34E-35 3.91E-31
149628 PYHIN1 1 �0.10 0.01 2.42E-34 8.68E-31
1524 CX3CR1 3 �0.16 0.01 9.49E-33 2.98E-29
2838 GPR15 3 0.09 0.01 3.15E-30 7.91E-27
55020 TTC38 22 �0.16 0.01 2.86E-30 7.91E-27
5729 PTGDR 14 �0.11 0.01 2.15E-29 4.91E-26
51176 LEF1 4 0.15 0.01 5.41E-25 1.13E-21
1028 CDKN1C 11 �0.20 0.02 2.28E-24 4.40E-21
53637 S1PR5 19 �0.24 0.02 5.09E-24 9.12E-21
9788 MTSS1 8 �0.10 0.01 9.61E-24 1.61E-20
154075 SAMD3 6 �0.07 0.01 2.52E-22 3.72E-19
4050 LTB 6 0.10 0.01 4.31E-21 6.01E-18
23178 PASK 2 0.13 0.01 6.34E-21 8.37E-18
2359 FPR3 19 0.09 0.01 8.30E-21 1.04E-17
2517 FUCA1 1 0.13 0.01 6.30E-20 7.53E-17
389 RHOC 1 �0.11 0.01 1.53E-19 1.75E-16
51348 KLRF1 12 �0.14 0.02 1.99E-19 2.17E-16
114879 OSBPL5 11 �0.11 0.01 2.09E-19 2.19E-16
146330 FBXL16 16 0.12 0.01 4.82E-19 4.84E-16
5243 ABCB1 7 �0.08 0.01 6.33E-19 6.11E-16
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CYP1B1, SCNA, and CX3CR1 overlapped with previously identi-
fied genes in lung tissues (21–23) (enrichment P¼ 0.65,
Supplementary Material, Table S3). We also found 92 genes with
adjacent DNA methylation sites (CpGs) that were reported to be
differentially methylated in relation to smoking in previous
studies (30) (enrichment P¼ 3.4 � 10�4, Supplementary Material,
Table S4). For example, LRRN3, the top gene in our results, has
three DNA methylation loci (cg09837977, cg05221370, and
cg11556164) in its 5’UTR region that were recently reported to be
associated with smoking in two studies (12,14). Another exam-
ple is GPR15, which has a DNA methylation site (cg19859270)
that was reported to be associated with smoking in four studies
(12,14–16).

In turn, we checked the adjacent genes of previously re-
ported smoking-induced DNA methylation loci (30) for differen-
tial expression effects at a nominal P< 0.05. Supplementary
Material, Table S5 provides the full list of genes and CpGs.

Long-term effects of cigarette smoking on whole blood
gene expression levels

Thirty-nine genes were statistically significant (FDR< 0.1) in
analyses contrasting former vs. never smokers (Supplementary
Material, Table S6, and Table 2 shows the top 25 genes), includ-
ing 14 up-regulated and 25 down-regulated genes (Fig. 1B). As
shown in Supplementary Material, Figure S4, 35 of the 39 gene
expression signatures (87%) in analysis of former vs. never
smokers show the same directionality in analysis of current vs.
never smokers (i.e. when the gene was upregulated in former
smokers vs. never smokers is was also upregulated in current
smokers vs. never smokers.). Of these 35 overlapping genes, 19
including LRRN3, GPR15, and CLDND1, were statistically signifi-
cant (FDR< 0.1) in analyses of current vs. never smokers. Of the
39 genes, one (GNLY) showed differential expression in relation
to smoking in lung tissues (21), and five genes (LRRN3, GPR15,
CLDND1, STAT3, and PTGDR) harboor CpGs that were previously
reported to be differentially methylated in relation to smoking
in whole blood (30). To further investigate the long-term effects
of these genes, we performed an in-depth analysis of 39 gene
transcript levels in relation to the time since smoking cessation
among former smokers. Twelve genes including LRRN3, GPR15,
and CLDND1, remained differentially expressed in former vs.
never-smoker 30 years following smoking cessation (see
Methods section and Fig. 2).

Coexpression network analysis of smoking genes

To understand the molecular mechanisms by which cigarette
smoking are associated with the whole blood transcriptome, we
performed a coexpression network analysis of the 1290 smoking
gene expression signatures (unique set of 1270 genes for current
vs. never smokers plus 39 genes for former vs. never smokers).
We discovered five major coexpression network modules
(coEMs for short; coEMs named using different colours;
Supplementary Material, Fig. S5). Genes in each coEM formed a
tightly co-regulated network structure that we hypothesize is
functionally related to tobacco exposure. Gene ontology enrich-
ment analyses were then performed on each coEM (Table 3).

Three coEMs are enriched for genes involved in immune
response-related pathways, including the Turquoise coEM (for
platelet activation; corrected P¼ 3.1e-3, and inflammatory re-
sponse, corrected P¼ 3.7e-2), the Blue coEM (for lymphocyte ac-
tivation, corrected P¼ 3.9e-7), and the Brown coEM (for immune

cell mediated cytotoxicity, corrected P¼ 3.9e-8). The Green coEM
is enriched for genes involved in protein biosynthesis (corrected
P¼ 6.3e-3).

Smoking-related gene expression signatures in
association with human complex diseases and traits

Cigarette smoking has been recognized as a key causal risk fac-
tor for multiple complex diseases and traits (1). Our results sug-
gest that smoking may disturb the expression levels of many
genes across multiple critical pathways in whole blood that
may relate to many disease phenotypes. To test this hypothesis,
we further determined if the identified smoking-related gene
expression signatures in whole blood are enriched GWAS SNPs
associated with smoking-related diseases and traits.

We linked the 1290 smoking-related gene expression signa-
tures with whole blood gene expression-associated SNPs
(eSNPs) (31) (Joehanes R, PhD, unpublished data, 2016), and then
cross referenced the eSNPs with NHGRI GWAS Catalog SNPs
(32). We identified 536 smoking-related gene expression signa-
tures having at least one eSNP associated with human complex
diseases or traits reported in the NHGRI GWAS Catalog
(Supplementary Material, Table S7). Recent research suggests
that using eSNPs and GWAS mapping may permit the linking of
gene transcripts with diseases or traits (33). Therefore, the 536
genes having blood eSNPs linked with GWAS SNPs for diseases
or traits can be considered a set of putative blood gene expres-
sion signatures of the diseases or traits even though the associ-
ations of these genes with diseases or traits were not directly
measured. Smoking-related gene expression signatures as a set
show enrichment for disease- and trait-associated genes (en-
richment P< 1�10�32, by Fisher’s exact test), indicating that
smoking-induced gene expression changes may be associated
with a wide range of clinical traits.

We further focused the search on diseases and traits known
to be associated with cigarette smoking, including cardiovascu-
lar diseases, obesity-related traits, inflammatory biomarkers,
pulmonary function, and various lung diseases including
chronic obstructive pulmonary disease and asthma.
Enrichment tests were performed for the traits or diseases that
overlapped with smoking-related gene expression signatures
for at least five genes. As shown in Table 4, the smoking-related
gene expression signatures as a set were enriched for genes
having cis-eSNPs that were also GWAS SNPs for stroke (enrich-
ment P¼ 4.5e-5) and pulmonary function (enrichment P¼ 3.7e-
3), and for BMI-related traits and asthma (enrichment P< 0.05).
Smoking-related gene expression signatures were also enriched
for genes having trans-eSNPs that were also GWAS SNPs for
weight, asthma, and coronary heart disease (enrichment
P< 0.05; details regarding correlated eSNPs are provided in
Supplementary Material, Table S7).

We analyzed the association of smoking-related gene ex-
pression signatures with two inflammatory biomarkers (serum
concentrations of IL6 and CRP) and with pulmonary function
(FEV1, FVC, and the FEV1/FVC ratio) in FHS participants. IL6,
CRP, and FEV1, were significantly associated with smoking sta-
tus (Supplementary Material, Table S8). We identified 3, 55, and
7 smoking gene-expression signatures that were differentially
expressed in relation to IL6, and CRP, and FEV1, respectively, at
Bonferroni corrected P< 0.05. The overlapping genes that were
significantly associated with smoking and with IL6, CRP, and
FEV1, were further tested to determine if their gene expression
levels mediated the association of smoking on these
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phenotypes (IL6, CRP, and FEV1). At Bonferroni corrected P< 0.
05 (by the Sobel test), we identified 1 gene (ALAS2) that appears
to be a mediator of the association between smoking and IL6,
and seven genes including ALAS2 that were mediators for CRP
(Table 5).

Discussion
By meta-analyzing gene expression data from 10,233 individ-
uals from six cohort studies, we identified 1270 genes that were
differentially expressed in current vs. never cigarette smokers,
and 39 genes that were differentially expressed in former vs.
never smokers, including 12 genes with persistent gene expres-
sion changes up to 30 years following smoking cessation.

In contrast to previous smaller studies of smoking-related
gene expression signatures (21–29), we were able to replicate
our findings by splitting the overall study samples into discov-
ery and replication sets. The samples in discovery (n¼ 4610) and
replication (n¼ 5623) sets were from independent cohorts and
used different microarray platforms. We found that sixty-four
percent of smoking-related differentially expressed genes iden-
tified in the discovery set replicated in the replication set.

Pathway and coexpression network analysis identified four
coEMs related to smoking representing many critical pathways
including platelet activation, lymphocyte activation, inflamma-
tory response, and protein biosynthesis. Smoking induces aber-
rant platelet activation (34,35), which may increase the risk of
thrombotic events including atherothrombotic cardiovascular

disease (36). Three coEMs are enriched for immune function-
related genes, including DUSP1 and FOS (Supplementary
Material, Table S9), consistent with the findings that serum con-
centrations of CRP and IL6 are significantly higher in current vs.
never smokers(37,38)(Supplementary Material, Table S8) and
pointing toward putative mechanisms by which smoking may
cause systemic inflammation. Two of the three smoking-related
immune function coEMs were significantly associated with CRP
(e.g., Turquoise coEM at P¼ 0.02 and Blue coEM at P¼ 0.03).
Based on these findings, we hypothesize that the association of
smoking on inflammation is mediated by gene expression
changes, although further functional validation is required to
establish precise mechanisms. Previous studies showed the ef-
fects of nicotine on protein biosynthesis in muscle (39), brain,
and liver (40). We identified one smoking-related coEM that was
enriched for protein biosynthesis, providing evidence that
smoking may affect protein biosynthesis in whole blood.

Epigenetic studies have shown that smoking is an important
epigenetic modifier that affects the DNA methylation pattern of
thousands of CpGs (30). By overlapping our transcriptomic re-
sults with previous epigenetic findings (30), we found 92 genes
with altered expression and DNA methylation in relation to
smoking status (Supplementary Material, Table S4). Most nota-
ble among these are LRRN3 and GPR15, which were upregulated
in current and former smokers (vs. never smokers) and dis-
played long-term persistent associations of smoking with
mRNA expression levels. The differential expression of LRRN3
and GPR15 in smokers was also reported by Tsaprouni et al (12).
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These two genes have nearby CpGs that were reported to be sig-
nificantly hypomethylated in cigarette smokers (12,14–16).
Three CpGs, cg09837977, cg05221370, and cg11556164, located in
the 5’UTR region of LRRN3 and cg19859270 located in the first
exon of GPR15 are located in active gene promoter regions. This
is consistent with the concept that DNA methylation in gene
promotor regions may inhibit gene transcription (41). Therefore,
we speculate that many of the identified smoking-related gene
expression signatures are mediated by smoking-induced epige-
netic changes. However, we cannot exclude the possibility that
the overlap of gene expression and DNA methylation change in
relation to smoking may be due to changes in white blood cell
types. A recent study by Bauer et al suggested that smoking-
related differential methylation and expression of GPR15 results
from the enrichment of a smoking-induced lymphocyte popula-
tion (42).

Smoking is one of the most important causal lifestyle risk
factors for a wide range of diseases, although the molecular un-
derpinnings of smoking-related risks remain largely unknown.
In an attempt to link smoking-related gene expression signa-
tures to disease phenotypes, we used GWAS results from the
NHGRI GWAS Catalog (32). By cross referencing eSNPs of genes
that are differentially expressed in relation to smoking status
with GWAS SNPs associated with various smoking-related dis-
eases, we sought to obtain insights into the potential roles of
smoking-related differentially expressed genes in a variety of
smoking-related health outcomes. We observed that (as a set)
gene expression signatures of smoking show enrichment for cis-

Table 2. Top 25 smoking gene signatures for former vs. never smok-
ers based on meta-analysis of six studies

Entrez Gene ID Gene Symbol Chr Beta Std.Err P.Value FDR

54674 LRRN3 7 0.100 0.013 3.27E-14 8.21E-10
11186 RASSF1 3 �0.025 0.004 6.13E-09 7.69E-05
284207 METRNL 17 �0.026 0.005 1.99E-08 1.66E-04
55020 TTC38 22 �0.059 0.012 7.76E-07 4.87E-03
4118 MAL 2 0.060 0.012 9.85E-07 4.94E-03
10578 GNLY 2 �0.053 0.011 1.94E-06 8.14E-03
7102 TSPAN7 X 0.036 0.008 3.61E-06 0.01
29992 PILRA 7 �0.034 0.007 5.49E-06 0.02
10023 FRAT1 10 �0.038 0.009 1.07E-05 0.03
25829 TMEM184B 22 �0.054 0.012 1.30E-05 0.03
6352 CCL5 17 �0.056 0.013 1.66E-05 0.04
27202 C5AR2 19 �0.029 0.007 3.50E-05 0.06
5729 PTGDR 14 �0.037 0.009 3.77E-05 0.06
4145 MATK 19 �0.025 0.006 4.08E-05 0.06
8745 ADAM23 2 0.033 0.008 4.16E-05 0.06
6774 STAT3 17 �0.029 0.007 4.28E-05 0.06
7462 LAT2 7 �0.025 0.006 4.30E-05 0.06
56979 PRDM9 5 0.019 0.005 4.46E-05 0.06
51176 LEF1 4 0.050 0.012 4.72E-05 0.06
56650 CLDND1 3 0.038 0.009 5.68E-05 0.07
25996 REXO2 11 0.044 0.011 7.55E-05 0.09
10331 B3GNT3 19 �0.032 0.008 8.98E-05 0.09
3257 HPS1 10 0.036 0.009 9.41E-05 0.09
51339 DACT1 14 0.015 0.004 9.85E-05 0.09
5329 PLAUR 19 �0.032 0.008 0.000103 0.09

Table 3. Gene ontology enrichment analysis of smoking-related gene coexpression network modules

CoEM Ontology category Overlap Fold Change P Value Corrected P Value

Turquoise Response to wounding 35 2.35 1.40E-06 1.15E-03
Platelet activation 9 7.28 3.75E-06 3.09E-03
Integrin-mediated signalling pathway 11 4.99 1.26E-05 0.01
Blood coagulation 12 4.39 1.86E-05 0.01
Inflammatory response 23 2.50 4.53E-05 0.04

Blue T cell activation 19 6.10 2.67E-10 2.20E-07
Lymphocyte activation 23 4.75 4.68E-10 3.86E-07
Transmembrane receptor protein tyrosine kinase signalling pathway 17 3.53 6.35E-06 5.24E-03
T cell proliferation 8 6.76 2.32E-05 0.02

Brown Immune cell mediated cytotoxicity 9 25.35 4.71E-11 3.89E-08
Cellular defense response 15 6.69 6.01E-09 4.96E-06
Positive regulation of apoptosis 21 3.52 3.95E-07 3.26E-04
Cell migration 23 3.09 9.95E-07 8.21E-04
Regulation of cytokine biosynthesis 11 5.34 6.52E-06 5.38E-03

Green Protein biosynthesis 10 5.29 7.58E-06 6.26E-03

Table 4. Smoking-related diseases and traits enriched for smoking-related gene expression signatures

Trait Overlap
Gene NO

Total Genes having eSNPs
in GWAS Catalog

Fold Change P-val Gene List

–link by cis-eSNP
Stroke 5 11 6.3 4.5E-5 ALDH2; CAMTA1; SH2B3; TMEM116; ERP29
Pulmonary function 16 116 1.9 3.7E-3 C6orf48; CAMK1D; CSNK2A2; GYPE; HLA-DPA1;

HLA-DRA; LST1; LTA; NCR3; SEC61A2; TAP2; TNS1;
TRIM10; RPL10A; NAP1L5; WDR11

Weight 6 40 2.1 0.02 C6orf48; GTF3A; HLA-DRA; LST1; NCR3; PRKCA
Asthma 11 89 1.7 0.02 AGPAT1; C6orf48; CDC25B; HLA-DPA1; HLA-DRA;

IL2RB; LST1; MYL6B; TAP2; BLK; VAV3
– link by trans-eSNP
Asthma 6 40 2.1 0.02 BTN3A2; CCL5; LIMS1; MYC; SSR4; TRIM10
Coronary heart disease 6 45 1.9 0.04 BTN3A2; FOS; GBP1; GBP2; GBP4; GZMH
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and trans- eSNPs that are also GWAS SNPs for smoking-related
diseases and clinical traits such as stroke and pulmonary func-
tion (Table 4), suggesting that smoking-induced transcriptomic
changes are linked to smoking-related diseases. Without any
experimental validation, however, we cannot prove causal
mechanistic links of smoking to gene expression and smoking-
related diseases.

We further tested if any NHGRI GWAS Catalog SNPs showed
an interaction with smoking that may affect gene expression
levels in FHS samples. We did not find any significant cis-eSNP
showing SNP-by-smoking interaction on corresponding tran-
scripts levels, but several trans-eSNPs (Supplementary Material,
Table S10) displayed interactions. The trans-eSNP results need
to be replicated. We acknowledge that our study may still lack
power to identify SNP-by-smoking interaction on gene expres-
sion levels.

One limitation of our study is that we used whole blood for
expression profiling. Whole blood is easy to obtain in
population-based studies but may not be the primary tissue for
many smoking-related diseases, such as lung cancer and
chronic obstructive pulmonary disease. By comparing our re-
sults with previously reported lung tissue-based results, we
found 31 smoking gene signatures that also showed differential
expression in relation to cigarette smoking in lung tissue. For
example, CYP1B1 was significantly upregulated in whole blood
of current smokers at FDR¼ 7.6e-7 in our study and was re-
ported to be significantly upregulated in non-tumour lung tis-
sue (21) and in the bronchial mucosa of smokers (43). This
finding suggests that whole blood may partially capture
smoking-induced pathological molecular changes occurring in
targeted tissues. In addition, peripheral whole blood expression
patterns can be linked to many other diseases including sys-
temic inflammatory and immune-related disorders (44) and
metabolic and cardiovascular diseases (45,46), which are
smoking-related. We explored the relationship of smoking to
two inflammatory biomarkers, serum concentration of IL6 and
CRP. Previous studies showed that smoking induces systemic
inflammation, which is reflected in elevated levels of IL6 (37)
and CRP (38). We similarly observed that IL6 and CRP were sig-
nificantly higher in current smokers (Supplementary Material,
Table S8). We further identified three smoking-related gene ex-
pression signatures in association with IL6 and 55 with CRP,
even after adjusting for smoking status. Among these genes, we
detected one that was a mediator of the association of smoking
with IL6 concentration, and seven genes mediating the

association of smoking with CRP. ALAS2 emerged as a gene me-
diator for both IL6 and CRP. ALAS2 (5’-aminolevulinate synthase
2) codes for a mitochondrial enzyme that is erythroid-specific.
We speculate that ALAS2 expression might be related to
smoking-induced inflammation, but experimental validation is
needed to support this hypothesis.

Another limitation of our study is its cross-sectional nature.
We cannot prove causal relations between smoking and gene
expression. We were able, however, to include longitudinal
analyses of time since smoking cessation. Further longitudinal
studies of smoking-induced gene expression effects on down-
stream disease phenotypes are warranted. Last, our study in-
cluded six large epidemiologic studies that all rely on a
questionnaire-reported ascertainment of smoking status. Self-
reported smoking status is imperfect as subjects may not report
their status correctly.

In conclusion, we identified transcriptomic signatures of ciga-
rette smoking in a well-powered population-based meta-analysis.
Our results suggest that smoking induces global gene expression
changes that may involve multiple critical pathways. By linking
gene expression signatures with multiple smoking-related dis-
eases, we demonstrated that smoking-related gene expression
changes are associated with many smoking-related diseases. Our
list of smoking-related gene expression signatures may serve as a
compelling resource for future studies.

Materials and Methods
Study participants

Our study included samples from six studies: the Framingham
Heart Study (FHS) (47–49), the Rotterdam Study (RS) (50), the
Cooperative Health Research in the Region of Augsburg (KORA
F4) Study (51), the InCHIANTI Study (52), the Study of Health in
Pomerania (SHIP-TREND) (53), and the Estonian Biobank
(EGCUT) (54). Each of the six studies followed the recommenda-
tions of the Declaration of Helsinki. Informed consent was ob-
tained from each study participant.

Smoking status was ascertained by questionnaire. Current
smoking was defined as smoking on average at least one cigarette
per day during the past 12 months. Former smoking was defined
previously having smoked on average at least one cigarette per
day, but having quit for at least 12 months. Never smokers were
those who reported having never smoked on average at least one
cigarette per day for at least one year. Smoking pack-years was

Table 5. Mediation analysis examining the indirect association of smoking with IL6 and CRP through gene expression

Gene b1 P for b1 b1’ P for b1’ b2 P for b2 Mediation Prop Z-Val Sobel P Sobel P (corrected)

– Mediation Analyses: Smoking fi Gene fi IL6

ALAS2 0.3 3.39E-07 0.27 3.49E-06 �0.26 1.36E-05 0.09 2.77 5.66E-03 0.017
– Mediation Analyses: Smoking fi Gene fi CRP

ALAS2 0.11 0.03 0.06 0.24 �0.45 1.07E-18 0.47 5.32 1.04E-07 5.73E-06
PLAUR 0.11 0.03 0.06 0.23 0.50 6.54E-08 0.44 4.78 1.74E-06 9.58E-05
DARS 0.11 0.03 0.06 0.23 0.21 4.80E-07 0.44 4.58 4.66E-06 2.56E-04
MFGE8 0.11 0.03 0.08 0.12 0.63 5.88E-10 0.29 4.33 1.52E-05 8.34E-04
RPS2P8 0.11 0.03 0.08 0.11 0.43 3.07E-09 0.28 4.20 2.70E-05 1.48E-03
SNORD48 0.11 0.03 0.07 0.14 0.35 3.12E-05 0.31 3.81 1.37E-04 7.52E-03
CDC25B 0.11 0.03 0.08 0.10 0.49 1.07E-06 0.24 3.81 1.37E-04 7.55E-03

*Model 1: phenotype � b1 Smokingþ covariates.

&Model 2: phenotype � b1’ Smokingþb2 geneþ covariates.

§Bonferroni correction for IL6 was to correct for 3 genes; for CRP was to correct for 55 genes..
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computed by multiplying the average number of cigarettes smoked
per day by the number of years smoked, divided by 20. For studies
with longitudinal data and with missing or inconsistent pack-years
data, pack-years were calculated based on the mean of the re-
ported average number of cigarettes smoked per day using data
from all available examinations.

Gene expression profiling

RNA was isolated from whole blood samples. FHS, RS, KORA F4,
InCHIANTI and SHIP-TREND collected RNA using PaxGene tubes
(Becton Dickinson, Breda, the Netherlands; PreAnalytiX,
Hombrechtikon, Switzerland). EGCUT collected RNA using Blood
RNA Tubes (Life Technologies, NY, USA). Gene expression in the
FHS samples used the Affymetrix Exon Array ST 1.0. RS, KORA
F4, InCHANTI, SHIP-TREND, and EGCUT used the Illumina
HumanHT12 v3 (KORA F4, InCHANTI, SHIP-TREND, and EGCUT)
or v4 (RS) array. The details of sample collection, microarrays,
and data processing and normalization in each cohort are pro-
vided in the Supplementary Materials.

Identification of differentially expressed genes
associated with cigarette smoking

Linear regression models were used to test the associations of
gene expression with smoking status in each cohort respec-
tively. Smoking status was coded as current¼ 1, never¼ 0, and
former¼ 1, and never¼ 0; smoking status was the independent
variables and expression of each gene was the outcome.
Analyses were conducted for current vs. never and former vs.
never smokers. For cohorts without pedigree information, we
performed statistical analysis using the lme4 (55) package of R
version 3.0.1, adjusting for age, sex, blood cell counts, and appli-
cable technical covariates (e.g., batch). For cohorts with pedigree
information, we performed statistical analysis using the pedi-
greemm package (56) of R, accounting for the reported familial
relationship in addition to the aforementioned factors.

Measured blood cell counts (billion cells/l) including white
blood cells, neutrophils, lymphocytes, monocytes, eosinophils,
and basophils were available in EGCUT, RS (only white blood
cell, lymphocytes, and monocytes available), InCHIANTI, KORA
F4 (only white blood cell available), and SHIP-TREND. In FHS,
blood cell counts were measured in 2138 FHS Third Generation
cohort participants, but not in the Offspring cohort. We esti-
mated the cell counts in all FHS samples by partial least squares
regression (57) based on mRNA levels using a model based on
the 2138 subjects with both gene expression profiling and differ-
ential cell counts. The estimated cell count values were highly
consistent with the measured cell counts (details in
Supplementary Methods). We collected the effect estimate (b),
standard errors, T-statistics, R2, and P-values. We performed a
dose-response analysis by using pack-years of cigarette smok-
ing as an independent variable and gene expression as the out-
come. Covariates and a statistical model for the dose-response
analysis were the same as those described above.

Evaluate the reproducibility of smoking-related gene
transcripts

We conducted meta-analysis of all six cohorts to assess
smoking-related gene expression signatures (See Methods,
Meta-analysis). In order to evaluate the reproducibility of
smoking-related gene transcripts, we split the overall sample

into independent discovery and replication sets. Our overall
analysis framework is presented in Supplementary Material,
Figure S6. The meta-analysis results from RS, EGCUT,
InCHIANTI, KORA F4, and SHIP-TREND samples (n¼ 4610) were
used as the discovery set. Results from FHS samples (n¼ 5623)
were used for replication purposes. Because discovery and repli-
cation sets used different gene profiling platforms, this analysis
evaluated the reproducibility of gene expression signatures in
independent cohorts and for different expression array plat-
forms. We at first identified differentially expressed genes for
smoking in the discovery set at FDR< 0.1, and then attempted
replication in the replication set. The replication ratio is defined
as the proportion of differentially expressed genes for smoking
in the discovery set at FDR< 0.1 that could be replicated in the
replication set at FDR< 0.1.

Meta-analysis

We estimated the heterogeneity of each gene across the six
studies. Since, we found<5% of genes with heterogeneity
I2>75%, we performed a meta-analysis using a fixed effect re-
stricted maximum likelihood model (RMA method, using de-
fault weighting) provided by the metafor package (58) of R. To
overcome expression platform differences, the meta-analysis
was performed on all transcripts with matching gene Entrez IDs
(16,866 unique genes). Meta-analysis was performed across all
six studies. For discovery and replication purposes, meta-
analysis was also performed for the five Illumina cohorts (RS,
EGCUT, InCHIANTI, KORA F4, and SHIP-TREND). We compared
the meta-analysis results of the Illumina cohorts with the re-
sults of the FHS. We computed the Benjamini-Hochberg false
discovery rate (FDR) (59) on the resulting P-values by correcting
for the number of transcripts that were present in all gene ex-
pression microarray platforms (n¼ 16,866). The significant
threshold for the identification of smoking-related gene expres-
sion signatures was FDR< 0.1.

Supplementary Material, Table S11 reports smoking-related
gene expression signatures from the final meta-analysis that
were associated with measured blood cell types, PC1, and
Batch_lump using 1298 never-smokers whose cell types were
measured in the FHS.

Identification of long-term persistent associations of cig-
arette smoking with gene expression levels

A long-term gene expression persistence analysis was per-
formed on FHS participants since it is the only cohort with lon-
gitudinal data on the smoking cessation status for 35 years. The
analysis was performed on a series of six dichotomous variables
indicating smoking cessation of at least 5, 10, 15, 20, 25, and 30
years, using a linear mixed model in the pedigreemm package
(56) with the same set of covariates as in the primary analysis.
We used the T-statistics value that defined statistical signifi-
cance in the current vs. never smoker analysis (jTj>3.0, corre-
sponding to P< 0.002). Transcripts with jTj>3.0 across all six
time points are deemed to be statistically significant compared
to never-smoker levels.

Gene coexpression network analysis

For the smoking-related gene expression signatures (current vs.
never, and former vs. never at FDR< 0.1), we performed a gene
coexpression network analysis using FHS gene expression data.
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Gene coexpression networks were constructed using weighted
gene coexpression network analysis (WGCNA) (60,61). The
WGCNA R package uses a fitting index to evaluate a scale-free
network structure built upon Pearson gene-gene correlations
from gene expression variance among individuals (60). Genes
were grouped based on the topological overlap of their connec-
tivity using average linkage hierarchical clustering (60), followed
by a dynamic cut-tree algorithm to dynamically cut the cluster-
ing dendrogram branches into gene coexpression network mod-
ules (coEMs) (62).

We first adjusted for sex, age, blood count proportions, and
technical covariates from the expression data using linear
mixed models (lme4 package (55) in R) in order to minimize con-
founding of other smoking-related covariates. The residuals
were kept for the coexpression network construction. First, we
built weighted gene coexpression networks and identified
coEMs that fit a scale-free topological structure by fitting the in-
dex R2>0.8 of the linear model that regressed log(p(k)) on log(k),
where k is the connectivity of every node (gene) in the network
and p(k) is the frequency distribution of connectivity. The fitting
index of a perfect scale-free network is 1.

We tested the association of each smoking-related coEM (us-
ing the first principal components of each coEM) with each cell
types. As shown in Supplementary Material, Figure S7 the
coEMs were not associated with cell types. We further tested
the associations of each coEM with two inflammatory bio-
markers (i.e., serum concentrations of Interleukin 6 [IL6] and C-
reactive protein [CRP]). We calculated the first principal compo-
nent (eigengene) of each coEM, then used a linear mixed model
implemented in the kinship package in R (63), to test the associ-
ation between a module’s eigengene and IL6 and CRP, modeling
covariates (including BMI and smoking status). IL6 and CRP re-
lated coEMs were identified at P< 0.05.

Gene ontology enrichment analysis

Each smoking-related gene coexpression network module was
classified using Gene Ontology - biology process (GO-BP) catego-
ries to define biological process enrichment (64). Fisher’s exact
test was used to calculate enrichment P values. The P value was
further corrected by the number of unique GO-BP terms
(n¼ 825). A threshold of P< 6e-5 (0.05/825) was considered
significant.

Linking smoking-related gene expression signatures to
complex diseases and traits

We looked up the relations of smoking-related gene expression
signatures to disease phenotypes and traits using two re-
sources. First, we used the NHGRI GWAS catalog (assessed July,
2015)(32), which collected the associations of SNPs with hun-
dreds of disease and trait phenotypes (P< 1e-5). We linked
smoking-related gene expression signatures to gene
expression-associated SNPs (eSNPs), and then cross-referenced
the eSNPs with NHGRI GWAS catalog SNPs. In doing so, we were
able to explore the associations of smoking-related gene expres-
sion signatures with a large disease-related GWAS SNP sets.
cis-/trans- eSNPs (i.e. SNPs associated with the expression level
of a gene) were identified in whole blood based on expression in
the FHS using Affymetrix exon array (n�5600) (Joehanes R, PhD,
unpublished data, 2016) and a meta-analysis of seven cohorts
using Illumina arrays (n�5300) (31). A cis-eSNP was defined as
an SNP residing within 1Mb of the transcript start site (TSS) for

the corresponding gene. eSNPs that were remote from the TSS
were defined as trans-eSNPs. All eSNPs used in this study passed
FDR< 0.1. Enrichment analysis was performed using Fisher’s
exact test by testing enrichment of the intersecting number of
genes (i.e. M\N) in the NHGRI GWAS catalog having eSNPs (M)
and smoking-related gene expression signatures having eSNPs
(N) with a background of the total number of genes having
eSNPs (T).

Second, we looked at the associations of smoking-related
gene expression signatures with pulmonary function and two
inflammatory biomarkers (CRP and IL6, nature log-
transformation) that are related to cigarette smoking (65,66) and
were measured in FHS at the same visit as the gene expression
blood sample collection. Pulmonary function measures in-
cluded forced expiratory volume at one second (FEV1), forced vi-
tal capacity (FVC), and the FEV1/FVC ratio. FEV1 and FVC were
measured on the FHS Offspring cohort at Examination 8 and on
the FHS Third Generation cohort at Examination 2 using a
Collins CPL dry rolling-seal spirometer and Collins 2000 Plus/
SQL software (Collins Medical, Inc., Braintree, MA). The highest
value among acceptable efforts was used, as per the American
Thoracic Society-European Respiratory Society guidelines (67).
CRP was measured on the FHS Offspring cohort at Examination
8 and the Third Generation cohort at Examination 2 using a
high sensitivity Dade-Behring BN 100 nephelometer. Serum IL6
was measured in FHS Offspring cohort participants at
Examination 8 using the Quantikine HS IL6 Immunoassay kit (R/
D Systems, Minneapolis, MN). Intra-assay coefficients of varia-
tion for inflammatory marker measurements were<9.2%.

Residuals for genes after adjusting for technical covariates
(as independent variables) were used to identify differentially
expressed genes associated with CRP, IL6, and pulmonary func-
tion phenotypes (as outcomes) using linear mixed models im-
plemented in the kinship R package (63). The covariates for
analyzing pulmonary function include age, sex, height, weight,
smoking status, imputed differential white blood cell propor-
tions, and family structure. The covariates for analyzing CRP
and IL6 included age, sex, BMI, smoking status, imputed differ-
ential white blood cell proportions, and family structure.
Statistical significance was based on Bonferroni correction
(P< 0.05/1270) for the number of smoking-related gene signa-
tures (n¼ 1270).

Mediation analysis

For the overlapping gene expression signatures of smoking and
smoking-related phenotypes (including natural log transformed
[log-transformed] CRP, log-transformed IL6, and FEV1), we
tested if gene expression signatures mediated the associations
of smoking with the smoking-related phenotypes. Mediation
analysis was performed in individuals whose gene expression
and phenotype data were both available (n¼ 5615 for ows the
distribution of log-transformed CRP, log-transformed IL6, and
FEV1 values. (Model 1) after adjusting for gene expression sig-
natures (Model 2). The Sobel test was used to evaluate media-
tion effects, and the significance level was a Bonferroni
corrected P< 0.05 (0.05/the number of genes in the overlapping
gene expression signatures for smoking and smoking-related
phenotypes).

Model 1: Outcome � b1 (Smoking) þ covariates

Model 2: Outcome� b1’ (Smoking)þ b2 (Gene)þ
covariates
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In Model 1 and Model 2, the “outcomes” were log-
transformed CRP, log-transformed IL6, and FEV1. For genes
showing mediation, the mediation proportion was defined as
(b1- b1’)/b1. Covariates included age, sex, technical covariates,
blood cell counts and family structure. The analysis for FEV1,
additional adjustment included height and weight.

Test SNP-by-smoking interaction on gene
expression levels

geneExp � b1 (SNP) þ b2 (Smoking) þ b3 (SNP x Smoking)
þ covariates

where b1 and b2 are the regression coefficients for the SNP (ad-
ditive model) and smoking status (current vs. never), respec-
tively. b3 is the regression coefficients for the SNP-by-smoking
status interaction. geneExp is the gene expression residual after
adjusting for technical covariates (age, sex and white blood cell
types as fixed effects, and family structure as a random effect).
The interaction tests were limited to the SNPs in the NHGRI
GWAS catalog that overlapped with SNPs genotyped or imputed
in the FHS at minor allele frequency>1% (15,579 SNPs), and
smoking gene expression signatures (1290 unique genes from
among 1270 genes for current vs. never smokers plus 39 genes
for former vs. never smokers). The Benjamini-Hochberg method
(59) was used to calculate false discovery rate (FDR).

Smoking-related genes and DNA methylation loci from
published literatures

To compare the smoking-related gene expression signatures
identified in this study with previous studies, we collected pre-
viously reported smoking-related gene expression signatures in
whole blood (529 genes) (26–29), monocytes (311 genes) (24,25),
and lung tissues (479 genes) (21–23). In addition, a list of genes
whose CpGs were reported to be differentially methylated in re-
lation to smoking was download from a review article (30). In
the review article, the authors collected the gene list by review-
ing 14 published epigenome-wide association studies including
1460 unique CpGs for 939 unique genes. All the previously iden-
tified genes and CpGs were available within the results of our
analysis of current vs. never smokers. Fisher’s exact test was
used to test if the smoking-related gene expression signatures
identified in our study were enriched for previously identified
smoking-related gene expression signatures or DNA methyla-
tion signatures.

Data Availability
Raw gene expression profiling data are available online (FHS
[http://www.ncbi.nlm.nih.gov/gap; accession number
phs000007], RS [GSE33828], KORA F4 [E-MTAB-1708], InCHIANTI
[GSE48152], SHIP-TREND [GSE36382] and EGCUT [GSE48348]).

Supplementary Material
Supplementary Material is available at HMG online.
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ber of the Caché Campus program of the InterSystems GmbH.
The KORA research platform (KORA, Cooperative Research in the
Region of Augsburg) was initiated and financed by the Helmholtz
Zentrum München – German Research Center for Environmental

4620 | Human Molecular Genetics, 2016, Vol. 25, No. 21

http://www.ncbi.nlm.nih.gov/gap
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw288/-/DC1


Health, which is funded by the German Federal Ministry of
Education and Research (BMBF) and by the State of Bavaria.
Furthermore, KORA research was supported within the Munich
Center of Health Sciences (MC Health), Ludwig-Maximilians-
Universit€at, as part of LMUinnovativ. The German Diabetes Center
is funded by the German Federal Ministry of Health (BMG) and the
Ministry of Innovation, Science, Research and Technology (MIWF)
of the State North Rhine-Westphalia. This study was supported in
part by a grant from the German Federal Ministry of Education
and Research (BMBF) to the German Center for Diabetes Research
(DZD e.V.). We are indebted to all study participants. Furthermore,
we are grateful to the field staff in Augsburg and Munich who
were involved in the conduct of the KORA studies, and the staff of
the Genome Analysis Center at the Helmholtz Zentrum München
involved in the omics measurements.
EGCUT work was supported through the Estonian Genome
Center of University of Tartu by the Targeted Financing from
the Estonian Ministry of Science and Education [SF0180142s08];
the Development Fund of the University of Tartu (grant
SP1GVARENG); the European Regional Development Fund to the
Centre of Excellence in Genomics (EXCEGEN; grant 3.2.0304.11-
0312); and through FP7 grant 313010.

References
1. Adler, I. (1912) Primary malignant growths of the lungs and bron-

chi. Longmans, Green, and Company.
2. Control, CfD. and Prevention. (2008) Smoking-attributable

mortality, years of potential life lost, and productivity
losses–United States, 2000–2004. Morbidity and Mortality
Weekly Report, 57, 1226.

3. Control, CfD. and Prevention. (2005) Cigarette smoking
among adults–United States, 2004 Morbidity and Mortality
Weekly Report, 54, 1121.

4. Control, CfD. and Prevention. (2011) Vital signs: current ciga-
rette smoking among adults aged� 18 years–United States,
2005–2010. Morbidity and Mortality Weekly Report, 60, 1207.

5. Doll, R., Peto, R., Boreham, J. and Sutherland, I. (2004)
Mortality in relation to smoking: 50 years’ observations on
male British doctors. BMJ, 328, 1519.

6. Tabuchi, T., Ito, Y., Ioka, A., Nakayama, T., Miyashiro, I. and
Tsukuma, H. (2013) Tobacco smoking and the risk of subse-
quent primary cancer among cancer survivors: a retrospec-
tive cohort study. Ann. Oncol., 24, 2699–2704.

7. Lu, M., Ye, W., Adami, H.O. and Weiderpass, E. (2008) Stroke
incidence in women under 60 years of age related to alcohol
intake and smoking habit. Cerebrovasc. Dis., 25, 517–525.

8. Vink, J.M., Smit, A.B., de Geus, E.J., Sullivan, P., Willemsen,
G., Hottenga, J.J., Smit, J.H., Hoogendijk, W.J., Zitman, F.G.
and Peltonen, L. (2009) Genome-wide association study of
smoking initiation and current smoking. Am. J. Hum. Genet.,
84, 367–379.

9. Argos, M., Tong, L., Pierce, B.L., Rakibuz-Zaman, M., Ahmed,
A., Islam, T., Rahman, M., Paul-Brutus, R., Rahaman, R. and
Roy, S. (2014) Genome-wide association study of smoking
behaviours among Bangladeshi adults. J. Med. Genet., 5,
327–333.

10. Tobacco and Consortium, G. (2010) Genome-wide meta-
analyses identify multiple loci associated with smoking be-
havior. Nat. Genet., 42, 441–447.

11. David, S., Hamidovic, A., Chen, G., Bergen, A., Wessel, J.,
Kasberger, J., Brown, W., Petruzella, S., Thacker, E. and Kim,
Y. (2012) Genome-wide meta-analyses of smoking behaviors
in African Americans. Transl.Psychiatry, 2, e119.

12. Guida, F., Sandanger, T.M., Castagné, R., Campanella, G.,
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D’épidémiologie Et De Santé Publique, 38, 463–468.

55. Pinheiro, J. and Bates, D. (2006) Mixed-effects models in S and S-
PLUS. Springer Science & Business Media.

4622 | Human Molecular Genetics, 2016, Vol. 25, No. 21



56. Vazquez, A., Bates, D., Rosa, G., Gianola, D. and Weigel, K.
(2010) Technical note: an R package for fitting generalized
linear mixed models in animal breeding. J. Anim. Sci., 88,
497–504.

57. Boardman, A.E., Hui, B.S. and Wold, H. (1981) The partial
least squares-fix point method of estimating interdependent
systems with latent variables. Commun. Stat. Theory Methods,
10, 613–639.

58. Viechtbauer, W. (2010) Conducting meta-analyses in R with
the metafor package. J. Statist Software, 36, 1–48.

59. Benjamini, Y. and Hochberg, Y. (1995) Controlling the
false discovery rate: a practical and powerful approach to
multiple testing. J. R. Stat. Soc. Series B (Methodological), 57,
289–300.

60. Zhang, B. and Horvath, S. (2005) A general framework for
weighted gene co-expression network analysis. Stat. Appl.
Genet. Mol. Biol., 4, Article17.

61. Langfelder, P. and Horvath, S. (2008) WGCNA: an R package
for weighted correlation network analysis. BMC
Bioinformatics, 9, 559.

62. Langfelder, P., Zhang, B. and Horvath, S. (2008)
Defining clusters from a hierarchical cluster tree: the

Dynamic Tree Cut package for R. Bioinformatics, 24,
719–720.

63. Abecasis, G.R., Cardon, L.R., Cookson, W., Sham, P. and
Cherny, S.S. (2000) Association analysis in a variance compo-
nents framework. Genet. Epidemiol., 21, S341–S346.

64. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler,
H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S.,
Eppig, J.T., et al. (2000) Gene ontology: tool for the unifica-
tion of biology. The Gene Ontology Consortium. Nat.
Genet., 25, 25–29.

65. Yanbaeva, D.G., Dentener, M.A., Creutzberg, E.C., Wesseling,
G. and Wouters, E.F. (2007) Systemic effects of smoking.
Chest J., 131, 1557–1566.

66. Levitzky, Y.S., Guo, C.Y., Rong, J., Larson, M.G., Walter, R.E.,
Keaney, J.F., Sutherland, P.A., Vasan, A., Lipinska, I. and Evans,
J.C. (2008) Relation of smoking status to a panel of inflamma-
tory markers: the framingham offspring. Atherosclerosis, 201,
217–224.

67. Miller, M.R., Hankinson, J., Brusasco, V., Burgos, F., Casaburi,
R., Coates, A., Crapo, R., Enright, P., Van der Grinten, C. and
Gustafsson, P. (2005) Standardisation of spirometry. Eur.
Respir. J., 26, 319–338.

4623Human Molecular Genetics, 2016, Vol. 25, No. 21 |


	ddw288-TF1
	ddw288-TF2
	ddw288-TF3

