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Abstract

We have performed a metabolite quantitative trait locus (mQTL) study of the 1H nuclear magnetic resonance spectroscopy
(1H NMR) metabolome in humans, building on recent targeted knowledge of genetic drivers of metabolic regulation. Urine
and plasma samples were collected from two cohorts of individuals of European descent, with one cohort comprised of
female twins donating samples longitudinally. Sample metabolite concentrations were quantified by 1H NMR and tested for
association with genome-wide single-nucleotide polymorphisms (SNPs). Four metabolites’ concentrations exhibited
significant, replicable association with SNP variation (8.6610211,p,2.8610223). Three of these—trimethylamine, 3-amino-
isobutyrate, and an N-acetylated compound—were measured in urine. The other—dimethylamine—was measured in
plasma. Trimethylamine and dimethylamine mapped to a single genetic region (hence we report a total of three implicated
genomic regions). Two of the three hit regions lie within haplotype blocks (at 2p13.1 and 10q24.2) that carry the genetic
signature of strong, recent, positive selection in European populations. Genes NAT8 and PYROXD2, both with relatively
uncharacterized functional roles, are good candidates for mediating the corresponding mQTL associations. The study’s
longitudinal twin design allowed detailed variance-components analysis of the sources of population variation in
metabolite levels. The mQTLs explained 40%–64% of biological population variation in the corresponding metabolites’
concentrations. These effect sizes are stronger than those reported in a recent, targeted mQTL study of metabolites in
serum using the targeted-metabolomics Biocrates platform. By re-analysing our plasma samples using the Biocrates
platform, we replicated the mQTL findings of the previous study and discovered a previously uncharacterized yet
substantial familial component of variation in metabolite levels in addition to the heritability contribution from the
corresponding mQTL effects.
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Introduction

Expression quantitative trait loci (eQTL) studies have proved a

powerful aid to functional genomics, with many thousand genetic

loci now highlighted that affect RNA transcription levels or

splicing in human tissues [1]. eQTL studies have accelerated the

characterization of biological mechanisms governing gene regula-

tion [2–5], and genome-wide multi-tissue maps of known eQTLs

have clarified the biological basis for a proportion of disease-

associated [6–7] and positively selected [8] loci (e.g. http://eqtl.

uchicago.edu/cgi-bin/gbrowse/eqtl/). Genetic variation at eQT

Ls can be incorporated into network models that help define

dependence between genotypes, molecular traits, environment,

and physiological states [9–10]. The success of eQTL studies

points to the potential value in applying the eQTL paradigm to

other molecular traits besides mRNA transcript levels [11–14]. In

the current study, we associate genome-wide genetic variation with

concentrations of metabolites, small molecules involved in biochem-

ical processes in living systems, which can be measured in samples

such as biofluids and tissue extracts using 1H nuclear magnetic

resonance spectroscopy (1H NMR) [15–17], or by the Biocrates

platform. (For convenience, we use the term ‘Biocrates platform’ in

the current paper to refer to the targeted-metabolomic platform

using flow-injection tandem mass spectrometry—FIA-MS—devel-

oped by Biocrates Life Sciences [14,18].)

Metabolites are mechanistically further removed from the

genome than are mRNAs, creating an important qualitative

distinction between metabolite QTL (mQTL) and eQTL studies.

The mRNA-to-gene mapping is a useful property of eQTL studies,

allowing the search for a cis eQTL of each mRNA to be focused on a

relatively small, gene-centred region. Moreover, most known

eQTLs are cis-acting single-nucleotide polymorphisms (SNPs), lying

usually within tens of kb of the genes whose expression they

influence [1,5]. Whilst metabolite concentrations are influenced

indirectly by mRNA and protein expression, there is not typically a

one-to-one metabolite-to-gene correspondence known, or indeed

expected, a priori. An mQTL study tests variation in each metabolite

for association with genome-wide genetic variation. As such a large

number of tests is performed, effect sizes must be substantially larger

to be reach statistical significance. Thus, as well as being potentially

rarer, mQTLs are typically more difficult to detect than eQTLs of

equivalent effect size.

A number of recent studies have reported mQTLs for serum

metabolite concentrations in humans [14,19]. Illig et al. [14]

genotyped 1,809 individuals of Northern European ancestry at

genome-wide single-nucleotide polymorphisms (SNPs), and deter-

mined concentrations of 163 metabolites in serum samples from

the same individuals, using the Biocrates platform (targeted

metabolomics using FIA-MS) [18]. They went on to quantify

association between each SNP and a derived set of 26,569

metabolic traits (including 163 raw metabolite concentrations and

all pair-wise metabolite concentration ratios). They discovered

nine significant, replicable associations between metabolite

concentration ratios and SNPs. We demonstrate in the current

paper that their study [14] was well powered to detect mQTLs

explaining approximately 3% or more of population variation in

those serum metabolites targeted by Biocrates. In the current

paper the effect size of an mQTL is defined to be the proportion of

population variation in metabolite concentration that is explained

by genetic variation at the corresponding mQTL SNP.

The primary question addressed by our study is: ‘Are there 1H

NMR-detectable metabolites in urine or plasma that are strongly

influenced by common single-locus genetic variation?’ To this end,

we performed an mQTL-discovery study using 1H NMR to

analyse plasma and urine samples from multiple cohorts (see

Results and Materials and Methods). 1H NMR is an untargeted,

discovery-driven approach that covers many important substances

involved in major biochemical functions and key intermediary

processes [16]. Our study demonstrates the existence of mQTLs of

larger effect size than those reported in [14] for the untargeted set

of metabolites detectable by 1H NMR, in urine as well as plasma

(urine is previously unexplored for mQTLs). The current paper’s

secondary aim was to provide further support for the findings of

[14]. We conducted replication of the findings of [14], using the

Biocrates platform to assay our set of plasma samples. We

replicated additional mQTLs, and characterized the familial

component of biological variation in mQTL-driven metabolite

levels, augmenting the mQTL-derived heritability.

Results

Cohorts and data acquisition
We collected plasma and urine samples from participants across

two cohorts—MolTWIN and MolOBB—as part of the MolPAGE

programme. The MolTWIN cohort comprised 142 female twins

of Northern European descent, who donated samples longitudi-

nally. The MolOBB cohort comprised 69 participants in the

Oxford Biobank (OBB) [20].

For all participants across both cohorts we acquired: 1H NMR

spectra on plasma and urine samples; Biocrates-platform metab-

olite concentration data on plasma samples; and genome-wide

SNP data (see Materials and Methods).

Extraction of metabolite peaks from spectra and
genome-wide scan (1H NMR)

Analysis of a biological sample by 1H NMR provides a spectrum,

which is comprised of the superimposed spectral profiles of

individual metabolites; a metabolite’s profile is made up of peaks

from each chemically distinct hydrogen atom in the corresponding

molecule. The peak position of a given hydrogen on the horizontal

(frequency) axis is known as a chemical shift and is quoted in parts per

million (ppm, often termed a d value) from that of a reference

substance. The concentration of each detectable hydrogen-

containing metabolite can be inferred from the area under its total

Author Summary

Physiological concentrations of metabolites—small mole-
cules involved in biochemical processes in living systems—
can be measured and used to diagnose and predict
disease states. A common goal is to detect and clinically
exploit statistical differences in metabolite concentrations
between diseased and healthy individuals. As a basis for
the design and interpretation of case-control studies, it is
useful to have a characterization of metabolic diversity
amongst healthy individuals, some of which stems from
inter-individual genetic variation. When a single genetic
locus has a sufficiently strong effect on metabolism, its
genomic position can be determined by collecting
metabolite concentration data and genome-wide geno-
type data on a set of individuals and searching for
associations between the two data sets—a so-called
metabolite quantitative trait locus (mQTL) study. By so
tracing mQTLs, we can identify the genetic drivers of
metabolism, characterize how the nature or quantity of the
corresponding expressed protein(s) feeds forward to
influence metabolite levels, and specify disease-predictive
models that incorporate mutual dependence amongst
genetics, environment, and metabolism.

mQTLs Exhibit Genetic Evidence of Selection
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specific profile, or under a specific peak if the number of protons

contributing to it is known. We preprocessed spectra, and extracted

a total of 526 metabolite peaks from each pair of samples, i.e. the

two samples (plasma and urine) donated by a participant on a visit to

the clinic. These peaks represent fewer than 526 metabolites with

some redundancy (see Materials and Methods).

Using data from the MolTWIN cohort, each of the 526

metabolite peaks was tested for association with 2,541,644

autosomal SNPs (of which 2,245,627 were imputed and 296,017

were typed). In order to address both multiple testing and the

kinship of twin pairs, we used a permutation-based procedure,

constraining the genome-wide false-discovery probability to be less

than 0.001 for each metabolite peak’s genome-wide scan.

We detected, and then replicated, four metabolites driven

largely by SNP variation (8:6|10{11
vpv2:8|10{23), across

three genomic regions, explaining between 40%–64% of biological

population variation in these four metabolites’ concentrations.

Genetic details of the hit regions are shown in Table 1. Note that

there are only three hit regions for the four metabolites because

two metabolites mapped to a single, shared region. One of the

mQTLs is in strong linkage disequilibrium (LD, reviewed in [21])

with SNP variation associated with renal function [22–23]. We

found that two of the three mQTL regions exhibited genetic

evidence of having experienced strong, recent positive selection in

European populations (further details of these findings are

presented later, in dedicated sections in Results and Discussion).

Identification of metabolites (1H NMR)
We proceeded to identify as many of the mQTL-driven

metabolites as possible using a combination of: the web-based

human metabolome database [24], our in-house developed

database, statistical total correlation analysis [25], and other

literature [26]. We unambiguously identified three out of four

metabolites, and partially identified the fourth. The mQTL at

chromosome 10q24.2 had two associated metabolites, identified as

trimethylamine in urine (TMAu), and dimethylamine in plasma

(DMAp). The mQTL at 5p13.2 affects urine concentration of 3-

amino-isobutyrate (a.k.a. b-amino-isobutyrate, denoted by

BAIBu).

The mQTL at 2p13.1 associates with concentrations of one or

more urine metabolites that we partially identified as N-acetylated

compound(s): X.NH.CO.CH3, with X unknown; we denote this

set of one or more metabolites as N-ACu. We were unable to

annotate N-ACu unambiguously despite conducting a number of

additional experiments, including: seven experiments in which we

spiked candidate compounds into selected urine samples and then

re-measured the 1H NMR spectra; solid phase extraction

experiments on urine samples in which we attempted to separate

out N-ACu and thus aid its identification; and 2-dimensional
1H-13C heteronuclear single quantum coherence NMR spectros-

copy experiments on selected urine samples.

Table 2 summarizes these metabolite annotations. Figure S1

displays the three mQTL-driven urine metabolite peaks on the

same scale, allowing visual assessment of their relative size.

Mixed-effects analysis of hit regions (1H NMR)
We went on to characterize more accurately each metabolite’s

associations with SNPs within 200 kb of the hit regions. We used a

linear mixed-effects model to account for: the sharing of genes and

environment across twins, the collection of multiple samples

longitudinally from some subjects, and the technical replication of

each biological sample (see Materials and Methods).

Under this model, we calculated p-values for the test of no

association between the metabolite and each regional SNP in turn.

Figure 1, Figure 2, Figures S2 and S3 display the p-values for all

regional tests of association superimposed on patterns of LD and

the positions of genes. The details of association of each metabolite

with its most strongly associated SNP are listed in Table 3, while

Table S1 contains association results for SNPs within 200 kb of hit

regions. The relationship between metabolite concentration and

genotype is presented graphically in Figure 3.

Variance decomposition of metabolite concentrations
(1H NMR and Biocrates)

For 1H NMR mQTLs, we estimated the proportion of

biological variation in the metabolite’s concentration explained

by the corresponding mQTL SNP, and decomposed the

remaining variation into familial, individual-environmental, and

longitudinally fluctuating (visit) effects (Figure 4, Table 4, and

Materials and Methods). The familial component of variation

modelled the combined effects of genome-wide identity-by-descent

genetic sharing, and common environment (i.e. environmental

influences shared by twins after their conception). The individual-

visit and common-visit components of variation modelled the

longitudinal fluctuations between sample-donation visits that were

respectively non-shared and shared by twins in a pair (the

common-visit effect was included in the model because twins

visited the clinic in pairs).

The proportions shown in Figure 4 and Table 4 are proportions

of phenotypic variance after the experimental variance has been

removed. It was useful to extract the experimental variance prior

to comparison across platforms, as the primary focus was on the

Table 1. Genetic details of 1H NMR mQTL regions.

Allele Frequencya

ID SNP Chr Positionb Local Genes Allelesc MolTWIN CEUd YRIe

TMAu rs7072216 10 100156853 PYROXD2 (C10orf33) C/T 0.35 0.25 0.86

N-ACu rs9309473 2 73743982 ALMS1, NAT8, TPRKB, DUSP11 G/A 0.25 0.21 0.59

BAIBu rs37369 5 35037115 AGXT2 T/C 0.10 0.09 0.67

DMAp rs6584194 10 100160399 PYROXD2 (C10orf33) C/T 0.35 0.37 0.90

aFrequency of minor allele (where minor/major alleles are defined by their frequency in the Northern European HapMap-CEU population [29]).
bNCBI build 37 coordinates.
cMinor/major allele in HapMap-CEU.
dFrequency in Northern European (HapMap-CEU) population.
eFrequency in African (HapMap-YRI) population [29].
doi:10.1371/journal.pgen.1002270.t001

mQTLs Exhibit Genetic Evidence of Selection

PLoS Genetics | www.plosgenetics.org 3 September 2011 | Volume 7 | Issue 9 | e1002270



variability properties of the metabolite concentrations, not on the

experimental variation associated with the measurement process.

The mQTLs explained 40%–64% of biological population

variation in the corresponding 1H NMR metabolite levels.

We also performed a variance decomposition of the metabolic

traits, quantified on the Biocrates platform, for which mQTLs

were identified in [14] (Figure 4, Table 4, and Materials and

Methods). The Biocrates-platform mQTLs explained up to 35% of

biological variation in the corresponding metabolic traits (smaller

effect sizes than for the 1H NMR mQTLs). Our results

qualitatively extended the findings of [14]: the current study’s

design allowed the decomposition of the component of variation in

metabolite concentration that was not explained by the mQTL

itself (see Discussion).

To investigate potential bias in effect-size estimates (the

‘‘winner’s curse’’ phenomenon [27]), we compared effect-size

Table 2. Annotation of mQTL-driven 1H NMR-detectable metabolites.

ID Data Set Peak ppm Interval Metabolite Formula

TMAu Urine Standard 1d (2.857 - 2.87)a trimethylamine C3H9N

N-ACu Urine Standard 1d (2.034 - 2.042) N-acetylated compound(s) X.NH.CO.CH3
b

BAIBu Urine Standard 1d (1.185 - 1.191) 3-amino-isobutyrate CH3.CH.(CH2.NH2).COOH

DMAp Plasma Spin-Echo (2.7 - 2.724) dimethylamine (CH3)2.NH

aWe observed frequency shifts in TMA peaks between the MolTWIN and MolOBB data sets, attributable to inter-study differences in experimental conditions, such as
sample pH or temperature. To align the peaks across cohorts, a different peak interval was used for TMAu in the MolOBB data: (2.86 – 2.88).

bThe metabolite was partially identified as an N-acetylated compound: X.NH.CO.CH3, with X unknown.
doi:10.1371/journal.pgen.1002270.t002

Figure 1. Hit region for N-ACu. Top: location of genes, with rectangles denoting the position of exons. Middle: log-transformed p-values
({log10(p)) for the test of association of the metabolite’s concentration with each SNP in the region. Bottom: LD between each pair of SNPs in the
region, with the colour scale for r2 superimposed.
doi:10.1371/journal.pgen.1002270.g001

mQTLs Exhibit Genetic Evidence of Selection
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estimates across discovery and replication studies, both for the

Biocrates-platform mQTLs (Figure S4), and for the 1H NMR

mQTLs (Figure S5). We found there to be a good degree of

consistency in effect-size estimates between discovery and

replication studies.

Quantification of study power (1H NMR and Biocrates)
Figure 5 relates the detectable effect size (the proportion of

variance in concentration explained by the mQTL SNP,

quantified by r2) to the sample size for each study (power

calculations used the GeneticsDesign R package). Our study had

power to detect associations with approximately r2
w32%, while

[14] had power to discover much smaller effects (approximately

r2
w3%). Better powered studies such as [14] have the potential to

offer further interesting insights into the mQTL basis of the 1H

NMR metabolome.

Proximity of mQTLs to known GWAS SNPs (1H NMR)
We searched within 200 kb of each metabolite’s hit region for

SNPs previously associated with phenotypes in GWASs [28]. SNP

rs13538 is in strong LD with the N-ACu hit region at chromosome

2p13.1 (r2~1 between rs13538 and rs9309473 in the HapMap 3

individuals of Northern European ancestry, i.e. HapMap-CEU

[29]). Variation at rs13538 has been shown to correlate with

serum creatinine concentration and other measures of renal

impairment, as well as with susceptibility to chronic kidney disease

[22–23].

Coincidence of mQTLs with positively selected regions
(1H NMR and Biocrates)

Upon surveying the literature related to genes in the region of the

N-ACu mQTL, we realized that several papers had highlighted this

particular region as carrying one of the strongest signatures of

selection that has been discovered in the human genome (see, e.g.,

[8,30]). This led us to check all known mQTLs for coincidence with

positively selected regions (as identified by the genome-wide scan for

such regions in [8]; see also [31] for a review of the detection and

relevance of the genetic signature of natural selection).

We compared the locations of all mQTLs discussed in the

current paper to the positively selected loci identified in [8]. Two

of our three replicated mQTL hits were within such regions (the

mQTL for N-ACu, and the mQTL that affects both TMAu and

DMAp). We also examined the genomic locations of each of Illig

et al.’s 13 replicated mQTLs (see dedicated section below on

Figure 2. Hit region for TMAu. Top: location of genes, with rectangles denoting the position of exons. Middle: log-transformed p-values
({log10(p)) for the test of association of the metabolite’s concentration with each SNP in the region. Bottom: LD between each pair of SNPs in the
region, with the colour scale for r2 superimposed.
doi:10.1371/journal.pgen.1002270.g002

mQTLs Exhibit Genetic Evidence of Selection
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replication), and found none to be within positively selected

regions as identified in [8].

Analysis of TMAu and DMAp mQTL (1H NMR)
SNPs significantly associated with TMAu and DMAp fall within

a haplotype block of approximately 40 kb at chromosome

10q24.2, which contains the PYROXD2 gene, a probable pyridine

nucleotide-disulphide oxidoreductase gene, previously named

C10orf33 (see Figure 2 and Figure S2). The most strongly

associated SNP, rs7072216, has alleles C/T at frequency 0.25/

0.75 in Europe (HapMap-CEU [29]). Our data indicate that

TMAu concentration and DMAp concentration both increase

with the number of copies of the major (T) allele. TMAu displays

non-additivity, with the T allele recessive, and the TT homozygote

class showing a greater-than-additive increase (on logarithmic

scale) on the levels of the other two genotypic classes (Figure 3).

There is a non-synonymous SNP—rs2147896—in strong LD with

rs7072216 (r2~1; see also Table S2A). Functional predictions

(SIFT [32] and PolyPhen [33]) and the PhyloP conservation score

[34–35] for rs2147896 did not point to a clear functional impact,

or to it being significantly conserved (Table S2B). SNP rs2147896

does not lie in a known protein domain, and web-based protein

structure-modelling tools [36–37] did not predict that the

rs2147896 polymorphism would have an effect on PYROXD2’s

ligand binding site. However, PYROXD2 (C10orf33) eQTLs have

been discovered in fibroblasts (rs2147897 [2]) and liver (rs2147901

[38]), with these eQTLs in high LD (up to r2~1:00 and r2~0:76
respectively) with mQTL SNPs of TMAu and DMAp (Table S3).

This raised the possibility that eQTL-driven population variation

Figure 3. Relative metabolite concentrations against genotypes at their most significantly associated mQTL SNP. Each point
corresponds to a study participant’s mQTL genotype and corresponding metabolite concentration. Metabolite identifiers are labelled at top.
Genotypic classes for each mQTL are shown on the horizontal axis (random horizontal variation within each genotypic class is introduced for clarity);
dbSNP identifiers are labelled at bottom. At each metabolite peak, the transformed data vector shown in the plot is v~log2 w=min wf gð Þ, where
w denotes the vector of normalized peak heights at that peak (prior to any logarithmic transformation, as described in Materials and Methods). So, the
transformation maps to zero the lowest observed concentration of each metabolite, and log2(fold change) can be visually quantified relative to this
baseline level. In particular, the maximum observed log2(fold change) in a metabolite’s concentration is easily accessible from the plot. Within-
participant replicate observations (biological and technical) were averaged on log2 scale.
doi:10.1371/journal.pgen.1002270.g003

Table 3. Statistical characterization of 1H NMR mQTL effects.

Discovery Stage
(MolTWIN) Replication Stage (MolOBB)

ID Betaa S.E.
Beta

p-value Beta S.E.
Beta

p-value Replicatedb

TMAu -1.10 0.08 2.8E-23 -1.19 0.12 7.9E-15 *

N-ACu 1.06 0.09 4.1E-19 1.10 0.13 1.4E-11 *

BAIBu 1.54 0.21 5.9E-11 1.25 0.23 1.1E-06 *

DMAp -0.65 0.09 8.6E-11 -0.52 0.19 0.0081 *

aAdditive genetic effect with increasing number of copies of the minor allele
(minor/major alleles are shown in Table 1).

bSignificant at a level of 0.0125 (significance level of 0.05 adjusted for
conducting 4 tests by the Bonferroni method).

doi:10.1371/journal.pgen.1002270.t003

mQTLs Exhibit Genetic Evidence of Selection
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in mRNA transcription at PYROXD2 mediates the mQTL of

TMAu and DMAp.

In order to investigate this eQTL hypothesis further, we extracted

estimates of PYROXD2 mRNA abundance from two separate gene-

expression microarray data sets measured on abdominal subcuta-

neous adipose tissue and whole-blood samples from the MolTWIN

cohort (Materials and Methods). We found that PYROXD2 was

expressed in whole blood, but found no evidence of rs7072216

being an eQTL of PYROXD2 in whole blood (p~0:61), a finding

consistent with [2], in which PYROXD2 eQTLs were neither

discovered in T cells nor in lymphoblastoid cell lines. However, we

did find rs7072216 to be an eQTL of PYROXD2 in subcutaneous

abdominal adipose tissue (p~1:3|10{15), with gene expression

decreasing in the number of copies of the T allele. We plotted the

mutual dependence between rs7072216 genotype, PYROXD2 gene

expression in adipose tissue, and TMAu concentration (Figure 6).

TMAu concentration was strongly negatively correlated with

PYROXD2 expression (Pearson’s r~{0:66, p~1:4|10{18).

We examined these particular gene expression data (i.e. measured

in fat and blood cells) because they had been acquired already on

MolTWIN cohort members. In performing this analysis, we were not

suggesting that variation in gene expression in fat has a direct impact

on the concentration of TMAu or DMAp. However, a substantive

proportion of eQTLs modulate expression in a similar way in

different tissues [39]. Thus, in identifying and characterizing the

mutual dependence of TMAu concentration, rs7072216 genotype,

and PYROXD2 expression in a mechanistically unrelated tissue (i.e.

fat), we have raised the possibility that a qualitatively similar

relationship with PYROXD2 expression will be observed in the tissue

that truly mediates the mQTL effect (likely to be liver or kidney).

Analysis of BAIBu mQTL (1H NMR)
The SNPs that are significantly associated with BAIBu map to

chromosome 5p13.2 within AGXT2 (alanine-glyoxylate amino-

transferase 2). AGXT2 is known to be expressed in human liver

and kidney. An eQTL for AGXT2 was reported in liver ([38] and

Table S3), but this eQTL is not in LD with the mQTL SNPs

(r2
ƒ0:06), and so does not explain the BAIBu mQTL.

Two of the most significant mQTL SNPs for BAIBu were

rs37369 (T/C at 0.09/0.91) and rs37370 (C/T at 0.08/0.92), with

r2~0:74 (HapMap-CEU [29]) between the two SNPs (Table

S2A). At SNP rs37370, one of the MZ twin pairs in the study was

homozygous for the minor C allele; these subjects had higher

BAIBu concentration than those in the other genotypic classes.

Each of rs37369 and rs37370 is a non-synonymous, missense

coding mutation in AGXT2, leading to an amino acid substitution

in AGXT2. At rs37369, the base change C619T leads to the

valine-to-isoleucine substitution V140I. At rs37370, T506C leads

to the asparagine-to-serine substitution N102S. At each SNP, the

concentration of BAIBu increased in the number of copies of the

minor allele. Both SNPs lie in the pyridoxal phosphate-dependent

transferase major domain (IPR015424) with rs37369 in subdo-

main 1, and rs37370 in subdomain 2. We extracted functional

predictions (SIFT [32] and PolyPhen [33]) and PhyloP conserva-

tion scores [34–35] for rs37369 and rs37370, but discovered no

substantive evidence in favour of functional impact or of either

SNP being significantly conserved (Table S2B). We used the web

servers Phyre2 [36] and 3DLigandSite [37] to predict AGXT2

protein structure and to investigate whether rs37369 and rs37370

were likely to affect AGXT2’s predicted ligand binding site, but

neither SNP was identified in these analyses as having an impact

on the binding site.

Replication of Illig et al. (Biocrates)
We analysed the 15 mQTL associations reported in Illig et al.

[14] using SNP genotypes and Biocrates-platform data from the

MolOBB and MolTWIN cohorts (having removed individuals

overlapping with the TwinsUK cohort used in [14]). We replicated

Figure 4. Biological variance decomposition for metabolic traits driven by mQTLs featuring in the current paper. Results from the
current paper’s replication of [14] on the Biocrates platform are shown in the bottom section of the plot. Results for 1H NMR mQTLs identified in the
current study are shown in the upper section. For each metabolic trait (labelled right), the plot displays estimates of the proportion of biological
variance explained by five complementary sources (labelled top; see Materials and Methods for explanation), including the mQTL SNP genotypes,
familial variation excluding the mQTL SNP variation, individual environmental variation, and two types of visit variation (individual and common).
Posterior distributions for proportions are represented as follows: the central tick in a box marks the posterior mean, the ends of a box mark the
posterior quartiles, and the whiskers represent a 95% credible interval (extending to the 2.5 and 97.5 posterior percentiles).
doi:10.1371/journal.pgen.1002270.g004
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12 of the 15 mQTLs (Table 5), with four additional mQTLs

replicated beyond the nine replicated by Illig et al. themselves (so

that now a total of 13 of the 15 mQTLs identified in [14] have

been replicated). The same significance level was used as in the

replication section of [14], specifically a level of 0.05 adjusted by

the Bonferroni method to account for 15 tests being performed

(i.e. an adjusted significance level of 0.0033).

Discussion

The current paper has extended recent studies [14,19] in

investigating the genetic basis of human metabolism. We analysed

plasma and urine samples using 1H NMR, whilst Illig et al. [14]

analysed serum samples using the Biocrates platform (targeted

metabolomics using FIA-MS) [18]. While our examination of

urine metabolites did not overlap with previous work, there was

some minimal overlap between the metabolites targeted in blood

(plasma or serum) by Biocrates and 1H NMR [40]. The Biocrates

platform focuses specifically on a pre-selected set of amino acids

and lipids [14,18]. In contrast, 1H NMR spectroscopy is

untargeted, quantifying the most abundant 50–100 metabolites

in a biofluid, typically those above 10 micromolar in concentration

[15]. We were able to annotate 38 metabolites in our plasma 1H

NMR data, of which five were also targeted by the Biocrates

platform (glutamine, glycine, leucine, tyrosine and valine). So, the

sets of metabolites considered by the two studies are minimally

overlapping and therefore complementary.

The MolTWIN plasma and urine samples were collected

longitudinally from twins, and analysed with technical replication

using 1H NMR and the Biocrates platform. This study design

permitted a detailed decomposition of population variance in

metabolite concentration (Figure 4 and Table 4). We estimated the

proportion of biological variation in metabolite concentration

explained by the corresponding mQTL SNP (biological variation

included all phenotypic variation apart from that which was

experimentally derived). For the newly discovered 1H NMR

mQTLs, this proportion varied between 40%–64%. For the 13

currently replicated mQTLs discovered by Illig et al. [14], the

proportion varied between 2%–35%. This discrepancy is ex-

plained by the different study designs, and mainly by the different

sample sizes (Figure 5).

The current study’s twin design allowed us to quantify the

proportion of biological variance in metabolite concentration that

was attributable to familial factors (i.e. genetic and common-

environmental effects). For Illig et al.’s replicated mQTLs, the

‘non-SNP’ familial variation (i.e. familial variation not explained

by the mQTL) was considerable, explaining on average 44%

(range 9%–70%) of biological variation in the corresponding

metabolic trait (Figure 4 and Table 4). On average, Illig et al.’s

mQTL SNPs explained 25% (range 5%–82%) of the total familial

variation in the corresponding metabolic traits. So, other genetic

and common-environmental factors had substantial influence in

addition to (and perhaps interacting with) the effects of the

mQTLs themselves.

Table 4. Decomposition of biological population variation in metabolic traits.

Percentage of Biological Variance Explaineda

Platform Biofluid Metabolic Traitb SNP mQTL SNP Familialityc Indiv. Envir.d Indiv. Visite
Common
Visit

1H NMR Urine TMAu rs7072216 64% (55–72) 15% (5–24) 2% (0–8) 16% (10–23) 4% (0–10)

1H NMR Urine N-ACu rs9309473 53% (42–62) 14% (4–25) 3% (0–12) 28% (19–38) 3% (0–11)

1H NMR Urine BAIBu rs37369 40% (27–53) 44% (32–57) 1% (0–4) 8% (5–12) 7% (2–13)

1H NMR Plasma DMAp rs6584194 40% (23–57) 22% (3–46) 14% (0–36) 11% (0–34) 13% (0–36)

Biocrates Plasma PC aa C36:3/PC aa C36:4 rs174547 35% (23–46) 12% (1–25) 22% (9–37) 26% (15–40) 5% (0–15)

Biocrates Plasma C3/C4 rs2014355 29% (16–40) 51% (37–65) 5% (0–15) 14% (7–23) 1% (0–7)

Biocrates Plasma C12/C10 rs211718 15% (5–27) 62% (47–76) 5% (0–15) 14% (6–24) 4% (0–14)

Biocrates Plasma C9/C10:2 rs2286963 22% (10–35) 26% (5–45) 9% (0–27) 38% (21-56) 5% (0–22)

Biocrates Plasma PC aa C40:3/PC aa C42:5 rs9393903 12% (3–24) 32% (6–55) 41% (19–65) 10% (0–25) 6% (0–20)

Biocrates Plasma Gly–PTC/PC ae C38:2 rs2216405 13% (4–24) 32% (10–52) 22% (4–45) 28% (15–47) 4% (0–16)

Biocrates Plasma PC ae C32:1/PC ae C34:1 rs7156144 7% (1–17) 27% (5–49) 13% (0–36) 42% (20–65) 11% (0–33)

Biocrates Plasma PC ae C38:1/PC aa C28:1 rs11158519 7% (1–16) 66% (51–79) 22% (11–37) 3% (0–8) 1% (0–4)

Biocrates Plasma SM (OH) C24:1/SM C16:0 rs168622 7% (0–17) 44% (22–64) 28% (9–51) 19% (3–38) 2% (0–12)

Biocrates Plasma C14:1-OH/C10 rs8396 2% (0–9) 74% (52–90) 5% (0–18) 16% (1–33) 3% (0–16)

Biocrates Plasma C0 rs7094971 9% (2–17) 41% (23–58) 8% (0–24) 39% (25–57) 3% (0–14)

Biocrates Plasma PC ae C44:5/PC ae C42:5 rs2046813 8% (1–19) 61% (41–76) 18% (6–35) 11% (4–20) 2% (0–8)

Biocrates Plasma C14/C16:1 rs603424 9% (1–20) 47% (14–73) 14% (0–42) 21% (0–48) 10% (0–34)

Biocrates Plasma Val-PTC/C5 rs272889 9% (2–19) 40% (18–58) 7% (0–26) 40% (25–58) 3% (0–17)

Biocrates Plasma Orn-PTC/Ser-PTC rs541503 2% (0–7) 44% (15–68) 30% (7–56) 13% (0–36) 12% (0–32)

aSee Materials and Methods for the definition of each component of variance. Posterior mean estimates are shown with parenthesized central 95% posterior credible
intervals.

bSupplementary material of [14] has details of the metabolites targeted by the Biocrates platform, and their abbreviations.
cVariation attributable to familial (i.e. heritable and common-environmental) sources, but not to the mQTL SNP itself.
dIndividual environment.
eIndividual visit.
doi:10.1371/journal.pgen.1002270.t004
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In a separate study [41], we have characterized population

variation in all common 1H NMR-detectable urine and plasma

metabolites, using the MolTWIN 1H NMR data of the current

study, though without incorporation of the genotype data. We

decomposed biological population variation into components,

including that explained by familial sources and that explained by

longitudinally stable sources. On average (across 1H NMR peaks),

familial sources explained 42% (IQR 32-52) of variation in plasma

metabolite concentrations and 30% (IQR 17-39) of variation in

urine ones. Longitudinally stable sources explained 60% (IQR 51-

72) of variation in plasma metabolite concentrations and 47%

(IQR 35-60) of variation in urine ones. The substantive

widespread presence of familial and stable variation across the

urine and plasma 1H NMR metabolomes has implications for the

design and interpretation of metabolite biomarker-discovery

studies [41].

Interestingly, two of the 1H NMR mQTLs (discussed in detail

below) have experienced recent positive selection in European

populations [8]. The fact that these mQTL SNPs experienced

selection suggests that molecular and phenotypic perturbations

downstream of them may be biomedically interesting [31]. Also,

the identification of functional consequences of variation at these

loci strengthens the existing genetic evidence for selection having

acted at these loci [31]. The observed genetic signature of positive

selection suggests that an allele at the locus conferred a net

advantage, relative to other alleles, under some environmental

pressures, yet did not confer a net advantage under other

environmental pressures. Humans may still be exposed to relevant

environmental heterogeneity, and so the biomedical implications

of these loci may become most clear once gene-environment

interactions are incorporated into disease-susceptibility models. It

will be initially of interest to investigate how physiological

metabolite concentrations vary between world-wide populations

as a result of different mQTL allele frequencies and environmental

backgrounds. Metabolic profiles have the potential to reflect the

synergy of genetic and environmental influences, and can thus

provide unique insights into disease susceptibility at a population

level [42–43].

During the revision stage of the current paper, an article by

Suhre et al. [44] appeared, describing a GWAS of urine

metabolite concentrations targeted by the 1H NMR-based

Chenomx platform. Only one of the three mQTLs identified in

the current paper—that of BAIBu—was identified in [44] (see

further discussion of the BAIBu mQTL in the dedicated section

below). A comparison of the current study with [44] illustrates

nicely some of the differences between targeted and untargeted

assays. In the current study we searched for strong genetic drivers

of the comprehensive set of common urine and plasma metabolites

detectable by 1H NMR. In contrast, Suhre et al. investigated

genetic drivers of a targeted subset of the urine 1H NMR

Figure 5. Relationship between sample size and the size of effect detectable with 80% power in each study (shown by solid lines).
The effect size is parameterized by r2 , which is the proportion of total population variance in metabolite concentration explained by the mQTL
genotype (or, equivalently, the squared correlation between genotype and trait). It is assumed that the family-wise error rate in each study is
controlled at 0.05 using the Bonferroni method. The number of tests performed is calculated as the product of the SNP and metabolite counts, as
shown in the legend. Dashed lines relate the actual sample size of each study to that study’s detectable effect size.
doi:10.1371/journal.pgen.1002270.g005
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metabolome with a substantially greater sample size than that of

the current study, and thus had statistical power to detect relatively

weak genetic effects. The untargeted nature of the current study

allowed the detection of two strong mQTL drivers of urine

metabolite concentrations—TMAu and N-ACu—that were not

targeted by the Chenomx platform used in [44]. A disadvantage of

our untargeted approach in this context was that peaks had to be

annotated with their corresponding metabolite. In the current

study we were unable to attribute N-ACu to a single metabolite,

and so the N-ACu mQTL was reported as driving concentrations

of one or more N-acetylated compounds (X.NH.CO.CH3, with X

unknown). Also, the unambiguous annotation of BAIBu was

assisted by input from Suhre et al. [44], previous to which we had

annotated the peak non-uniquely as CH3.CH.Y, with Y unknown

but containing CH or CH2 and an electronegative substituent.

Discussion of TMAu and DMAp mQTL (1H NMR)
Genetic variation at PYROXD2 has experienced recent positive

selection in European populations [8], with the T allele of

rs7072216 at frequency 0.75 in Europe (HapMap-CEU), and at

0.14 in Africa (HapMap 3 individuals from Yoruba in Ibadan,

Nigeria, Africa, i.e. HapMap-YRI [29]). The haplotype that was

relatively advantageous in European populations is associated with

decreased expression of PYROXD2 and increased concentration of

TMAu and DMAp. Further work will be necessary to clarify the

mechanisms linking: DMAp and TMAu levels; PYROXD2 gene

expression; and genetic variation in LD with rs7072216 (such as

the non-synonymous SNP, rs2147896). The signature of selection

at PYROXD2 is indirectly suggestive of biomedical relevance; we

also note that the set of genes showing evidence for positive

selection is enriched for genes involved in oxidoreductase activity

[8].

There have been a number of studies that have examined the

sources of variation in physiological concentrations of methyl-

amines and their derivatives, e.g. [45–46]. The current paper

sheds light on this field from a new genetic angle, and it will be

useful to integrate the mQTL effects into known pathways. Gut

microbiota play an important role in the formation of methyl-

amines from dietary sources in mammals—they create TMA from

choline, and convert TMA into DMA [45–46]. Trimethylamine

N-oxide (TMAO) is formed endogenously in the liver via the N-

oxygenation of TMA by the flavin-containing monooxygenase

(FMO) protein family, and particularly by FMO3 [47]. Gut

microbial activity has been linked to disease through physiological

levels of DMA, TMA and TMAO [48–49].

It may prove productive to relate the TMAu mQTL finding to

the rare recessive genetic disorder trimethylaminuria, in which

mutations at FMO3 disrupt conversion of TMA to TMAO,

resulting in high physiological levels of TMA and an accompa-

nying fish-odour phenotype [47]. Trimethylaminuria cases exhibit

relatively low values of the ratio TMAOu/(TMAOu + TMAu),

Figure 6. TMAu’s mQTL effect may be mediated by variation in mRNA transcription at PYROXD2. Each point represents, for a single study
participant, their concentration of TMAu (vertical axis), their expression of PYROXD2 in adipose tissue (horizontal axis), and their mQTL genotype
(point colour). The intensity data, w, on each of the vertical and horizontal axes have been transformed v~log2 w=min wf gð Þ. This transformation sets
the minimum observation to zero on log2 scale, and presents log2(fold change) relative to the minimum value.
doi:10.1371/journal.pgen.1002270.g006
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where TMAOu denotes urine TMAO concentration. Subjects in

the current study have values of this ratio that are within the range

typical of trimethylaminuria controls (Figure S6 and [50]). It will

be interesting to investigate the effect, if any, of genetic variation at

the TMAu mQTL on TMA levels among trimethylaminuria

cases.

Discussion of N-ACu mQTL (1H NMR)
The N-ACu mQTL lies within a large 500 kb haplotype block

(Figure 1), and there are a number of genes (and eQTLs, Table S3)

in LD with it. Of these genes, NAT8 is a likely candidate for

mediating the association between SNP variation and N-ACu

(urine concentration of N-acetylated compound(s)), since NAT8’s

encoded enzyme specifically catalyzes N-acetylation—NAT8’s

enzyme is cysteinyl-conjugate N-acetyltransferase, CCNAT [51].

We relate our N-ACu mQTL finding to other research that has

shown: (i) that the region harbours SNPs associated with renal

function [22–23,52]; and (ii) that the region has been the site of

positive selection on standing genetic variation [8,30].

Two recent renal-function GWASs identified rs13538 as a

clinically associated SNP [22–23,52] with the minor G allele

increasing susceptibility to renal dysfunction. Chambers et al. [22]

proposed that a non-synonymous mutation in NAT8 (the A595G

change at rs13538, producing a non-conservative amino acid change

F143S in CCNAT) reduces acetylation efficiency, thus leading to toxin-

induced kidney injury. The N-ACu mQTL SNP rs9309473 is in

strong LD (r2~1) with GWAS SNP rs13538 (both SNPs with alleles

A/G at frequency 0.79/0.21 in HapMap-CEU [29]). We found the

non-synonymous mutant allele (G) at rs13538 to be associated with

increased levels of N-ACu. Thus, whilst our findings provide evidence

of differential acetylation efficiency driven by genetic variation in LD

with rs13538, their directionality is not consistent with the specific

mode of action proposed in [22]. Furthermore, a recent functional

study [51] found enzymatic activity of mutant (F143S) CCNAT to be

comparable to that of the wild-type protein (and so is also inconsistent

with the mode of action proposed in [22]).

Scheinfeldt et al. [30] studied the signature of selection in this

region, specifically examining two complementary sets of haplo-

types: the ‘‘ancestral’’ and ‘‘derived’’ haplogroups (HapA/HapD

respectively, at frequency 0.26/0.74 in the HapMap-CEU

European population, but at 0.89/0.11 in the HapMap-YRI

African population [29]). It has been proposed that positive

selection drove up the frequency of HapD (relative to HapA) in

Eurasian populations about 15,000 years ago [30]. The N-ACu

mQTL SNP rs9309473 is in strong LD with HapA/HapD status

(r2~0:96 in HapMap-CEU, with alleles G/A of rs9309473 highly

predictive of HapA/HapD status respectively). An increasing

number of copies of HapA is associated with increased urine

concentration of N-acetylated compound(s) (N-ACu), and with

increased susceptibility to renal dysfunction [22–23].

Discussion of BAIBu mQTL (1H NMR)
The BAIBu mQTL was also identified by Suhre et al. [44], where

they noted the following. Elevated levels of BAIBu had been shown

through family studies to be autosomal recessive [53], but the causal

locus had been previously unknown. The association of a SNP in

AGXT2 with BAIBu levels is consistent with the role of AGXT2’s

encoded enzyme, mitochondrial aminotransferase, which is ex-

pressed primarily in the kidney and catalyzes the reaction of BAIB

with pyruvate to form 2-methyl-3-oxopropanoate and alanine (EC

Table 5. Summary of the current study’s replication of Illig et al.’s [14] mQTL associations (Biocrates platform).

Illig et al.a Current Paper Replicatedb

SNP Gene Chr Positionc
Ref./
Alt.d MAFe Metabolic Traitf Betag p-value Beta p-value

Illig
et al.h

Current
Paper

rs174547 FADS1 11 61327359 T/C 0.304 PC aa C36:3/PC aa C36:4 0.151 6.5E-179 0.161 1.3E-20 * *

rs2014355 ACADS 12 119659907 T/C 0.277 C3/C4 20.218 5.1E-96 20.254 5.7E-13 * *

rs211718 ACADM 1 75879263 C/T 0.305 C12/C10 0.12 1.3E-63 0.098 3.7E-06 * *

rs2286963 ACADL 2 210768295 T/G 0.365 C9/C10:2 0.219 3.1E-60 0.169 4.1E-06 * *

rs9393903 ELOVL2 6 11150895 G/A 0.246 PC aa C40:3/PC aa C42:5 0.087 2.3E-42 0.072 9.9E-05 * *

rs2216405 CPS1 2 211325139 A/G 0.185 Gly-PTC/PC ae C38:2 0.129 1.9E-30 0.224 2.0E-06 *

rs7156144 PLEKHH1 14 67049466 G/A 0.414 PC ae C32:1/PC ae C34:1 20.042 1.7E-28 -0.037 5.0E-04 * *

rs11158519 SYNE2 14 63434338 G/A 0.145 PC ae C38:1/PC aa C28:1 20.083 1.5E-27 -0.094 7.7E-05 *

rs168622 SPTLC3 20 12914089 G/T 0.375 SM (OH) C24:1/SM C16:0 0.061 5.2E-26 0.045 2.0E-03 * *

rs8396 ETFDH 4 159850267 T/C 0.298 C14:1-OH/C10 0.102 3.5E-24 0.066 3.9E-02 *

rs7094971 SLC16A9 10 61119570 A/G 0.135 C0 20.091 3.8E-20 20.104 3.0E-05 * *

rs2046813 ACSL1 4 186006153 T/C 0.322 PC ae C44:5/PC ae C42:5 0.033 3.6E-18 0.042 2.7E-03 *

rs603424 SCD 10 102065469 G/A 0.194 C14/C16:1 0.054 1.5E-17 0.053 1.1E-02

rs272889 SLC22A4 5 131693277 G/A 0.385 Val-PTC/C5 20.075 7.9E-16 -0.102 2.5E-04 *

rs541503 PHGDH 1 120009820 T/C 0.379 Orn-PTC/Ser-PTC 0.058 3.0E-12 0.039 2.2E-01

aEstimate and p-value from the discovery stage of [14] (their KORA cohort).
bSignificant at a level of 0.0033 (significance level of 0.05 adjusted for conducting 15 tests by the Bonferroni method).
cNCBI build 37 coordinates.
dReference/alternative Allele.
eMinor allele frequency, from Table 1 of [14].
fSupplementary material of [14] has details of the metabolites targeted by the Biocrates platform, and their abbreviations.
gBeta is the estimate of the additive effect of one copy of the reference allele, normalized by the mean of the metabolic trait.
hSignificant in the replication stage of [14] (their TwinsUK cohort); see Table 1 of [14] for details.
doi:10.1371/journal.pgen.1002270.t005

mQTLs Exhibit Genetic Evidence of Selection

PLoS Genetics | www.plosgenetics.org 11 September 2011 | Volume 7 | Issue 9 | e1002270



2.6.1.40). It had also been previously suggested that altered BAIB

homeostasis might contribute to hyper-b-amino-isobutyric aciduria,

a relatively common Mendelian metabolic disorder in humans [54].

Suhre et al. [44] proposed rs37369 as a likely candidate for the

causative SNP driving both variation in BAIBu concentration and

susceptibility to hyper-b-amino-isobutyric aciduria.

We found the non-synonymous SNP rs37369 (p~5:9|10{11)

to be marginally more significantly associated with BAIBu

concentration than the other non-synonymous SNP, rs37370

(p~6:1|10{10). This mildly supports rs37369 as the causal SNP

driving BAIBu levels, relative to rs37370, though the true causal

genetic polymorphism may be neither of these SNPs, but instead

variation in strong LD with them. We used existing tools to predict

the effect of rs37369 and rs37370 polymorphism on AGXT2

function (see Results), but this analysis did not reveal any clear

functional consequences of these non-synonymous polymor-

phisms. Further work will be necessary to characterize with

certainty the causal link between genetic variation at the AGXT2

locus and BAIBu concentration.

Conclusion
In conclusion, we have designed and conducted an mQTL

study of plasma and urine metabolites detectable by 1H NMR. We

discovered and replicated four novel metabolite-SNP associations,

with each SNP explaining 40% or more of biological variation in

metabolite concentrations. The mQTLs that we discovered have

interesting properties: two of the three mQTL regions have

experienced recent positive selection in European populations; one

mQTL is in strong LD with a SNP identified in a kidney-function

GWAS. Our findings pave the way forward for investigating the

potential biomedical relevance of these regions.

Materials and Methods

Ethics statement
The MolTWIN study was approved by St. Thomas’ Hospital

Research Ethics Committee (EC04/015 Twins UK). The

MolOBB study received ethical approval from Oxfordshire REC

C (08/H0606/107).

Participant recruitment—MolTWIN
The 142 participants in the current study were recruited from

the UK Adult Twin registry at St. Thomas’ Hospital (www.

twinsUK.ac.uk): a longitudinal epidemiological study of 11,000

twins (mostly female), for which extensive clinical, anthropometric,

lifestyle, and demographic information, and a wide range of

biological measurements have been collected [55]. Eligible

volunteers were healthy, Caucasian, post-menopausal females of

Northern European descent, between 45–76 years of age. Eligible

twins were sent an information sheet containing details of the

study, and two consent forms. After each twin had returned a

completed consent form, she was contacted by letter and phone to

book her appointment. The composition of the cohort was: 51 MZ

pairs, 19 DZ pairs, and two unrelated individuals.

In the MolTWIN cohort, 33 of the MZ twin pairs donated

samples twice; the median inter-visit time across all such pairs was

118 days (IQR: 96-134). Both twins in a pair always visited on the

same day, and each visit was scheduled at either 10:00 or 14:00

(with repeated visits of each individual not necessarily scheduled at

the same time of day).

Participant recruitment—MolOBB
The 69 participants in the current study were selected from the

Oxford Biobank [20] (OBB). Specific OBB cohort members were

selected on the basis of case/control status for metabolic syndrome

according to International Diabetes Foundation Criteria [56]. The

set of subjects comprised 42 controls (17 female, 25 male), and 27

cases (12 female, 15 male).

Sample collection
Fasting blood and urine samples were collected at all clinic visits

of each participant. Spot urine samples were centrifuged (16060 6
g) at 4uC for 10 min before being stored at 280uC. Fresh blood

was collected in a 9 mL tube through venepuncture. Samples for
1H NMR analysis were collected in heparin tubes, whilst samples

for Biocrates-platform analysis were collected in EDTA tubes.

Blood samples were kept on ice for 20 min prior to centrifugation

(16060 6g) at 4uC for 10 min, and subsequent storage at 280uC.

Genotyping, quality control, and imputation (MolTWIN
and MolOBB)

DNA was extracted from whole-blood samples using Gene-

Catcher (Invitrogen Life Technologies, Carlsbad, USA) according

to manufacturer’s protocol. Genome-wide SNP genotypes were

measured on a total of 166 individuals: 70 from the MolOBB

cohort, and 96 from the MolTWIN cohort (one MZ twin from

each MZ pair was genotyped, whilst both members of each DZ

twin pair were genotyped). The genotyping assay used was the

Illumina 317K BeadChip SNP array (Illumina, San Diego, USA).

Quality control on the genotyped subjects was performed in a

way similar to those described previously by the Wellcome Trust

Case Control Consortium [57]. Two MolTWIN samples were

removed due to sample genotyping success rate , 95% and three

samples (two from MolTWIN, one from MolOBB) were removed

due to non-European ancestry (note that the cohort compositions

given in the Participant Recruitment sections are after quality

control). SNPs were removed (i) if MAF , 1%, or (ii) if genotyping

success rate ,95% and MAF . 5%, or (iii) if genotyping success

rate ,99% and MAF , 5%. Hardy-Weinberg equilibrium

(HWE) was calculated by combining all unrelateds of the MolOBB

and MolTWIN data sets (i.e. one twin per twin pair) and the

hypothesis of HWE was tested at a significance level of 1024; SNPs

at which HWE was rejected were omitted from the study. After

quality control, the genotypes of ungenotyped MZ twins were

copied from their corresponding genotyped twin. The final data

set prior to imputation comprised 69 MolOBB members and 142

MolTWIN members genotyped at 296,017 autosomal SNPs.

Measured genotypes were used to impute an additional

2,245,627 SNPs using the HapMap-CEU population (release 22)

as reference [29]. The imputations were performed using

IMPUTE [58]. We included SNPs in our analysis only if the

imputation quality score was greater than 0.4. As output for a

single SNP in an individual, IMPUTE provided probabilities of

the individual having each of three possible genotypes (zero, one,

or two copies of the reference allele). Prior to incorporating

imputed genotypes into the statistical models, we preprocessed

them, estimating the true genotype by that which was allocated

highest probability by IMPUTE. Including both typed and

imputed SNPs, we used a total of 2,541,644 autosomal SNPs for

association analysis.

Sample preparation, data acquisition, and preprocessing
(MolTWIN gene-expression data)

Total RNA was extracted from adipose tissue biopsies with

TRIreagent (SIGMA-ALDRICH, Gillingham, UK) and quantified

using a NanoDrop. For whole-blood samples, PAXgene tubes were

used, and RNA was extracted according to the manufacturer’s
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protocol (PAXgene, QIAGEN). RNA was labelled using the

MessageAmp II 96-well amplification kit (Applied Biosystems, CA,

USA). Labelled RNA was hybridized onto Affymetrix HGU133

Plus2 arrays, washed, stained, and scanned for fluorescence intensity

according to manufacturers protocols (Affymetrix, Inc., USA).

Data were preprocessed using the RMA method without

background correction (i.e. quantile normalization followed by

robust probe-set summarization) [59]. Whole-blood array data

were preprocessed separately from adipose-tissue array data.

Publicly available custom chip-definition files (CDFs) were

downloaded (version 11) (http://brainarray.mbni.med.umich.edu

/Brainarray/Database/CustomCDF/CDF_download.asp) and used

to group probes into sets, each set corresponding to an Ensembl-

annotated gene, resulting in 18,394 such genes represented in the

array data. See [60] for a description of how these CDFs were

created, along with a comparison of their properties with the

CDFs produced by Affymetrix.

Expression data were extracted at the PYROXD2 gene, and used

in the current paper’s analysis of the mQTL for TMAu and

DMAp.

Sample preparation and data acquisition (Biocrates)
EDTA plasma samples were vortexed after thawing and

centrifuged at 4uC for 5 min at 10,000 x g prior to loading of

10 mL of supernatants onto the 96-well kit plate. Processing of the

AbsoluteIDQ kit followed the protocol specified by the manufac-

turer, including the following automated steps on the Hamilton

ML Star robotics platform (Hamilton Bonaduz AG, Bonaduz,

Switzerland): (i) drying plasma samples under a nitrogen stream,

(ii) derivatization of amino acids with 5% phenylisothiocyanate

reagent (20 mL), (iii) drying of samples, (iv) extraction of

metabolites and kit internal standards with mM ammonium

acetate in methanol (300 mL), (v) centrifugation through filter

plate (2 min, 500 x g), vi) dilution with 600 mL MS running

solvent. 20 mL of the final extracts were applied to flow injection

analysis mass spectrometry.

Samples were analyzed using an API 4000 triple quadrupole

mass spectrometer (ABSciex) equipped with an Agilent 1200 Series

HPLC and a HTC PAL auto sampler from CTC controlled by the

software Analyst 1.5. The standard flow injection method

comprising two 20 mL injections (one for positive and one for

negative electrospray ionisation mode) was applied for all

measurements. Quantification was achieved by multiple reaction

monitoring detection in combination with the use of stable isotope-

labelled and other internal standards [61]. Data evaluation for

quantification of metabolite concentrations was performed with

the MetIQ software package (integral part of the AbsoluteIDQ

kit). Concentrations of all metabolites are initially calculated in

mM. The method has been proven to conform to FDA-Guidelines

[62], which imply proof of reproducibility within a given error

range. Analytical specifications for detection limit (LOD) and

evaluated quantification ranges, further LOD for semi-quantita-

tive measurements, identities of quantitative and semi-quantitative

metabolites, specificity, potential interferences, linearity, precision

and accuracy, reproducibility and stability were described in

Biocrates manual AS-P150. The LODs were set to three times the

values of zero samples. The lower and upper limits of

quantification were determined experimentally by Biocrates AG

(Innsbruck, Austria). In addition, the technical variability of the

Biocrates platform had been quantified previously by Illig et al.

[14]. Their Supplementary Table 4 displayed the coefficient of

variation, CV, for each of 163 metabolite concentrations assayed

in [14], and measured under the same conditions on the same

platform in the current study. The median CV across metabolites

was 7.4% (IQR: 6.1%-12.4%) [14], which demonstrated a useful

degree of precision for the majority of metabolites.

We performed quality-control checks, including boxplots and

principal-component score plots, on the Biocrates-platform data to

identify failed assays, where an assay refers to the measurement of

163 metabolite concentrations in a biological sample. Of a total of

356 assays across the MolOBB and MolTWIN cohorts, we

identified two assays that exhibited anomalously low concentra-

tions of all metabolites (relative to the levels observed in the other

assays); we omitted those two assays from further analysis.

Sample preparation and data acquisition (1H NMR)
Thawed samples were centrifuged at 16060 6 g for 10 min.

Samples were aliquotted into two technical replicates prior to

sample preparation. Plasma was diluted 1 in 4 in physiological saline

prepared in 20% D2O supplemented with 0.1% (w/v) sodium azide

as a bacteriostatic agent and 1.5 mM sodium formate as a chemical-

shift reference (d8.452). Urine was diluted 2 in 1 in phosphate buffer

(20% D2O, pH 7.4) supplemented with 1 mM trimethylsilyl-

2,2,3,3-tetradeuteropropionic acid (TSP; d0.00) and 0.1% (w/v)

sodium azide. Sample aliquots were allocated to 96-well plates (and

wells thereon) in a randomized design.

Each experiment was acquired on a Bruker DRX 600 MHz

spectrometer (Rheinstetten, Germany) operating at 600 MHz (for
1H) using a 5 mm TXI flow-injection probe equipped with a z-

gradient coil, at 300 K, at a spectral width of 12019 Hz, with 96

transients being collected with 8 dummy scans using 64k time

domain data points. For both plasma and urine samples a standard

1D spectrum [RD290u23 ms290u2tm290u2acquire] with se-

lective irradiation of the water resonance during the relaxation

delay (RD, 2 s) and during the mixing time (tm, 0.1 s) was acquired.

Additionally, for the plasma samples, a spin-echo (Carr-Purcell-

Meiboom-Gill) spectrum [RD290u2(t/22180u2t/2)n2acquire]

with a total echo time of 608 ms (n = 304, t= 2000 ms) and a

diffusion-edited spectrum made using a bipolar pulse-pair

longitudinal eddy current delay pulse sequence with spoil gradients

immediately following the 90u pulses after the bipolar gradient

pulse pairs were acquired. Continuous wave irradiation was

applied during the relaxation delay at the frequency of the water

(or HOD) resonance. Eddy current recovery time (Te) was 5 ms,

and the time interval between the bipolar gradients (|) was 0.5 ms.

Further details may be found in [15,26,63].

Data preprocessing and feature extraction (1H NMR)
Each of four data sets was passed independently through a semi-

automated preprocessing pipeline: phasing, alignment, denoising,

baseline correction, manual bin selection, normalization, quality

control, peak extraction, and logarithmic transformation.

Spectra were phased using in-house software (NMRProc,

T.M.D Ebbels and H.C. Keun, Imperial College London). All

other data analysis was performed in R [64]. Spectra were zero-

filled to 216 points. Urine spectra were aligned to TSP, set at

d0.00; plasma spectra were aligned to formate, set at d8.452 (peak

centres were defined by the position of the local maximum).

The spectra were denoised in the frequency domain using

wavelet-based methodology (a method similar to that described in

[65]). For baseline correction, we initially fitted a constant baseline

to each spectrum; however, visual inspection revealed that, for a

number of spectra, the fit was better on one side of the water peak

than on the other; natural variations in ionic strength resulting in

altered phase of the residual water resonance may contribute to

such an effect. Hence, a two-piece piecewise-constant baseline was

fitted to and subtracted from each spectrum; specifically, the

baseline on each side of the water peak was estimated by the 5th
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percentile of the spectral points in the corresponding interval (a

robust estimator of baseline location).

We plotted each peak; for those peaks that visually displayed

consistent presence across spectra, we manually created a bin and

used the bin to extract the peak’s data across all spectra. The

datum extracted from a bin in a spectrum was the intensity of the

highest local maximum (i.e. we used peak height as a proxy for

peak area), or was coded as a missing value if no local maximum

was present. We chose peak height to be the estimator of

concentration as, in addition to its simplicity, it had relatively good

robustness properties in the context of spectral artefacts (e.g. when

a peak’s location varied across spectra, or when neighbouring

peaks overlapped within spectra). If the width (at half height) of a

peak varies substantially across spectra, then peak height may be

less precise than area at quantifying concentration. Plots of peaks

did not reveal substantial peak-width variation in our data sets.

Only common peaks—present in at least 80% of spectra in their

corresponding data set—were included in downstream statistical

analysis, and only a peak’s non-missing data were included at the

statistical modelling stage. A missing datum, corresponding to

there being no local maximum in the peak’s ppm interval, typically

occurred for one of two reasons: (a) the corresponding metabolite’s

concentration was too low to create a local maximum, or (b) a

relatively large neighbouring peak overlapped the peak of interest

(i.e. the missing concentration is censored, but not necessarily low).

The omission of type (a) missing values from the analysis

potentially decreased statistical power to detect mQTLs driving

metabolite concentration variation at levels near or below the level

of detection. The omission of type (b) missing values from the

analysis increased the robustness of inference (and conserved

power) in the face of artefactual effects of overlapping peaks. To

illustrate, in Figure S7 we plotted the seven spectra (out of 432)

with missing values for DMAp, and the four spectra (out of 432)

with missing values for N-ACu. (There were no missing values for

TMAu and BAIBu.) At the DMAp peak, missing data were

representative of relatively low concentrations, approximately

within the lowest quartile of observed concentrations (so we may

have lost a small amount of power through missing-data handling).

For N-ACu’s missing data, the relevant peak’s size was obscured

by signal from an overlapping peak (missing values did not

necessarily correspond to near-zero concentration).

Prior to model fitting, we discarded any peaks that were annotated

to exogenous metabolites (of ibuprofen or acetaminophen), to a

spike-in compound (TSP in urine, formate in plasma), or to urea (the

area of which is affected by water peak saturation irradiation through

chemical transfer of saturated protons). Across the three plasma data

sets, 104 peaks were annotated to glucose; we discarded all but one

representative glucose peak in each plasma data set.

The spectra were normalized using probabilistic quotient

normalization [66]. The normalization was performed using data

from the retained peaks only; spectra were normalized to a

reference spectrum comprising median peak heights; missing

values were excluded from the calculation of medians. After

quality control, urine spectra were available for 142 MolTWIN

participants and 67 MolOBB participants; plasma spectra were

available for 140 MolTWIN participants and 68 MolOBB

participants. A logarithmic transformation was applied to make

the peak height distributions more symmetric–the entire spectrum-

wide set of peak heights were collectively shifted and scaled to lie

between zero and 100 and then transformed x. log (1zx).

Genome-wide association scan (MolTWIN 1H NMR data)
We tested each metabolite peak in turn for association with

2,541,644 autosomal SNPs. For this stage we averaged and

transformed the peak data as follows: (i) we averaged each subject’s

metabolite peak data across all biological and technical replicates; (ii)

for robustness, we mapped the quantiles of the resulting inter-subject

distribution to the quantiles of a standard Gaussian distribution. We

denote the resulting data vector by y. We fitted the following additive

genetic model by ordinary least-squares regression at each SNP:

yi~mzbgizei

where i indexed subject; gi[ 0,1,2f g was the number of copies of the

reference allele possessed by individual i; and ei was the residual error

term. At each SNP, we calculated the conventional t-statistic for the

test of the null hypothesis b~0. We then took the maximum absolute

t-statistic observed across all SNPs tested, and this statistic, T , was the

test statistic used for testing the null hypothesis, H0: the metabolite’s

concentration was not associated with variation at any SNP in the

genome-wide panel.

We characterized the (metabolite peak-specific) null distribution

of T by permutation. For each of 5,000 permutations, we

randomly reassigned the measured metabolite levels of each MZ

pair to a different MZ pair, and randomly reassigned the

measured metabolite levels of each DZ pair to a different DZ

pair, yielding y(p) for the pth permutation. Such a permutation

crucially preserved the existing covariance structure on y induced

by polygenic genetic relatedness (identity-by-descent sharing) and

common-environmental effects between twins, while breaking

down any existing associations between y and identity-by-state

variation at SNPs. For the pth permutation, we calculated

t-statistics as before, quantifying the additive genetic association

between y(p) and the genotypes at each SNP. We then calculated

the maximum absolute t-statistic across SNPs, yielding the pth

draw from the null distribution, T (p).

For each metabolite, we rejected H0 only if the observed test

statistic exceeded all 5,000 draws from its null distribution, i.e. if

TwT ( max ):max T (p) : p~1,:::,5000
� �

. Such a procedure con-

strained (to be small) the family-wise error rate (FWER) for testing

a single metabolite against genome-wide SNP variation. Specifi-

cally, (0, 0.0007) was an exact 95% confidence interval for the

FWER, based on the observation that none of the 5,000 draws

from the null distribution of T exceeded the observed statistic [67].

We concluded that our testing procedure controlled the false-

positive probability for each metabolite’s entire genome-wide scan

to be less than 0.001.

H0 was rejected for six of the 526 metabolite peaks tested. These

six peaks redundantly represented four metabolites, listed in

Table 2. For each metabolite, we examined the subset of SNPs

that reached genome-wide significance (defined as those SNPs

whose t-statistics exceeded, in absolute value, the metabolite’s

maximum null test statistic, T ( max ); shown in Table S1). For each

metabolite, the set of genome-wide significant SNPs co-localized to

a single genomic region; we defined a metabolite’s hit region to be

the smallest contiguous region containing all genome-wide

significant SNPs.

Mixed-effects analysis of hit regions (MolTWIN 1H NMR
data)

Underlying the observed data at a metabolite peak (i.e. across all

spectra) was a complex correlation structure, induced by the

sharing of alleles, individuals, and samples by different sample

aliquots. In the follow-up analysis of hit regions we explicitly

modelled this covariance structure while quantifying the metab-

olite’s association with each local SNP in turn (i.e. with each SNP

within 200 kb of the hit region and with MAF . 5%).
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To deal with potential deviations from the Gaussian distribu-

tional assumptions, we mapped the quantiles of the empirical data

distribution at each peak to the quantiles of a standard Gaussian

distribution, yielding the transformed data vector, z. In contrast to

the genome-wide analysis described in the previous section (based

on the averaged data, y), technical and biological replicates were

not averaged for this analysis (instead, variation between replicates

was retained in z and modelled). We fitted the following mixed-

effects model:

zijkl~bgijzpb(i,j,k,l)ztt(i,k)zdizmz(i,j)zeijzwikzvijkzeijkl

where twin pairs were indexed by i[ 1,:::,77f g, the twins within a

pair were indexed by j[ 1,2f g, the visits of a twin pair were

indexed by k[ 1,2f g, and the aliquots of a sample were indexed by

l[ 1,2f g. The ‘fixed effects’ in the model were b, the pb, and t. The

additive effect of the SNP under consideration was modelled by b,

with gij[ 0,1,2f g denoting the number of copies of the reference

allele possessed by twin j in pair i. The parameters

pb : b~1,:::,5f g controlled for experimental inter-plate effects,

with b(:) mapping spectra to plates. The parameter t controlled

for sampling time-related effects, with t(:) in the equation above

mapping visits to sample-collection times (in 24-hour format; times

were mostly 10 or 14). The other terms in the model were ‘random

effects,’ which modelled the covariance structure across observa-

tions induced by familial (d,m), individual-environmental (e),
temporally dynamic (w,v), and non-biological (e) effects. Similarly

to [68], there was one mi term for each MZ pair and two such

terms, mi1 and mi2, for each DZ pair (i.e. z(i,j)~i if i was an MZ

pair, whilst z(i,j)~(i,j) if i was a DZ pair). Each ‘random effect’

followed a zero-mean Gaussian distribution with its corresponding

standard deviation from s~(sd ,sm,se,sw,sv,se)’ (e.g. the di

independently followed p(dijsd )~Normal(dij0,s2
d )).

The current paper’s model induced a covariance structure on z
that was identical to that which is used in the standard methodology

for modelling twin data (see, e.g., [68–70]). In the parameterization

above, s2
dzs2

m modelled the familial variance (i.e. the variance

attributable to genetics and common environment), s2
e modelled the

individual-environmental variance. Additionally, our model included

variance parameters representing longitudinally unstable variation.

These (s2
w and s2

v ) were referred to as the ‘common-visit’ and

‘individual-visit’ effects respectively, because they measured the

component of phenotypic variation that fluctuated between visits, and

which was shared and non-shared respectively between twins; the

common-visit parameterization was included in the model because

twins visited the clinic in pairs. Finally, there was a parameter s2
e to

model experimental variation. In the variance decompositions of the

current paper (Figure 4 and Table 4), variances were expressed as

proportions of the total biological variance, which was defined as

Var(bgij)zs2
dzs2

mzs2
ezs2

wzs2
v , where Var(bgij) was the phe-

notypic variance explained by the corresponding mQTL SNP. The

biological variance did not include the experimental variance, s2
e , and

was therefore appropriate for comparing the properties of molecular

phenotypes across platforms when the level of experimental variation

on the platforms was not of primary interest.

For each SNP within 200 kb of the hit region, we fitted the

mixed-effects model both with and without the bgij term. From

these fitted models, we calculated the p-value for the test of the null

hypothesis that b~0, using {2 log L as a test statistic (where L
denotes the likelihood ratio), and employing its asymptotic null

distribution (a chi-squared density with one degree of freedom).

These p-values are displayed in the text, Figure 1, Figure 2,

Figures S2 and S3, and Table 3, Tables S1 and S2A.

At the most strongly associated SNP, we went on to fit the

model in a Bayesian framework, quantifying the precision of

parameter estimates using posterior credible intervals. For this

analysis we used directly the log-transformed metabolite concen-

trations, denoted by x (see section on Data preprocessing and

feature extraction). For priors, we specified Uniform densities on

the standard deviation parameters in s (as discussed in [71]):

p(s)~Uniform(sj0,10|sx)

where sx denotes the sample standard deviation of the data, x. The

prior on the ‘fixed effects’ vector, a:(b,p’,t)’, was a diffuse

multivariate Gaussian distribution, with mean at the least squares

estimates, âa, and diagonal covariance matrix with entries

100| max (x){ min (x)½ �ð Þ2. The results of fitting the model in

a Bayesian framework are summarized in Table 4 and Figure 4.

Replication of mQTL hits (MolOBB 1H NMR data)
For each of the mQTLs discovered in the MolTWIN cohort, we

re-tested the association using only data from the MolOBB cohort.

Specifically, we mapped the quantiles of the metabolite’s

concentration data to the corresponding quantiles of a standard

Gaussian distribution; we then tested for an additive association

with the corresponding SNP’s genotype data, including age and

gender as covariates in the linear model. Resulting p-values are

shown in Table 3.

Replication of Illig et al.’s mQTL hits (MolTWIN and
MolOBB Biocrates data)

We used the concentration data directly as output from the

Biocrates platform, and calculated metabolic traits from concen-

tration ratios as in [14]. We removed individuals overlapping with

the TwinsUK cohort used in [14], after which a total of 202

individuals were included in our Biocrates replication analysis (133

MolTWIN participants and 69 MolOBB participants). We fitted

similar models to those specified in the Materials and Methods

subsection ‘Mixed-effects analysis of hit regions,’ though now with

fixed effects for genotype (number of copies of reference allele),

plate, age, and gender. For each metabolic trait, the genotype data

in the model was from the single corresponding mQTL SNP as

reported in [14]. The results of the non-Bayesian analysis are

shown in Table 5 and the results of the Bayesian analysis are in

Table 4 and Figure 4.

Data availability
The data underlying the current paper’s analyses are available

for download from an FTP server (host: svilpaste.mii.lu.lv; login:

Moltwin_NMR; password: Moltwin_NMR1; path: /home/

George/PLoS_Genetics_mQTL_data).

Supporting Information

Figure S1 Peaks in urine 1H NMR spectra that are driven by

mQTL variation. In the bottom panel we plotted 50 spectra over a

subset of the ppm axis (note that, conventionally, the ppm axis is

plotted increasing from right to left). The top panels are zoomed-in

views of peaks from the three mQTL-driven urine metabolites of

the current paper. The vertical scale of the bottom panel differs

from the vertical scale shared by the top three panels.

(TIF)

Figure S2 Hit region for DMAp. Top: location of genes, with

rectangles denoting the position of exons. Middle: log-transformed

p-values ({log10(p)) for the test of association of the metabolite’s
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concentration with each SNP in the region. Bottom: LD between

each pair of SNPs in the region, with the colour scale for r2

superimposed.

(TIF)

Figure S3 Hit region for BAIBu. Top: location of genes, with

rectangles denoting the position of exons. Middle: log-transformed

p-values ({log10(p)) for the test of association of the metabolite’s

concentration with each SNP in the region. Bottom: LD between

each pair of SNPs in the region, with the colour scale for r2

superimposed.

(TIF)

Figure S4 Comparison of estimates of effect size of mQTL SNPs

for metabolic traits measured on the Biocrates platform. Effect

sizes are compared between Illig et al. (estimates are taken from

Table 1 of [14]), and the current paper’s replication of Illig et al.’s

findings. The comparison is made using proportions of total

phenotypic variance, because this was the measure of effect size

used in [14]. Where applicable, the posterior distribution of effect

size is represented as follows: the central tick in a box marks the

posterior mean, the ends of a box mark the posterior quartiles, and

the whiskers represent the central 95% credible interval (extending

to the 2.5 and 97.5 posterior percentiles).

(TIF)

Figure S5 Comparison of estimates of effect size of mQTL SNPs

on metabolite concentrations measured by 1H NMR. Effect sizes

are compared between the discovery stage (MolTWIN cohort) and

the replication stage (MolOBB cohort). The MolTWIN estimates

and credible intervals are as shown in Figure 4. The MolOBB

estimates had to be calculated differently to the MolTWIN

estimates because of the absence of technical replication in the

MolOBB cohort study design. To calculate the MolOBB

estimates, we first fitted a linear model with logarithmically

transformed metabolite concentration, x, as the response variable,

and with subjects’ age, gender, and mQTL SNP genotype

as explanatory variables—i.e. xi~mzb|giza|(age)izc|
2(gender)izei, where gi is the number of copies of the reference

allele at the mQTL SNP carried by subject i. From the model fit,

we estimated the proportion of total variance in metabolite

concentration explained by the SNP using the ratio of sample

variances: Var(b̂bgi)=Var(xi). We then rescaled this to be the

proportion of biological variation in metabolite concentration. This

was achieved by dividing by 1{p̂pe, where p̂pe is the estimate (from

the MolTWIN cohort) of the proportion of total variance in x
explained by experimental variation (see Materials and Methods).

(TIF)

Figure S6 Distribution of the ratio of TMAOu concentration to

the combined concentration of TMAOu and TMAu (includes

both MolTWIN and MolOBB cohorts). Trimethylaminuria

controls have relatively high values of TMAOu/(TMAOu +
TMAu), typically greater than 0.8 [50], whilst values for cases are

considerably lower (the two cases examined in [50] have values

0.11 and 0.22).

(TIF)

Figure S7 Plot of spectra for which mQTL-driven metabolites,

labelled top, are determined as missing. Missing-peak spectra are

plotted in black. For comparison, an arbitrarily selected set of 25

present-peak spectra is plotted in grey. Vertical green lines delimit

the corresponding peak’s bin (Materials and Methods).

(TIF)

Table S1 Details of statistical association between each mQTL-

driven metabolite and the SNPs within 200 kb of its hit region.

Genomic locations are given in NCBI build 37 coordinates.

Columns labelled ‘Beta,’ ‘S.E. Beta’ (S.E. = standard error) and

‘p-value’ (for the test of the null hypothesis that b~0) give details

of the fit of the non-Bayesian mixed-effects model described in

section ‘Mixed-effects analysis of hit regions (MolTWIN 1H NMR

data)’ of Materials and Methods. The meaning of the column

‘Genome-Wide Significant’ is described in the final paragraph of

the section ‘Genome-wide association scan (MolTWIN 1H NMR

data)’ of Materials and Methods.

(XLS)

Table S2 (A) Non-synonymous SNPs in LD with mQTL SNPs.

(B) Corresponding residue changes and predicted functional effects

of non-synonymous SNPs.

(DOC)

Table S3 Previously discovered eQTLs within 200 kb of mQTL

hit regions.

(DOC)
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