www.nature.com/g

ORIGINAL ARTICLE

Transduction of human neural progenitor cells with foamy virus vectors for differentiation-dependent gene expression

I Rothenaigner^{1,4}, S Kramer^{1,4}, M Meggendorfer¹, A Rethwilm² and R Brack-Werner^{1,3}

¹Institute of Virology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; ²Institute of Virology und Immunbiology, University of Wuerzburg, Wuerzburg, Germany and ³Clinical Cooperation Group 'Immune-Monitoring', Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany

Neural progenitor cells are potential vehicles for delivery of therapeutic agents into the brain. Differentiation-dependent promoters may be useful to target the therapeutic transgene expression to specific neural cell types. Here we explored the potential of vectors based on the foamy virus (FV) for genetic engineering of neural progenitor cells. We demonstrate that FV vectors can mediate stable long-term constitutive expression of the enhanced green fluorescent protein (EGFP) in neural progenitor cells. For differentiation-dependent gene expression, we constructed a FV vector with an internal expression cassette containing the human 2.2 kb promoter (Gfa2) of the astrocyte-specific glial fibrillary acidic protein (GFAP) and sequences encoding EGFP. We show FV-vector-mediated delivery of the Gfa2-egfp transgene into

the human neural stem cell line HNSC.100 and differentiation-dependent expression in stably transduced cell populations. Differentiation of the FV-transduced HNSC.100 cells to astrocytes upregulated expression of both the Gfa2-egfp transgene and the native gfap gene, confirming differentiation-dependent activation of the transduced Gfa2 promoter. These results demonstrate that differentiation-dependent gene expression can be achieved by FV-vector-mediated gene transfer to neural progenitor cells. Our findings support the use of FV vectors for the genetic engineering of neural progenitor cells for therapeutic and research applications.

Gene Therapy (2009) **16,** 349–358; doi:10.1038/gt.2008.173; published online 4 December 2008

Keywords: gene delivery; retrovirus vectors; foamy virus; neural progenitor cells; astrocytes; GFAP

Introduction

Neural progenitor cells have recently received great interest as potential therapeutic agents for cell replacement and delivery of genes into injured or diseased areas of the brain. Neural progenitor cells are self-renewing populations in the fetal and adult brain. They hold great promise for gene therapy because they can be isolated, expanded, genetically manipulated and reintroduced into the central nervous system, where they are highly migratory and are attracted to areas of brain pathology.^{1,2} The capacity of neural progenitor cells to generate neurons, oligodendrocytes and astrocytes makes them potential vehicles for the specific expression of genes in mature brain cells both for research and therapeutic purposes. This approach requires the availability of safe vectors that transduce neural progenitor cells and direct neural cell-specific gene expression.

Foamy viruses (FVs) are not known to be human pathogens, although there are some indications that the

Correspondence: Professor R Brack-Werner, Institute of Virology, Helmholtz Center Munich, Ingolstaedter Landstrasse 1, Neuherberg D-85764, Germany.

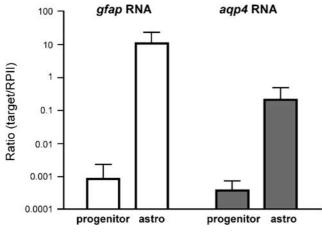
E-mail: brack@helmholtz-muenchen.de

⁴These authors contributed equally to this work.

Received 27 May 2008; revised 22 October 2008; accepted 22 October 2008; published online 4 December 2008

expression of viral gene products may be pathogenic in transgenic mouse models.³ FVs are particularly suited for the development of effective and safe vector systems,^{4–8} because they have broad host and tissue ranges,^{9–11} are not transmitted between humans and have a large packaging capacity (up to 12 kb). Furthermore, FV vectors show lower preferences for integration within transcribed genes and within or near protooncogenes than other integrating retroviral vectors.^{12–14}

The usefulness of FV vectors has recently been demonstrated by correcting a genetic defect in haematopoietic stem cells in a clinically relevant large animal model.14 FV-based vectors have also been used to achieve constitutive expression of a transgene in mature rat neural cells. 15,16 In this study, we show that FV vectors have the capacity to transduce neural progenitor cells. Therefore, we investigated the feasibility of using FV vectors to achieve differentiation-dependent gene expression in transduced human neural progenitor cell populations. For differentiation-dependent expression, we chose a 2.2-kb promoter segment (Gfa2) of the human gene for the glial fibrillary acidic protein (GFAP), which is the most commonly used astrocyte marker. Expression of the gfap gene is activated during astrogenesis.^{17–19} The Gfa2-promoter segment has been shown to direct astrocyte-specific expression in transgenic mice.20-23


As an experimental model for human neural progenitor cells, we used the multipotent human neural stem cell line HNSC.100,²⁴ which can be induced to generate populations consisting of 95% GFAP-positive astrocytes under specific culture conditions.²⁵

Here we demonstrate that a FV vector carrying a transgene with the Gfa2 promoter and sequences encoding the enhanced green fluorescent protein (EGFP) (Gfa2-egfp) can stably transduce HNSC.100 cells. We demonstrate that the expression of the Gfa2-egfp transgene is activated by astrogenesis of transduced HNSC.100 cells. These results provide proof-of-principle that FV vectors can be used to deliver genes into neural progenitor cells for differentiation-dependent expression.

Results

Differentiation of HNSC.100 progenitor populations into astrocyte populations

The cell line HNSC.100 is a nestin-positive, self-renewing human neural stem cell line capable of differentiating into neurons, oligodendrocytes and astrocytes under defined culture conditions.²⁴ We have demonstrated earlier that HNSC.100 populations cultured in the astrocyte-differentiation medium for 7 days adopt morphological features of astrocytes and show strongly increased immunoreactivity for GFAP antigen, compared with HNSC.100 populations cultured in the proliferation medium.²⁵ Here we show by real-time PCR analysis that levels of gfap RNA are strongly increased in HNSC.100 astrocyte populations compared with progenitor populations (66 784-fold increase) (Figure 1), confirming differentiation-dependent activation of the gfap promoter. To verify the differentiation of neural progenitor cells to astrocytes, a second astrocyte marker gene was analysed by real-time PCR analysis. Aquaporin 4 (AQP4) is expressed in astrocytes in vivo²⁶ and aqp4 RNA levels

Figure 1 Upregulated expression of astrocyte-specific genes by differentiation of HNSC.100 neural progenitor cells into astrocytes. RNA expression levels of the *gfap* (glial fibrillary acidic protein) and *aqp4* (aquaporin 4) genes were analysed in HNSC.100 cell populations cultured as neural progenitor cells ('progenitor') or as astrocytes ('astro'), by real-time PCR analysis of cDNA. Data are presented as the ratio of the RNA levels of target genes (*gfap* and *aqp4*) to the internal reference gene *RPII*. Error bars represent the standard deviation of six analyses.

have been shown to increase during astrocytic differentiation.²⁷ Aqp4 RNA levels also strongly increased in HNSC.100 astrocyte populations compared with progenitor populations (982-fold increase) (Figure 1). This indicates that the HNSC.100 cell line is a useful experimental system to assay astrocyte-dependent gene expression.

Establishment of FV-vector-transduced neural progenitor cell populations

Although FVs are known to infect various types of cells from different species, 10,11 it was necessary to prove that FV particles can also infect neural progenitor cells. Recombinant FV particles were produced in 293T cells cotransfected with the three packaging constructs and the pDM9 vector construct (for details see Materials and methods). The pMD9 vector²⁸ (Figure 2a) contains a cassette for the expression of EGFP under the transcriptional control of a constitutive promoter consisting of the U3 region of the LTR of the spleen focus-forming virus (SFFV). A single round of exposure to virus particles at an MOI of 0.15 resulted in the production of EGFP in 5% of the HNSC.100 cell population (data not shown). Subsequent enrichment of EGFP-positive cells by fluorescence-activated cell sorting (FACS) resulted in the establishment of an HNSC.100 population (HNSC.FV.MD9) in which the majority of cells showed marked production of EGFP (Figure 2b).

To confirm the infection of neural progenitor cells by FV vectors for another cell line, cultures of the mouse neural stem cell line C17.2²⁹ were exposed to pMD9 FV particles under the same conditions used for the transduction of the HNSC.100 cells. Again, this resulted in about 6% of EGFP-positive cells (data not shown), which could be enriched by FACS to generate an FV-transduced cell population (Figure 2b, C17.2.FV.MD9).

As transgene downregulation is an often-described phenomenon after gene transfer,³⁰ we analysed EGFP production in the HNSC.FV.MD9 population at two different cell passages (Figure 2c). Flow cytometry analysis revealed a moderate decrease in the proportion of EGFP-positive cells from 80 to 60% at the later passage. However, the levels of EGFP production in the EGFP-positive cell populations remained unchanged (same median fluorescence intensities). This indicates that long-term marker gene expression can be achieved by FV transduction of HNSC.100 neural progenitor cells.

Establishment of FV-vector-transduced HNSC.100 cell populations harbouring a transgene controlled by the astrocyte-specific Gfa2 promoter

For the transduction of a gene specifically expressed in astrocytes, the SFFV-U3 promoter in pMD9 was replaced with the astrocyte-specific Gfa2 promoter, generating the pFVGfa2-egfp vector (Figure 3a) (for details see Materials and methods). Transduction of HNSC.100 populations and FACS enrichment led to the establishment of HNSC.100 populations (HNSC.FV.Gfa2-EGFP), which displayed only very weak EGFP production (Figure 3b), indicating the low basal activity of the transduced Gfa2 promoter in undifferentiated neural progenitor cells. Stable transduction with the full-length Gfa2-egfp transgene was confirmed by PCR analysis (Figure 3c). Primers flanking the entire expression cassette

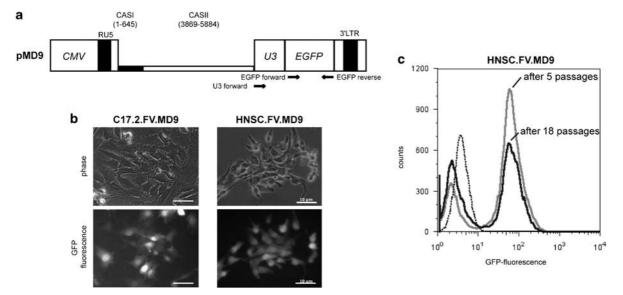


Figure 2 Stable transduction of neural progenitor populations by FV-mediated gene transfer. (a) Schematic structure of the FV vector pMD9. The pMD9 vector²⁸ contains an internal gene that uses the U3 region of the SFFV as a constitutive promoter for the expression of EGFP. Arrows indicate the binding sites of primers used for PCR analysis of the integrated vector (Figure 3c). (b) Production of EGFP in two cell populations generated by the transduction of different neural progenitor cell lines with the pMD9 vector and subsequent enrichment by FACS. The C17.2.FV.MD9 population was generated with the murine cell line C17.2 and the HNSC.FV.MD9 population with the human cell line HNSC.100. Scale bars: 10 µm. (c) Flow cytometry analysis of long-term EGFP production in HNSC.FV.MD9 cell populations. FACS plots are shown of EGFP production in progenitor populations after five (grey lines) and 18 passages (black lines). Untransduced HNSC.100 cells were analysed as control (dotted line). EGFP, enhanced green fluorescent protein; FACS, fluorescence-activated cell sorting; FV, foamy virus; SFFV, spleen focus-forming virus.

(Figure 3a) yielded an amplification product of the expected size (2990 bp). Primers flanking the egfp sequence also yielded an amplification product of the expected size (706 bp product). This amplicon was also obtained with genomic DNA for HNSC populations transduced with pMD9 (HNSC.FV.MD9). As expected, PCR with a primer that binds to the U3 region in pMD9 (Figure 2a) yielded the expected amplification product (1186 bp) with DNA from the HNSC.FV.MD9 but not from the HNSC.FV.Gfa2-EGFP cell population. No smaller amplicons were observed in any of the PCRs.

Expression of the Gfa2-egfp transgene is upregulated by the differentiation of FV-vector-transduced HNSC.100 progenitor populations into astrocytes

Our next goal was to investigate the influence of astrogenesis on expression of the Gfa2-egfp transgene in the FV-vector-transduced HNSC.100 population (HNSC.FV.Gfa2-EGFP). Expression of the Gfa2-egfp transgene was also investigated in an HNSC.100 population established by the transfection of the pGfa2-egfp expression plasmid and the selection of antibiotic-resistant cells (HNSC.pGfa2-EGFP) (Figure 4a).

Both populations showed a substantially increased production of EGFP after culture in astrocyte-differentiation medium for 7 days (Figure 4a), which was confirmed by flow cytometry (Figure 4b). Median fluorescence intensity was increased 16-fold in FV-vector-transduced astrocyte populations, but only about threefold in the stably transfected population. This difference was partly due to the increased background production of EGFP in the transfected progenitor populations, compared with the FV-transduced progenitor populations. As expected, astrocyte differentiation

did not increase the production of EGFP in the HNSC.100 populations transduced with the pMD9 vector (HNSC.FV.MD9) (Figure 4b).

Coregulation of the transduced Gfa2-egfp and the native gfap genes

To determine whether the transduced Gfa2-egfp transgene and the native gfap gene are coregulated, levels of RNAs produced from both genes in progenitor and astrocyte populations were quantified by real-time PCR analysis. As control, egfp and gfap RNA levels were analysed in the HNSC.100 population transduced with the pMD9 vector (HNSC.FV.MD9).

For both the FV-vector-transduced HNSC.100 populations, expression of the native *gfap* gene was low in progenitor populations and strongly increased after culture in astrocyte-differentiation medium (Figures 5a and b). *Gfap* expression was similar in FV-vector-transduced and -untransduced HNSC.100 populations (compare Figures 1 and 5a), indicating that FV-vector transduction did not affect the regulation of the native *gfap* promoter. In contrast, the transfected HNSC.100 population (HNSC.pGfa2-EGFP) showed a much higher basal expression of the native *gfap* gene, which was only moderately elevated after culture in astrocyte-differentiation medium (Figures 5a and b).

Astrogenesis also increased RNA levels produced from the Gfa2-*egfp* transgene in both the transduced (HNSC.FV.Gfa2-EGFP) and the stably transfected HNSC.pGfa2-EGFP populations (Figure 5c). This increase was more pronounced in the FV-transduced than in the FV-transfected cell population. Background levels of *egfp* RNA in the undifferentiated progenitor cells were lower in the FV-transduced cell population than in the

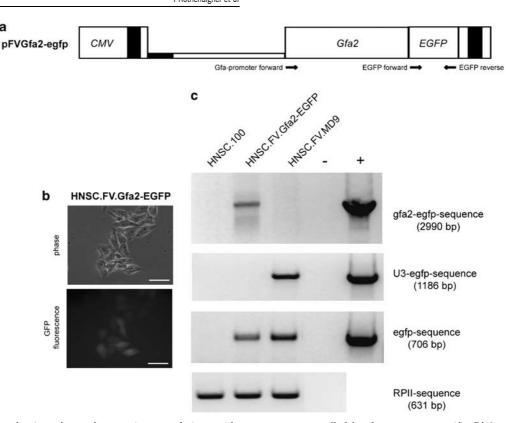


Figure 3 FV transduction of neural progenitor populations with a transgene controlled by the astrocyte-specific Gfa2 promoter. (a) The pFVGfa2-egfp vector was generated by replacing the U3 promoter in pMD9 with the 2.2 kb astrocyte-specific human Gfa2 promoter. Arrows indicate the binding sites of primers used for PCR analysis of the integrated vector (Figure 3c). (b) Low EGFP production in the HNSC.100 neural progenitor cell population transduced with the pFVGfa2-egfp vector (HNSC.FV.Gfa2-EGFP). Scale bars: 10 μm. (c) Verification of integration of the pFVGfa2-egfp vector by PCR amplification of different vector segments in genomic DNA from the HNSC.FV.Gfa2-EGFP cell population. Genomic DNAs from untransduced HNSC.100 cells and the HNSC.FV.MD9 cell population were analysed as negative and positive controls, respectively. The presence of genomic template DNA was verified by the amplification of a segment of the RNA polymerase II (RPII) gene. PCRs lacking DNA served as reagent controls (–). Amplicons of the expected sizes were generated by PCRs with pFVGfa2-egfp or pMD9 plasmid DNAs (+). EGFP, enhanced green fluorescent protein; FV, foamy virus.

stably transfected population (data not shown). This agrees with the lower background production of the EGFP protein in the FV-transduced progenitor cell population (HNSC.FV.Gfa2-EGFP, Figure 4b). As expected, *egfp* RNA levels were not elevated in astrocyte populations of pMD9-transduced HNSC.100 cells (HNSC.FV.MD9, Figure 5c).

In agreement with the results of the analysis of RNA levels, western blot analysis confirmed the upregulated production of both EGFP and GFAP proteins in astrocyte populations of HNSC.FV.Gfa2-EGFP cells, whereas only production of GFAP but not EGFP was upregulated in HNSC.FV.MD9 cells (Figure 6).

Discussion

The availability of versatile and safe vectors for stable transfer of genes to neural progenitor cells is a prerequisite for the use of this cell type in gene therapy of central nervous system diseases. In this study, we demonstrate that FV vectors can deliver genes into human and mouse neural progenitor cells for expression. Furthermore, we provide evidence for the long-term expression of a transgene with a constitutive promoter in transduced populations of the human neural progenitor cell line HNSC.100.

Foamy virus vector-mediated delivery of a transgene controlled by the astrocyte-specific human Gfa2 promoter resulted in the establishment of HNSC.100 populations that upregulated the expression of the transduced gene upon astrogenesis. Coregulation of the FV-vectortransduced and the native gfap promoter provided further evidence for the astrocyte-specific regulation of the transduced Gfa2 promoter. This indicates that FV vectors are capable of delivering large segments of regulatory sequences for differentiation-dependent gene expression. An important prerequisite for the design of such inducible transgenes in neural progenitor cells is the availability of transcriptional regulatory sequences that retain the capacity to confer neural cell-specific gene expression out of the context of their natural gene locus. Indeed, several promoters have been identified that mediate the expression of transgenes in other neural cell types in rodent brains.^{32,33} Future studies will address the capacity of these and other promoters to direct differentiation-dependent gene expression in human neural progenitor cells transduced with the appropriate FV vectors.

Basal expression of the Gfa2-egfp transgene was higher in HNSC.100 cell populations established by transfection/antibiotic-selection procedures than in the FV-vector-transduced HNSC.100 populations (Figures 4 and 5). Interestingly, basal activation in the transfected

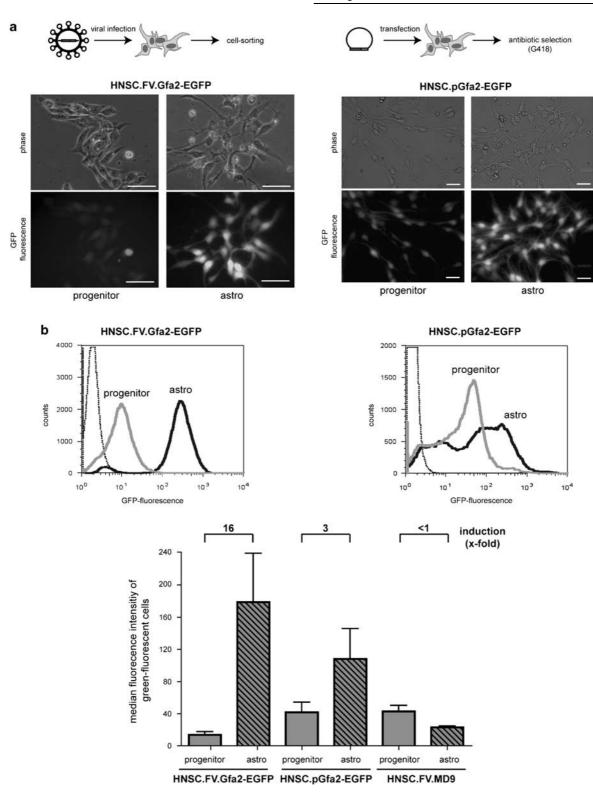


Figure 4 Astrogenesis-dependent upregulation of the expression of the Gfa2-egfp transgene. The influence of astrogenesis on the expression of the Gfa2-egfp transgene was analysed in HNSC.100 populations established either by FV transduction and cell sorting (HNSC.FV.Gfa2-EGFP) or by stable transfection of the pGfa2-egfp plasmid and selection of G418-resistant cells (HNSC.pGfa2-EGFP). (a) EGFP production in single cells. Astrogenesis increased EGFP production in both HNSC.100 populations. Background expression in progenitor cells was lower for FV-transduced cells than for the transfected cells. Scale bars: 10 μm. (b) Flow cytometry analysis of EGFP production in cell populations. Representative FACS plots of EGFP production in astrocyte (astro; black lines) and progenitor (grey lines) populations are shown. Untransduced HNSC.100 cells were analysed as control (dotted line). The bar graph shows the median fluorescence intensities of the EGFPexpressing populations, with numbers above the bars indicating the x-fold induction of EGFP expression in astrocyte populations relative to progenitor populations. Error bars represent the standard deviation of three independent analyses. EGFP, enhanced green fluorescent protein; FACS, fluorescence-activated cell sorting; FV, foamy virus.

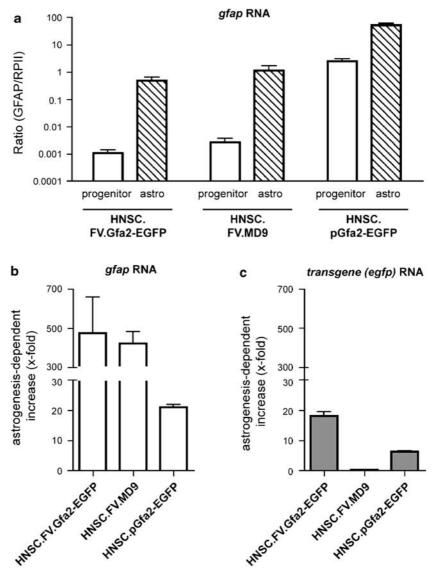


Figure 5 Influence of astrogenesis on the expression of the native gfap gene and the Gfa2-egfp transgene in HNSC.100 populations stably transduced with FV vectors or stably transfected with the vector plasmid. (a) Expression of the native gfap gene. gfap RNA levels were quantified in astrocyte and progenitor populations by real-time PCR. Data are shown as the ratio of the gfap target gene to the internal reference gene RPII. Error bars represent the standard deviation of three analyses. Astrogenesis increased the expression of gfap in all HNSC.100 populations. Levels of gfap RNA in undifferentiated progenitor cells were lower in FV-transduced cell populations (HNSC.FV.Gfa2-EGFP and HNSC.FV.MD9) than in stably transfected HNSC.100 populations (HNSC.pGfa2-EGFP). (b) Astrogenesisdependent increases in RNA levels of the native gfap gene. The data generated for the graph shown in (a) were used to calculate the increases in relative gfap RNA levels in the astrocyte populations versus progenitor cell populations by the $2^{-\Delta\Delta CT}$ method³¹ (see Materials and methods). (c) Astrogenesis-dependent increases in RNA levels of the transduced egfp transgene. Astrogenesis increased relative levels of egfp RNA in the HNSC.100 populations containing the Gfa2-egfp transgene (HNSC.FV.Gfa2-EGFP and HNSC.pGfa2-EGFP) but not in the HNSC.100 populations with the U3-egfp transgene (HNSC.FV.MD9). EGFP, enhanced green fluorescent protein; FV, foamy virus; GFAP, glial fibrillary acidic protein.

cells was not limited to the transgene but was also apparent for the native (that is, cellular) gfap gene. This suggests that the transfection/selection procedure is associated with cellular changes that increase the activity of the gfap promoter in neural progenitor cells. These changes would also be expected to increase the basal activity of the transduced Gfa2 promoter. In contrast to the transfected cell populations, the FV-vector-transduced cell populations show a similar low expression of the native gfap gene as the untransduced neural progenitor cell populations. This suggests that the

procedures for FV-vector-mediated gene delivery are less invasive and therefore safer for the generation of genetically modified neural progenitor cell populations than transfection/selection procedures.

Foamy virus vector-mediated transfer of genes to neural progenitor cells has several potential applications aiding the experimental evaluation and the potential development of gene therapy approaches based on neural progenitor cells. One methodical potential application could be the labelling of neural progenitor cells by transgenes encoding fluorescent marker proteins. Line-

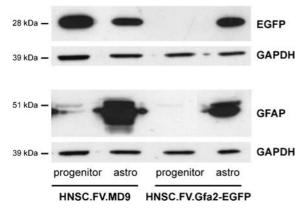


Figure 6 Western blot analysis of the influence of astrogenesis on the production of GFAP and EGFP proteins in FV-transduced HNSC.100 populations. Astrogenesis increased the production of both EGFP and GFAP in HNSC.FV.Gfa2-EGFP populations. In HNSC.FV.MD9 populations, astrogenesis selectively increased the production of GFAP but not EGFP. GAPDH was used as loading control. EGFP, enhanced green fluorescent protein; FV, foamy virus; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; GFAP, glial fibrillary acidic protein.

age-specific marker transgenes would allow the tracking of mature cell types originating from the engrafted progenitor cells, providing distinct advantages over current methods like directing labelling of engrafted cells with dyes34-37 and immunohistochemical staining of

Another potential application of FV vectors is their use in the ex vivo genetic engineering of neural progenitor cells for the expression of therapeutically relevant genes. The FV vector system has several advantages over other retroviral vectors for potential gene therapy approaches. Thus, it is based on a virus without any known pathogenicity in humans. Furthermore, FV particles can directly deliver genes into neural progenitor cells without the need for incorporation of foreign glycoproteins, whereas the human immunodeficiency virus-based gene delivery into central nervous system cells requires pseudotyping of virus particles. 42,43 In addition, the results of this study show that FV vectors can transfer genes with large regulatory DNA segments and mediate inducible gene expression.

HNSC.100 cells and other clonally derived immortalized neural progenitor cell lines have been shown to survive engraftment, refrain from forming tumours and to retain the capacity to migrate and to differentiate into various cell types in rodent brain tissues. 44,45 FV transduction of genes for lineage-specific expression has been demonstrated only for the HNSC.100 human neural progenitor cell line so far. Nevertheless, these results raise the exciting possibility that FV vectors may allow the generation of transduced neural progenitor cell populations, for use as delivery vehicles for regulated expression of therapeutic molecules in vivo.

Neural progenitor cells can migrate and differentiate into astrocytes in response to factors produced at sites of brain pathology.^{46–48} This raises the possibility that engrafted FV-vector-transduced neural progenitor cells transduced with genes controlled by the Gfa2 promoter could migrate to diseased areas of the brain, where differentiation into astrocytes could induce the expression of therapeutically relevant gene products.

Our study implicates FV vectors as promising tools for the genetic engineering of neural progenitor cells for potential therapies of central nervous system diseases. However, it is important to consider that at this stage it is far from clear whether and how gene therapy concepts based on neural progenitor cell can be developed into clinically useful therapeutic options for neurodegenerative diseases in humans. FV vectors have a high potential to contribute to the clarification of this important issue.

Materials and methods

Cell culture

All cells were cultured in an H₂O-saturated atmosphere with 7% CO₂ at 37 °C. All cell cultures with the human immortalized neural stem cells HNSC.100²⁴ were carried out on poly-D-lysine-coated plastic ware in a basal medium containing Dulbecco's modified Eagle's medium:F12, 0.5% fetal calf serum, N2 supplement, 1% bovine serum albumin, 1% penicillin/streptomycin and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer. HNSC.100 cells were maintained in a proliferating and self-renewing state (that is, progenitor cultures) by supplementing the basal medium with 20 ng ml⁻¹ of epidermal growth factor and 20 ng ml⁻¹ of basic fibroblast growth factor. HNSC.100 progenitor cultures were passaged by splitting cells 1:10 after 4 days of culture and re-plating. For differentiation into astrocytes, HNSC.100 were cultured in basal medium supplemented with 100 ng ml⁻¹ of ciliary neurotrophic factor (CNTF) (that is, astrocyte-differentiation medium) for at least 7 days.²⁵ Basic fibroblast growth factor, epidermal growth factor and CNTF were purchased from Tebu-Bio (Offenbach, Germany) and all other cell culture reagents from Invitrogen (Karlsruhe, Germany).

Human embryonic kidney cell line 293T and human HT1080 fibrosarcoma cells were maintained in Dulbecco's modified Eagle's medium containing 2 nm Gluta-MAX I supplemented with 10% fetal calf serum and 1% penicillin/streptomycin.

Mouse neural stem cell line C17.229 was cultured in Dulbecco's modified Eagle's medium containing 2 nM GlutaMAX I supplemented with 10% fetal calf serum, 5% horse serum and 1% penicillin/streptomycin.

HNSC.pGfa2-EGFP populations were established by transfecting HNSC.100 cells with the pGfa2-egfp plasmid (500 ng) (see section Plasmids and FV vectors) using Fugene6 transfection reagent (Roche Diagnostics, Mannheim, Germany) and subsequent G418 selection $(500 \, \mu g \, ml^{-1}).$

Plasmids and FV vectors

The pMD9 FV vector²⁸ harbours a human cytomegaloimmediate-early gene enhancer/promoter, sequences from the genome of the primate FV type 1 required for vector transfer (for details see Heinkelein et al.28) and a cassette for the expression of EGFP under the control of the SFFV-U3 promoter. The 2.2 kb promoter sequence of the human gfap gene was isolated from the plasmid pGfa2-lacZ49 by digestion with EcoRI and introduced into the multiple cloning site of pEGFP-1 (Clontech, Saint-Germain-en-Laye, France) to generate pGfa2-egfp. Plasmid pGfa2-egfp contains a separate expression cassette for neomycin resistance. The promo-

ter–reporter gene cassette was isolated from pGfa2-egfp by digestion with *BgI*II, followed by fill-in of 5′ overhangs to form blunt ends with Klenow DNA polymerase and subsequent digestion with *Not*I. pFVGfa2-egfp was generated by inserting the Gfa2-egfp segment into plasmid pMD9 digested with *BsmBI* and *Not*I to remove the SFFV-U3-egfp expression cassette.

Particle production and infection

For the production of FV particles, 1.6×10^6 293T cells were seeded in 6-cm diameter dishes 1 day before they were cotransfected with $1.5\,\mu g$ each of the packaging constructs pClgag-2, pCpol-2 and pCenv- $1^{28,50,51}$ and $1.5\,\mu g$ of the vector construct pFVGfa2-egfp or pMD9. Transfections were performed with PolyFect according to the manufacturer's protocol (Qiagen, Hilden, Germany). Twenty-four hours after transfection, the cells were treated with 10 mM sodium butyrate for 8 h to stimulate the expression from the cytomegalovirus enhancer/promoter contained in all constructs. Cell culture supernatants (2.5 ml) were harvested 48 h after transfection, purified by filtration through filters (pore size 0.45 μ m) and used for infection of target cells.

Titres of the pMD9 vector were determined by monitoring transduction efficiencies of HT1080 cells by flow cytometry 4 days after infection as described.²⁸

For infection with FVs, HNSC.100 progenitor populations were seeded at a density of 3×10^5 cells in six-well plates. Twenty-four hours after plating, the culture medium in each well was replaced with 1 ml of cell-free supernatant from 293T FV-producer cells. Infections with the pMD9 FV vector were performed at an MOI of 0.15. After incubation for 48 h, the 293T supernatant was removed, cells were washed and culture of HNSC.100 cells continued in basal medium containing epidermal growth factor and basic fibroblast growth factor. Flow cytometry analysis of EGFP expression in HNSC.100 progenitor populations 10 days after infection revealed about 5% EGFP-positive cells. Cell cultures were expanded and enriched populations of green fluorescent cells obtained by FACS.

Quantitative and qualitative PCR

Total RNA was extracted by Qiagen RNeasy Mini Kit, subjected to DNAse digestion (Promega, Mannheim, Germany) and first-strand cDNA generated from 1 µg of total RNA with M-MLV reverse transcriptase RNase H Minus, Point Mutant, followed by RNase H digestion step (Promega). Quantitative real-time PCR was performed with the Roche LightCycler 1.5 System, using LightCycler FastStart DNA Master SYBR Green I-Kit and standard LightCycler protocol (Roche Diagnostics).

For the relative quantification of *gfap*, *aqp4* and *egfp* RNA levels, real-time PCRs were performed with the following primers: hGFAP forward 5′-GCTTCCTGGAA CAGCAAAACAAGGC-3′, hGFAP reverse 5′-GTCTAT AGGCAGCCAGGTTGTTC-3′; hAQP4 forward 5′-GG AATCCTCTATCTGGTCACA-3′, hAQP4 reverse 5′-TGT TTGCTGGGCAGCTTTGCT-3′; and EGFP (light cycler) forward 5′-ACGTAAACGGCCACAAGTTC-3′, EGFP (light cycler) reverse 5′-AAGTCGTGCTGCTTCATGTG-3′. RNA polymerase II transcripts (RPII) were analysed as internal reference, using primers given in Radonic *et al*. ⁵² The ratio of a target gene relative to RPII was calculated as 2^{CT(RPII)}/2^{CT(target)}. The *x*-fold induction of *gfap* and *egfp*

expression in astrocyte populations relative to expression in progenitor populations was analysed using the $2^{-\Delta\Delta C_{\mathrm{T}}}$ method.⁵² The ΔC_{T} value was calculated as C_{T} (target)– C_{T} (RPII) and the $\Delta\Delta C_{\mathrm{T}}$ value as ΔC_{T} (astrocyte populations)– ΔC_{T} (progenitor populations).

Genomic DNA was extracted using QIAamp DNA MiniKit (Qiagen) according to the manufacturer's protocol. PCRs to detect integrated foamy proviral sequences were performed with the Expand High Fidelity PCR System (Roche Diagnostics) using the following primers: hGfa promoter forward 5'-TCTC TGTGCTGGGACTCACA-3', SFFV-U3 promoter forward 5'-TGCGGGAGACGTCGAGTCCA-3', EGFP forward 5'-AAGGGCGAGGAGCTGTTCA-3' and EGFP reverse 5'-TTGTACAGCTCGTCCATGCC-3'. A segment of the RPII gene using the primers given in Radonic *et al.*⁵² was amplified as control for genomic DNA.

Fluorescence microscopy

Microscopy of cells expressing EGFP protein was performed with a computer-controlled Zeiss Axiovert 200M research microscope (Carl Zeiss, Goettingen, Germany) and Software AxioVision 4.6 (Carl Zeiss Imaging Solutions, Hallbergmoos, Germany), using a Zeiss AxioCam HRm CCD Camera with full resolution. For comparative purposes, fluorescent images were acquired with identical exposure times.

Flow cytometry

Harvested cells were analysed with a FACScalibur flow cytometer (Becton Dickinson, Heidelberg, Germany). Green fluorescence of EGFP was detected in channel FL-1. To gate the non-fluorescent cell population, non-transduced HNSC.100 cells were analysed as control. Median fluorescence intensity of green fluorescent cells was measured in histogram plots.

Western blot

For western blot analysis, equal amounts of cells were lysed with lysis buffer containing protease inhibitors. Whole-cell lysates were separated on pre-cast 4–12% Bis– Tris gradient acrylamide gels (Invitrogen) and transferred onto nitrocellulose membranes (Biorad, München, Germany). The following primary antibodies were used for protein detection with the indicated dilutions: rabbit anti-GFAP (DAKO, Hamburg, Germany), 1:5000; monoclonal rat antibodies against GFP contained in hybridoma supernatants (kindly provided by Elisabeth Kremmer, Helmholtz Center Munich), 1:50; and mouse anti-glyceraldehyde 3-phosphate dehydrogenase (Millipore, Schwalbach, Germany), 1:10 000. Horseradish peroxidase-conjugated goat anti-rabbit, anti-rat or antimouse antibodies were used as secondary antibodies (1:10 000; Dianova, Hamburg, Germany). Protein bands were detected by an enhanced chemoluminescence system (Perbio Science, Bonn, Germany).

Acknowledgements

We thank Elisabeth Kremmer (Munich) and Katrin Peters (Würzburg) for reagents and advice and Kamyar Hadian for critical reading of the paper. This study was supported by the German Research Council (DFG), Priority Program (SPP) 1230 and by the Research Program 'Infection and Immunity' of the Helmholtz Association.

References

- 1 Muller FJ, Snyder EY, Loring JF. Gene therapy: can neural stem cells deliver? Nat Rev Neurosci 2006; 7: 75-84.
- 2 Goldman S. Stem and progenitor cell-based therapy of the human central nervous system. Nat Biotechnol 2005; 23: 862-871.
- 3 Aguzzi A, Bothe K, Wagner EF, Rethwilm A, Horak I. Human foamy virus: an underestimated neuropathogen? Brain Pathol 1992; 2: 61-69.
- 4 Rethwilm A. The replication strategy of foamy viruses. Curr Top Microbiol Immunol 2003; 277: 1-26.
- 5 Rethwilm A. Foamy virus vectors: an awaited alternative to gammaretro- and lentiviral vectors. Curr Gene Ther 2007; 7:
- 6 Linial M. Why aren't foamy viruses pathogenic? Trends Microbiol 2000; 8: 284-289.
- 7 Linial ML. Foamy viruses are unconventional retroviruses. J Virol 1999; 73: 1747-1755.
- 8 Delelis O, Lehmann-Che J, Saib A. Foamy viruses—a world apart. Curr Opin Microbiol 2004; 7: 400-406.
- 9 Hill CL, Bieniasz PD, McClure MO. Properties of human foamy virus relevant to its development as a vector for gene therapy. J Gen Virol 1999; 80 (Part 8): 2003–2009.
- 10 Mergia A, Heinkelein M. Foamy virus vectors. Curr Top Microbiol Immunol 2003; 277: 131-159.
- 11 Lindemann D, Goepfert PA. The foamy virus envelope glycoproteins. Curr Top Microbiol Immunol 2003; 277: 111-129.
- 12 Nowrouzi A, Dittrich M, Klanke C, Heinkelein M, Rammling M, Dandekar T et al. Genome-wide mapping of foamy virus vector integrations into a human cell line. J Gen Virol 2006; 87: 1339-1347.
- 13 Trobridge GD, Miller DG, Jacobs MA, Allen JM, Kiem HP, Kaul R et al. Foamy virus vector integration sites in normal human cells. Proc Natl Acad Sci USA 2006; 103: 1498-1503.
- 14 Bauer Jr TR, Allen JM, Hai M, Tuschong LM, Khan IF, Olson EM et al. Successful treatment of canine leukocyte adhesion deficiency by foamy virus vectors. Nat Med 2008; 14: 93-97.
- 15 Liu W, Liu Z, Cao X, Cao Z, Xue L, Zhu F et al. Recombinant human foamy virus, a novel vector for neurological disorders gene therapy, drives production of GAD in cultured astrocytes. Mol Ther 2007; 15: 1834-1841.
- 16 Liu W, He X, Cao Z, Sheng J, Liu H, Li Z et al. Efficient therapeutic gene expression in cultured rat hippocampal neurons mediated by human foamy virus vectors: a potential for the treatment of neurological diseases. Intervirology 2005; 48: 329-335.
- 17 Bignami A, Dahl D. Astrocyte-specific protein and radial glia in the cerebral cortex of newborn rat. Nature 1974; 252: 55-56.
- 18 Rieske P, Azizi SA, Augelli B, Gaughan J, Krynska B. A population of human brain parenchymal cells express markers of glial, neuronal and early neural cells and differentiate into cells of neuronal and glial lineages. Eur J Neurosci 2007; 25: 31–37.
- 19 Pekny M, Pekna M. Astrocyte intermediate filaments in CNS pathologies and regeneration. J Pathol 2004; 204: 428-437.
- 20 Besnard F, Brenner M, Nakatani Y, Chao R, Purohit HJ, Freese E. Multiple interacting sites regulate astrocyte-specific transcription of the human gene for glial fibrillary acidic protein. J Biol Chem 1991; 266: 18877-18883.
- 21 Segovia J, Vergara P, Brenner M. Differentiation-dependent expression of transgenes in engineered astrocyte cell lines. Neurosci Lett 1998; 242: 172-176.
- 22 Jakobsson J, Rosenqvist N, Marild K, D VA, Lundberg C. Evidence for disease-regulated transgene expression in the brain with use of lentiviral vectors. J Neurosci Res 2006; 84: 58-67.
- 23 Lee Y, Messing A, Su M, Brenner M. GFAP promoter elements required for region-specific and astrocyte-specific expression. Glia 2008; 56: 481-493.

- 24 Villa A, Snyder EY, Vescovi A, Martinez-Serrano A. Establishment and properties of a growth factor-dependent, perpetual neural stem cell line from the human CNS. Exp Neurol 2000; 161:
- 25 Rothenaigner I, Kramer S, Ziegler M, Wolff H, Kleinschmidt A, Brack-Werner R. Long-term HIV-1 infection of neural progenitor populations. AIDS 2007; 21: 2271-2281.
- 26 Badaut J, Lasbennes F, Magistretti PJ, Regli L. Aquaporins in brain: distribution, physiology, and pathophysiology. J Cereb Blood Flow Metab 2002; 22: 367-378.
- 27 Yoneda K, Yamamoto N, Asai K, Sobue K, Fujita Y, Fujita M et al. Regulation of aquaporin-4 expression in astrocytes. Brain Res Mol Brain Res 2001; 89: 94-102.
- 28 Heinkelein M, Dressler M, Jarmy G, Rammling M, Imrich H, Thurow J et al. Improved primate foamy virus vectors and packaging constructs. J Virol 2002; 76: 3774-3783.
- Snyder EY, Deitcher DL, Walsh C, Arnold-Aldea S, Hartwieg EA, Cepko CL. Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell 1992; 68: 33 - 51.
- 30 Vroemen M, Weidner N, Blesch A. Loss of gene expression in lentivirus- and retrovirus-transduced neural progenitor cells is correlated to migration and differentiation in the adult spinal cord. Exp Neurol 2005; 195: 127-139.
- 31 Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001; 25: 402-408.
- 32 Hioki H, Kameda H, Nakamura H, Okunomiya T, Ohira K, Nakamura K et al. Efficient gene transduction of neurons by lentivirus with enhanced neuron-specific promoters. Gene Therapy 2007; 14: 872-882.
- 33 Hisahara S, Araki T, Sugiyama F, Yagami K, Suzuki M, Abe K et al. Targeted expression of baculovirus p35 caspase inhibitor in oligodendrocytes protects mice against autoimmune-mediated demyelination. EMBO J 2000; 19: 341-348.
- 34 Aboody KS, Bush RA, Garcia E, Metz MZ, Najbauer J, Justus KA et al. Development of a tumor-selective approach to treat metastatic cancer. PLoS ONE 2006; 1: e23.
- 35 Dickson PV, Hamner JB, Burger RA, Garcia E, Ouma AA, Kim SU et al. Intravascular administration of tumor tropic neural progenitor cells permits targeted delivery of interferon-beta and restricts tumor growth in a murine model of disseminated neuroblastoma. J Pediatr Surg 2007; 42: 48-53.
- Kim SK, Cargioli TG, Machluf M, Yang W, Sun Y, Al-Hashem R et al. PEX-producing human neural stem cells inhibit tumor growth in a mouse glioma model. Clin Cancer Res 2005; **11**: 5965–5970.
- 37 Kim SK, Kim SU, Park IH, Bang JH, Aboody KS, Wang KC et al. Human neural stem cells target experimental intracranial medulloblastoma and deliver a therapeutic gene leading to tumor regression. Clin Cancer Res 2006; 12: 5550-5556.
- 38 Lee HJ, Kim KS, Kim EJ, Choi HB, Lee KH, Park IH et al. Brain transplantation of immortalized human neural stem cells promotes functional recovery in mouse intracerebral hemorrhage stroke model. Stem Cells 2007; 25: 1204-1212.
- Chu K, Kim M, Jeong SW, Kim SU, Yoon BW. Human neural stem cells can migrate, differentiate, and integrate after intravenous transplantation in adult rats with transient forebrain ischemia. Neurosci Lett 2003; 343: 129-133.
- 40 Chu K, Kim M, Park KI, Jeong SW, Park HK, Jung KH et al. Human neural stem cells improve sensorimotor deficits in the adult rat brain with experimental focal ischemia. Brain Res 2004; **1016**: 145–153.
- 41 Jeong SW, Chu K, Jung KH, Kim SU, Kim M, Roh JK. Human neural stem cell transplantation promotes functional recovery in rats with experimental intracerebral hemorrhage. Stroke 2003; 34: 2258-2263.

- 42 Jakobsson J, Lundberg C. Lentiviral vectors for use in the central nervous system. *Mol Ther* 2006; **13**: 484–493.
- 43 Capowski EE, Schneider BL, Ebert AD, Seehus CR, Szulc J, Zufferey R et al. Lentiviral vector-mediated genetic modification of human neural progenitor cells for ex vivo gene therapy. J Neurosci Methods 2007; 163: 338–349.
- 44 Rubio FJ, Bueno C, Villa A, Navarro B, Martinez-Serrano A. Genetically perpetuated human neural stem cells engraft and differentiate into the adult mammalian brain. *Mol Cell Neurosci* 2000; 16: 1–13.
- 45 Kim SU. Genetically engineered human neural stem cells for brain repair in neurological diseases. *Brain Dev* 2007; **29**: 193–201.
- 46 Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M, Teng YD et al. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci USA 2004; 101: 18117–18122.
- 47 Xu Q, Wang S, Jiang X, Zhao Y, Gao M, Zhang Y *et al.* Hypoxiainduced astrocytes promote the migration of neural progenitor cells via vascular endothelial factor, stem cell factor, stromal-

- derived factor-1alpha and monocyte chemoattractant protein-1 upregulation *in vitro*. *Clin Exp Pharmacol Physiol* 2007; **34**: 624–631.
- 48 Faijerson J, Tinsley RB, Aprico K, Thorsell A, Nodin C, Nilsson M et al. Reactive astrogliosis induces astrocytic differentiation of adult neural stem/progenitor cells in vitro. J Neurosci Res 2006; 84: 1415–1424.
- 49 Brenner M. Structure and transcriptional regulation of the GFAP gene. *Brain Pathol* 1994; 4: 245–257.
- 50 Heinkelein M, Schmidt M, Fischer N, Moebes A, Lindemann D, Enssle J *et al.* Characterization of a *cis*-acting sequence in the Pol region required to transfer human foamy virus vectors. *J Virol* 1998; 72: 6307–6314.
- 51 Heinkelein M, Thurow J, Dressler M, Imrich H, Neumann-Haefelin D, McClure MO *et al.* Complex effects of deletions in the 5' untranslated region of primate foamy virus on viral gene expression and RNA packaging. *J Virol* 2000; 74: 3141–3148.
- 52 Radonic A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A. Guideline to reference gene selection for quantitative real-time PCR. *Biochem Biophys Res Commun* 2004; **313**: 856–862.